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Abstract. When the search for a solution to a constraint satisfaction
problem backtracks, it is not usually worthwhile to remember the as-
signment that failed, because the same assignment will not occur again.
However, we show that for some problems recording assignments is use-
ful, because other assignments can lead to the same state of the search.
We demonstrate this in two classes of permutation problem, a satisfac-
tion problem and an optimization problem. Caching states visited has
proved effective in reducing both search effort and run-time for difficult
instances of each class, and the space requirements are manageable.

1 Introduction

The aim of this paper is to show that for some types of constraint problem it
can be worthwhile to cache information about the assignments visited during the
search for solutions; this information can be used to prune parts of the search
visited later and avoid wasted effort.

When a constraint satisfaction problem (CSP) is solved by depth-first back-
tracking search, and the search backtracks, the failure of the current assignment
is due to some inconsistency that is not explicitly stated in the constraints. The
search has discovered that the assignment cannot be extended to a solution; it
is a nogood. There is no point in recording the assignment itself, in order to
avoid it in future, because the search will never revisit it anyway. However, in
some problems, assignments can occur later in the search that are equivalent to
the failed assignment, in the sense that they leave the remaining search in the
same state, and hence whether or not the equivalent assignment will fail can be
determined from the failed assignment.

In such a case, if assignments are recorded and an assignment occurs later in
the search that is equivalent to one that has already failed, the search can imme-
diately backtrack without rediscovering the same failure. Permutation problems
are a promising type of problem where equivalent states might occur. We demon-
strate the value of recording assignments in two classes of permutation problem,
where both search effort and run-time can be considerably reduced.

Previous work on recording nogoods has depended on identifying a subset of
the failed assignment that is responsible for the failure and adding this smaller
nogood to the CSP as a new constraint; although the assignment will not occur
again during the search, the subset may. For instance, Frost and Dechter [5]
use a backjumping algorithm that identifies a conflict set causing the failing
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assignment. Katsirelos and Bacchus [10] adapt the nogood recording techniques
successful in SAT, by keeping a record of the reasons for removing a value from
the domain of a variable and using these reasons, with the constraints that
each variable must have a value, to construct nogoods on failure. Bayardo and
Mirankar [1] discuss the fact that the space requirements of these methods of
learning nogoods during search can be prohibitive without some restriction on
the nogoods learnt, or some way of deleting nogoods no longer considered useful.

In comparison to these methods, the ideas discussed here are specific to a
particular type of problem. On the other hand, they have the advantage that it
is not necessary to identify a reason for a failure. Furthermore, the process of
matching an assignment with the cache is simplified by the fact that matching
assignments can only occur at the same level of the search tree. The results will
show that for the examples considered, the space requirements are manageable,
even for the most difficult problems requiring extensive search.

Two classes of permutation problem are considered below: a satisfaction prob-
lem and an optimization problem. In both cases, caching is very beneficial in
speeding up the solution of difficult problems. It is slightly more complex to in-
corporate caching into the search for optimal solutions, but essentially the same
method is used. Other applications of the same idea are also discussed.

2 Permutation Problems and Caching

In this section, we discuss how equivalent assignments can arise in permuta-
tion problems. Two assignments can be considered equivalent if they leave the
search in the same state, i.e. the subproblems consisting of the not-yet-assigned
variables and their current domains (after any constraint propagation) are the
same and the assignments to the future variables that are consistent with the
assignments already made are the same in both cases. Hence, if an assignment
cannot be extended to a complete solution, i.e. is a nogood, neither can any
equivalent assignment. Two assignments can only be equivalent if they involve
the same set of variables, because the set of variables that have not yet been
assigned must be the same. Since equivalent assignments leave the search in the
same state, we can think of a set of equivalent assignments as a (search) state;
and they will be referred to as states below.

