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Abstract

The basicprinciplesof constraintprogramming(constraintsatistction problems,
searchconstraintpropagationpreintroducedby discussinghow constraintprogram-
ming canbe usedto solve a specificoptimizationproblem. A setof orchestrapieces
is to berehearsedndthe problemrequiresfinding a sequencehatwill minimizethe
time that playersare at the rehearsabut not playing, if they arrive for thefirst piece
they areinvolvedin andleave afterthelast. A constraintprogrammingmodelof this
problemis presentedA similarproblemarisesn ‘talentschedulingin shootingafilm;
improvementgo the basicmodelaregiventhatallow a largerinstanceof this kind to
besolved.

1 Introduction

The rehearsaproblemoriginatedat LancasterUniversity, whereit is saidto have been
devisedby a memberof staf in the Managemen§ciencedepartmentywho wasa member
of anorchestraandformalizedthe problemwhilst waiting to play duringarehearsalThe
problemwasfirst describedy Adelson,NormanandLaporte[1], althoughthatpaperdoes
notgive thedata.

A concertis to consistof nine piecesof musicof differentdurationseachinvolving a
differentcombinatiorof thefive memberf theorchestraPlayerscanarrive atrehearsals
immediatelybeforethefirst piecein which they areinvolvedanddeparimmediatelyafter
thelastpiecein which they areinvolved. The problemis to devisean orderin which the
piecescanberehearsedoasto minimizethetotaltime thatplayersarewaitingto play, i.e.
thetotal time whenplayersarepresenbut not currentlyplaying.

In the tablebelow, 1 meansthatthe playeris requiredfor the correspondingiece,0
otherwise.Theduration(i.e.rehearsatime) is in someunspecifiedime units.

Piece 1 2 3 45 6 7 89
Player1 (1 1 0 1 0 1 1 0 1
Player2 (1 1 0 1 1 1 0 1 O
Player3 |1 1 0 0 0 0 1 1 O
Player4 |1 0 0 0 12 1 0 0 1
Player5 |/O 0 1 0 1 1 1 1 O
Duraton|2 4 1 3 3 2 5 7 6

Tablel: Datafor therehearsaproblem



For example,if thenine pieceswererehearsedh numericalorderasgivenabove,then
thetotal waiting time would be:
Playerl: 1+3+7=11
Player2: 1+5=6
Player3: 1+3+3+2=9
Player4: 4+1+3+5+7=20
Player5: 3
giving atotal of 49 units. Theoptimalsequencegaswe shallsee js muchbetterthanthis.

2 Basicsof Constraint Satisfaction Problems

Somebasic definitionsand conceptsare given here, before shoving how the rehearsal
problemmightbemodelledandsolvedusingconstrainprogrammingThisis notintended
to be a comprehensie presentationbut is biasedtowardsthe facilities that are available
in constraintprogrammingtoolkits suchas ECLIPS and ILOG Solver andthosethat are
requiredfor modellingtherehearsaproblem.

A constrainsatisactionproblemconsistof:

e asetof variablesX;

¢ for eachvariablez; € X, afinite setD,, of possiblevaluesthatthe variablecan
take, calledthedomain of z;;

e asetof constraints(C, eachof which affectsa subsebf X, andrestrictsthe values
thatcanbe simultaneoushassignedo thesevariables.

A solutionto a CSPis anassignmento every variableof a valuein its domain,in such
awaythatall theconstraint@resatisfied We canalsofind anoptimalsolution,givensome
objective;thiswill bediscussedurtherbelow.

Often, the domainsof the variablesin a CSPare a rangeof integers,andthatis the
casefor themodelof therehearsaproblempresentedbelon. However, thisis notessential.
For instanceit is oftenusefulto have setvariablesj.e. variablesvhosevaluesaresets(of
integerstypically). Eachmembeiof thedomainis thenapossiblesetthatcouldbeassigned
tothevariablesalthoughthemember®f thedomainarenotusuallyexplicitly listedin such
a case. It is alsopossibleto extendthe definition above to real-valuedvariables(which
thereforenolongerhave afinite domain).

The setof variablesaffectedby a constraints its scope. Thereis no requirementor
constraintgo take particularforms, suchaslinearinequalities. The only requiremenis
thatwe shouldbe ableto tell, for eachpossibleassignmenof valuesto the variablesin
its scope whetheror not thatassignmensatisfieghe constraint.! This generalityallows
problemsfrom mary differentfieldsto be expressedsconstraintsatishctionproblems.

