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Abstract

Thebasicprinciplesof constraintprogramming(constraintsatisfactionproblems,
search,constraintpropagation)areintroducedby discussinghow constraintprogram-
ming canbeusedto solve a specificoptimizationproblem.A setof orchestralpieces
is to berehearsedandtheproblemrequiresfinding a sequencethatwill minimizethe
time that playersareat the rehearsalbut not playing, if they arrive for the first piece
they areinvolved in andleave after the last. A constraintprogrammingmodelof this
problemis presented.A similarproblemarisesin ‘talentscheduling’in shootingafilm;
improvementsto thebasicmodelaregiven thatallow a larger instanceof this kind to
besolved.

1 Introduction

The rehearsalproblemoriginatedat LancasterUniversity, whereit is said to have been
devisedby a memberof staff in theManagementSciencedepartment,who wasa member
of anorchestraandformalizedtheproblemwhilst waiting to play duringa rehearsal.The
problemwasfirst describedby Adelson,NormanandLaporte[1], althoughthatpaperdoes
notgive thedata.

A concertis to consistof ninepiecesof musicof differentdurationseachinvolving a
differentcombinationof thefivemembersof theorchestra.Playerscanarriveat rehearsals
immediatelybeforethefirst piecein which they areinvolvedanddepartimmediatelyafter
the lastpiecein which they areinvolved. Theproblemis to deviseanorderin which the
piecescanberehearsedsoasto minimizethetotal timethatplayersarewaitingto play, i.e.
thetotal timewhenplayersarepresentbut notcurrentlyplaying.

In the tablebelow, 1 meansthat the playeris requiredfor the correspondingpiece,0
otherwise.Theduration(i.e. rehearsaltime) is in someunspecifiedtimeunits.

Piece 1 2 3 4 5 6 7 8 9
Player1 1 1 0 1 0 1 1 0 1
Player2 1 1 0 1 1 1 0 1 0
Player3 1 1 0 0 0 0 1 1 0
Player4 1 0 0 0 1 1 0 0 1
Player5 0 0 1 0 1 1 1 1 0
Duration 2 4 1 3 3 2 5 7 6

Table1: Datafor therehearsalproblem
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For example,if theninepieceswererehearsedin numericalorderasgivenabove,then
thetotalwaiting timewouldbe:

Player1: 1+3+7=11
Player2: 1+5=6
Player3: 1+3+3+2=9
Player4: 4+1+3+5+7=20
Player5: 3

giving a totalof 49units.Theoptimalsequence,asweshallsee,is muchbetterthanthis.

2 Basics of Constraint Satisfaction Problems

Somebasicdefinitionsand conceptsare given here,beforeshowing how the rehearsal
problemmightbemodelledandsolvedusingconstraintprogramming.This is not intended
to be a comprehensive presentation,but is biasedtowardsthe facilities that areavailable
in constraintprogrammingtoolkits suchasECL

�
PS
�
andILOG Solver andthosethat are

requiredfor modellingtherehearsalproblem.
A constraintsatisfactionproblemconsistsof:� asetof variables

�
;� for eachvariable � ��� � , a finite set ���
	 of possiblevaluesthat the variablecan

take,calledthedomain of � � ;� a setof constraints,� , eachof which affectsa subsetof
�

, andrestrictsthevalues
thatcanbesimultaneouslyassignedto thesevariables.

A solutionto aCSPis anassignmentto everyvariableof a valuein its domain,in such
awaythatall theconstraintsaresatisfied.Wecanalsofind anoptimalsolution,givensome
objective; thiswill bediscussedfurtherbelow.

Often, the domainsof the variablesin a CSParea rangeof integers,andthat is the
casefor themodelof therehearsalproblempresentedbelow. However, this is notessential.
For instance,it is oftenusefulto havesetvariables,i.e. variableswhosevaluesaresets(of
integers,typically). Eachmemberof thedomainis thenapossiblesetthatcouldbeassigned
to thevariables,althoughthemembersof thedomainarenotusuallyexplicitly listedin such
a case. It is alsopossibleto extendthe definition above to real-valuedvariables(which
thereforeno longerhaveafinite domain).

Thesetof variablesaffectedby a constraintis its scope. Thereis no requirementfor
constraintsto take particularforms, suchaslinear inequalities. The only requirementis
that we shouldbe able to tell, for eachpossibleassignmentof valuesto the variablesin
its scope,whetheror not thatassignmentsatisfiestheconstraint.1 This generalityallows
problemsfrom many differentfieldsto beexpressedasconstraintsatisfactionproblems.

To give someexamples,the following typesof constraintwill be relevant to the re-
hearsalproblem:� � ���������� .

Arithmetic constraintsof variouskinds, involving mixturesof variablesand con-
stants,canbeexpressed.� � �������� � �������� (i.e. if � ���� then � �������� ).
Logical constraintsof variouskindsarecommon,andallow the logic of a problem
to bedirectlyexpressed.Notethataconstraintsuchasthisdoesadequatelyallow us
to tell whetheran assignmentto the variablesin theconstraint’s scopesatisfiesthe

1Formally, a constraint��� 	 �! !" " " �$# with scope%'&)(+*�&-,�*/.0.0.0*1&)213 is a subsetof thesetof possibleassignments
to thesevariables,i.e. ��� 	 �  " " " �$#�4657� 	8 57�:9 8 .0.0. 8 57�$# .