A permutation problem is a CSP with the same number of values as variables
in which the constraints restrict every variable to have a different value [8]. If
the search algorithm assigns the variables in lexicographic order, an assignment
of size k consists of k of the values assigned to the first k variables. For some
permutation problems, whether or not the assignment can be extended to a
complete solution depends only on the set of values assigned, rather than on the
order in which they are assigned to the variables, together with possibly a few
other features of the assignment. In the ‘Black Hole’ problem discussed in the
next section, for instance, two assignments to the first k variables are equivalent
if the set of values assigned to the first k − 1 variables is the same, and the
kth variable is assigned the same value in both. Recording the set of values,
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along with the other features, if any, can then allow the inconsistency of future
assignments using the same set of values to be recognised without further search.

3 The Game of ‘Black Hole’

The first problem class examined is a class of satisfaction problems, i.e. just
one solution is required, or determination that there is no solution. It arises
from a game of Patience or Solitaire, that can be straightforwardly modelled
in constraint programming. ‘Black Hole’ was invented by David Parlett, who
describes it thus:

“Layout Put the Ace of spades in the middle of the board as the base or
‘black hole’. Deal all the other cards face up in seventeen fans of three,
orbiting the black hole.
Object To build the whole pack into a single suite based on the black
hole.
Play The exposed card of each fan is available for building. Build in
ascending or descending sequence regardless of suit, going up or down
ad lib and changing direction as often as necessary. Ranking is continuous
between Ace and King. For example, a start might be made as follows:
A-K-Q-K-A-2-3-4-3- and so on.”

The table below shows an instance of the game: the 17 columns represent
the 17 ‘fans’ of 3 cards each:

7♠ 3♦ 5♠ T♣ 6♠ J♣ J♠ 4♦ 7♥ 9♦ 7♦ 2♣ 3♥ 7♣ 3♠ 6♦ 9♣
J♥ 4♠ K♦ Q♦ T♠ T♦ A♣ 9♠ 9♥ Q♠ K♠ Q♥ 5♥ K♣ 8♥ J♦ 2♦
2♥ 5♣ T♥ 3♣ 8♣ A♥ 2♠ 8♠ 5♦ K♥ Q♣ 4♥ 6♣ 6♥ A♦ 4♣ 8♦

We can represent a solution as a sequence of the 52 cards in the pack, starting
with the ace of spades, the sequence representing the order in which the cards
will be played into the Black Hole. The top card in each column is available to
add to the sequence of cards being built. A solution to this game is:

A♠-2♣-3♠-4♦-5♠-6♠-7♠-8♥-9♠-8♠-9♣-T♠-J♠-Q♥-J♥-T♣-J♣-Q♦-K♦-A♣-
2♠-3♥-2♦-3♣-4♥-5♥-6♣-7♥-8♣-7♣-6♦-7♦-8♦-9♥-T♥-9♦-T♦-J♦-Q♠-K♠-
A♥-K♥-Q♣-K♣-A♦-2♥-3♦-4♠-5♣-6♥-5♦-4♣
A constraint programming model for this problem is described in [6]. It is mod-
elled as a permutation problem: the cards are numbered 0 (the ace of spades) to
51 and the sequence of cards is represented as a permutation of these numbers.
There are two sets of dual variables: xi represents position i in the sequence, and
its value represents a card; yj represents a card and its value is the position in
the sequence where that card occurs. These are linked by the usual channelling
constraints: xi = j iff yj = i, 0 ≤ i, j ≤ 51. The constraints that a card covering
another card must be played before it are represented by < constraints on the
corresponding yj variables. Constraints between xi and xi+1, 0 ≤ i < 51, ensure
that each card must be followed by a card whose value is one higher or one lower.
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We set x0 = 0, i.e. the ace of spades is the first card in the sequence. The search
strategy assigns values to the variables xi, i = 1, 2, ..., 51 in order, i.e. the sequence
of cards is built up as it would be played in the game. Some equivalent sequences
that would result from exchanging two cards of the same rank but different suits
are eliminated by conditional symmetry breaking constraints, as described in [7];
a conditional symmetry holds only within a subproblem of the CSP. Eliminating
the conditional symmetry has a huge impact on the search, for any instance that
requires a significant amount of backtracking to find a solution.