To give someexamples,the following typesof constraintwill be relevantto the re-
hearsaproblem:

® T = Yizi.
Arithmetic constraintsof variouskinds, involving mixturesof variablesand con-
stantscanbeexpressed.

ez, =1 —= Ti41 = 1 (|e|f ;=1 then$i+1 = 1)
Logical constraintof variouskinds arecommon,andallow the logic of a problem
to bedirectly expressedNotethata constrainisuchasthis doesadequatehallow us
to tell whetheran assignmento the variablesin the constraints scopesatisfiesthe

IFormally, aconstraintCy; z ;...z, With scope{z;, z;, ...,z } is a subseof the setof possibleassignments
tothesa/ariablesj.e.C“,cj___m C Dg; X Dgy X ... X Dy,.



constraintor not. If D,, = D,, = {0, 1}, thenof thefour possibleassignmentto
thevariablesz; andx;1, threeareallowed by the constraint(z; = 1,2;41 = 1;
z; = 0,241 = 1; andz; = 0,2;,41 = 0) andoneis not(z; = 1, 2,41 = 0).

o t=> " a;z;.
Constraintprogrammingoolkits allow arraysof variablesandconstraintson arrays
of variables.Here,t, a; andx; mightall be variablesor ¢t and/ora; might be con-
stantsgeitherareequallyallowed.

o allDifferent@y, z2, ..., ).
It is very commonin CSPsto requiresomeor all of the variablesto take different
values.Fortherehearsabroblemiit is sufficientto consideanallDifferentconstraint
asshorthandor a setof pairwise# constraintsi.e. z; # z3, 1 # T3, ....

Constraintprogrammingsystemssuchas ECLPS, ILOG Solver and SicstusProlog
allows constraintsatishctionproblemsto be expressecndsolved. They provide ameans
of defining variablesand their domains,and provide a setof pre-definedconstraints;it
is usually possibleto definenew constraintsf necessary They provide algorithmsfor
solving CSPs with scopefor tailoring or modifying the algorithms;the basicalgorithms
arediscussedn the next section.

3 Solvinga CSP

To solve a CSPwe first needto identify the decisionvariables. Thesemay be all the
variablesin the CSR but often someof the variablesin the CSParethereonly to allow
relationshipsbetweenother variablesto be expressednore easily; we may not want to
explicitly assigrnvaluesto thesevariables.The minimumrequirements thatwe identify a
setof variablessuchthatan assignmento thosevariablesthat satisfiesall the constraints
will yield acompletesolutionto the original problemwe aretrying to solve.

The problemis thensolved by a combinationof systematicsearch throughthe setof
all possibleassignmentto the decisionvariablesandconstraint propagation: makinguse
of the constraintgo derive new informationfrom the assignmentalreadymadethat will
avoid consideringassignmentthatcannotieadto a solution.

Thealgorithmroughlyfollows thesesteps:

e chooseadecisionvariablethathasnotyetbeenassigned value;

¢ chooseavaluefrom thoseremainingin this variables domain,andassignthe value
to thevariable;

¢ usethe constraintg¢o prunevaluesfrom the domainsof othervariablesnot yet as-
signedthatcannolongerbe usedasa resultof thisassignment;

e if asaresultof this constraintpropagationary variablehasno valuesleft in its
domain,backtrack:undothe assignmenjust madeandchooseanothevalueof the
currentvariable.If all valuesfor the currentvariablehave now beentried, backtrack
to the previously assignedariableandreassigrnit.

Thesearcherminategitherwhenasolutionis found,i.e.whenavaluehassuccessfully
beenassignedo every variable (if we only requireone solution) or whenthereare no
furtherchoicego consider(if we wantall solutions,or thereareno solutions).

To illustrate the idea of constraintpropagationsupposewve have decisionvariables
x1, T2, ..., Tn, €achwith initial domain{0,1}, andthatsomeof theconstraintsare:

;=1 = z;41=1,1<i<n.

Supposéhe problemalsocontainsa variablew, which is definedin termsof the deci-

sionvariablesby the constraint:



w = El di:ci
whereds , ds, ..., d,, arepositive constants.

Initial propagatiorof the constraintsn the problemwill calculatethe domainof w as
{0, ..., >, di}, if it is not otherwisespecified. Thatis, its minimum valueis achieed by
settingz; = z2 = ... = x,, = 0, andits maximumvalueby z; = 25 = ... = z,, = 1.
Note that not every valuein the range{0, ..., > . d;} may be attainable but it would be
potentiallyvery time-consumingo testevery value.

Supposé¢hesearchassignshevalueOto z; . In constrainpropagatiorterms,anassign-
mentis viewed asthe removal of all othervaluesfrom the variables domain. Remwing
thevalue 1l from the domainof z; hasno effecton z;. Consequentlyit canhave no ef-
fecton zs3, 24, ..., x, Sincethereis no direct constraintbetweenz; andthesevariables.
However, the maximumvalueof w, i.e. thelargestvaluein its domain,will bereducedo
de +ds+.... + dy.

Whenthe value 1 is assignedo z;, constraintpropagatiorwill remove the value 0
from the domainof z», andthenfrom the domainsof 3, ..., z,, in turn. Thusconstraint
propagatiorcantrigger a cascadeof domainreductions not restrictedto the constraints
which have the original variablez; in their scope.Thedomainof w will alsobereduced,
to the singlevalue ), d;. Any variablewith only onevalueleft in its domainmustbe
assignedhat value, so all theseassignmentsvill be madeas a result of the constraint
propagatiorstep.

