
The Path to Satisfaction:

Polynomial Algorithms for SAT

Daniel J Hulme

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Engineering Doctorate

of the

University of London.

Department of Computer Science

University College London

2008



2

I, Daniel J Hulme, confirm that the work presented in this thesis is my own. Where information has

been derived from other sources, I confirm that this has been indicated in the thesis.



Abstract

Twenty years ago the bottleneck preventing us from solving many practical problems lay in the limited

capacity and performance of computers. However, modern computers are now capable of storing a huge

amount of data and processing it at very high-speed. The bottleneck nowadays is in the efficiency and

effectiveness of the algorithms manipulating the data. Two fields of Computer Science related to this

issue - Constraint Satisfaction (CSP) and Propositional Satisfiability (SAT) - have developed relatively

independently over the past half century, it is only in recent years that the mutual benefits of these fields

have started to be explored.

One method used to explore the relationship between these fields is to study the mappings between

the two core problem domains. After introducing the relevant background and providing a detailed

survey of SAT and CSP encodings, my analysis of these encodings uncovers three categories, providing a

framework for current and future SAT and CSP encodings to be developed. As a result of this framework

I define a new encoding and I demonstrate that in certain circumstances this encoding may be more

advantageous than other encodings. This new encoding also opens up the potential for additional CSP to

SAT encodings.

After categorising SAT and CSP encodings the focus of this research shifts to characterising them.

Some empirical work on comparing algorithmic performance on instances with different solution-density

has been performed, and it has been shown that this feature is correlated with the solubility of a problem

instance and can be used to choose between using stochastic and branching algorithms. I provide a

characterisation of current SAT to CSP encodings and I prove that some encodings result in problems

with varying solution-densities. Since it has been shown that solution-density is an important factor in

determining the solubility of an instance, my work provides a guide to assist in choosing one encoding

over another.

A large amount of theoretical analysis has been published comparing stochastic and branching algo-

rithmic techniques on SAT and CSP encodings, however, very little research has compared the effect of

enforcing local-consistency in each of these domains. After introducing the main algorithmic techniques

from the SAT and CSP communities I use the graph-theoretic framework to reconfirm and strengthen

the equivalence between the SAT and CSP-based proof methods. I provide a comprehensive comparison
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between local-consistency techniques on each of the SAT to CSP encodings. One result of this work has

direct practical implications regarding the choice of encoding; that enforcing local-consistency on some

types of encoded problems does more work than when using other type of encodings. I also prove that

enforcing certain levels of local-consistency on some types of encoded SAT instances does zero work,

which is supported by the empirical results presented in this thesis.

In addition, I bridge further the CSP and SAT techniques by introducing the concept of Extended-

Consistency, thus providing a more complete picture of the extended proof-systems. Extended proof-

systems allow the introduction of auxiliary variables and are some of the most powerful proof-systems

known. Relatively little practical work has been done on extended proof-systems. Typically SAT and

CSP algorithms that employ additional variables tend to apply them in an ‘ad-hoc’ manner. The mo-

tivation of defining Extended-Consistency is to allow synergies between extended proof-systems to be

cultivated and explored.

I identify two key problematic aspects of empirical studies of encodings. First, typically one type

of problem is used as a benchmark to compare encodings. Second, either stochastic or backtracking

algorithms are applied to the encoded problems. Clearly both of these choices may bias the results,

since an encoding/algorithm may ‘favour’ a particular problem. I address these issues by applying a

local-consistency algorithm to a wide variety of unsatisfiable problems. These experiments support the

theoretical analysis and strongly indicate that the choice of encoding has a dramatic effect on reducing

the search-space when enforcing local-consistency. I demonstrate that enforcing a small local-level of

consistency on problems using a certain encoding does not solve any of the SAT benchmarks, which is

in stark contrast to problems encoded using a different method. I show empirically that enforcing such

a low-level of consistency can solve a large number of ‘hard’ SAT benchmark families. In particular,

converting SAT instances to CSP and applying local-consistency can not only solve many ‘hard’ SAT

instances, but this technique can even compete with state-of-the-art SAT-Solvers.

The results presented in this thesis are part of a research program aimed at bridging the gap be-

tween Propositional Satisfiability and Constraint Satisfaction. Hence, the main goal of this thesis is to

strengthen this relationship and to capitalise on synergies between these two fields. The broader aim is to

develop a better understanding of Computer Science, which aims to benefit the scientific and industrial

communities by increasing the theoretical understanding of the complexity and tractability of natural

problems, thus improving practical algorithms that can be applied it to pertinent scientific and industrial

problems.



Acknowledgements

I wish to acknowledge the support of the EPSRC Engineering Doctorate from the EngD Programme at

UCL. The EngD is an excellent programme hosted by a fantastic university, it is a four-year postgrad-

uate award intended for the UK’s leading research engineers. With a taught component spanning both

Engineering and electives from an MBA at the London Business School, the EngD programme is better

suited to the development of translational research, and provides a more vocationally oriented Doctorate

in Engineering.

I would like to thank Beau Lotto for providing me with a diverse environment, as well as the free-

dom to pursue this research. I thank Bernard Buxton - my supervisor and mentor - for his continuous

encouragement and advice, which has been invaluable throughout my academic and personal develop-

ment. I am indebted to Robin Hirsch for his help with this work and for his guidance and patience over

the years.

I sincerely thank the members of the LottoLab and the IOO for a pleasant working environment

and our various stimulating discussions, including Martina Wicklein, Udi Schlessinger, David Malkin,

David Corney, Erwan Le Martelot and Steve Dakin, and in particular Rich Clarke for making the past

four years some of my most enjoyable. I thank Pete Jeavons, Dave Cohen, Ian Gent and the members of

Oxford’s, Holloway’s and St Andrews Constraints group for our brief yet valuable conversations. Special

appreciation goes to my examiners Barbara Smith and Dave Cohen for their advice about how to greatly

strengthen this work.

I thank my family and friends for their continuous encouragement, enthusiasm and support; espe-

cially David Bradshaw for doing a great job of proof-reading the first version of this work.

Finally, and most importantly, a very special thank you goes to Nana, Grampy and Shona; to whom

this thesis is dedicated — it would be impossible to have done it without them.



Contents

1 Introduction and Motivation 14

1.1 P vs NP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Constraint Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Propositional Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Motivation and Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Definitions and Background 23

2.1 P and NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Polynomial Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 NP and co-NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Constraint Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Implicit and Explicit CSP Representations . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 CSP Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Maintaining Arc-Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Forward Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Stochastic Search for CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Boolean Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 SAT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Extended-Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



Contents 7

2.5.3 NG-RES Proof-System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.4 Davis-Putnam Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.5 Davis-Logemann-Loveland Procedure . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.6 Stochastic Search for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Literature Review 40

3.1 CSP to SAT Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 DIRECT Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 SUPPORT Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.3 LOG Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Analysis of CSP to SAT Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 SAT to CSP Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 LITERAL Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 DUAL Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 NON-BINARY Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.4 PLACE Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.5 HIDDEN VARIABLE Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Analysis of SAT to CSP Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 DOUBLE Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Proof Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.1 The Width-Size Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Local and Global Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.3 Pigeon-Hole Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.4 Extended Proof-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7.1 Theoretical Studies Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7.2 Empirical Studies Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Categorising Encodings 73

4.1 Mapping Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 DOMAIN Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.2 CONSTRAINT Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents 8

4.1.3 COMBINED Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 INVERSE Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Characterising SAT to CSP Encodings 82