This model has been implemented in ILOG Solver 6.0 and applied to 2,500
randomly generated instances that were used to produce the results in [6]. The
performance of the CP model is highly skewed: half of the instances take fewer
than 100 backtracks to solve, or to prove unsatisfiable, whereas the most difficult
instances take millions of backtracks. This is shown in Figure 1, where the in-
stances are sorted by search effort. About 12% of the instances are unsatisfiable;
for most of these, the proof is trivial (for instance, the game cannot be won if
the top layer of cards contains neither a 2 nor a King). On the other hand, the
instances that are most difficult for the CP model are also unsatisfiable.
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Fig. 1. Number of backtracks to solve 2500 random instances of ‘Black Hole’

4 Caching States in ‘Black Hole’

At any point during search where the current assignment is about to be extended,
a valid sequence of cards has been built up, starting from the ace of spades.
Whether or not the sequence can be completed depends only on the cards that
have been played and the last card; apart from the last card, the order of the
previously-played cards is immaterial.
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For instance, suppose the following sequence of cards occurs during search
(assuming that in some game the sequence is possible, given the initial layout of
the cards):

A♠-2♣-3♠-4♦-5♠-4♣-3♣-2♠-A♣-K♦-A♦-2♦-3♦
If at some later point in the search, the following sequence occurs:

A♠-K♦-A♦-2♣-3♠-2♠-A♣-2♦-3♣-4♣-5♠-4♦-3♦
the second sequence will not lead to a solution. The set of cards in both sequences
is the same, and they end with the same card. Hence, in both cases, the remaining
cards and their layout are the same. Since the first sequence did not lead to a
solution (otherwise the search would have terminated), the second will not either.

Based on this insight, the search algorithm in Solver has been modified to
record and use the relevant information. The search seeks to extend the current
sequence of cards at choice points. Suppose that the first unassigned variable is xk

and the values of the earlier variables are x0 = 0, x1 = v1, ..., xk−1 = vk−1. (Some
of these values may have been assigned by constraint propagation rather than
previous choices.) The search is about to extend this assignment by assigning the
value vk to xk. A binary choice is created between xk = vk and xk �= vk, for some
value vk in the domain of xk. The set of cards played so far, {v1, v2, ..., vk−1} and
the card about to be played, vk, are then compared against the states already
cached. If the search has previously assigned {v1, v2, ..., vk−1} to the variables
x1, x2, ..., xk−1, in some order, and vk to xk, then the branch xk = vk should fail.
If no match is found, a new state is added to the cache, consisting of the set of
cards already played and the card about to be played, and the search continues.
In the example, when the 3♦is about to be added to the sequence, the set {2♠,
3♠, 5♠, A♦, 2♦, 4♦, K♦, A♣, 2♣, 3♣, 4♣}, and x12 = 3♦, would be compared
with the states already visited.

(Note that constraint propagation may also have reduced the domains of
some future variables to a single value, which will therefore have been assigned,
but this can be considered as part of the state of the remaining search left by
the sequence x0 = 0, x1 = v1, ..., xk−1 = vk−1.)

The implementation represents the set of cards in the current sequence, ex-
cluding the A♠, as a 51-bit integer, where bit i = 1 if card i is in the set,
1 ≤ i ≤ 51. The current state can only match a state in the cache if both
the number of cards played (k − 1) and the current card (vk) match. Hence,
the cache is indexed by these items. It is stored as an array of extensible ar-
rays, one for each possible combination of k − 1 and vk: this is a somewhat
crude storage system, but has proved adequate for this problem. Within the
relevant extensible array, the integer representing {v1, v2, ..., vk−1} is compared
with the corresponding stored integers, until either a match is found, or there
is no match. In the former case, the search backtracks: the current state can-
not lead to a solution. Otherwise, the integer representing {v1, v2, ..., vk−1} is
added to the array, xk = vk is added to the sequence being built and the search
continues.
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When an assignment of length k fails, it would in theory be possible to
represent this information as a k-ary constraint. In ‘Black Hole’, the failure has
revealed that assigning {v1, v2, ..., vk−1} to {x1, x2, ..., xk−1}, in any order, and
vk to xk is inconsistent, and a constraint expressing this could be added to the
CSP. However, as will be seen, tens of thousands of states may be cached in
solving an instance of ‘Black Hole’; storing and processing so many constraints
added during search would undoubtedly take more space and time than the
caching proposed here.
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Fig. 2. Solving 2500 random instances of ‘Black Hole’: difference in number of back-