This exampleillustratesthat sometimesassigninga valueto a variablecanhave little
or no effect on othervariables;at the otherextreme,it may resultin every othervariable
beingassigneda value. An importanteffect of constraintpropagations thatit triggers
backtrackingvhena variables domainbecomeempty If everyvaluein thedomainhas
beenremovedasaresultof cumulative reductionsvhenothervariableshave beenassigned
valuestherecannotbeary solutionextendingtheassignmentmadesofar. Thecurrentas-
signmenis undoneandthevaluesremovedin propagatinghisassignmendrerestoredso
thatsearchcanproceedln this way, constrainpropagatiorallows thesearcho avoid con-
sideringmary partial solutionsthatcannotbe completedwhile ensuringthatno solutions
aremissed.

Constraintprogrammingtoolkits define a propagationrmechanisntfor every built-in
constraint. The mechanisnis triggeredwheneer a reductionof a specifiedkind occurs
in the domainof avariablein the scopeof the constraint.For someconstraintsthe prop-
agationis asstrongaspossible:wheneer ary valueis removed from the domainof ary
variablein the scopeof the constraint,all valuesin the domainsof othervariablesin the
scopearechecledandary valuethatcannolongersatisfytheconstrainis removed. How-
ever, for mary constraintghis is very time-consumingand often unnecessaryrFor other
constraintonly the bounds(i.e. the minimum and maximumvaluesin the domains)are
checled, asin the constraintw = )", z;, in the example. As alreadynoted, thereare
likely to be valuesin the calculateddomain{0, ..., >, d;} of w which cannotsatisfythe
constraintbut theseare not removed. Otherconstraintsareonly checledif a variablein
the scopeis assigned value:for instancein the constraint # y, if x is assignedvalue,
thenthatvalueis removedfrom thedomainof y.

Someconstraintsallow differentlevels of propagationnotably the allDifferentcon-
straint:asmentionedearliet this canbetreatedasa collectionof # constraintsandpropa-
gationonly involvesremaoving anassignedaluefrom thedomainof every othervariablein
theconstraint Alternatively, it canbetreatedasa singleconstrainandif, for instancethe
total numberof differentvaluesavailablein the domainsof the variablesis ever lessthan
n, it will be detectedhatthe constraintcannotbe satisfied.If this happensstheresultof
an assignmentthenthe assignmentvill fail andthe searchwill backtrack.Notethatthe
additionalprocessingloesnot changehe constraintpor the problemthatthe constraintis
partof: thesamesolutionswill befound. However, strongerconstrainpropagatiorshould
reducethe searctrequiredto find a solution,at the expenseof longerprocessingime for
theallDifferentconstraintsometimeshe additionaleffort paysoff, andsometimesot.



Becausehesearchs systemati@andimplicitly considersvery possibleassignmento
the decisionvariablesjf the searchcontinuesuntil no further choicesremainto consider
thenall possiblesolutionshave beenfound;if no solutionhasbeenfound, thisis because
thereare no solutionssatisfyingthe constraints.Becausehe searchpropagateshe con-
straintsafter every assignmentunnecessarghoicesneednot be explicitly explored,and
henceconsideringall possibleassignmentsanberelatively efficient.

4 Decision Variablesfor the Rehearsal Problem

We have to decidethe orderof the piecesandanobviouschoicefor thedecisionvariables
is to have a variablefor eachpositionin the sequencewith valuescorrespondindo the
pieces. If therearen pieces,andhencen slotsin the sequencewe candefinevariables
81, 82, .-, Sn, €achwith domain{1, 2, ...,n}, wheres; = j if piecej is in position: in the
sequencel < i < n.

An assignmento thesevariabledss a valid sequenceandso couldrepresena feasible
orderfor therehearsalif every variablehasa differentvalue. Hence the basicconstraint
is allDifferent(sy, s2, ..., $n). Any solutionwill thenbe a permutationof {1,2,3,...,n}.
However, sincewe arerequiredto find anoptimalsequencenot simply afeasibleone, this
very simpleCSPwill needto be extendedo allow optimization.

5 Optimization

To adapta constraintsatishctionproblemto becomeanoptimizationproblem,we include
avariable,sayt, that representshe objective. Typically, the objective variableis not a
decisionvariable. The CSPmustincludeconstraintdinking the objective variableto other
variablesn theproblem sothatwhenthedecisionvariableshave beerassignedvalue the
objectivevariablemustalsohave beerassigne@valueasaresultof constrainpropagation.
Whenasolutionis found,thevalueof ¢ in this solutionbecomes boundonthevaluein ary
future solution. Supposewne areminimizing ¢t andthatthe valueof ¢ in thefirst solution
foundis tg. The constraintsolver addsa constraintt < to, and attemptsto find a new
solution satisfyingthis constraint. This is repeatedwith the constrainton the objective
becomingprogressiely tighter aseachnew solutionis found. At somepoint, therewill
beno furthersolutionsatisfyingthe currentconstraintwhenthe searchterminateshaving
foundno solution,thelastsolutionfoundhasbeenprovedoptimal.

In therehearsaproblem,the objective variablet is the total waiting time. Hence,we
needto provide alink betweerthe sequencef piecesandthetotal waiting time: this will
requiretheintroductionof furthervariablesandconstraints.