5.1 Solution Separation of SAT to CSP Encodings . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 LITERAL Encoded Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2 DUAL Encoded Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.3 NON-BINARY Encoded Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.4 PLACE and HIDDEN VARIABLE Encoded Solutions . . . . . . . . . . . . . . . 85

5.2 Local-Consistency Analysis of SAT to CSP Encodings . . . . . . . . . . . . . . . . . . 87

5.2.1 Resolution ≡ Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Local-Consistency on the NON-BINARY Encoding . . . . . . . . . . . . . . . . 89

5.2.3 Local-Consistency on the LITERAL Encoding . . . . . . . . . . . . . . . . . . . 89

5.2.4 Local-Consistency on the DUAL Encoding . . . . . . . . . . . . . . . . . . . . 92

5.2.5 Local-Consistency on the PLACE and HIDDEN VARIABLE Encodings . . . . . . 92

5.3 Extended-Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Empirical Analysis of SAT to CSP Encodings 102

6.0.1 DIMACS CNF Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.0.2 UUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.0.3 DUBOIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.0.4 AIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.0.5 JNH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.0.6 BF and SSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.0.7 PRET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.0.8 Pigeon Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 SAT Competition Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.1 Competition Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Chapter Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Discussion, Exploitation and Future Work 118

7.1 Theoretical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1.1 Categorising Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1.2 Characterising Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



Contents 9

7.2 Empirical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Extended Proof-Systems and Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.1 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.2 Extended Proof-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4.1 Electronic Design Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A Benchmark File Format 130

A.1 DIMACS CNF Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B SAT Encodings 132

B.1 LOG Encoding of Example 2.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2 INVERSE Encoding of Example 2.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 134



List of Figures

2.1 An instance of GRAPH 3-COLOURABILITY. . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 A solution to Example 2.2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Example 2.2.3 as a Ḡ5
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Chapter 1

Introduction and Motivation

In the seminal paper by Hartmanis & Stearns (1965) Computational Complexity was born. Informally,

Computational Complexity is the discipline of Computer Science concerned with the number of algo-

rithmic operations required to solve a well-defined problem. In fact, Sipser (1992) points out that several

papers around this time proposed and developed the notion of measuring the complexity of a problem by

the number of steps required to solve it with an algorithm.

More generally, Complexity Theory is the study of the level of resource required to solve a mathe-

matically posed problem1 (i.e. time or space), and over the past 40 years research in this field has made

tremendous inroads to industry. We are unable to go from A to B without algorithms solving a plethora

of optimisation problems along the way — indeed, sometimes even the process of going from A to B

efficiently is an optimisation problem.

Twenty years ago the bottleneck preventing us from solving many practical problems lay in the

limited capacity and performance of computers. However, modern computers are now capable of storing

a huge amount of data and processing it at very high-speed. The bottleneck nowadays is in the efficiency

and effectiveness of the algorithms manipulating the data, which is why Complexity Theory has become

such an important and popular field.

Certainly, progress in this field continues to increase as witnessed by the growing number of

Complexity-related papers published in journals and presented at major conferences. However, it may

be safe to say that no other article in Computer Science has stimulated more discussion than the P vs NP

problem2, which has now been with us for over three decades.

1.1 P vs NP Problem

The P vs NP problem, formulated independently by Stephen Cook (1971) and Leonid Levin

(Trakhtenbrot (1984)), is arguably one of the most important scientific questions posed to date. Simply

stated, the P vs NP question asks if there exists a polynomial solution to any of the problems shown

1FOLDOC: Free On-line Dictionary of Computing. http://foldoc.org
2Polynomial (P) and Non-deterministic Polynomial (NP), defined in Section2.1
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to be NP-complete. Cook showed that the SATISFIABILITY PROBLEM is NP-complete, whilst Levin

proved NP-completeness for a variant of the TILING PROBLEM 3. Cook’s Theorem states that any prob-

lem that can be solved in polynomial-time by a non-deterministic Turing machine can be reduced (in

polynomial-time) to the problem of determining whether a Boolean formula is satisfiable.

Over the past several decades researchers have been trying to (dis)prove the P �= NP conjecture by

determining whether or not there is a polynomial solution to any of the known NP-complete problems,

many of which are described in Garey & Johnson (1990) Computers and Intractability: A Guide to the

Theory of NP-completeness. If indeed we were to discover that one of these NP-complete problems

was in P, then by the process of polynomial-reduction we will have managed to solve every NP problem

polynomially. Cook (2000) states that although a practical algorithm for solving an NP-complete prob-

lem would have devastating consequences for cryptography, it would also have stunning implications of

a more positive nature,

“for example, it would transform mathematics by allowing a computer to find a formal

proof of any theorem which has a proof of reasonable length, since formal proofs can easily

be recognized in polynomial time. Example theorems may well include all of the Clay

Mathematical Institute prize problems. Although the formal proofs may not be initially

intelligible to humans, the problem of finding intelligible proofs would be reduced to that of

finding a recognition algorithm for intelligible proofs.”

Similar remarks apply to diverse creative human endeavours, such as architecture, creating physical

theories, composing music or even automating intelligent behaviour. Though still unproven, the general

consensus from the Gasarch (2002) poll is that P �= NP4. Undoubtedly, even if P �= NP were true the

consequences of showing that every NP problem important to science and industry is ‘susceptible’ to a

polynomial-time algorithm is difficult to imagine, since this might yield many of the practical benefits

that could be expected in a world in which P≈ NP (Cook (2003)). Clearly, the significance of developing

practical techniques to improve the solubility of NP-complete problems is huge, and is one of the key

motivations for the work in this thesis.

Aside from the algorithms that are being applied to problems discussed in this thesis, there are also

many restricted versions of NP-complete problems that can be solved using polynomial-time algorithms.

Markedly, Constraint Satisfaction research has provided various conditions that have been shown to be

sufficient to ensure tractability, most notably the works of Cohen and Jeavons (see Cooper et al. (1994);

Jeavons & Cooper (1995); Jeavons et al. (1996, 1997, 1998); Cohen et al. (2000)).

3See Fortnow & Homer (2002) and Sipser (1992) for excellent introductions to the history of Computational Complexity and
the P vs. NP problem.

4meaning that no polynomial-time algorithm exists that can solve a class of NP-complete problems.
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1.2 Constraint Satisfaction

Pioneered by Montanari, Waltz and Mackworth in the 1970’s, the Constraint Satisfaction Problem (CSP)

describes a general framework for problems in which values must be assigned to a set of variables subject

to specific constraints (Mackworth (1975)). It is one of the most prominent research areas in Theoretical

Computer Science and Artificial Intelligence.

Widely studied in academia for several decades, research in this field is successfully beginning to

penetrate mainstream industry (Wallace (1996)). With the advent of the modern computer contributing

to the significant growth of this field, Constraint Satisfaction research is being applied to numerous Op-

erational Research (OR) problems, including timetabling5, location, scheduling, car sequencing, cutting

stock, vehicle routing and rostering (see Brailsford et al. (1999)). In particular, one type of CSP, Propo-

sitional Satisfiability (SAT), has been adopted by the semiconductor industry as a methodology (Formal

Verification) for testing the design of Integrated Circuits (Chips).

1.2.1 Formal Verification

In the context of hardware and software systems, Formal Verification is the act of proving or disproving

the correctness of intended algorithms underlying a system with respect to a certain formal specification

or property. Over the past decade (though much more so within the last few years) formal-methods have

been successfully integrated into Electronic Design Automation (EDA) tools as a technique to detect

‘bugs’ in Chip designs (Prasad et al. (2005)). Roughly half of the costs for any design project are on

verifying the design. About 70% of first fabricated silicon chips come back with errors, not because

of problems with yield or timing, but because of functional problems that were missed during testing 6.