2



constraintor not. If �;��< � �;� 9 �>=�?A@B�)C , thenof thefour possibleassignmentsto
the variables� � and � ���� , threeareallowed by the constraint( � �D�E��@ � ���F�6�E� ;� ��G?A@ � ���F�H��� ; and � ��G?A@ � ���F�H�G? ) andoneis not ( � �����@ � �I��H��? ).�KJ �ML �)N � � � .
Constraintprogrammingtoolkits allow arraysof variablesandconstraintson arrays
of variables.Here, J , N � and � � might all bevariables,or J and/or N � might becon-
stants;eitherareequallyallowed.� allDifferent(� �B@ �PO @BQ�QIQI@ �SR ).
It is very commonin CSPsto requiresomeor all of the variablesto take different
values.For therehearsalproblem,it is sufficienttoconsideranallDifferentconstraint
asshorthandfor a setof pairwise T� constraints,i.e. � � T� � O , � � T� �PU , ....

ConstraintprogrammingsystemssuchasECL
�
PS
�
, ILOG Solver andSicstusProlog

allows constraintsatisfactionproblemsto beexpressedandsolved. They providea means
of definingvariablesand their domains,and provide a set of pre-definedconstraints;it
is usually possibleto definenew constraintsif necessary. They provide algorithmsfor
solving CSPs,with scopefor tailoring or modifying thealgorithms;the basicalgorithms
arediscussedin thenext section.

3 Solving a CSP

To solve a CSPwe first needto identify the decisionvariables. Thesemay be all the
variablesin the CSP, but often someof the variablesin the CSParethereonly to allow
relationshipsbetweenothervariablesto be expressedmoreeasily; we may not want to
explicitly assignvaluesto thesevariables.Theminimumrequirementis thatwe identify a
setof variablessuchthatanassignmentto thosevariablesthatsatisfiesall theconstraints
will yield acompletesolutionto theoriginalproblemwearetrying to solve.

Theproblemis thensolvedby a combinationof systematicsearch throughthe setof
all possibleassignmentsto thedecisionvariables,andconstraint propagation: makinguse
of theconstraintsto derive new informationfrom theassignmentsalreadymadethatwill
avoid consideringassignmentsthatcannotleadto a solution.

Thealgorithmroughlyfollowsthesesteps:� chooseadecisionvariablethathasnotyetbeenassigneda value;� choosea valuefrom thoseremainingin this variable’sdomain,andassignthevalue
to thevariable;� usethe constraintsto prunevaluesfrom the domainsof othervariablesnot yet as-
signedthatcanno longerbeusedasa resultof thisassignment;� if as a result of this constraintpropagation,any variablehasno valuesleft in its
domain,backtrack:undotheassignmentjust madeandchooseanothervalueof the
currentvariable.If all valuesfor thecurrentvariablehavenow beentried,backtrack
to thepreviouslyassignedvariableandreassignit.

Thesearchterminateseitherwhenasolutionis found,i.e.whenavaluehassuccessfully
beenassignedto every variable(if we only requireone solution) or when thereare no
furtherchoicesto consider(if wewantall solutions,or therearenosolutions).

To illustrate the idea of constraintpropagation,supposewe have decisionvariables� � @ � O @BQ�QIQ�@ � R , eachwith initial domain = 0,1C , andthatsomeof theconstraintsare:� � ���V��� � �I�� ��� , �DWYX[Z]\ .
Supposetheproblemalsocontainsa variablê , which is definedin termsof thedeci-

sionvariablesby theconstraint:

3



^ � L ��_ � � �
where_ �`@ _ O @BQ�QIQ�@ _ R arepositiveconstants.

Initial propagationof theconstraintsin theproblemwill calculatethedomainof ^ as=
?a@-QIQ�QI@!L �)_ �bC , if it is not otherwisespecified.That is, its minimumvalueis achievedby
setting � �;� �SO �cQIQ�Qd� �PR �e? , andits maximumvalueby � �f� �SO �cQIQ�Q� �SR �g� .
Note that not every value in the range =
?a@-QIQ�QI@!L �)_ �bC may be attainable,but it would be
potentiallyvery time-consumingto testeveryvalue.

Supposethesearchassignsthevalue0 to � � . In constraintpropagationterms,anassign-
mentis viewedasthe removal of all othervaluesfrom thevariable’s domain. Removing
thevalue1 from thedomainof � � hasno effect on � O . Consequently, it canhave no ef-
fect on �PU @ �ah @-QIQ�QI@ � R sincethereis no direct constraintbetween� � and thesevariables.
However, themaximumvalueof ^ , i.e. thelargestvaluein its domain,will bereducedto_ O7i _ U i Q�QIQIQ i _ R .

Whenthe value1 is assignedto � � , constraintpropagationwill remove the value0
from the domainof �SO , andthenfrom thedomainsof � U @-QIQ�QI@ �PR in turn. Thusconstraint
propagationcantrigger a cascadeof domainreductions,not restrictedto the constraints
which have theoriginal variable� � in their scope.Thedomainof ^ will alsobereduced,
to the singlevalue L �)_ � . Any variablewith only onevalue left in its domainmustbe
assignedthat value, so all theseassignmentswill be madeas a result of the constraint
propagationstep.

