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Optimal Scheduling in Film Production 
to Minimize Talent Hold Cost 

T. C. E. C H E N G ,  2 J. E. D I A M O N D ,  3 AND B. M. T. L I N  4 

Communicated by W. Stadler 

Abstract. The problem of  minimizing the cost due to talent hold days 
in the production of a feature film is considered. A combinatorial 
model is developed for the sequencing of shooting days in a film shoot. 
The problem is shown to be strongly NP-hard. A branch-and-bound 
solution algorithm and a heuristic solution method for large instances 
of the problem (15 shooting days or more) are developed and imple- 
mented on a computer. A number of  randomly generated problem 
instances are solved to study the power and speed of the algorithms. 
The computational results reveal that the heuristic solution method is 
effective and efficient in obtaining near-optimal solutions. 
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1. Introduction 

In the production of a feature film, the various components or scenes 
of the film are not generally filmed in the same sequence in which they 
appear in the final version. The sequence in which the scenes are shot is 
determined by the first assistant director, who considers various economic, 
logistic, and artistic factors in deciding upon a particular sequence. 
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In shooting a film, especially when it is shot on location, many of the 
actors or talent required for the film must travel great distances to the 
filming location. Any person who travels from his residence to the filming 
location must be paid for each day in which he is present at the location 
regardless of whether he is required in the scenes which are being shot that 
day. Days in which an actor is present on location but not required for 
filming are called "hold days" for the actor concerned. In some instances, 
a talent may travel back and forth from his residence to the filming 
location, in which case the producers of the film pay only for those days the 
talent is present on location. However, the producers must then cover the 
cost associated with this travel. It is often more economical to employ the 
talent continuously and pay for the hold days incurred (Ref. 1). 

We will present a model in which the minimization of the cost due to 
hold days is the sole criterion for the optimal scheduling of a film. In 
general, a variety of other criteria will also be involved in the decision 
process. However, the cost of hold days does, in real situations, feature 
prominently and so it will be of use to isolate this factor for modelling. 
Other considerations such as restricted availability of some talent, setup 
costs for scenes, artistic constraints, and so on are ignored in this paper. 

The model which we will consider is a combinatorial one. We will 
attempt to sequence the shooting days of the film so that the actors are 
employed as continuously as possible and the cost of paying actors for hold 
days is minimized. 

2. Literature Review 

The problem which we consider in this paper could be regarded as a 
project scheduling problem. There is a large body of literature available on 
this class of problems. However, our problem possesses two aspects, which 
together make it very different from the types of project scheduling problems 
considered to date. One fundamental difference is that we are considering 
scheduling the work of particular employees. While a typical project 
scheduling problem considers the scheduling of the different tasks of a 
project where each task may require a certain number of employees of a 
given class to perform (e.g., two physicists and three chemists are required 
for the R&D task of some project), it does not require particular employees 
(or other resources such as machines and tools) at given times (e.g., machine 
1 and machine 2 must work simultaneously on processing a job; Tom 
Jackson and John Smith are required for the last stage of the project). 

The second aspect is the concept of incurring a penalty for hold days. 
There are many models of manufacturing scheduling in which penalty is 
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incurred for allowing machines idle. But these models are fundamentally 
different from our model in that generally only one machine works on a 
given job at a time, whereas in our problem many actors may be required 
to work simultaneously on one scene. 

So far, we have not been able to locate any literature (other than some 
qualitative studies from the film industry) which addresses problems similar 
enough in structure to ours to provide guidance or reference for model 
formulation and method of solution. 