This, coupled with the increasing complexity of Chip design, is posing semiconductor companies with

escalating costly delays, potential recall of faulty chips and huge reputational risks.

With around 50% of the entire design effort currently focused on Verification this increasing bot-

tleneck is lengthening the design cycle, delaying time-to-market and eating into profits. Consequently,

Chip manufacturers are applying pressure to EDA tool vendors to deliver more effective and robust

Verification algorithms7.

These algorithms, typically SAT-based, have been embraced by industry because they help ease a

real ‘customer pain’, namely the Chip testing bottleneck. A lack of market opportunity could be one

reason why Constraint-based approaches to more common OR problems (such as timetabling) have

been adopted with less fervour in comparison (Broadfoot & Broadfoot (2003)) — besides the typical

‘barriers’ cited as the cost of technology/methodology transfer, and the level of knowledge required

(Bowen & Hinchey (1997)).

5See Schaerf (1999) for an excellent survey of algorithmic techniques to solve the TIMETABLING PROBLEM.
6FPGA Explosion Will Test EDA - http://www.elecdesign.com/Articles/Index.cfm?ArticleID=15910&bypass=1
7Fragmentation of the IC Verification Process - http://www.edat.com/NEA21.htm
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As a potential consequence of this ‘market force’ SAT-algorithms have evolved relatively indepen-

dently from the field of Constraint Satisfaction. Nevertheless, in recent years cross-fertilisation has begun

between these two research areas, particularly the techniques concerning Resolution (SAT) and Consis-

tency (CSP) (see Walsh (2000a); Rish & Dechter (2000); Mitchell (2003); Kullmann (2004); Bennaceur

(2004)).

1.3 Propositional Satisfiability

The SATISFIABILITY PROBLEM in propositional logic (SAT) is the quintessential NP-complete prob-

lem, and is a particularly important type of CSP. Over the past decade dramatic improvements in Res-

olution-based algorithms have given rise to SAT-Solvers (such as Moskewicz et al. (2001) ZCHAFF,

Goldberg & Novikov (2002) BERKMIN and Een & Sorensson (2003) MINISAT) that can solve in-

stances with thousands and even millions of variables (Hoos & Stützle (2000)).

Given a propositional formula on a set of Boolean variables, SAT asks whether or not there exists

an assignment to the set of variables such that the formula evaluates to True. More specifically, SAT, in

Conjunctive Normal Form (CNF), consists of the conjunction of a number of clauses, where a clause is

a disjunction of a number of propositions or their negations. Given a set of clauses C 0, C1, . . . , Cm−1

on the propositions x0, x1, . . . , xn−1, the problem is to determine whether the formula F =
∧

j<m

Cj has

an assignment of values to the propositions such that it evaluates to True.

1.4 Motivation and Thesis Contribution

Two fields of Computer Science - Constraint Satisfaction and Propositional Satisfiability - have devel-

oped relatively independently over the past half century, it is only in recent years that the mutual benefits

of these fields have started to be explored. As the performance of SAT-Solvers begins to plateau the

necessity to look towards other fields for inspiration to continue progression has become more preva-

lent. Since the SAT problem is a restricted type of CSP and many CSPs can be represented as SAT

instances it seems sensible to explore and strengthen the relationship between Constraint Satisfaction

and Propositional Satisfiability research and to capitalise on synergies between these two fields.

The results presented in this thesis are part of a research program aimed at bridging the gap between

Propositional Satisfiability and Constraint Satisfaction. One of the main challenges is to combine the

inherent efficiencies of SAT-Solvers, operating on uniform encodings, with the much more sophisticated

propagation techniques of CSP formalisms. The aim is to develop a better understanding of Computer

Science as part of a wider goal, which aims to benefit the scientific and industrial communities in three

ways:

1. Increase the theoretical understanding of the complexity and tractability of natural problems.
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2. Provide practical tools and algorithms that will benefit both CSP and SAT research.

3. Demonstrate the value of this research by applying it to pertinent scientific and industrial problems.

Whilst most current research focuses on how SAT techniques can be utilised by the Constraint

Satisfaction community, this thesis addresses the opposite, asking what CSP techniques can aid the SAT

community. I have attempted to make the content of this thesis ‘broad’ enough so that it is interesting to

the wider audience, but ‘deep’ enough so as to provide important and valuable theoretical and practical

insights into the field. Although the general consensus agrees that bridging the two fields of Propositional

Satisfiability and Constraint Satisfaction is mutually beneficial only a handful of researchers have crossed

the chasm.

1.4.1 Theoretical Results

After introducing the relevant background and providing a detailed survey of SAT and CSP encodings,

my in-depth analysis of these encodings uncovers three categories. These encoding categories are in-

spired by observing how the CSP micro-structure is constructed and expressed. Utilising the ideas

presented in this thesis, and cross-fertilising these two fields, I provide a framework for current and fu-

ture SAT and CSP encodings to be developed. As a result of this framework I define a new encoding

and demonstrate that in certain circumstances this encoding is preferable to other encodings. This new

encoding also opens up the potential for additional CSP to SAT encodings.

After categorising SAT and CSP encodings the focus of this research shifts to characterising them.

Previous empirical work by others comparing the algorithmic performance on instances with different

solution-density has been performed, and it has been shown that this measure can be used as a guide for

choosing between using stochastic and branching algorithms. I provide a comprehensive characterisation

of current SAT to CSP encodings and I prove that some encodings result in problems with a higher

number of solutions than others. Since it has been shown in the literature that solution-density is an

important factor in determining the solubility of an instance the results in this thesis provide a guide to

assist in choosing one encoding over another.

Similarly, a significant amount of theoretical analysis has been published comparing stochastic and

branching SAT and CSP algorithmic techniques on SAT and CSP encodings, however, very little research

has compared the effect of enforcing local-consistency algorithms in each of these domains. After in-

troducing the main algorithmic techniques from the SAT and Constraint Satisfaction communities, I use

a graph-theoretic framework to reconfirm and strengthen the equivalence between the SAT and CSP-

based proof methods. I provide a comparison of local-consistency techniques on each of the SAT to CSP

encodings. One result of this work has direct practical implications regarding the choice of encoding;

that enforcing local-consistency on one type of encoded problem does more work than on other encoded

instances. I also prove that enforcing certain levels of local-consistency on some types of encoded SAT
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instances does zero work if each clause has distinct literals, which is supported by the empirical results

presented in this thesis.

In addition, using this framework I bridge further between the CSP and SAT techniques by in-

troducing the concept of Extended-Consistency, thus providing a more complete picture of extended

proof-systems. Extended proof-systems are some of the most powerful systems known, by allowing the

introduction of auxiliary variables to maintain a constant arity. Relatively little practical work has been

done on extended proof-systems. SAT and CSP algorithms that employ additional variables tend to apply

them in an ‘ad-hoc’ manner. This motivates the definition of Extended-Consistency, a new proof-system

that may make it easier for synergies between extended proof-systems to be cultivated and explored.

1.4.2 Empirical Results

Reviewing previous empirical studies of encodings highlights two problematic issues that call into ques-

tion the validity of the wider implications of the results. First, typically one type of problem is used as

a benchmark to compare encodings. Second, either stochastic or backtracking algorithms are applied to

the encoded problems. Clearly both of these choices may bias the results, since an encoding/algorithm

may ‘favour’ a particular problem. Although each author may proclaim the benefits of their encoding, a

rigorous empirical and theoretical investigation remains to be performed to better determine their advan-

tages and disadvantages. However, to perform a comprehensive and rigorous survey of these encodings

is arguably a mammoth task.