This exampleillustratesthatsometimesassigninga valueto a variablecanhave little
or no effect on othervariables;at theotherextreme,it may resultin every othervariable
beingassigneda value. An importanteffect of constraintpropagationis that it triggers
backtrackingwhena variable’s domainbecomesempty. If every valuein thedomainhas
beenremovedasaresultof cumulativereductionswhenothervariableshavebeenassigned
values,therecannotbeany solutionextendingtheassignmentsmadesofar. Thecurrentas-
signmentis undone,andthevaluesremovedin propagatingthisassignmentarerestored,so
thatsearchcanproceed.In thisway, constraintpropagationallowsthesearchto avoid con-
sideringmany partialsolutionsthatcannotbecompleted,while ensuringthatno solutions
aremissed.

Constraintprogrammingtoolkits definea propagationmechanismfor every built-in
constraint.The mechanismis triggeredwhenever a reductionof a specifiedkind occurs
in thedomainof a variablein thescopeof theconstraint.For someconstraints,theprop-
agationis asstrongaspossible:whenever any valueis removedfrom thedomainof any
variablein thescopeof the constraint,all valuesin thedomainsof othervariablesin the
scopearecheckedandany valuethatcannolongersatisfytheconstraintis removed.How-
ever, for many constraintsthis is very time-consumingandoften unnecessary. For other
constraintsonly the bounds(i.e. the minimum andmaximumvaluesin the domains)are
checked, as in the constraint̂ � L � � � , in the example. As alreadynoted,thereare
likely to be valuesin thecalculateddomain =�?A@BQ�QIQ�@:L �)_ � C of ^ which cannotsatisfythe
constraint,but thesearenot removed. Otherconstraintsareonly checked if a variablein
thescopeis assignedavalue:for instance,in theconstraint�jT�G� , if � is assignedavalue,
thenthatvalueis removedfrom thedomainof � .

Someconstraintsallow different levels of propagation,notably the allDifferentcon-
straint:asmentionedearlier, thiscanbetreatedasacollectionof T� constraints,andpropa-
gationonly involvesremovinganassignedvaluefrom thedomainof everyothervariablein
theconstraint.Alternatively, it canbetreatedasa singleconstraintandif, for instance,the
total numberof differentvaluesavailablein thedomainsof thevariablesis ever lessthan\ , it will bedetectedthattheconstraintcannotbesatisfied.If this happensastheresultof
anassignment,thentheassignmentwill fail andthesearchwill backtrack.Note that the
additionalprocessingdoesnotchangetheconstraint,nor theproblemthattheconstraintis
partof: thesamesolutionswill befound.However, strongerconstraintpropagationshould
reducethesearchrequiredto find a solution,at theexpenseof longerprocessingtime for
theallDifferentconstraint;sometimestheadditionaleffort paysoff, andsometimesnot.
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Becausethesearchis systematicandimplicitly considerseverypossibleassignmentto
thedecisionvariables,if thesearchcontinuesuntil no furtherchoicesremainto consider,
thenall possiblesolutionshave beenfound; if no solutionhasbeenfound,this is because
thereareno solutionssatisfyingthe constraints.Becausethe searchpropagatesthe con-
straintsafter every assignment,unnecessarychoicesneednot be explicitly explored,and
henceconsideringall possibleassignmentscanberelatively efficient.

4 Decision Variables for the Rehearsal Problem

We have to decidetheorderof thepieces,andanobviouschoicefor thedecisionvariables
is to have a variablefor eachpositionin the sequence,with valuescorrespondingto the
pieces. If thereare \ pieces,andhence\ slotsin the sequence,we candefinevariablesk � @ k O @-QIQ�QI@ k R , eachwith domain =l��@!mn@BQ�QIQ�@'\oC , where k � �Vp if piecep is in position X in the
sequence,1 WqXrW]\ .

An assignmentto thesevariablesis a valid sequence,andsocouldrepresenta feasible
orderfor therehearsal,if every variablehasa differentvalue. Hence,thebasicconstraint
is allDifferent(k �B@ k O @-QIQ�QI@ k R ). Any solution will then be a permutationof = 1,2,3,..., \oC .
However, sincewearerequiredto find anoptimalsequence,notsimplya feasibleone,this
verysimpleCSPwill needto beextendedto allow optimization.

5 Optimization

To adapta constraintsatisfactionproblemto becomeanoptimizationproblem,we include
a variable,say J , that representsthe objective. Typically, the objective variableis not a
decisionvariable.TheCSPmustincludeconstraintslinking theobjectivevariableto other
variablesin theproblem,sothatwhenthedecisionvariableshavebeenassignedavalue,the
objectivevariablemustalsohavebeenassignedavalueasaresultof constraintpropagation.
Whenasolutionis found,thevalueof J in thissolutionbecomesaboundonthevaluein any
futuresolution. Supposewe areminimizing J andthat the valueof J in the first solution
found is J+s . The constraintsolver addsa constraintJ Z J+s , andattemptsto find a new
solutionsatisfyingthis constraint. This is repeated,with the constrainton the objective
becomingprogressively tighter aseachnew solutionis found. At somepoint, therewill
beno furthersolutionsatisfyingthecurrentconstraint;whenthesearchterminates,having
foundnosolution,thelastsolutionfoundhasbeenprovedoptimal.