The total waiting time is the sumof the waiting timesfor theindividual players. The
waiting time for a playerdepend®n whenthey arrive andwhenthey leave, whichin turn
dependon wherethe piecesthatthey play in appeaiin the sequenceMore specifically if
aplayerdoesnotplayin apiece,in orderto know whetherthe playeris waiting while that
particularpieceis rehearsedye needto know whenthe pieceoccursin the sequencand
whethertheplayerhasalreadyarrivedby thenandhasnotyetleft.

Given variablesrepresentingheseaspectof the problemsand constraintso define
them, ary assignmento the sequencevariablessy, ss, ..., s, Will resultin a valuebeing
assignedo the objective variablet, and hencethe schemeoutlined above for finding an
optimalsolutioncanbeused.However, in aproblemsuchasthis, simply building acorrect
modelwill not be enough,exceptfor small problems. To find an optimal solution, and
provethatit is optimal,in arny reasonabléme, thelink betweerthedecisionvariablesand
the objective variableneeddo beastight aspossible sothat:

e asthe sequencef piecesis built up, constraintpropagatiorshouldensurethatthe
upperand lower boundson ¢, given by the maximumand minimum valuesin its



domain,reflectasaccuratelyaspossiblethe costof completingthe sequenceThen
thesearclcanabandora partial sequencandtry anothewhenthe minimumvalue
of t becomegargerthanthevalueof thecurrentbestsolution.

e conversely constraintpropagatiorin the otherdirectionshouldallow a tight bound
on ¢, oncea goodsolutionhasbeenfound,to prunevaluesfrom the domainsof the
sequenceariablessothatpartialsequencethatcannotieadto a bettersolutionare
neverexplored.

Devising a modelwhich takestheseaimsinto accountsothatthe problemcanbe effi-
ciently solvedtakessomeskill. Somepossibilitiesarediscussedbelow.

6 A CSPMode

As discussedh thelastsection,n building thelink betweerthesequenceariablesandthe
objectie,t, it will beusefulto know notonly which pieceis in eachplacein thesequence,
but alsowherein the sequenceachpieceappears.For eachpiecej, let d; be a variable
whosevaluewill bethe positionin the sequencef piecej. Thesevariablesarelinkedto
thedecisionvariablessy, s, ...s, by:

s; =7 iffd; =1i.

Thevariablesd,, ds, .., d,, arethedualsof sy, s-..., s,, andarefrequentlyusedin mod-
elling problemsrequiringfinding a permutatior(in this case of the piecesto berehearsed)
[2, 5].

Letm;, 1 <k <m, 1 < j < nbeanarrayof 0 and1 valuesrepresentinghe data
givenin Tablel, i.e. my; = 1iff playerk playsin piecej.

The dual variablesallow new variablesto beintroduced.e.g.p,; = 1 iff playerk is
playingin slot j, definedby:

Pkd; = Tk,j

From thesewe candefinevariablesay;, lx; for eachplayerk andeachslot ; in the

sequenceyith domains{0, 1}, suchthat:
ar; = 1 if playerk hasarrivedby the startof slot4, 0 otherwise.
ly; = 1if playerk leavesattheendof sloti or later, 0 otherwise.

To relatethesevariablesto the sequenceariablessy, ss, ..., s,,, we canintroducecon-
straintsexpressinghat:

e a1 = 1iff playerk is playingin thepiecein slot 1 of thesequencd,e. ax; = pg1;

e fori > 1, ay; = 1iff playerk hasalreadyarrivedat the startof the previousslot or
playerk is playingin the piecein slot: of thesequence,e.ay; = 1iffa ;1 =1
orpg; = 1;

Thevariabled;, 1 < k < m, 1 < i < n canbedefinedby similar constraints.

For eachplayer, the first non-zerovaluein ayy, ags, ---, ar, correspondgo the first
piecein thesequenc¢hatplayerk playsin, andall subsequentaluesof a;; havethevalue
1. Similarly, the lastnon-zerovaluein I;1,1;2, ..., 1;;, correspondso the last piecein the
sequencéhatplayer: playsin, andall previousvaluesarel. For instancejf thesequence
is1,2,3,4,5,6,7,8, player5 arrivesat the startof the 3rd slot andleavesafterthe 8th:

Player; is attherehearsain slot j iff he/shehasarrivedandnotyetleft, i.e.ax; = 1
andly; = 1. Definingnew variablesry; = 1 iff playerk is at the rehearsatiuringslot i,
we havetheconstraintsry; = agilg;.

1 | 1 2 3 4 5 6 7 8 9
as5; |0 0 1 1 1 1 1 1 1
l; |1 11 1 1 1 1 1 0
r; O 0O 1 1 1 1 1 1 O



Hencewe candefinevariablesw,; = 1 if playerk is waiting while piecej is being
rehearsed) otherwise,i.e. wy; = 1 iff playerk doesnot play in piecej andplayerk
is at the rehearsailvhile piecej is beingrehearsed.The constraintgdefiningwy; canbe
expresses:

Wkj = Tk,d; if Tk = 1
=0 otherwise

Giventhesevariablesthe waiting time for playerk is 3 wi;4;, whered; is thetime
torehearsgiecej (from Tablel). Theobjective,i.e.thetotal waitingtime, ¢, is givenby

t= Z Zwkj(Sj
k J

Hence a setof assignmentto the sequenceariablessy, so, ..., s, Will leadto avalue
beingassignedo t, thetotal waiting time, via the othervariables. Theresultingmodelhas
a large numberof variables but still only n decisionvariablessi, sa, ..., s, all the other
variableswill be assignedraluesby constraintpropagatiorasthe decisionvariablesare
assignedluringsearch.