I address these two issues by applying a local-consistency algorithm to a wide variety of unsatisfi-

able problems. As a result of applying this algorithm to CSP encoded SAT instances the experimental

results strongly indicate that the choice of encoding has a dramatic effect on reducing the search-space.

These empirical results are consistent with my theoretical results. I demonstrate that enforcing a small

local-level of consistency on problems using a certain encoding does not solve any of the SAT bench-

marks8. This is in stark contrast to problems encoded using another encoding, where I show that en-

forcing such a low-level of consistency can solve a large number of ‘hard’ SAT benchmark families.

In particular I show that converting SAT instances to CSP and applying local-consistency can not only

solve many ‘hard’ SAT instances, but this technique can even compete with state-of-the-art SAT-Solvers.

Branching algorithms can prove both satisfiability and unsatisfiability, whereas stochastic algorithms can

only prove satisfiability. Proving unsatisfiability has been shown to be more difficult for branching algo-

rithms, so I suggest that future research is focused on the development of sophisticated local-consistency

algorithms, which might be a viable approach to redress this balance.

8They do not prove unsatisfiability.
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1.4.3 Publications

1.4.3.1 Conference Papers: Refereed

• Daniel J Hulme, Robin Hirsch, Bernard Buxton, and R.Beau Lotto. A new reduction from 3-SAT

to n-Partite Graphs. In FOCI07: IEEE Symposium on Foundations of Computational Intelligence,

IEEE Symposium on Computational Intelligence, Hawaii, USA, April 2007.

Abstract. The Constraint Satisfaction Problem (CSP) is one of the most prominent prob-

lems in artificial intelligence, logic, theoretical computer science, engineering and many

other areas in science and industry. One instance of a CSP, the satisfiability problem in

propositional logic (SAT), has become increasingly popular and has illuminated important

insights into our understanding of the fundamentals of computation. Though the concept

of representing propositional formulae as n-partite graphs is certainly not novel, in this pa-

per we introduce a new polynomial reduction from 3-SAT to G n
7 graphs and demonstrate

that this framework has advantages over the standard representation. More specifically, af-

ter presenting the reduction we show that many hard 3-SAT instances represented in this

framework can be solved using a basic path-consistency algorithm, and finally we discuss

the potential advantages and implications of using such a representation.

1.4.3.2 Papers in Preparation

In addition to the publications listed in this section, it is expected that at least two more papers will be

submitted post-completion of this thesis:

1. Solving SAT using a Polynomial Consistency Algorithm.

• This paper is constructed from Chapters 2, 3 and 6. It is an extended version of Hulme et al.

(2007) containing a more detailed definition of the encodings, experiments and results.

2. Categorising SAT and CSP Encodings.

• The results from Chapters 4 and 5 will be used for the content of this paper. More specifically,

it will survey SAT and CSP encodings, describe how they can be characterised according to

their mapping and introduce the INVERSE encoding.

3. Characterising SAT to CSP Encodings.

• This paper will be constructed from Chapters 5 and 6. In this paper I will show how to

characterise encodings according to their solution-density, detail the theoretical results of

comparing SAT and Consistency techniques and provide the empirical evidence to support

these claims.
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1.5 Thesis Organisation

Here I give an overview of each chapter.

Chapter 1: Introduction and Motivation

In this chapter I introduce the context as well as the major topics covered in this thesis. I highlight the

contributions to the field of Computer Science and give a content overview of each chapter.

Chapter 2: Definitions and Background

In Chapter 2 I introduce the necessary definitions and background information required for the rest of

the thesis. I define the CSP and SAT problems, as well as a number of basic Graph Theory concepts,

and show how CSPs are represented graphically. The aim of this chapter is to lay the foundation for the

remainder of the thesis, where I provide a comprehensive and detailed theoretical analysis of how CSP

and SAT problems are mapped using a graph-theoretic framework. This framework is used as an effective

bridge between each of the two problem domains and is the primary mechanism used throughout this

thesis to understand the similarities and differences between SAT and CSP techniques.

Chapter 3: Literature Review

In the first part of the Chapter 3 I review the encoding literature, providing a detailed survey of CSP and

SAT encodings as well as critically assessing the major theoretical and empirical studies. The focus of

the latter part of this chapter shifts towards the proof-complexity of polynomial algorithms and problems

that are hard. This review highlights a number of gaps in the literature that are addressed in this thesis.

Chapter 4: Categorising Encodings

In Chapter 4 I demonstrate that all of the SAT to CSP encodings defined in this thesis (and vice-versa)

can be categorised as one of three types of mappings. Categorising the encodings in this way high-

lights scope for several new CSP to SAT encodings, one of which I formally define and demonstrate its

relative advantages over some of the other encodings; highlighting one major benefit of examining the

relationship between SAT and CSP research.

Chapter 5: Characterising SAT to CSP Encodings

In Chapter 5 I demonstrate that the graph-theoretic approach is a useful framework to explore the similar-

ities and differences between Consistency and Resolution techniques, and use it to show that Consistency

and Resolution are the same procedure. I separate SAT to CSP encodings according to their solution-

density and prove that some encodings will result in CSPs with a higher number of solutions than others.

The second part of this chapter addresses a major gap in theoretical research, which is comparing

the performance of polynomial preprocessors on the various encodings. Here I provide a theoretical

comparison of Resolution and Consistency-based techniques on the SAT to CSP encodings and I discuss

the practical implications. For instance, I show that enforcing a low-level of local-consistency on the
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DUAL encoded CSP does much more work in comparison to using the LITERAL encoding 9. I also prove

that enforcing path-consistency on LITERAL encoded 3-SAT instances does zero work if each clause has

distinct literals, which is consistent with the empirical results presented in Chapter 6.

Towards the end of this chapter I focus again on the relationship between the Consistency and Reso-

lution proof-systems. Inspired by the work of Tseitin, Baker and Mitchell, I build upon this relationship

by defining Extended-Consistency - the generalisation of Extended-Resolution - therefore allowing syn-

ergies between these two extended proof-systems to be explored. Using an example I demonstrate that

the use of auxiliary variables can be automated to maintain constraint arity.

Chapter 6: Empirical Analysis of the LITERAL and DUAL Encodings

One of the main results of Chapter 5 is that enforcing local-consistency on DUAL encoded problems

does more work than on LITERAL encoded instances. In Chapter 6 I address the two experimental issues

raised in Chapter 3 by enforcing local-consistency on a wide variety of ‘hard’ unsatisfiable problems.

Here I compare the performance of enforcing path-consistency on LITERAL and DUAL encoding prob-

lems, and demonstrate that it does not solve any of the SAT benchmarks when LITERAL encoded, which

is in stark contrast to problems encoded using the DUAL encoding. I show that enforcing a low-level of

consistency on the DUAL encoding can not only solve a surprising number of what are considered ‘hard’

SAT benchmarks, but can also compete with state-of-the-art SAT-Solvers.

Chapter 7: Discussion, Future Work and Exploitation

Finally, in Chapter 7 I provide a summary of the thesis contribution and I discuss the wider context and

implications of this research. I introduce other areas of study that complement this research, highlight

future work and discuss what I think are the next major areas of study relating these two fields.