In therehearsalproblem,theobjective variable J is the total waiting time. Hence,we
needto providea link betweenthesequenceof piecesandthetotal waiting time: this will
requiretheintroductionof furthervariablesandconstraints.

The total waiting time is thesumof thewaiting timesfor the individual players.The
waiting time for a playerdependson whenthey arrive andwhenthey leave,which in turn
dependon wherethepiecesthatthey play in appearin thesequence.More specifically, if
a playerdoesnotplay in a piece,in orderto know whethertheplayeris waiting while that
particularpieceis rehearsed,we needto know whenthepieceoccursin thesequenceand
whethertheplayerhasalreadyarrivedby thenandhasnotyet left.

Given variablesrepresentingtheseaspectsof the problemsandconstraintsto define
them,any assignmentto the sequencevariablesk ��@ k O @-QIQIQ�@ k R will result in a valuebeing
assignedto the objective variable J , andhencethe schemeoutlinedabove for finding an
optimalsolutioncanbeused.However, in aproblemsuchasthis,simplybuilding acorrect
modelwill not be enough,except for small problems. To find an optimal solution,and
provethatit is optimal,in any reasonabletime,thelink betweenthedecisionvariablesand
theobjectivevariableneedsto beastight aspossible,sothat:� asthe sequenceof piecesis built up, constraintpropagationshouldensurethat the

upperand lower boundson J , given by the maximumandminimum valuesin its
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domain,reflectasaccuratelyaspossiblethecostof completingthesequence.Then
thesearchcanabandona partialsequenceandtry anotherwhentheminimumvalue
of J becomeslargerthanthevalueof thecurrentbestsolution.� conversely, constraintpropagationin theotherdirectionshouldallow a tight bound
on J , oncea goodsolutionhasbeenfound,to prunevaluesfrom thedomainsof the
sequencevariables,sothatpartialsequencesthatcannotleadto a bettersolutionare
neverexplored.

Devising a modelwhich takestheseaimsinto accountsothattheproblemcanbeeffi-
cientlysolvedtakessomeskill. Somepossibilitiesarediscussedbelow.

6 A CSP Model

As discussedin thelastsection,in building thelink betweenthesequencevariablesandthe
objective, J , it will beusefulto know notonly whichpieceis in eachplacein thesequence,
but alsowherein thesequenceeachpieceappears.For eachpiecep , let _)t bea variable
whosevaluewill bethepositionin thesequenceof piecep . Thesevariablesarelinkedto
thedecisionvariables,k � @ k O @-QIQ�Q k R by:k � �Yp if f _ t �GX .

Thevariables_ � @ _ O @-QIQ�@ _ R aretheduals of k � @ k O QIQIQ�@ k R andarefrequentlyusedin mod-
elling problemsrequiringfindingapermutation(in thiscase,of thepiecesto berehearsed)
[2, 5].

Let uPv t , �wWyxzW�{ , �6W|p}W�\ beanarrayof 0 and1 valuesrepresentingthedata
givenin Table1, i.e. u�v t = 1 iff player x playsin piecep .

Thedual variablesallow new variablesto be introduced,e.g. ~Pv t ��� if f player x is
playingin slot p , definedby:~�v$�  � u�v
� t

From thesewe candefinevariablesN v � , �1v � for eachplayer x andeachslot X in the
sequence,with domains=�?A@-��C , suchthat:N v �F��� if player x hasarrivedby thestartof slot X , 0 otherwise.� v � ��� if player x leavesat theendof slot X or later, 0 otherwise.

To relatethesevariablesto thesequencevariablesk � @ k O @-QIQ�QI@ k R , we canintroducecon-
straintsexpressingthat:� N v ����� if f player x is playingin thepiecein slot1 of thesequence,i.e. N v �H� ~�v � ;� for X���� , N v � �>� if f player x hasalreadyarrivedat thestartof thepreviousslot or

player x is playingin thepiecein slot X of thesequence,i.e. N v � ��� if f N v
� ����� �e�
or ~ v � ��� ;

Thevariables�1v �/@B�DW]xwW]{�@B��W]X[Wq\ canbedefinedby similarconstraints.
For eachplayer, the first non-zerovalue in N v � @ N v:O @-QIQIQ�@ N v$R correspondsto the first

piecein thesequencethatplayer x playsin, andall subsequentvaluesof N v � havethevalue
1. Similarly, the last non-zerovaluein � ��� @ � � O @-QIQ�QI@ � � R correspondsto the last piecein the
sequencethatplayer X playsin, andall previousvaluesare1. For instance,if thesequence
is 1, 2, 3, 4, 5, 6, 7, 8, player5 arrivesat thestartof the3rdslotandleavesafterthe8th:

Player X is at therehearsalin slot p if f he/shehasarrivedandnot yet left, i.e. N v � ���
and �1v ����� . Definingnew variables�
v ����� if f player x is at therehearsalduringslot X ,
wehavetheconstraints:�
v �o� N v � �1v � .X 1 2 3 4 5 6 7 8 9uP� � 0 0 1 0 1 1 1 1 0N � � 0 0 1 1 1 1 1 1 1� � � 1 1 1 1 1 1 1 1 0� � � 0 0 1 1 1 1 1 1 0
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Hencewe candefinevariableŝHv t ��� if player x is waiting while piece p is being
rehearsed,0 otherwise,i.e. ^�v t ��� if f player x doesnot play in piece p andplayer x
is at the rehearsalwhile piece p is beingrehearsed.The constraintsdefining ^Hv t canbe
expressedas:

^ v t � � v
� �� if u v t ����G? otherwise

Giventhesevariables,thewaiting time for player x is L t ^Hv t��!t , where �!t is thetime
to rehearsepiecep (from Table1). Theobjective,i.e. thetotalwaiting time, J , is givenby

J �|� v
�� � t ^�v t
�!t-��

Hence,a setof assignmentsto thesequencevariablesk �`@ k O @BQ�QIQ�@ k R will leadto a value
beingassignedto J , thetotalwaiting time,via theothervariables.Theresultingmodelhas
a largenumberof variables,but still only \ decisionvariables,k �)@ k O @BQ�QIQ�@ k R : all theother
variableswill be assignedvaluesby constraintpropagationas the decisionvariablesare
assignedduringsearch.

7 Variable ordering

Theoutlinesearchalgorithmgivenearliersaysonly “choosea decisionvariablethathas
not yet beenassigneda value”; it doesnot sayhow this choiceshouldbe made,andin
fact in constraintprogrammingtoolkits this choiceis left up to theprogrammer, asis the
choiceof valueto assign.An orderedlist of thedecisionvariablesis passedto thesearch
algorithm,andby default the first unassignedvariablein the list will be chosennext. A
little thoughtshows that just assigningthevariablesin theobviousorder k � @ k O @-QIQ�QI@ k R , i.e.
constructingthesequenceconsecutively from thebeginning,will bea very poorchoicein
thiscase.

Oneof the aimsin building the CSPmodel is to ensurethat asthe sequenceis con-
structed,i.e.asthedecisionvariablesareassignedvalues,theconstraintsshouldpropagate
to theobjective variable,so that the lower bound,in particular, is increased.However, if
thesequenceis constructedfrom thebeginningto theend,thewaiting time for many play-
erswill not beknown until mostof thesequencehasbeendecided,i.e. until thelastpiece
that theplayerplaysin is reached.Until then,the lower boundon thewaiting time for an
individualplayerwill calculatedby assumingthatall remainingpiecesthatthisplayerdoes
notplay in canbemovedto theendof thesequence.Hence,thelowerboundwill beequal
to thewaiting timealreadyincurred,i.e.dueto thepiecesalreadysequenced.

A muchbettersearchorderis to constructthesequence“endsto middle”, i.e. to choose
thefirst piece,thenthelastpiece,thenthesecondpiece,andsoon. Theadvantageis thatit
will beknown muchearlierin thesearchwhenaplayerleaves,aswell aswhenthey arrive.
With this searchorderandthemodelgivenearlier, thewaiting time for player x is known
exactly assoonasthe earliestandlatestpiecesthat they play in appearin the sequence.
It is simpleto assignthevariablesin this order: theorderedlist of variablespassedto the
searchalgorithmis simplyconstructedas k �`@ k R @ k O @ k R ���`@-QIQ�Q .

For instance,supposethefirst four variableassignmentsare k � = 3, k
� = 9, k O = 8, k
�
= 4 (which in fact canbe extendedto an optimal solution). At that point in the search,
thedomainsof thesequenceanddualvariables,following propagationof theallDifferent
constraintandtheconstraintsk �d�qp if f _)t ��X , are:
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X 1 2 3 4 5 6 7 8 9k � 3 8 = 1, 2, 5..7C�= 1, 2, 5..7C�= 1, 2, 5..7C;= 1, 2, 5..7C�= 1, 2, 5..7C 4 9_ � = 3..7C;= 3..7C 1 8 = 3..7C = 3..7C = 3..7C 2 9

Giventhedatain Table1, it is now known thatplayer1 arrivesin time for thesecond
slot, andleavesjust beforethe last slot, andthe variablesN �b� , � �/� , � �b� recordingwhether
player1 hasarrivedby slot X , leavesafter slot X andis presentduring slot X arefixed by
constraintpropagation: X 1 2 3 4 5 6 7 8 9u �b� 1 1 0 1 0 1 1 0 1N �/� 0 1 1 1 1 1 1 1 1� �/� 1 1 1 1 1 1 1 1 0� �b� 0 1 1 1 1 1 1 1 0

Clearly, player1 will haveto wait duringpiece5. At thispoint, it hasnotbeendecided
whenpiece5 will appearin thesequence:asshown by thedomainof _ � , it canbein any of
slots3 to 7. However, because� �b� =1 for 3 W�X�W 7, i.e. player1 is at therehearsal,it can
bedeterminedthat ^ � � = 1, i.e. thatplayer1 is waitingduringpiece5. It is alsoknown that^ �b� = 0 for X T� 5, eitherbecauseplayer1 is not at therehearsalwhile thepieceis played,
or becauseplayerplaysin thatpiece.Hence,the total waiting time for player1 is known
to be3, thedurationof piece5.2

Thus,assigningthe variablesfrom the endsof the sequenceto the middleallows the
searchto determinethe waiting time for a playerassoonasthe first andlast piecesthat
they play in have beendetermined.This shouldallow the optimal sequenceto be found
muchmorequickly thanif thesequencewereconstructedconsecutively, from first pieceto
lastpiece.