7 Variableordering

The outline searchalgorithmgiven earliersaysonly “choosea decisionvariablethat has
not yet beenassigned value”; it doesnot say how this choiceshouldbe made,andin

factin constraintprogrammingoolkits this choiceis left up to the programmerasis the
choiceof valueto assign.An orderedist of the decisionvariablesis passedo the search
algorithm,andby default the first unassignedariablein thelist will be chosenmnext. A

little thoughtshows thatjust assigninghe variablesin the obviousorders, ss, ..., s,,, i.€.

constructinghe sequenceonsecutiely from the beginning,will be avery poorchoicein

this case.

Oneof the aimsin building the CSPmodelis to ensurethat asthe sequencés con-
structed,.e. asthedecisionvariablesareassignedalues the constraintshouldpropagate
to the objectie variable,sothatthe lower bound,in particular is increased However, if
thesequencés constructedrom the beginningto the end,the waiting time for mary play-
erswill notbe known until mostof the sequencéasbeendecided,.e. until thelastpiece
thatthe playerplaysin is reached.Until then,the lower boundon thewaiting time for an
individual playerwill calculatedby assuminghatall remainingpieceghatthis playerdoes
notplay in canbe movedto theendof thesequenceHence thelower boundwill beequal
to thewaiting time alreadyincurred,i.e. dueto the piecesalreadysequenced.

A muchbettersearclorderis to constructhe sequencéendsto middle”, i.e.to choose
thefirst piece thenthelastpiece thenthesecondiece,andsoon. Theadwantages thatit
will beknown muchearlierin thesearchwhenaplayerleaves,aswell aswhenthey arrive.
With this searchorderandthe modelgiven earlier thewaiting time for playerk is known
exactly assoonasthe earliestandlatestpiecesthatthey play in appeaiin the sequence.
It is simpleto assignthe variablesin this order: the orderedist of variablespassedo the
searchalgorithmis simply constructedss; , s, 82, Sp—1, ---

For instance supposehefirst four variableassignmentares; = 3, s9 = 9, s = 8, ss
= 4 (which in fact canbe extendedto an optimal solution). At that point in the search,
the domainsof the sequenceanddual variables following propagatiorof the allDifferent
constrainandtheconstraintss; = j iff d; = ¢, are:



i | 1 2 3 4 5 6 7 8 9
si| 3 8 {1,2,5.77{1,2,5.71{1,25.74{1,2,5.74 {1,2,5.7} 4 9
d | {3.7{3.7} 1 8 (3.7 {3.7+  {3.7+ 2 9

Giventhedatain Tablel, it is now known thatplayerl arrivesin time for the second
slot, andleavesjust beforethe last slot, andthe variablesay;, 11, r1; recordingwhether
player1 hasarrived by slot i, leavesafterslot i andis presentduring slot i arefixed by
constrainpropagation:

i | 1 2 3 45 6 7 89
m; |1 1 0 1 0 1 1 0 1
a; |0 1 1 1 1 1 1 1 1
L; (1 111 1 1 1 1 O
r, 10 1 1 1 1 1 1 1 O

Clearly, player1 will have to wait duringpieceb. At this point, it hasnotbeendecided
whenpieceb will appeain thesequenceasshovn by thedomainof ds, it canbein ary of
slots3 to 7. However, because; =1for 3< i < 7,i.e.playerlis attherehearsalit can
bedeterminedhatw;s = 1, i.e.thatplayerl is waiting duringpiece5. It is alsoknown that
wy; =0fori # 5, eitherbecauselayerl is not at the rehearsaWhile the pieceis played,
or becauselayerplaysin thatpiece. Hence the total waiting time for playerl is known
to be 3, thedurationof piece5.?

Thus,assigningthe variablesfrom the endsof the sequencéo the middle allows the
searchto determinethe waiting time for a playerassoonasthe first andlast piecesthat
they play in have beendetermined.This shouldallow the optimal sequencé¢o be found
muchmorequickly thanif thesequencevereconstructedonsecutiely, from first pieceto
lastpiece.

Cheng,DiamondandLin [6], in a paperon a similar problemdiscussedelow, con-
structedthe sequencén the samefashionin a heuristicsolution method. However, their
rationalefor thisorderingis different;they arguethatthe‘outside’slotsin thesequencé.e.
the earliestandlatest)are potentiallythe mostexpensve if the wrong choicesare made,
andmakingthesechoicedirst givesthewidestchoiceof pieceto placethere.