tracks between the original search and the search with cached states, instances in the

same order as Figure 1

Figure 2 shows the reduction in the number of backtracks required to solve
the 2,500 instances resulting from caching states. Only the instances which take
fewer backtracks with caching than without are shown, but the instances are
given the same numbering as in Figure 1 (so that the most difficult instance
from Figure 1 is still shown as instance 2500). It is clear that the saving in
search effort increases with the search effort originally expended.

For all but 15 of the 1,206 instances that take 50 or fewer backtracks to find a
solution, caching states visited makes no difference to the search effort. However,
since few states are cached in these cases, the run-time is hardly affected either.
Solver occasionally reports a longer run-time with caching than without, by up
to 0.01 sec., but only for instances that take little time to solve in either case.

At the other end of the scale, the instances that take more than 1 million
backtracks with the original search are shown in Table 1; these instances have
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Table 1. Number of backtracks and run-time in seconds (on a 1.7GHz Pentium M PC,

running Windows 2000) to solve the most difficult of the 2,500 ‘Black Hole’ instances,

with and without caching states visited

No caching Caching
Backtracks Time Backtracks Time

3,943,901 1,427.93 1,020,371 431.33
3,790,412 1,454.16 1,259,151 509.94
1,901,738 721.07 606,231 251.01
1,735,849 681.57 528,379 233.40
1,540,321 582.71 619,735 257.95
1,065,596 398.44 423,416 176.01

no solution. For these instances, caching states visited reduces the search effort
by at least 60%; for the most difficult instance, the reduction is nearly 75%. In
spite of the unsophisticated storage of the cache, the saving in run-time is nearly
as great; more than 55% for all six instances, and 70% for the most difficult
instance.
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Fig. 3. Proving insolubility for the most difficult ‘Black Hole’ instance in the sample,

with and without caching

To show more clearly how caching affects the search, Figure 3 shows the
search profile for the most difficult instance of the 2,500 for the original search.
The number of choice points is plotted against the number of variables assigned
when the choice point is created, so showing the depth in the search where the
choice point occurs. The number of cached states at each depth is also shown;
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this is equal to the number of choice points where no matching state is found in
the cache and the search is allowed to continue.

The total number of cached states for the instance shown in Figure 3 is
about 1.25 million (< 221). In a permutation problem, the number of possible
assignments is at most the number of subsets of the values, i.e. 2n, where n is the
length of the sequence, in this case effectively 51; hence, this is an upper bound
on the number of states that need to be cached during the course of search.
However, in this case, most of the subsets of the cards are not feasible states,
since a valid sequence cannot be constructed in which the cards follow each other
correctly in ascending or descending rank. Hence, the number of possible cached
states is much less than 251, even for the difficult unsatisfiable instances.

5 An Optimization Problem: Talent Scheduling

In this section, the application of these ideas to an optimization problem is con-
sidered. The rehearsal problem is prob039 in CSPLib: constraint programming
approaches to solving it have been discussed in [11]. The talent scheduling prob-
lem [2] is a generalization of the rehearsal problem, arising in film production.
A film requires a certain number of days of filming, which can be shot in any
order. Each day’s filming (called a ‘scene’ below) requires some subset of the
actors. Actors are paid from the first day that they are required to the last day,
including any day when they are not working. Hence, the schedule should mini-
mize the cost of paying actors while they are waiting for their next scene but not
working; actors are paid different rates, so the cost is the waiting time, weighted
by the pay rates of the actors. The rehearsal problem is similar, except that it is
simply the total waiting time that is minimized: this is equivalent to the actors
all being paid the same rate.