Cheng,DiamondandLin [6], in a paperon a similar problemdiscussedbelow, con-
structedthe sequencein the samefashionin a heuristicsolutionmethod.However, their
rationalefor thisorderingis different;they arguethatthe‘outside’slotsin thesequence(i.e.
the earliestandlatest)arepotentiallythe mostexpensive if the wrong choicesaremade,
andmakingthesechoicesfirst givesthewidestchoiceof pieceto placethere.

Having chosenavariableto assign,wecouldchoosea valueto assignto it (ratherthan
choosingthesmallestvaluein thedomain,by default). At thestart,goodvalueselection
couldensurethatthefirst solutionfoundis of low cost.For therehearsalproblem,thevalue
selectioncouldbebasedonChenget al.’sheuristic,for instance.However, in whatfollows
thedefault valuechoicehasbeenused,i.e. thesmallestvaluein thedomainis chosen.

8 Symmetry

Givenany sequenceof pieces,reversingthesequencedoesnotchangeany player’swaiting
time. This symmetryin theproblemcancausedifficultieswhenwe try to find theoptimal
solutionto themodelgiven. For instance,having foundanoptimalsequencestartingwith
piece3 andendingwith piece9, the searchwill eventuallyconsidersequencesstarting
with piece9 and endingwith piece3, sinceat leastone suchsequencewill appearto
offer thepotentialto improve on theoptimalvalue,until thesequenceis nearlycomplete.
This is clearlya wasteof effort, andcaneasilybepreventedby addinga constraintto the
model,which is only satisfiedby oneof eachpair of mirror-imagesequences.An obvious
constraintis thatthenumberof thepiecein slot1 mustbelessthanthenumberof thepiece
in slot \ , i.e. k ��Z k R . Theoptimalsequencewith k � = 3 and k R = 9 satisfiesthisconstraint;
thereversesequencedoesnot.

2In ILOG Solver, the constraintspropagateasdescribed;it is possiblethat in otherconstraintprogramming
systems,theequivalentconstraintswouldnotpropagatein thesameway.
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9 Results

The minimum waiting time for the rehearsalproblemis 17 time units, and an optimal
sequenceis 3, 8, 2, 7, 1, 6, 5, 4, 9. Table 2 comparesa few variantsof the model in
findinganoptimalsequence.Thenumberof timesthesearchbacktracksis agoodmeasure
of searcheffort; the tablegivesthe numberof backtracksincurredup to the point where
an optimal sequenceis found andthe total numberof backtracks,including the proof of
optimality. It is usefulto distinguishbetweenthesetwo phasesof the search.The table
alsogivesthetotal runtime.

Searchorder F P Time
First to last 37,213 65,090 23.9
Endsto middle 1,170 1,828 1.42
First to last
with k � Z k R 35,679 48,664 18.4
Endsto middle
with k ��Z k R 1,125 1,365 0.99

Table2: SolvingtherehearsalproblemusingILOG Solver. F is thenumberof backtracks
to find theoptimalsolution,P is thetotal numberof backtracksto prove optimality. Time
is thecputime in secondsona 600MHzCeleronPC.

As expected,the‘ends-to-middle’orderingof thevariablesmakesa hugedifferenceto
thetimeandeffort requiredto solvetheproblem.Addingtheconstraintk ��Z k R to prevent
consideringsymmetricallyequivalentsequencesalsomakesa significantdifferenceto the
searcheffort requiredto proveoptimality, thoughnotmuchdifferenceto findinganoptimal
solution. As the tableshows, therehearsalproblemcanbesatisfactorily solvedusingthe
constraintprogrammingmodel,givena goodorderingof thesearchvariables.

10 A Talent Scheduling Problem

A very similar problemoccursin devising a schedulefor shootinga film, asdescribedby
Cheng,DiamondandLin [6]. Differentscenesrequiredifferentsubsetsof the cast,and
castmembersarepaidfor timethey spendonsetwaiting. Theonly differencebetweenthis
talent scheduling problemandtherehearsalproblemis thatdifferentcastmembersarepaid
atdifferentrates,sothatthecostof waiting timedependsonwho is waiting.

Sampledata(relatingto a film calledMob Story) is givenin [6]. Somepreprocessing
of theirdatawasdone,by combiningtwo daysrequiringthesamesetof actorsinto asingle
pieceof work of two daysduration;clearly we can assumethat thesetwo dayscan be
consecutive in anoptimalsequence.This givesthedatain Table3 with 20 ‘pieces’and8
‘players’.3 In thefollowing, thesameterminologyof playersandpieceswill beusedasfor
therehearsalproblem.

Themodeldescribedsofar canbeeasilymodifiedto allow for thecostof eachplayer,
andthisdoesnotappeartomaketheproblemsignificantlymoredifficult to solve.However,
this is clearlya muchlargerproblemthantheoriginal rehearsalproblem,andthemodified
modelcannotbe solved for this problemin any reasonabletime. The following sections
describehow the model can be improved by addingfurther constraints,until it can be
successfullysolved.