Having choseravariableto assignwe couldchoosea valueto assigrto it (ratherthan
choosingthe smallestvaluein the domain,by default). At the start,goodvalueselection
couldensurdhatthefirst solutionfoundis of low cost.For therehearsaproblem thevalue
selectioncouldbebasedn Chenget al.’s heuristic for instance However, in whatfollows
thedefault valuechoicehasbeenused,.e. the smallestvaluein the domainis chosen.

8 Symmetry

Givenary sequencef piecesyeversingthesequenceoesnotchangeary playerswaiting

time. This symmetryin the problemcancausdlifficultieswhenwe try to find the optimal
solutionto the modelgiven. For instancehaving found anoptimal sequencstartingwith

piece3 and endingwith piece9, the searchwill eventually considersequencestarting
with piece9 and endingwith piece 3, sinceat leastone suchsequencevill appearto

offer the potentialto improve on the optimal value,until the sequencés nearlycomplete.
This is clearly a wasteof effort, andcaneasilybe preventedby addinga constraintto the
model,whichis only satisfiedby oneof eachpair of mirror-imagesequencesAn ohbvious
constrainis thatthenumberof the piecein slot 1 mustbelessthanthenumberof the piece
inslotn, i.e.s; < s,. Theoptimalsequenc#ith s; = 3 ands,, = 9 satisfieghisconstraint;
thereversesequenceloesnot.

2In ILOG Solwer, the constraintpropagateasdescribedit is possiblethatin otherconstraintprogramming
systemstheequialentconstraintsvould not propagatén the sameway.



9 Reaults

The minimum waiting time for the rehearsaproblemis 17 time units, and an optimal
sequences 3, 8,2, 7, 1, 6,5, 4, 9. Table2 comparesa few variantsof the modelin
findinganoptimalsequenceThenumberof timesthe searcthacktrackss agoodmeasure
of searcheffort; the table givesthe numberof backtracksncurredup to the point where
an optimal sequencés found andthe total numberof backtracksjncluding the proof of
optimality. It is usefulto distinguishbetweenthesetwo phasef the search.The table
alsogivesthetotal runtime.

Searclorder F P Time
Firstto last 37,213| 65,090| 23.9
Endsto middle | 1,170 | 1,828 | 1.42
Firstto last
with s; < s, 35,679 | 48,664| 18.4
Endsto middle
with 51 < s, 1,125 | 1,365 | 0.99

Table2: SolvingtherehearsaproblemusinglLOG Solwer. F is the numberof backtracks
to find the optimal solution, P is the total numberof backtrackgo prove optimality. Time
is thecputimein second®na 600MHzCeleronPC.

As expectedthe ‘ends-to-middle’'orderingof the variablesmakesa hugedifferenceto
thetime andeffort requiredto solve the problem.Addingtheconstraints; < s, to prevent
consideringsymmetricallyequivalentsequencealsomakesa significantdifferenceto the
searcleffort requiredto prove optimality, thoughnotmuchdifferenceto findinganoptimal
solution. As the tableshaws, the rehearsaproblemcanbe satisfctorily solved usingthe
constrainjpprogrammingmnodel,givena goodorderingof the searchvariables.

10 A Talent Scheduling Problem

A very similar problemoccursin devising a scheduldor shootinga film, asdescribedy
Cheng,DiamondandLin [6]. Differentscenegequiredifferentsubsetf the cast,and
castmembersarepaidfor timethey spendon setwaiting. Theonly differencebetweerthis
talent scheduling problemandtherehearsaproblemis thatdifferentcastmembersarepaid
atdifferentrates sothatthe costof waiting time depend®nwho is waiting.

Sampledata(relatingto a film calledMob Story) is givenin [6]. Somepreprocessing
of theirdatawasdone by combiningtwo daysrequiringthesamesetof actorsinto asingle
pieceof work of two daysduration; clearly we can assumehat thesetwo dayscan be
consecutie in anoptimal sequenceThis givesthe datain Table 3 with 20 ‘pieces’and8
‘players’? In thefollowing, the sameterminologyof playersandpieceswill beusedasfor
therehearsaproblem.

Themodeldescribedsofar canbe easilymodifiedto allow for the costof eachplayer,
andthisdoesnotappeato make the problemsignificantlymoredifficult to solve. However,
thisis clearlyamuchlargerproblemthanthe original rehearsaproblem,andthe modified
modelcannotbe solved for this problemin ary reasonabléime. Thefollowing sections
describehow the model can be improved by addingfurther constraintsuntil it can be
successfullysolved.

SThedatagiven by Chenget al. seemsnconsistentthe valuethey give for their solutiondoesnot appeato
matchthe costs. They give a heuristicmethodfor finding a goodsolution,andgive the value of the solutionat
17,900 but from their datait appearshatits costshouldbe 16,100.