Again this is a permutation problem: a schedule is a permutation of the
scenes. As before, we can define two sets of dual variables: si represents position
i in the sequence, and its value represents a scene; dj represents a scene and its
value is the position in the sequence where that scene occurs. The channelling
constraints are: si = j iff dj = i, 1 ≤ i, j ≤ n, where n is the number of scenes to
be shot and hence the length of the sequence. There are constraints in the model
to allow the waiting time for each actor to be derived from the sequence of scenes:
these are described in [11]. The model used for the experiments described in this
paper differs slightly from the one described in [11]: in that case dominance rules
were added as constraints to the CP model whenever there is a pair of scenes
i and j such that every actor required for i is required for j, and j requires
one additional actor, a. The rules specify that if scene i is before scene j in the
sequence, actor a must not be required until after scene i. For the experiments
described in this paper, similar rules are used to cover the case that scene j
requires two additional actors.

An optimal solution is found using the default optimization strategy provided
by ILOG Solver; the cost of the best sequence found so far becomes an upper
bound on the cost of any sequence found in future. As the search proceeds,
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this constraint on the cost becomes increasingly tight, so that eventually no
further sequence can be found with cost less than the incumbent solution, which
has therefore been proved optimal. Because any permutation of the scenes is a
feasible schedule, the first solution is found immediately, simply sequencing the
scenes according to the order that they appear in the data.

The search strategy used in [11] is to assign scenes from the ends to the middle
of the sequence, i.e. the variables are assigned in the order s1, sn, s2, sn−1, .... The
advantage of this over building up the sequence consecutively from the start is
that if an actor is assigned to a scene in the first part of the sequence and also
to a scene in the second part of the sequence, that actor’s total waiting time is
known: it does not depend on the order of the remaining scenes. Hence, partial
sequences that will be more expensive than the best solution found so far can
be pruned early.

For this problem, with this search strategy, a state consists of the set of scenes
already placed at the start of the sequence, and the set of scenes scheduled at
the end of the sequence. Because it is an optimization problem, we also need
to record the cost associated with the partial sequence: that is, the waiting cost
during the scenes already sequenced that is incurred for actors that are on set
but not working during those scenes.

In the ‘Black Hole’ problem, if a search state matches one of those in the
cache, this branch of the search can be pruned. In this case, however, if there is
a matching state in the cache, but the current state is cheaper, then it may lead
to a better complete solution than the best found so far, and so the search should
continue. In that case, the cost associated with the cached state is replaced by
the cost of the current partial sequence.

The cache is indexed only by the total number of scenes sequenced, corre-
sponding to the depth in the search tree where the state occurs. Given the search
strategy, if this number is even, say 2m, then m scenes have been sequenced in
the first part of the sequence and m in the last part; if the number is odd, say
2m+1, then m+1 scenes are in the first part and m in the second. For problems
that require a lot of search to find an optimal solution, there can be many states
cached at some levels of search. To speed up the search for a matching state,
the cache at each level is divided between a fixed number of extensible arrays,
and the states are distributed evenly over these arrays using a hash function.
Applying the hash function to the current state gives the index of the array
where any possible matching state will be stored. Again, this method could be
made more sophisticated so that matching is faster, but as will be seen from
the results, this method is good enough to speed up search significantly and so
demonstrate that caching is worthwhile.