3Thedatagivenby Chenget al. seemsinconsistent:thevaluethey give for their solutiondoesnot appearto
matchthe costs.They give a heuristicmethodfor finding a goodsolution,andgive thevalueof thesolutionat
17,900,but from theirdatait appearsthatits costshouldbe16,100.
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Piece 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Cost/100
Player1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 10
Player2 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 4
Player3 0 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 5
Player4 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 5
Player5 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 5
Player6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 40
Player7 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 4
Player8 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 20
Duration 2 1 1 1 1 3 1 1 1 2 1 1 2 1 2 1 1 2 1 1

Table3: Datafor thefilm productionproblem

11 Implied Constraints

It is commonin modellingproblemsasCSPsto addconstraintsto the modelwhich are
logically redundant:they areimplied by theexisting constraintsandsodo not changethe
solutionsof theproblem.However, if well-chosenthey canhave a dramaticeffect on the
timetakento solvetheproblem.Goodimpliedconstraintsallow dead-endsin thesearchto
berecognisedsoonerthanthey would beotherwise;they representaspectsof theproblem
thatarenotcurrentlyreflectedin theway thattheexistingconstraintspropagate.

In therehearsal/talentschedulingproblem,a shortcomingof themodelsofar is that it
doesnotallow new boundsonthetotalcostto havemuchimpactonthesequencevariables.
As apartialsequenceis constructed,theboundwill only haveaneffectoncethesearchtries
to assignpiecesthatwill causethepartialsequenceto exceedthecurrentbound.It would
be better if the boundcould be usedearlier to remove valuesfrom the domainsof the
sequencevariables,beforethey aretriedratherthanafter.

For instance,player6, in thetalentschedulingproblem,costs4000unitsfor everyunit
of waiting time: oncea goodsolutionhasbeenfound, anda partial sequenceincluding
somewaiting time hasbeenconstructed,player6 canbeallowed little or no waiting. As
soonasoneof thepiecesthatplayer6 is involvedin is includedin thesequence,theothers
mustbecloseto it, andshouldberemovedfrom thedomainsof othersequencevariables.

A constraintthat expressesthis ideacanbeconstructedby introducingnew variables
for eachplayer representingthe first and last timesthat they arepresent. For player x ,� v ��X if thefirst piecethat they play in is in slot X , similarly �1v representsthe lastpiece
thatthey play in. We canexpress

� v , �1v in termsof thedualvariables,sincethevalueof a
dualvariable_)t is theslot in thesequenceoccupiedby piecep . Weknow from theproblem
datawhichsubsetof piecesplayer x playsin: if weextractthecorrespondingsubset

� v of
thedualvariables,therequiredconstraintsare:� v �� ;¡�¢F£ � v`¤�1v �� ;¥)¦�£ � v)¤
(Again,theseareperfectlyvalid constraints.)

Wecanalsodefine
� v and � v in termsof the N v � variablesdefinedearlier, whereN v � ���

if f player x hasarrivedby thestartof slot X :� v ��� if f N v � ���� v �Yp if f N v t �§� and N v
� t ��� �G? , for p¨�|� .
andsimilarly for �1v . Thenthewaiting time for player x dependson thenumberof pieces
that player x playsin, ©)v , andthe differencebetween

� v and �1v . It alsodependson the
durationsof the piecessequencedbetween

� v and �1v , but the minimum duration(1 time
unit) givesa lowerbound:

waiting time for xfª �1v�« � v�«z©)v i � .
For instance,from Table 10, player 1 plays in 8 pieces( © � = 8); if the piecesare

10



sequencedin the order1, 2, 3, ..., 20,
� � = 1 and � � = 11; the waiting time for player1

in this sequenceis at least3, from this constraint.In fact, in this case,thewaiting time is
exactly3.

This constraintwill not have any propagationeffect onceenoughsequencevariables
have beenassignedto determineboth

� v and �1v : at that point, sincewe areconstructing
the sequenceendsto middle, it will be known exactly which piecesplayer x hasto wait
through,andhencethewaiting timewill alreadybeknown. However, it will haveaneffect
in theoppositedirectionwhenwealreadyhaveagoodsolution,giving a tight upperbound
on the total waiting time, andhencepotentiallya tight upperboundon the waiting time
for player x . This will propagateto � v and

� v , andmay reducethe minimum valueof� v andthe maximumvalueof
� v , andtherebythe maximumandminimum valuesof all

the dual variablesin the set
� v . In particular, onceeither

� v or � v is known, i.e. a piece
involving player x hasbeenplacedin the sequence,all the otherpiecesinvolving playerx may have to be placedcloseto this one in the sequencein order to meetthe current
constraintson waiting time. Theconstraintwill allow this to be reflectedin the domains
of the dual variablesin

� v . Propagatingthe constraintsrelating the dual variablesand
the sequencevariablesthen removesany pieceinvolving player x from the domainsof
sequencevariablesrelatingto moredistantpositionsin thesequence.

Searchorder F P Time
First to last 6,792 8,363 5.64
Endsto middle 467 570 0.754

Table4: SolvingtherehearsalproblemusingILOG Solver, with impliedconstraintson the
waiting time for eachplayer

Table4 showstheeffectof addingthis impliedconstraintonsolvingtherehearsalprob-
lem (with the symmetryconstraintk �¬Z k R ). With both searchorders,it reducessearch
dramatically. For the rehearsalproblem,a further refinementis neededto solve the full
problemin, say, underanhour.