As a requirement of the Engineering Doctorate, Research Engineers are asked to discuss the dis-

semination and exploitation aspects of their research. I provide an overview of the use of SAT algorithms

in EDA and highlight many of the prominent issues facing the Chip design industry. I discuss the di-

rect benefits that improvements in SAT technology can have to the Formal Verification aspect of the

semi-conductor industry and beyond.

9See Sections 3.3.1 and 3.3.2 for definitions of the LITERAL and DUAL encodings respectively.



Chapter 2

Definitions and Background

In this chapter I introduce the necessary definitions and background information required for the rest of

the thesis. I start by introducing P, NP, and the concept of polynomial reduction. After formally defining

the two problems domains of Constraint Satisfaction and Propositional Satisfiability, I introduce several

basic graph-theoretic concepts and demonstrate one way that CSPs can be visualised. Finally I introduce

the algorithmic techniques that are applied to both the CSP and SAT problems that are discussed in later

chapters.

This chapter lays the foundation for the remainder of this thesis, where I provide a comprehensive

and detailed theoretical analysis of how CSP and SAT problems are encoded and mapped using a graph-

theoretic framework. Whilst the use of Graph Theory is a fundamental aspect of CSP research and

although representing CSPs as graphs is certainly not novel, as far as I am aware, this is the first major

attempt using this approach to show how these fields are related. This framework will be used as an

effective bridge between each of the two problem domains and is the primary tool used throughout this

thesis to understand the similarities and differences between SAT and CSP techniques.

2.1 P and NP

The following definitions are adapted from Urquhart (1995).

Let Σ be a finite alphabet. Σ∗ is the set of all finite strings over Σ, and a language is defined as

a subset of Σ∗; that is, a set of strings over a fixed alphabet Σ. Let L be the class of polynomial-time

computable (‘feasible’) functions.

Definition 2.1.1. If Σ1 and Σ2 are finite alphabets, a function f from Σ∗
1 into Σ∗

2 is in L if it can be

computed by a deterministic Turing machine in time bounded by a polynomial in the length of the input.

Definition 2.1.2 (Proof-system). If L ⊆ Σ∗, a proof system for L is a function f : Σ∗
1 → L for some

alphabet Σ1, where f ∈ L and f is onto. A proof system is polynomially bounded if there is a polynomial

p(n) such that for all y ∈ L, there is an x ∈ Σ∗
1 such that y = f(x) and |x| ≤ p(|y|).
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A set of strings is in the class P (NP) if it is recognised by a deterministic (non-deterministic) Turing

machine in time bounded by a polynomial in the length of the input. More specifically, a set S of strings

is in P if its characteristic function is in L, while it is in NP if the condition y ∈ S can be expressed in

the form ∃x(|x| ≤ p(|y|) ∧ R(x, y)), where p is a polynomial and R is a polynomial-time computable

relation (Urquhart (1995)).

2.1.1 Polynomial Reduction

The method of showing that a problem is NP-complete by polynomial reduction is one of the most

elegant and productive in Computational Complexity (Adleman & Manders (1977)). It is a means of

providing compelling evidence that a problem in NP is not in P.

Cook (2000) defines the following:

Definition 2.1.3. Suppose that Li is a language over Σi, i = 1, 2. Then L1 ≤p L2 (L1 is polynomially

reducible to L2) iff there is a polynomial-time computable function f : Σ1 → Σ2 such that x ∈ L1 ⇔
f(x) ∈ L2, for all x ∈ Σ1.

Definition 2.1.4. A language L is NP-complete iff L is in NP, and L ′ ≤p L for every language L′ in

NP.

Proposition 2.1.1. Given any two languages, L1 and L2:

1. If L1 ≤p L2 and L2 ∈ P then L1 ∈ P.

2. If L1 is NP-complete, L2 ∈ NP, and L1 ≤p L2 then L2 is NP-complete.

3. If L ∈ P and L is NP-complete, then P = NP.

2.1.2 NP and co-NP

A set of strings is in the class co-NP if it is the complement of a language in NP. One of the most

important questions in Theoretical Computer Science lies in the result of Cook & Reckhow (1979):

Proposition 2.1.2. NP = co-NP iff there is a polynomial-bounded proof-system for the classical tau-

tologies.

Since the complexity class P is closed under complementation, it follows that if NP = co-NP then

P = NP.

2.2 Constraint Satisfaction

Here I formally define the Constraint Satisfaction Problem and relevant notations, which have been

adapted from Green (2005) and Rossi et al. (2006).
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Definition 2.2.1 (r-ary relation). A r-ary relation over D is a subset of D r, where D is any set. A tuple

is an element of an r-ary relation.

Definition 2.2.2 (Constraint Satisfaction Problem). A CSP is triple (V ,D, C), where:

• V is a finite set of variables, {V0, . . . , Vn−1}.

• D is a set, {D0, . . . , Dn−1}, where each Di ∈ D is the set of values that Vi can take, called the

domain.

• C is a finite set of constraints, {C0, . . . , Cm−1}, where each constraint Ci ∈ C is a pair 〈si, Ri〉,
such that

– si is an ordered tuple of variables, called the constraint scope

– Ri is an |si|-ary relation over D, called the constraint relation. |si| is the arity of the

constraint.

The CSP asks if there is a solution, that is, a mapping θ of all variables to domain values such

that for each 〈s, R〉 ∈ C, θ(si) ∈ R.

The constraint scope is a list of variables over which the constraint acts, and the constraint relation

defines the allowed combinations of values for this list of variables.

Definition 2.2.3 (partial and full assignments). Given any CSP = (V ,D, C), a partial assignment A is a

subset of variables V ⊆ V with some mapping V to domain values. A is a full assignment if |A| = |V|.
If A is a partial assignment we may denote this as {xa0

0 , xa1
1 , . . . , x

an−1
n−1 }, where {x0, x1, . . . , xn−1} is

the domain of A and for each i < n, ai = A(xi).

Definition 2.2.4 (satisfying assignments). Given any CSP = (V ,D, C), if the variables V , in the scope

of a constraint C ∈ C, are contained entirely by the variables in an assignment A, then A covers V . A

satisfies C if V is covered by A and V is mapped to domain values allowed by C. A partial satisfying

assignment is an assignment A to some subset of variables V ⊆ V such that every covered constraint in

V is satisfied by A. If A is a partial assignment then I write γ(A) to denote that A is a partial satisfying

assignment.

A full satisfying assignment (one that covers all variables) is also referred to as a solution-tuple or

solution. A CSP that has a satisfying assignment is satisfiable, otherwise it is unsatisfiable

Definition 2.2.5 (conflict). Given any CSP = (V ,D, C), a conflict is a partial assignment A to some

subset of variables V ⊆ V such that there is at least one covered constraint in V that is not satisfied by

A. I write χ(A) to denote that A is a conflict.
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Definition 2.2.6 (nogood). Given any CSP = (V ,D, C), a partial assignment, A, defined on k variables

is a k-ary nogood iff it cannot be extended to a solution. In this case I write η(A) to denote that A is a

nogood. Any conflict is necessarily a nogood, but the converse is not true in general.

In summary, if a partial assignment A is denoted as {xa0
0 , xa1

1 , . . . , x
an−1
n−1 }, then:

• if A is a partial satisfying assignment we say γ{xa0
0 , . . . , xan−1

n−1 }

• if A is a nogood we say η{xa0
0 , . . . , xan−1

n−1 }

• if A is a conflict we say χ{xa0
0 , . . . , xan−1

n−1 }

2.2.1 Implicit and Explicit CSP Representations

When defining a CSP there are two typical representations for these relations:

1. implicit representation implies both the relation and scope by a definition.