When a state is stored in the cache, the search continues and tries to complete
the sequence at a cost lower than the best solution so far. If this can be done,
then conceivably it would be worth storing the cost of completing the sequence
in the cache. Then if any future partial sequence matches the cached state, with
lower cost than the cost of the stored partial sequence, the cost of completing it
can be immediately known, and so whether it can beat the incumbent solution.
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This might allow some states whose cost is lower than the previous occurrence
of the same state to be pruned, because the minimum cost of a complete se-
quence based on this partial sequence cannot beat the incumbent solution. This
has not been done for several reasons; first, it would complicate the algorithm
to return to the cache to store completion costs for all partial sequences lead-
ing to each new solution, and would mean that satisfaction and optimization
problems would be treated very differently. Secondly, relatively few solutions of
successively lower cost are found during the course of the search; most sequences
are never completed, because at some point their cumulative cost is higher than
the best known solution. Hence, storing the completion cost in the cache seems
unlikely to give a great reduction in search, and would certainly complicate the
algorithm and make it more difficult to generalize.

6 Talent Scheduling Results

In this section, the results of using caching are presented, both for the rehearsal
problem described in CSPLib, and for a number of talent scheduling problems,
which are much more difficult to solve. The ‘Mob Story’ problem is derived from
the problem in [2] (based on a film of that name); the data for this problem is
also given in CSPLib. It has 20 scenes to sequence. The ‘Mob Storyx’ instances
are derived from it by taking the first x scenes in the data.

Tables 2 and 3 show the effect of caching states for these relatively small
problems together with the rehearsal problem. In Table 2, as in [11], the sequence
is built from the ends to the middle, as described earlier. In Table 3, the sequence
is built from the start to the end, i.e. the search variables are assigned in the
order s1, s2, ..., sn. This makes implementing caching simpler, since the state
consists of only the set of scenes at the start of the sequence.

Table 2. Solving small instances of the talent scheduling problem, with and without

caching, building the sequence from both ends to the middle

Problem No caching Caching
Backtracks Time Backtracks Time Cached states

rehearsal 286 0.04 276 0.04 204
Mob Story10 289 0.05 281 0.06 236
Mob Story12 2,859 0.27 2,579 0.33 1,670
Mob Story14 15,598 1.64 10,439 1.48 5,597
Mob Story15 41,796 4.71 23,565 3.51 10,833
Mob Story 1,026,328 132.93 405,888 64.71 136,765

As already claimed, building the sequence from the ends to the middle is
much faster than building from start to end. However, caching states makes a
much greater difference when the worse variable ordering is used; caching with
the poor variable ordering is better than the ‘ends-to-middle’ variable order-
ing without caching. Caching is still very worthwhile for the larger instances
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Table 3. Solving small instances of the talent scheduling problem, with and without

caching, building the sequence from start to end

Problem No caching Caching
Backtracks Time Backtracks Time Cached states

rehearsal 1,734 0.12 967 0.07 301
Mob Story10 1,054 0.17 838 0.13 291
Mob Story12 11,613 1.46 6,765 0.64 1,387
Mob Story14 350,991 56.19 68,134 6.09 7,341
Mob Story15 758,270 143.84 109,381 10.98 11,781
Mob Story 13,614,469 1,917.92 658,784 83.93 72,382

Table 4. Solving larger instances of the talent scheduling problem, with and without

caching, and with both variable orders

Build sequence start to end, Build sequence ends to middle
with caching No caching Caching

Time Cached Time Time Cached
Problem Backtracks (sec.) states Backtracks (sec.) Backtracks (sec.) states

film105 536,299 51.18 61,100 459,071 48.10 118,361 16.07 40,511
film116 1,160,295 143.72 81,084 2,102,591 277.96 744,481 125.8 225,314
film119 1,505,228 97.49 127,459 1,493,988 171.47 526,392 70.80 144,226
film118 2,333,385 178.22 201,115 2,618,066 315.74 606,591 93.10 205,190
film114 2,569,252 217.21 162,027 4,909,250 472.79 1,032,902 127.00 267,526
film103 4,723,274 313.18 215,354 2,628,434 250.42 607,935 76.69 180,133
film117 6,303,052 396.04 193,163 4,078,225 384.52 651,781 76.86 174,100

with the ‘ends-to-middle’ variable ordering, and the combination gives the best
performance overall. However, with this variable ordering, caching reduces the
run-time only by half for the Mob Story problem, compared with an order of
magnitude reduction with the poor variable ordering. Evidently, the better vari-
able ordering already leads to less wasted search, and so gives less scope for
further reductions from caching.