3. Model Formulation 

We assume that the filming is divided into a number of shooting days, 
each of  which requires a different subset of  the talent contracted for the 
film. Scenes with similar talent or setup requirements may be grouped 
together into one shooting day; or an entire shooting day may be devoted 
to a single scene of a particularly complex nature. Normally, once it is 
decided which scenes will be shot on which days, the talent requirement for 
each day is recorded on a calendar cross plot called the "day out of days" 
(Ref. 2). In the day out of days, each column corresponds to one shooting 
day and each row corresponds to one actor. If an actor is required on a 
given shooting day, a mark (usually a number assigned to the actor's 
character) will be made in the cell where the row corresponding to that 
actor intersects with the column corresponding to the day. Assuming that 
the grouping of the components of the film into shooting days is given, we 
consider the problem of sequencing the shooting days in such a way that 
the cost due to talent hold days is minimized. We will use the generic term 
"actor" to refer to any person, animal, equipment, location, and so on 
which must be contracted on a continuous basis so that all off-days (hold 
days) must be paid. 

Consider a film shoot composed of n shooting days and involving a 
total of m actors. We represent the requirements for the various shooting 
days by the day out of days matrix (DODM) T°e{0, 1} . . . .  withthe (i,j) 
entry given by 

I, if actor i is required in shooting day j, 
t° = 0, otherwise. 

We also define the pay vector C~9~', with the ith element given by 

ci = rate of pay per day of the ith actor. 

Together, T o and C determine all the data required for the problem. Let 
a e a ,  be any permutation of the n columns of T °, i.e., 
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a: {t . . . . .  n}-*(1 . . . .  ,n),  

where a. is the permutation set of the n shooting days. Define T(a)  to be 
the matrix T o with its columns permuted according to a. Then, 

tij(a) = o tic(j), for ie{1 . . . . .  m},je{1 . . . . .  n}. 

Since each column of TO is associated with a particular shooting day, a 
determines a filming sequence or schedule S for the filming. Let ei(a) and 
l i (a) denote respectively the earliest and latest days in the schedule S 
determined by a which require actor i. Then, actor i must be present on 
location for exactly l i(a) - e i ( a )  + 1 number of days. But he is actually 
required for only ri = ~.ff= 1 tg. of those days, where r; is the ith element of 
R e gt m, the vector of number of days each actor is required to be present. 
Let hi (S)be the ith element of H~9t  m, the vector of number of days each 
actor is on hold under the schedule S. Then, the number of hold days for 
actor i in the schedule S is given by 

h i (S )  = h i (a)  = l i(a) - e , (a)  + 1 - ri 

= l i (a)  - e i (a)  + 1 - ~ t°.. 
y = l  

It follows that the total cost of hold days for the film is 

K(a)  = cihi(a) = ci l i(a) - e i ( a )  + 1 - tij , 
i = l  i = l  j = l  

and our problem, referred to as the film scheduling (FS) problem, becomes 

(F, ~) m i n i m i z e K ( a ) = ~ c i [ l i ( a ) - e i ( a ) + l - - ~ t } l .  
a~an i ~ 1 j = 1 

4. Strong NP-Hardness of the Film Scheduling Problem 

In this section, we will show that the FS problem is NP-hard by a 
reduction from the optimal linear arrangement (OLA) problem, which has 
been shown to be NP-hard by Garey et al. (Ref. 3). In fact, the FS problem 
is strongly NP-hard, because we show that, even the restricted version, in 
which each actor is needed for just two days and pay vector is 1, is 
polynomially reducible to the OLA problem. Thus, even the existence of a 
pseudopolynomial algorithm is unlikely (Ref. 4). 

Optimal Linear Arrangement Problem. Given an undirected graph 
G = (V, E) and a positive integer B, does there exist a one-to-one function 
a: {1, 2 . . . . .  IV1} ~ {1, 2 . . . . .  ]Vl} such that ~tv.~-l~ l a ( i )  - a(J)l-< B? 
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Theorem 4.1. The FS problem is strongly NP-hard. 

Proof. Given an instance of OLA with G = (V, E) and B, we con- 
struct an instance of the recognition version of  the FS problem with the 
DODM T O as follows. Each edge E~ in E corresponds to row i in T °, while 
each Vj in V corresponds to column j of TO such that t °. = 1 if and only if 
V: is a terminal of edge E,.; otherwise, t ° = 0. And, we define the pay vector 
by letting ci = 1 for all i. We claim that the answer to the OLA problem is 
"yes" if and only if the instance of the FS problem has a hold days cost 

K(a) < B - tEl .  