2. explicit representation explicitly lists the tuples of the constraint relation.

Suppose we define a CSP that has variables x and y, over the domain {R, G, B} and enforce the

constraint, C, such that x and y must take different values.

Example 2.2.1 (Implicit Representation). The inequality relation allows pairs of values that are not

equal and can be written as �=X , where X is the domain.

The example constraint, C, above can be written as:

x �={R,G,B} y

In this case, the set of variables in the definition form the scope.

Example 2.2.2 (Explicit Representation). C may be written explicitly as:

〈〈x, y〉, {〈R, G〉, 〈R, B〉, 〈G, R〉, 〈G, B〉, 〈B, R〉, 〈B, G〉}〉

This may also be written in complement notation as:

〈〈x, y〉, \{〈R, R〉, 〈G, G〉, 〈B, B〉}〉

In this thesis I often write the constraints using the superscript notation:

Cx,y = {η{xR, yR}, η{xG, yG}, η{xB, yB}}
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Though the implicit representation is typically more compact than the explicit representation the ma-

jority of the literature bridging SAT and CSP techniques adopts the explicit approach since SAT clauses

are explicit list of nogoods. However, it is important to note that for general CSPs the compactness of

the implicit representation of a problem may be preferable since the successful application of an algo-

rithm is usually a function of the size of the problems definition. For instance, it might be impractical to

represent a set of explicit nogoods of a constraint in memory, whereas the implicit constraint could be

trivially represented (Do & Kambhampati (2001)).

2.2.2 Graphs

One of the archetypal examples used to demonstrate CSPs is that of GRAPH 3-COLOURABILITY, orig-

inally shown to be NP-complete by Karp (1972). Before I define GRAPH K-COLOURABILITY first it is

necessary to introduce some basic concepts from Graph Theory.

Definition 2.2.7 (Undirected graph). An undirected graph (V, E) consists of a set, V , of nodes together

with a set E of edges where all edges have the form {x, y} for some x, y ∈ V .

All graphs are assumed to be undirected.

Definition 2.2.8 (Hypergraph). A hypergraph is a pair (V, H) where V is a set of nodes and H is a set

of hyperedges. Each hyperedge h is a set of nodes from V (h ⊆ V ). Hypergraphs are a generalisation

of graphs, where each hyperedge may connect more than two nodes.

A k-hypergraph is an hypergraph with all hyperedges having size k.

Definition 2.2.9 (GRAPH K-COLOURABILITY, Garey & Johnson (1990)). Given a graph G = (V, E)

and positive integer k ≤ |V | does there exist a function f : V → {1, 2 . . . k} such that f(u) �= f(v)

whenever {u, v} ∈ E?

Example 2.2.3 (GRAPH 3-COLOURABILITY as CSP). A simple instance of GRAPH 3-COLOURABILITY

is shown in Figure 2.1. This instance has five regions {x0, . . . , x4} with a total of six neighboring pairs

of regions. Each region can be coloured either Red (R), Green (G) or Blue (B).

One possible formulation of this instance as a CSP is as follows:

• V is the set of nodes to be coloured, {x0, x1, x2, x3, x4}

• D is the domain over each variable, Dx0 = Dx1 = Dx2 = Dx3 = Dx4 = {R, G, B}

• C is the set of restrictions (constraints) over sets of variables, where 〈xi, xj〉 means that xi and xj

are adjacent nodes:

– 〈〈x0, x1〉, \{〈R, R〉, 〈G, G〉, 〈B, B〉}〉

– 〈〈x0, x4〉, \{〈R, R〉, 〈G, G〉, 〈B, B〉}〉
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x0

�
{R, G, B}

x4
�{R, G, B}

x1
�{R, G, B}

x3

�

{R, G, B}
x2

�

{R, G, B}

Figure 2.1: An instance of GRAPH 3-COLOURABILITY with five variables over the domain {R, G, B}
and six constraints.

– 〈〈x1, x2〉, \{〈R, R〉, 〈G, G〉, 〈B, B〉}〉

– 〈〈x1, x3〉, \{〈R, R〉, 〈G, G〉, 〈B, B〉}〉

– 〈〈x2, x3〉, \{〈R, R〉, 〈G, G〉, 〈B, B〉}〉

– 〈〈x2, x4〉, \{〈R, R〉, 〈G, G〉, 〈B, B〉}〉

In Example 2.2.3 a partial satisfying assignment is γ{xB
1 , xG

2 , xR
3 } and a conflict is χ{xB

1 , xG
2 , xB

3 }.

A full satisfying assignment is γ{xB
0 , xR

1 , xB
2 , xG

3 , xR
4 } as shown in Figure 2.2.

x0

�
{B}

x4
�{R}

x1
� {R}

x3

�

{G}
x2

�

{B}

Figure 2.2: The γ{xB
0 , xR

1 , xB
2 , xG

3 , xR
4 } solution to Example 2.2.3.

2.2.2.1 Representing CSPs Graphically

The work in this thesis draws heavily on graphical representations of CSPs. Dechter (1992a) describes

three types of graphical representations of CSPs:

1. Hypergraph: where nodes represent the variables, and hyperedges (drawn as regions) group those

variables that belong to the same constraint scope.
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2. Primal-graph: represents variables by nodes and associates an edge with any two nodes residing

in the same constraint scope.

3. Dual-graph: represents each constraint scope by a node and associates a labelled edge with any

two nodes whose constraint scope share variables, where edges are labelled by the shared variables.

Figure 2.1 is the Primal-Graph of Example 2.2.3.

However, these do not represent the constraint relations (only the constraint scope) so only partially

capture the CSP. Primal-graphs are binary, so they do not capture the true structure of a k-ary (for k > 2)

CSP. Indeed, the generalisation of the primal-graph would be identical to the hypergraph, if one were

to represent constraints as hyperedges. The dual-graph can also be confusing since it moves away from

the simple graph representation, allowing the labelling of edges. In Chapter 4 I build upon this work and

present a homogeneous framework that captures the various families of encodings.

The graphical method to represent CSPs I adopt is referred to as the CSP micro-structure (see

Jegou (1993)). Unlike the graphical representation definitions above, the micro-structure captures the

full structure of the CSP.

Definition 2.2.10 (micro-structure). The micro-structure of a binary CSP (the cardinality of the con-

straints are size two) is constructed from a CSP instance P = (V ,D, C). P is a graph with set of nodes

V × D where each edge corresponds either to an assignment allowed by a specific constraint or to an

assignment allowed because there is no constraint between the associated variables.

Definition 2.2.11 (n-partite graphs). A graph is n-partite iff the nodes can be partitioned into n inde-

pendent subsets (classes), such that every edge has its ends in different classes — i.e. nodes in the same

partition class must not be adjacent.

Definition 2.2.12 (clique). Given a graph G, a clique C is a subset of nodes of G such that every pair

of distinct nodes in C are adjacent.

A CSP is called k-ary if the maximum arity of any of its constraints is k. Unless otherwise stated, the

CSPs in this thesis have variables with same domain cardinality (such as the GRAPH K-COLOURABILITY

PROBLEM). The majority of CSPs in this thesis are represented graphically as a restricted type of n-

partite graph called a Gn
k graph.

Definition 2.2.13 (Gn
k graph). A Gn

k graph is an n-partite graph, with each independent set containing

at most k nodes. I refer to each set of k nodes as a component set.