Finally, Table 4 gives results on randomly-generated instances based on the
characteristics of the Mob Story problem. These instances were generated with
originally 20 scenes, as in the Mob Story problem. However, two scenes requir-
ing the same set of actors can clearly be treated as one scene taking two days
to shoot: requiring these scenes to be sequenced consecutively will not affect
the optimality of any solution. After merging scenes in this way, most of these
instances have slightly fewer than 20 scenes. Even so, they proved to be more
difficult than the original Mob Story problem, overall, and so have not been
attempted with ‘start-to-end’ variable ordering and no caching.

As with the Mob Story problem, the poor variable ordering with caching
states gives better performance on the whole than the better variable ordering
without caching, and the ‘ends-to-middle’ ordering with caching gives better re-
sults still. The size of the cache does not present any difficulty for these instances.
However, the cache size is much closer to 2n than in the ‘Black Hole’ problems:
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since every sequence represents a feasible schedule, a greater proportion of the
possible subsets is likely to be met during search than in the ‘Black Hole’ prob-
lems, where many subsets cannot form feasible sequences. The ‘ends-to-middle’
ordering does not require more states to be cached, on average, than ‘start-to-
end’ ordering. This is somewhat surprising, since the total number of possible
states is larger, if the state consists of two subsets of the scenes (representing
the first and last parts of the sequence) rather than one.

Figure 4 gives a similar search profile to Figure 3 for this problem class: it is
based on the most difficult instance shown in Table 4. Recall that the search can
extend an assignment even when it matches a state in the cache, provided that
the cost of the assignment is lower than the stored cost. Hence, cached states
can be ‘re-used’ when their associated costs are updated, and so the number of
cached states in relation to the number of choice points is much smaller than in
the ‘Black Hole’ problems.
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Fig. 4. Profile of number of choice points, with and without caching, and number of

states cached, at each depth in search, for the random instance film117

7 Discussion

Caching would be a potentially valuable way of avoiding wasted search in other
permutation problems, as well as those discussed here, though not all are suit-
able. For instance, Langford’s problem (prob024 in CSPLib) is not a suitable
candidate: if we consider a partial assignment to the first k variables represent-
ing the positions in the sequence, then whether or not the assignment can be
extended to a solution depends on the order of the values assigned to the vari-
ables and not just the set of values. On the other hand, Fink and Voss [3]
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discuss a number of sequencing problems that could potentially be modelled as
permutation problems and are suitable for caching. The problems that they dis-
cuss are related to the talent scheduling problem, but have a variety of different
objectives. For instance, ‘minimization of the number of simultaneously open
stacks’ is equivalent to the talent scheduling problem but with the objective to
minimize the maximum number of actors on set (either acting in the current
scene or waiting) at any time. We could expect that caching could be useful for
this problem, just as in the talent scheduling problem itself.

Focacci and Shaw [4] describe a similar approach to that in this paper, in the
context of the Travelling Salesman Problem and the TSP with Time Windows
(which are again permutation problems). They record nogoods during search and
use local search to test whether the current assignment (a sequence of cities) can
be rearranged to give a lower cost assignment that is an extension of a nogood;
if so, the current assignment can be pruned.

Jefferson, Miguel, Miguel and Tarim [9] discuss the game of Peg Solitaire,
modelled as a CSP. The game is played with pegs on a board studded with
holes; a peg can jump over a neighbouring peg into a hole beyond, and the
jumped-over peg is removed. The aim is to start from a state where all the holes
but one are filled, to a state where only one peg is left. This is not a permutation
problem, but it has some similarities and the authors noted that the same state
of the board can be reached in multiple ways.