It is easy to see that this construction takes polynomial time and the 
guessing and checking of  an answer can be nondeterministically performed 
in polynomial time. 

It is clear that 

~ t ~  = 2, for all i. 
j = l  

Thus, any permutation or linear arrangement a of vertices in V such that 

E la(i) -- a(J)[ <- B 

will imply that the hold days cost corresponding to a is 

N 
K ( ~ )  = ~ ,  1 x I1 i (a )  - e  i (o-) + 1 - 2 ]  

i = l  

= E [ / ,  ( a )  - -  e, ( a ) ]  - -  [E{ 
i=I 

= Z la ( i ) -a ( J ) t - lE[  
[vidol~E 

_< B -lEt. 
The converse is also true. Therefore, the proof is completed. [] 

5. Branch-and-Bound Solution 

We propose solution of  this problem by a branch-and-bound al- 
gorithm where each node in the branching tree represents a partially 
determined schedule. Denote by J,~ the shooting day which is scheduled to 
be filmed in the ith day of the shoot. We determine the schedule from 
outside in by determining J~ first, then J , ,  then J2, Jn - ~, then J3, J ,  - 2, and 
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so on in that order. Thus, the nodes in the first level below the root in the 
branching tree represents partial schedules for which only Ji has been 
determined. The nodes in the second level represent partial schedules with 
Jl and Jn determined. In the third level, J~, Jn and J2 are determined, and 
so forth. In the next ,two sections, we will discuss the construction of 
bounds and the search strategy used in the branch-and-bound algorithm. 

5.1. Bounds. For each node or partial schedule, we determine a lower 
bound on the cost of hold days as follows. First, note that the shooting 
days in a partial schedule P can be divided into two subsets: 

E(P) = {k~{1 , . . . ,  n} I J k ~ P  and k < I-n/2-]}; 

L(P) = {k~{1 . . . . .  n)  I J k ~ P  and k > [-n/2]} 

where I-j] denotes the smallest integer greater than or equal to j. We call 
the shooting days in E(P) early and those in L(P) late. We then note that, 
in any partial schedule, if a given actor is required in both an early 
shooting day and a late shooting day (which have already been scheduled), 
then the number of hold days for that actor is determined. 

Let P be any partial schedule and define 

~ , ( e )  = 

, ~ , ( e )  = 

Also, define 

if actor i is required in a shooting day 
scheduled early in P, 

otherwise, 

if actor i is required in a shooting day 
scheduled late in P, 

otherwise. 

~first day in P where actor i is required, if Ei (P) = 1, 
ei(P) = (0, otherwise, 

~last day in P where actor i is required, if 2,.(P) = 1, 
li(P) = (0, otherwise. 

We now define a schedule S to be a completion of P if and only if S 
is a complete schedule which agrees with P on each day which is scheduled 
in P. Then, if Ei(e)•i(P ) = 1,  the cost of  hold days for actor i in any 
completion S of P, K~(S), is given by • 

E K~(S) = c~ I,.(P) - ei(P) + 1 - ttj . (1) 
j = l  
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Let T(P) be the partial day out of days matrix determined by P. 
The columns of T(P) are the columns of T which correspond to shooting 
days scheduled in P. If n' shooting days are scheduled in P, then 
T(P) e {0, 1},, × n,- Now suppose that, for some i e {I . . . . .  m}, there exists 
j~E(P) such that the following condition holds: 

j - - I  j 

0 < ~, G(P)= ~ G(P)< tu,(P). (2) 
k = l  k = l  k = l  

The first inequality guarantees that actor i is required for some day 
scheduled earlier than j while the last inequality guarantees that he is also 
required for some day scheduled later than j. Then, actor i must be present 
on location on day j. But the equality in the middle implies that T~j(P) = O, 
which means that actor i is not required for day j of the partial schedule P. 
Thus, j is a hold day for actor i in any completion S of P. 