Definition 2.2.14 (The Gn
k Graph Problem). An instance of Gn

k is a Gn
k graph (for some n), and is a

satisfiable instance if it contains an n-clique and is an unsatisfiable instance otherwise. Any n-clique of

Gn
k contains at most one node from each component set.
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For convenience and clarity it is often easier to represent disallowed constraints in a graph G, called

the micro-structure complement or Ḡ. I denote a CSP that has i variables of arity j as CSP i
j .

Definition 2.2.15 (micro-structure complement). The micro-structure complement of a binary CSP is

constructed from a CSP instance P = (V ,D, C). P is a graph with set of nodes V × D where the edges

joining pairs of nodes are disallowed by some constraint or are incompatible assignments for the same

variable.

Whereas an n-clique describes a solution in a CSP’s micro-structure with n variables, an indepen-

dent set of size n describes a solution in its complement. For instance, the Ḡn
k graph of Example 2.2.3

is shown in Figure 2.3. A full satisfying assignment to Example 2.2.3 is γ{xB
0 , xR

1 , xB
2 , xG

3 , xR
4 }. This

independent set is highlighted in Figure 2.3, connecting a node from each of the five component sets by

dotted lines.

� � �
xR

0
xG

0 xB
0

�

�

�

xR
4

xG
4

xB
4

�

�

�

xB
1

xG
1

xR
1

�

�
�

xB
3
xG

3 xR
3

�
�

�

xB
2

xG
2

xR
2

Figure 2.3: Example 2.2.3 as a Ḡ5
3 graph, with a solution-tuple, γ{xB

0 , xR
1 , xB

2 , xG
3 , xR

4 }, highlighted
with dotted lines between the corresponding set of independent nodes.

So far these graph definitions have been restricted to binary CSPs, with edges in the micro-structure

complement corresponding to disallowed constraints, and solutions mapping to independent sets between

the component set nodes. These definitions extend naturally to non-binary cases. Hypergraphs (micro-

structure complements) are constructed from CSPs with k-ary constraints. In this case, a set of nodes is

a hyperedge of the micro-structure complement if it represents an assignment disallowed by a constraint,

or else consists of a pair of incompatible assignments for the same variable.

2.3 CSP Algorithms

2.3.1 Consistency

Local-consistency conditions are properties of CSPs related to the consistency of subsets of variables

or constraints. Mackworth (1975) defines three properties that characterise the local-consistency of
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networks: node-, arc-, and path-consistent. Freuder (1978) later generalises this to k-consistent.

Definition 2.3.1 (k-consistent). A binary CSP = (V ,D, C) is k-consistent if for every partial satisfying

assignment P on any k − 1 variables (⊂ V) for any other variable v ∈ V there exists a domain value d

such that P ∪ {v �→ d} is also a satisfying partial assignment. If a CSP is k consistent for some k then

we say that it is locally consistent. A 2-consistent binary CSP is called arc-consistent. A 3-consistent

binary CSP is called path-consistent.

A CSP that is k-consistent is said to have k-consistency. An algorithm that establishes a k-consistent

CSP is said to enforce k-consistency. Local-consistency can be enforced via transformations of the

problem called constraint propagation. Local-consistency conditions require that every consistent as-

signment can be consistently extended to a domain assignment in another variable. An algorithm that

establishes the consistency of a problem is said to enforce local-consistency (also referred to as estab-

lishing a local-level of consistency).

Informally, a binary CSP is 1-consistent if every variable has a domain value that satisfies it. This

is often referred to as enforcing node-consistency. Following from the definition above, a CSP is 2-

consistent (or arc-consistent) if every pair of variables have domain assignments that can form a partial

satisfying assignment. Path-consistent is the name given to a CSP such that every pair of partial satis-

fying assignments between two variables can form an extended partial satisfying assignment with every

other variable.

Definition 2.3.2 ((i, j)-consistent). A CSP = (V ,D, C) is (i, j)-consistent if for every satisfying partial

assignment P on any i variables (⊂ V) there exists a satisfying assignment Q on every other set of j

variables such that P ∪Q is also a satisfying partial assignment. Note that (k, 1)-consistent is the same

as (k + 1)-consistent.

Enforcing a particular level of k-consistency does not necessarily determine the satisfiability of

a problem, nor does it mean that the problem is j-consistent for any j < k. Tsang (1993) provides an

excellent introduction to the foundations of the CSP field with many valuable examples to illustrate these

points. A stronger notion of local-consistency is strong-k-consistency.

Definition 2.3.3 (strong-k-consistent, Tsang (1993)). If a CSP is j-consistent, for all j ≤ k, then it is

strong-k-consistent. A CSP with n variables that is strong-n-consistent is called globally consistent.

A large amount of work has been published on the development of efficient polynomial-time algo-

rithms that enforce these various levels of consistency. This is because it is often the case that the CSP

solution space can be significantly pruned using these techniques, which typically allows search-based

algorithms to determine satisfiability more quickly.
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2.3.2 Maintaining Arc-Consistency

Waltz Filtering Algorithm (Waltz (1975)), originally developed for computer vision, was probably the

first arc-consistency algorithm (AC-1), which has a space-time complexity of O(c + nd) and O(d 3nc)

respectively (where c is the number of constraints, n the number of variables, and d the size of the max-

imum domain). Twenty years later, and six iterations on, AC-6 was published by Bessiere & Cordier

(1994) with a space-time complexity of O(cd) and O(d2c). One of the most recent arc-consistency

algorithms was published by Lecoutre et al. (2003), named AC-2001/3.3. This algorithm combines

the properties of two previous AC methods, namely the simple implementation methods of AC-3

(Mackworth & Freuder (1985)) and the bi-directionality of AC-7 (Bessiére et al. (1999)).

Gaschnig (1974) suggests Maintaining Arc-Consistency (MAC) during backtracking search and

gives the first explicit algorithm containing this idea. The MAC algorithm maintains arc-consistency on

constraints with at least one uninstantiated variable. At each node of the search tree, an algorithm for

enforcing arc-consistency is applied to the CSP. Since arc-consistency was enforced on the parent of a

node, initially constraint propagation only needs to be enforced on the constraint that was posted by the

branching strategy. In turn, this may lead to other constraints becoming arc inconsistent and constraint

propagation continues until no more changes are made to the domains. If, as a result of constraint

propagation, a domain becomes empty, the branch is a deadend and is rejected. If no domain is empty,

the branch is accepted and the search continues to the next level.

2.3.3 Forward Checking

The Forward Checking algorithm (FC), introduced by Haralick & Elliott (1980), maintains arc-

consistency on constraints with exactly one uninstantiated variable, which can be enforced in O(d)

time (where d is the size of the domain of the uninstantiated variable). FC is essentially a backtracking

search algorithm that branches on variable labels until a solution-tuple is found or backtracks if another

variable’s domain is exhausted (often called ‘wiped-out’ in the literature).

FC analogous to the DLL procedure described in Section 2.5.5, and as with DLL many sophisti-

cated improvements to the search procedure have been proposed. The focus of this thesis is on polyno-

mial algorithms, but for the interested reader Bacchus & Grove (1995) provides an excellent introduction

to FC and its variants, and Bessiere et al. (2002) published a more involved paper on solving non-binary

CSPs using FC.

2.3.4 Stochastic Search for CSP

For dynamic vehicle routing where real-time performance is important, finding a fast ‘good’ solution is

often much more valuable than finding the optimum too late. In the cases where speed is more impor-

tant than accuracy stochastic methods are often preferable. As mentioned in Section 2.5.6, stochastic

algorithms are a class of search that includes heuristics and an element of non-determinism to traverse
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the search-space. The next move is partly determined by the outcome of the previous move, and these

methods tend to be incomplete.