Jefferson et al. consider the existence of different paths to the same state as a
form of symmetry, and sets of equivalent paths as symmetry equivalence classes.
However, this does not seem a useful point of view, since the ‘symmetries’ are not
identified, only equivalent paths. They attempted to deal with equivalent board
states by preprocessing to find sets of equivalent paths and adding constraints
to forbid all but one path in each set, as in conventional symmetry breaking.
They found the sets by exhaustive search, which is only practicable for short
paths. As a result, they could only eliminate equivalent board states occurring
near the top of the search tree, which did not lead to great benefits.

On the other hand, Peg Solitaire seems a good candidate for caching states
dynamically as they are encountered during the search, as described in this
paper, even though this is not a permutation problem. Whether or not the game
can be completed from a given board state does not depend on how that state
was reached, so that this is similar to ‘Black Hole’. Moreover, a given board state
can only occur at a particular depth in the search (games require a fixed number
of moves to complete). Hence, a cache of board states could be indexed by the
depth in search, just as in the ‘Black Hole’ and talent scheduling examples. This
example suggests that caching states during search could have wider application
than permutation problems; the key feature is that different assignments should
lead to the same state of the search.

The method described in this paper assumes that variables will be assigned in
a static order. In the ‘Black Hole’ problem, for instance, an assignment to a subset
of the variables that does not represent a consecutive sequence of cards would
not leave the search in the same state as an assignment of the same values to
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these variables in a different order. The requirement of a static variable ordering
is not a restriction, however, since a static ordering that builds up the sequence
consecutively is a good search strategy for problems requiring the construction
of a sequence, such as ‘Black Hole’, talent scheduling, Peg Solitaire and so on.

The space requirements of the cache are not an issue for the problems in-
vestigated in this paper. For ‘Black Hole’, especially, many of the potentially
251 states are not feasible, and so are never visited and never cached. Space is
potentially more likely to present difficulties for the talent scheduling problem,
where in theory every possible state could be visited, although since assignments
that already exceed the current cost bound fail, this cannot happen in practice.
The instances reported here are near the limit of what can be solved in a rea-
sonable time with the current model and search strategy, so that solving larger
instances, and thereby needing a larger cache, is not practicable. However, a bet-
ter value ordering heuristic, for instance based on that described by Cheng et al.
[2], should mean that the first solution found would be much closer to optimal
than at present. This would allow larger instances to be solved; but at the same
time the better cost bound would also limit the number of states cached. Future
work will investigate the overall effect on the size of the cache. If the cache size
ever becomes too large, it would be possible to limit its size, for instance by
simply not saving more states when the cache reaches a preset size, thus trading
a smaller reduction in run-time for space.

8 Conclusion

It has been shown that in some classes of problem, two assignments to the same
set of variables can leave the search in the same state; hence if one assignment
is a nogood, so is the other. By caching the problem-specific details that will
allow equivalent states to be recognised, wasted search exploring equivalent as-
signments can be avoided. In satisfaction problems, such as the ‘Black Hole’
problem, if the current assignment matches one in the cache, an equivalent as-
signment has already failed; hence the current assignment will also fail and the
search should backtrack. In optimization problems, such as the talent scheduling
problem, the cost of the current assignment should also be compared with the
cost associated with the cached state; the current assignment should fail if it is
at least as expensive as the cached state. The two case studies considered in this
paper have shown that caching can reduce the run-time for difficult instances
by at least half, and sometimes by an order of magnitude, depending on the
problem and the instance. It does not always give any benefit for instances that
are already easy to solve, but in those cases does not increase run-time either.
Although in previous work, recording nogoods has been problematic because
of the very large number of nogoods generated, the number of states cached
has not presented any difficulty for the cases investigated here, and looking for
a matching state in the cache has not incurred a heavy overhead, in spite of
somewhat crude storage methods. Permutation problems in general seem most
likely to give rise to equivalent states; the example of Peg Solitaire, which is
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not a permutation problem, shows that caching states could also have wider
application.
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