Similarity, ifj'eL(P) satisfies the condition 

0 <  ~ hk(P)= ~ tik(P)< ~ hk(P), (3) 
k = j * +  1 k = f  k =  I 

then j '  is a hold day for actor i in any completion of P. Now, let 

D~ (P) = number of days j sE(P) which satisfy condition (2), 

D~(P) - n u m b e r  of days f sL(P)  which satisfy condition (3). 

Then, DT.(P)+D~(P) is a lower bound on the number of hold days for 
actor i in a completion S of P. If ei (P)2j (P) = 0, the cost K,. (S) due to hold 
days for actor i cannot be determined by Eq. (I). However, a lower bound 
on this cost is given by 

K,(S) >_ c~{D~(P) + D~(P)}. 

Thus, we have the following lower bound for the cost due to hold days of 
a completion S of the partial schedule P: 

i = I  j = l  

+ [1 - E i (P)2i (P)][D~ (P) + D~(P)] }. (4) 

This determines the lower bound for the node in the branching tree which 
corresponds to P. 

5.2. Search Strategy. Now that we have the bounds for the nodes in 
the branching tree, we must develop a search strategy--a set of rules which 
will determine the order in which the nodes of the branching tree are 
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examined. Various such search strategies have been proposed, but the one 
which we are primarily interested in is the depth first search. One of the 
main advantages of this search technique is that it requires very little 
storage of information during the process and thus is also one of the easiest 
strategies to implement on computers. We will use a depth first search with 
the following two modifications. 

Most Attractive Route. In order to find a good starting solution 
before we begin the depth first search, we take the most attractive route to 
the bottom of the tree. This means that we construct a complete schedule 
from outside to in (see discussion in the previous section) by selecting, at 
each stage, the shooting day which would increase the current lower bound 
by the least amount. Thus, upon arriving at some node in the tree, we will 
always branch to the adjacent node on the next level which has the lowest 
bound. If there is a tie, we branch to the first node accessed which has the 
minimum bound. 

Since all bounds on the first level of the branching tree (one shooting 
day scheduled) and zero in our case, we will begin the above process at the 
second level of the branching tree. Thus, in the first stage, we consider all 
n ( n  - 1)/2 nodes on the second level of the tree and branch to the one with 
the lowest bound. We then continue the process, scheduling one day at a 
time, until we reach the bottom of the branching tree (schedule completed), 
obtaining a starting feasible solution for the depth first search. 

This procedure is expected to give a good starting solution since, in 
general, we see that the cost incurred by scheduling outside days (close to 
the start or end of the shoot) is higher than the cost of scheduling inside 
days (close to the middle of the shoot). For example, if an actor is required 
for only two shooting days, then the highest cost for that actor will clearly 
be incurred by scheduling those days on the first and last days of the shoot. 
The number of hold days (and thus the cost of hold days) decreases as we 
schedule the two days progressively toward the middle of the shoot. Thus, 
heuristically speaking, the scheduling of the outside days is most crucial 
and so it makes good sense to allow ourselves the most freedom (most 
shooting days to choose from) and to choose shooting days which incur the 
least immediate cost when scheduling the outside days. 

Pairwise Interchanges. French (Ref. 5) provides a discussion of this 
technique, which consists of calculating the change in value of the objective 
function as a result of interchanging the positions of two jobs (shooting 
days) in a completed schedule. If the objective function value improves, 
then the interchange is carried out. This process continues until we arrive 
at a schedule for which none of the interchange of the n ( n  - 1)/2 pairs of 
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Table 1. Elements of the day-out-of-days matrix and pay vector. 

487 

i Actor t ° c~ 

! Luce 
2 Tom 
3 Mindy 
4 Maria 
5 Gianni 
6 Dolores 
7 Lance 
8 Sam 

1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  1000 
1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1  ~0 
0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0  500 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0  500 
0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1  500 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0  4000 
0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0  400 
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  2000 

jobs (shooting days) will result in an improvement of  the objective. We will 
call such a schedule a locally optimal schedule or more briefly, a local 
optimum. 