12 Optimality Constraints

We canalsoaddconstraintswhich arenot logically implied by the initial constraintsbut
which anoptimal sequencemustsatisfy. A setof optimality constraintsfor the rehearsal
problemwaspromptedby theobservationthatin thetalentschedulingdata,therearesev-
eralpairsof piecesthat involve almostthesamesetof players.For instance,pieces7 and
8 both involve players2, 3, 5, 7 and8: piece8 also involvesplayer1. By considering
thedifferentcaseswhichcanoccur, wecandeterminewhetheror notpiece7 shouldcome
beforeor afterpiece8 in anoptimalsequence.

Firstnoticethatif weswitchthepositionsof pieces7 and8 in asequence,it will make
nodifferenceto thewaiting timeexceptpossiblyfor player1. Supposethatpieces7 and8
arein positionsN and  in thesequence,in someorder.

Case (i) Player 8 plays in another piece before N in the sequence but does not play in
any piece after  ( N � 1). In this case,if piece7 is in position  , i.e. afterpiece8, the last
piecethatplayer1 playsis before  , soplayer1 is not waiting while piece7 is rehearsed.
On the otherhand,if piece7 is in position N , player1 cannotleave until after piece8 is
rehearsedin position  . Henceplayer1 is waitingduringpiece7 (andpossiblyduringother
piecesthat aresequencedbetweenN and  aswell). So in an optimal sequence,piece8
mustbebeforepiece7.

Case (ii) Player 1 plays in another piece after  in the sequence but does not play in
any piece before N (  Z�\ ). This is the reverseof the previous case,and in an optimal
sequence,piece7 mustbebeforepiece8.
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Case (iii) Player 1 plays in other pieces both before N and after  . Theorderof pieces
7 and8 makesnodifferenceto thewaiting time,sowecanchooseeitherorderandenforce
it: say, piece8 is beforepiece7.

Case (iv) Player 1 does not play before N or after  . In this lastcase,theoptimalorder
of pieces7 and8 thendependson theotherpiecesbetweenN and  thatplayer1 playsin,
sowecannotenforceeitherorder.

From all thesecases,we cansaythat in an optimal sequence,piece7 canbe before
piece8 only if player1 hasnotalreadyarrivedby thetime thatpiece7 is played.i.e._¯® Z _ � ��� N � �:° �G? .

Hence,wecanimposethisasaconstraint.In thetalentschedulingproblem,13similar
constraintscanbeaddedonotherpairsof piecesthatareplayedby identicalsetsof players
except for an additionalplayer in oneof the pieces. In the rehearsalproblem,thereare
threesuchpairs(pieces2 and1; 4 and2; 5 and6).

Problem F P Time
Rehearsal 357 448 0.91
Talentscheduling 447,139 576,579 1120

Table5: Addingoptimalityconstraintsonpairsof piecesdifferingby oneplayer

Theseconstraintsgive a furtherreductionin thesearchrequiredto solve therehearsal
problem,andthetalentschedulingproblemcannow besolved,in under20 minutes.The
optimalsequencefoundis 4, 1, 10,11,3, 13,12,2, 6, 8, 9, 7, 20,5, 15,14,17,18,16,19,
with cost14,600.Notethatpiece8 is beforepiece7 in thissequence,andpiece8 is thelast
piecethatplayer1 playsin.

13 Discussion

As the two examplesconsideredheredemonstrate,developinga correctCSPmodelof a
problemdoesnotguaranteethatit canbesolvedin areasonabletime. In fact,Fink andVoß
[3] have shown that this classof problemsis NP-hard,so it is not surprisingthatproving
optimality for the larger problemrequiresextendingthe model to allow moreconstraint
propagation,aswell asmuchlongerrunningtime.

As far asI amaware,otherwork on the talentschedulingproblemhasnot attempted
to prove optimality for instancesof thesizeconsideredhere;Chenget al. [6] developed
a heuristicsolutionmethodandNordstr̈om andTufekci [4] useda geneticalgorithmon
largerandomly-generatedproblemsconstructedto haveaknown optimalsolution(with no
waiting time). It will clearlynot bepossibleto usethefinal modelpresentedhereto solve
problemsmuchlargerthantheinstanceconsidered.However, somefurtherimprovements
will bepossible:sofar, nothinghasbeendoneto directthesearchto goodsolutionsat the
start,andthe first solutionfound is very poor. A goodupperboundon the valueof the
optimalsolutionreducesthesearchconsiderably, andsucha boundcouldbederivedusing
theheuristicmethodin [6].

Solving theseproblemsin a reasonabletime using constraintprogrammingrequires
anappropriatevariableorderingeven for thesmall rehearsalproblem. Solving the talent
schedulingproblemrequiresalsothe additionof implied constraintsandoptimality con-
straints.It requiresexperienceandunderstandingof how constraintspropagateto develop
suchconstraints.However, theaim is thatthesearchshouldemulatetheprocessthata hu-
manproblemsolver would follow in solvingtheproblem(althoughmuchfasterandmore
exhaustively). Furtherconstraintsareaddedto a modelwhentheprogrammersuspects,or
seesevidence,that thesearchis missingobviousdeductions.Hence,althoughconstraint
programmingdoesrequireanunderstandingof searchandconstraintpropagation,it is by
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understandingtheproblemandbuilding in thatunderstandingthatwe candevelopa suc-
cessfulmodel.
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