Piece 123456 7 8 91011121314151617181920 |Cost/100
Playerd {1 1 1101 0101100000000O00 10
Player2 {1111 00011010011 101001 4
Player3 |01 1 01 011000011100000 5
Playerd |0 0O OO 0O00O0O01111000000O00 5
Player5 |10 1 0 0 0011 000101000111 5
Player6 |0 0O 0 0O 0 000 O0O0001111100 40
Playerr |00 0 01 011 00000010O0O0O00O 4
Player8 |0 0 0 0 0111 1000000000O0O 20
Duraton|{ 2 1 1 1 131 1121121211211

Table3: Datafor thefilm productionproblem

11 Implied Constraints

It is commonin modelling problemsas CSPsto add constraintgo the modelwhich are
logically redundantthey areimplied by the existing constraintsandso do not changethe
solutionsof the problem. However, if well-chosernthey canhave a dramaticeffect on the
time takento solve theproblem.Goodimplied constraintsallow dead-ends thesearcho
berecognisedoonerthanthey would be otherwisethey represenaspect®f the problem
thatarenot currentlyreflectedn theway thatthe existing constraintpropagate.

In the rehearsal/talergchedulingoroblem,a shortcomingof the modelsofar is thatit
doesnotallow new boundsonthetotal costto have muchimpactonthesequenceariables.
As apartialsequencés constructedtheboundwill only have aneffectoncethesearchries
to assignpiecesthatwill causethe partialsequencéo exceedthe currentbound. It would
be betterif the boundcould be usedearlierto remove valuesfrom the domainsof the
sequenceariablespeforethey aretried ratherthanafter

For instanceplayer6, in thetalentschedulingproblem,costs4000unitsfor every unit
of waiting time: oncea good solutionhasbeenfound, anda partial sequencéncluding
somewaiting time hasbeenconstructedplayer6 canbe allowed little or no waiting. As
soonasoneof thepieceghatplayer6 is involvedin is includedin thesequencethe others
mustbecloseto it, andshouldberemovedfrom thedomainsof othersequenceariables.

A constraintthat expresseshis ideacanbe constructedy introducingnew variables
for eachplayerrepresentinghe first andlast timesthat they are present. For playerk,
fr = i if thefirst piecethatthey playin is in sloti, similarly I;, representshe lastpiece
thatthey playin. We canexpressfy, I;, in termsof the dualvariables sincethevalueof a
dualvariabled; is theslotin thesequenceccupiedy piecej. We know from theproblem
datawhich subsebf piecesplayerk playsin: if we extractthecorrespondingubsetX}, of
thedualvariablestherequiredconstraintsare:

fk = min(Xk)
lk = max(Xk)
(Again,theseareperfectlyvalid constraints.)

We canalsodefinef; andi; in termsof theay; variablesdefinedearliet wherea; = 1

iff playerk hasarrivedby the startof sloti:

fk = liffakl =1

fr = giff ap; =1 andak,j,l =0,forj > 1.
andsimilarly for I;,. Thenthewaiting time for playerk depend®n the numberof pieces
that playerk playsin, v, andthe differencebetweenf; andi,. It alsodependsnthe
durationsof the piecessequencedtetweenf; andly, but the minimum duration(1 time
unit) givesa lower bound:

waitingtimefor k > Iy — fr, — v + 1.

For instance,from Table 10, player 1 playsin 8 pieces(v; = 8); if the piecesare
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sequencedh theorderl, 2, 3, ..., 20, f1 = 1 andl; = 11, the waiting time for player1l
in this sequencés atleast3, from this constraint.In fact,in this case the waiting time is
exactly 3.

This constraintwill not have ary propagatioreffect onceenoughsequenceariables
have beenassignedo determineboth f;, andl,: at that point, sincewe are constructing
the sequencendsto middle, it will be known exactly which piecesplayerk hasto wait
through,andhencethewaitingtime will alreadybeknown. However, it will have aneffect
in theoppositedirectionwhenwe alreadyhave agoodsolution,giving atight upperbound
on the total waiting time, and hencepotentiallya tight upperboundon the waiting time
for player k. This will propagateo I, and f;, and may reducethe minimum value of
I, andthe maximumvalueof fj, andtherebythe maximumandminimum valuesof all
the dualvariablesin the set Xj,. In particular onceeither f;, or I, is known, i.e. a piece
involving playerk hasbeenplacedin the sequenceall the otherpiecesinvolving player
k may have to be placedcloseto this onein the sequencen orderto meetthe current
constraintson waiting time. The constraintwill allow this to be reflectedin the domains
of the dual variablesin X;. Propagatinghe constraintselating the dual variablesand
the sequencevariablesthen removesary pieceinvolving player k& from the domainsof
sequenceariablegelatingto moredistantpositionsin thesequence.

Searclorder F P Time
Firstto last 6,792 | 8,363| 5.64
Endsto middle | 467 570 | 0.754

Table4: SolvingtherehearsaproblemusingILOG Solwer, with implied constraintonthe
waitingtime for eachplayer

Table4 showvstheeffectof addingthisimplied constrainbn solvingtherehearsaprob-
lem (with the symmetryconstraints; < s,). With both searchorders,it reducessearch
dramatically For the rehearsaproblem,a further refinementis neededo solve the full
problemin, say underanhour.