In our search strategy, we will implement such a search for a locally 
optimal schedule each time we come to the bottom of the branching tree in 
the course of  our search. Note that this includes the first time we arrive at 
the bottom of  the tree, after exploring the most attractive route as 
discussed above. 

Example 5.1. We consider the example of  a feature film called Mob 
Story, which was filmed in Winnipeg, Canada between February and 
March of 1989. The D O D M  T o is given in Table 1 along with a disguised 
pay "vector C (the actual rates of  pay are confidential). 

The cost of  hold days is K(T °) = $36,400. We applied to heuristic 
algorithm discussed above to get the locally optimal schedule 

S = {25, 4, 1, 12, 13, 15, 14, 3, 17, 18, 16, 2, 9, 7, 

10, 6, 8, 11, 5, 20, 21, 19, 23, 27, 24, 22, 28, 26}. 

The cost of  hold days for this sequence is K(S)= $17,900 and the CPU 
time required was 1.05 seconds. Thus, it seems that the heuristic algorithm 
has improved significantly upon the schedule T O , which was constructed 
manually by the trial-and-error method. 

6. Computational Complexity of the Heuristic Algorithm 

In general, the complexity of  branch-and-bound algorithms grows 
exponentially with the size of  the instance of  the problem considered. The 
heuristic algorithm (Steps 1 and 2 of  the branch-and-bound algorithm), 
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however, is a pseudopolynomial time algorithm. This can be seen as 
follows. 

Most Attractive Path. In this part of the algorithm, we schedule one 
day at a time, each time updating the lower bound. Since this updating is 
independent of the number of days, it is easy to see that the time required 
to perform this part of the algorithm is bounded by a linear function of n, 
the number of shooting days. 

Pairwise Interchanges. Let CM be the maximum entry in the pay 
vector C. Then mncM is an upper bound on the cost of hold days for an 
instance of the problem with m actors and n shooting days. Since all the 
pay rates are given as integers ($'s per day), the minimum decrease in the 
objective function due to any interchange which the algorithm performs is 
$1. Thus, it takes at most mncM interchanges to arrive at a local optimum. 
Each time (except for the last iteration), we check the n(n - 1)/2 pairs of 
shooting days to see if their interchange would improve the objective 
function. If we do not find such a pair, then the algorithm terminates. 
Thus, we must perform at most [mn2(n - 1)/2]c M such checks. In order to 
perform each check, we need to known the positions of the first, second, 
last and second last l's in each row of the DODM; to get this information, 
we need to check each entry of the DODM once. Thus, the time required 
for each check tc is bounded by a linear function of the number of entries 
mn,  with a, b~9t, as follows: 

tc < a + bmn.  

Thus, the total time tp for the pairwise interchange part of the heuristic 
algorithm is pseudopolynomially bounded in both m and n, given by 

tp <_ (a + bmn)[mn2(n  - 1)/2]c M. 

7. Computational Experience 

We applied the techniques discussed above to nine randomly generated 
instances of the problem at hand. The instances were generated in the 
following manner. First, we chose m and n, the number of actors and 
shooting days, respectively. For each of the m actors, we generated a 
random number ni, i = 1 . . . . .  rn, between 1 and n, which represented the 
number of shooting days which required actor i. Then, for actor i, we 
generated ni random numbers, nij,j = 1 , . . . ,  hi, between 1 and n, which 
represented the n~ shooting days in T O which required actor i. Finally, we 
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Table 2. Computational results of nine randomly generated problem instances. 

Instance m n 

Percentage error 

Starting Local CPU Global CPU Local 
objective objective time objective time Starting optimal 

value value (sec) value (sec) solution solution 

1 6 6 178 134 0.05 134 0.11 32.8 0 
2 7 7 174 167 0.07 134 0.32 4.2 0 
3 8 8 163 145 0.11 145 0.39 12.4 0 
4 9 9 553 494 0.13 457 2.65 21.0 8.1 
5 10 10 648 435 0.17 435 10.67 49.0 0 
6 10 10 607 507 0.16 424 7.86 43.2 19.6 
7 11 11 1005 842 0.24 842 9.57 22.0 0 
8 13 13 2099 1639 0.34 1639 104.36 28.1 0 
9 t4 14 1877 1149 0.45 1120 552.37 67.6 2.6 

generated a random number % i -- 1 . . . . .  m, between 1 and I00 for each 
actor to represent the actor's daily rate of pay. This defined the DODM 
and pay vector for each instance of the problem. 

We first coded the branch-and-bound algorithm in the WATFIV 
programming language and applied it to solve the problems on the 
University of Manitoba AMDAHL mainframe computer. The computa- 
tional results are summarized in Table 2. We record the value of the 
objective function for the starting solution (from most attractive route) and 
local optimum (from applying the pairwise interchange algorithm to the 
starting solution), the CPU time used to arrive at the local optimum, the 
objective function value at the global optimum, and the CPU time used for 
the complete branch-and-bound search. 

It is evident from Table 2 that, for the problems considered, the first 
two steps of the algorithm (most attractive route and pairwise interchange) 
do, on average, as well or very nearly as well as the complete branch-and- 
bound search. The time required to implement these two steps, however, 
grows very slowly with the size of the instance n, whereas the time required 
to complete the entire branch-and-bound search seems to grow exponen- 
tially. Thus, the first two steps together will provide an excellent heuristic 
algorithm for solving large instances of the problem which could not 
otherwise be solved exactly in a reasonable amount of time. 

Next, we solved one hundred instances of the problem (generated 
randomly as described above) with m = 10; ten instances were generated 
for each integer value of n in the interval [5, 14]. The average CPU times 
for execution of the heuristic algorithm as well as for the branch-and- 
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bound search algorithm are recorded for each value of n considered. The 
average of the percentage error E = ((Zh -- Zb)/Zb) x 100, where Zh and Zb 
are the objective function values from the heuristic and branch-and-bound 
solutions, respectively, is also recorded for each value of n. A graph of the 
average heuristic algorithm CPU time and branch-and-bound algorithm 
CPU time is plotted as a function of n in Fig. 1. The CPU time for the 
branch-and-bound algorithm grows rapidly (essentially exponentially) with 
n, but the CPU time for the heuristic algorithm grows much more slowly 
(apparently constant). Figure 2 displays a plot of the average percentage 
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Fig. I. Average CPU time versus number of shooting days. 
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Average percentage error versus number of shooting days. Fig. 2. 

error versus n. The percentage error seems to fluctuate randomly. This 
indicates that the heuristic algorithm is efficient in the range of  n we have 
considered. Since the percentage error does not increase steadily with n, we 
can speculate that the percentage error for much larger problems will be 
comparable.  Thus, it will clearly be of  use to apply this heuristic algorithm 
to problems which are too large (n > t5) to be solved by the branch-and- 
bound algorithm in a reasonable amount  of  time. 
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8. Conclusions 

It seems clear that we now have an effective heuristic algorithm for 
solving the FS problem. We believe that the program of the algorithms 
(both the branch-and-bound and heuristic methods) developed could be of 
use to the film industry in its present form. However, there are other 
factors (e.g., constraints due to actor availability, the possibility of sending 
actors home for long idle periods, and so on), which our model has not 
considered. So, although the schedule obtained from our model is optimal 
with respect to the cost of hold days, it may not be an optimal schedule for 
the film when all factors are taken into consideration. Nevertheless, the 
solution obtained by our model could serve as a starting point for the first 
assistant director who could alter the schedule to take into account all 
other relevant factors. The current model is being further developed in 
consultation with the film production practitioners to incorporate all 
factors considered crucial for the scheduling decision. Our next step is to 
give some practitioners of the film industry access to the program in order 
to evaluate its utility and to find areas for improvement. Other areas of 
application of this scheduling model, such as (perhaps) tool management in 
flexible manufacturing system designs, will also be explored. 
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