12 Optimality Constraints

We canalsoadd constraintswvhich arenot logically implied by the initial constraintsbut
which an optimal sequencenustsatisfy A setof optimality constraintsor the rehearsal
problemwaspromptedby the obsenationthatin thetalentschedulingdata,thereareser-
eral pairsof piecesthatinvolve almostthe samesetof players.For instancepieces7 and
8 bothinvolve players2, 3, 5, 7 and8: piece8 alsoinvolvesplayerl. By considering
thedifferentcasesvhich canoccut we candeterminevhetheror not piece7 shouldcome
beforeor afterpiece8 in anoptimalsequence.

Firstnoticethatif we switchthe positionsof pieces7 and8 in asequencet will make
no differenceto thewaiting time exceptpossiblyfor playerl. Supposédhatpiecess and8
arein positionsa andb in the sequencean someorder

Case (i) Player 8 playsin another piece before a in the sequence but does not play in
any piece after b (a > 1). In thiscasejf piece7 is in positionb, i.e. afterpiece8, the last
piecethatplayerl playsis beforeb, soplayerl is not waiting while piece? is rehearsed.
On the otherhand,if piece7 is in positiona, playerl cannotleave until after piece8 is
rehearseth positionb. Henceplayerl is waiting duringpiece? (andpossiblyduringother
piecesthat are sequencethetweena andb aswell). Soin anoptimal sequencepiece8
mustbebeforepiece?.

Case (ii) Player 1 playsin another piece after b in the sequence but does not play in
any piece before a (b < m). This s the reverseof the previous case,andin an optimal
sequenceapiece’ mustbe beforepieces.
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Case (iii) Player 1 playsin other pieces both before a and after b. The orderof pieces
7 and8 makesno differenceo thewaiting time, sowe canchooseeitherorderandenforce
it: say piece8 is beforepiece?.

Case (iv) Player 1 does not play before a or after b. In thislastcasethe optimalorder
of pieces7 and8 thendepend®n the otherpiecesbetweem andb thatplayerl playsin,
sowe cannotenforceeitherorder

From all thesecaseswe cansaythatin an optimal sequencepiece7 canbe before
piece8 only if playerl hasnotalreadyarrivedby thetime thatpiece? is played.i.e.

dr < dg = aid, = 0.

Hence we canimposethis asa constraint.n thetalentschedulingoroblem,13 similar
constraintzanbeaddedon otherpairsof pieceghatareplayedby identicalsetsof players
exceptfor an additionalplayerin one of the pieces. In the rehearsaproblem,thereare
threesuchpairs(pieces? and1; 4 and2; 5 and®6).

Problem F P Time
Rehearsal 357 448 0.91
Talentscheduling| 447,139| 576,579| 1120

Table5: Adding optimality constraint®n pairsof pieceddiffering by oneplayer

Theseconstraintgyive a furtherreductionin the searchrequiredto solve therehearsal
problem,andthetalentschedulingproblemcannow be solved,in under20 minutes.The
optimalsequencéoundis 4, 1,10,11,3,13,12,2,6, 8,9, 7, 20,5, 15,14,17,18,16, 19,
with cost14,600.Notethatpiece8 is beforepiece? in this sequenceandpiece8 is thelast
piecethatplayerl playsin.

13 Discussion

As the two examplesconsiderecheredemonstrategevelopinga correctCSPmodelof a
problemdoesnotguarante¢hatit canbesolvedin areasonabléme. In fact,Fink andVolR}
[3] have shavn thatthis classof problemsis NP-hard,soit is not surprisingthat proving
optimality for the larger problemrequiresextendingthe modelto allow more constraint
propagationaswell asmuchlongerrunningtime.

As far as| amaware,otherwork on the talentschedulingoroblemhasnot attempted
to prove optimality for instance®f the size considerechere;Chenget al. [6] developed
a heuristicsolution methodand Nordstvm and Tufekci [4] useda geneticalgorithmon
largerandomly-generategroblemsconstructedo have a known optimal solution(with no
waitingtime). It will clearlynotbe possibleto usethe final modelpresentedhereto solve
problemsmuchlargerthantheinstanceconsideredHowever, somefurtherimprovements
will be possible:sofar, nothinghasbeendoneto directthe searchto goodsolutionsatthe
start,andthe first solutionfound is very poor. A goodupperboundon the value of the
optimalsolutionreduceghe searchconsiderablyandsucha boundcouldbederivedusing
theheuristicmethodin [6].

Solving theseproblemsin a reasonabldime using constraintprogrammingrequires
an appropriatevariableorderingevenfor the small rehearsaproblem. Solving the talent
schedulingoroblemrequiresalsothe additionof implied constraintsand optimality con-
straints.It requiresexperienceandunderstandingf how constraintgropagateo develop
suchconstraintsHowever, theaimis thatthe searchshouldemulatethe procesghata hu-
manproblemsolver would follow in solvingthe problem(althoughmuchfasterandmore
exhaustvely). Furtherconstraintareaddedo a modelwhenthe programmesuspectspr
seesevidence thatthe searchis missingobvious deductions.Hence,althoughconstraint
programmingdoesrequireanunderstandin@f searchandconstraintpropagationit is by
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understandinghe problemandbuilding in thatunderstandinghatwe candevelopa suc-
cessfuimodel.
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