2.3.4.1 Min-Conflicts

Min-Conflicts (MC) is stochastic algorithm for CSPs in which a variable in a violated constraint is

picked at random, and a value (in the domain of that variable) is assigned that most reduces the number

of violated constraints.

2.4 Boolean Satisfiability

One of the original problems shown by Cook (1971) to be NP-complete, SAT is considered the one of

the most important NP problems. The obvious difference cited between general CSPs and the SATIS-

FIABILITY PROBLEM is that the former traditionally have non-binary domains with binary constraints,

whereas the latter have binary domains with non-binary constraints.

Definition 2.4.1 (BOOLEAN SATISFIABILITY PROBLEM). The SAT problem in Conjunctive Normal

Form (CNF) consists of the conjunction (∧ representing the Boolean and connective) of a number of

clauses, where a clause is a disjunction (∨ representing the Boolean or connective) of a number of

propositions or their negations (literals).

If xi represent propositions that can assume only the values True (≡ 1 ≡ �) or False (≡ 0 ≡ ⊥),

then an example formula in CNF would be

(x0 ∨ x2 ∨ x̄3) ∧ (x3) ∧ (x1 ∨ x̄2)

where x̄i is the negation of xi.

Given a set of clauses C0, C1, . . . , Cm−1 on the propositions x0, x1, . . . , xn−1, the problem is to

determine whether the formula F =
∧

j<m

Cj has an assignment of truth values to the propositions such

that it evaluates to True.

Definition 2.4.2 (k-SAT). The k-SAT problem is a CNF formula with exactly k literals in each clause.

For example, instances of 3-SAT are restricted to Boolean formulae in CNF with exactly three literals

per clause.

Formula 2.1 is a 3CNF formula with four variables and five clauses, and is a satisfiable instance of

3-SAT; where one of the eight satisfying assignments (solution-tuples) is {x 1
0, x

1
1, x

0
2, x

0
3}:

(x0 ∨ x1 ∨ x2) ∧ (x̄0 ∨ x1 ∨ x̄2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x0 ∨ x̄1 ∨ x3) ∧ (x̄0 ∨ x̄2 ∨ x̄3) (2.1)

I denote the set of k-SAT instances that has n variables and m clauses as k-SATm
n .



2.5. SAT Algorithms 34

2.5 SAT Algorithms

2.5.1 Resolution

Propositional Resolution is a sound and complete proof-system for SAT defined by Robinson (1965).

Definition 2.5.1 (Resolution). As usual x denotes a Boolean variable with domain {0, 1}. A literal over

x is either x or x̄, and a clause is a disjunction of literals. The main rule is the

A ∨ x̄ x ∨ BResolution Rule:
A ∨ B

where x ∈ {x0, x1, . . . , xn−1} and A and B are arbitrary clauses1.

Resolution is a complete theorem proving method that ‘searches’ for a contradiction (i.e. the empty

clause) by refutationally saturating a given clause set — that is, systematically and exhaustively applying

all possible inferences using the Resolution Rule (Bachmair & Ganzinger (2001)).

Definition 2.5.2 (Resolution derivation). A Resolution derivation from a CNF formula Ψ is a sequence of

clauses in which each clause is either in Ψ or derived from clauses in Ψ using the Resolution Rule. Given

any unsatisfiable set of clauses, a contradiction,
x̄ x

⊥ , can always be derived using Resolution.

Definition 2.5.3 (k-Resolution). A k-Resolution derivation on a CNF formula is a Resolution derivation

of all of the possible clauses that contain at most k − 1 literals.

2.5.2 Extended-Resolution

Extended-Resolution proofs are exactly the same as standard Resolution proofs but with the addition of

the Extension Rule. The Extension Rule, first suggested by Tseitin (1968), is a powerful addition to the

Resolution system that allows the use of new literals as abbreviations for longer formulae. The length of

an Extended-Resolution proof is the total number of different clauses in it.

Definition 2.5.4 (Extension Rule, Tseitin (1968)). Given a CNF formula F , for arbitrary variables a, b,

the Extension Rule introduces a new variable v (new relative to the CNF formula F ) such that

F −→ F ∪ {(v̄ ∨ a ∨ b) ∧ (v ∨ ā) ∧ (v ∨ b̄)}.

The clause-set {(v̄ ∨ a ∨ b) ∧ (v ∨ ā) ∧ (v ∨ b̄)} is the CNF representation of v ↔ (a ∨ b).

2.5.3 NG-RES Proof-System

de Kleer (1989) showed how to transform CSP instances into SAT and described a Resolution proof-

system that is equivalent to enforcing local-consistency on the original CSP:

1Some authors often include the Weakening Rule for completeness, though it is not essential.

AWeakening Rule:
A ∨ B



2.5. SAT Algorithms 35

(x0 ∨ x1 ∨ · · · ∨ xi−1)
(x̄0 ∨ X0)
(x̄1 ∨ X1)

...
(x̄i−1 ∨ Xi−1)

(X0 ∨ X1 ∨ · · · ∨ Xi−1)

where Xj are clauses and xj are literals, for j < i.

This idea of ‘exhausting the domain’ to derive implicit constraints was later defined by Baker (1995)

who referred to it as ‘a Resolution proof method for a CSP’. Recently Mitchell (2003) redefined it as

nogood-Resolution (NG-RES).

Definition 2.5.5 (nogood-Resolution). Given a CSP = (V ,D, C). Given that the domain of a variable

x is {0, 1, . . . , (d − 1)}, the nogood Resolution Rule allows one to infer a nogood, called the resolvent,

from a set of nogoods, the premises, by resolving on x:

η{{x0} ∪ X0}
η{{x1} ∪ X1}

...
η{{xd−1} ∪ Xd−1}

η{X0 ∪ X1 ∪ · · · ∪ Xd−1}
where Xi is a partial assignment (for i < d), and η{{x0}∪X0}, η{{x1}∪X1}, . . . , η{{xd−1}∪Xd−1}
are nogoods.

A nogood Resolution refutation of a CSP is a derivation of the empty set, which means that there is

a variable that cannot be part of a solution, hence there is no global solution.

Mitchell showed that NG-RES is a sound and complete refutation system, that there is a NG-RES

refutation of a CSP instance iff it is unsatisfiable.

2.5.4 Davis-Putnam Procedure

Although Robinson (1965) defined the Resolution proof-system, the basic Resolution Rule appeared

several years earlier, most notably in an algorithm defined by Davis & Putnam (1960). This algorithm,

the Davis-Putnam Procedure (DP), was the birth of the modern-day SAT-Solver. Besides the Resolution

Rule, the DP algorithm introduces two more rules:

1. unit literal rule: this rule causes variable elimination and states that if there exists a clause in

the CNF formula that contains only one literal, then the formula resulting from making that literal

True has the same satisfiability as the original formula.

2. pure literal rule: if a literal either appears only positive or negative in the CNF formula then it is

pure. This means that all clauses containing that literal can be deleted from the formula without

altering its satisfiability.
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The DP algorithm applies each of these rules until the CNF formula cannot be simplified further.

The Resolution Rule is applied to eliminate one variable, and if successful applies each of the above

rules again. This process continues until either the empty clause is generated (meaning that the formula

is unsatisfiable) or there are no variables left to remove (hence it is satisfiable).

In the worst-case, each time a variable is eliminated the number of clauses may grow quadratically,

therefore the DP algorithm may require an exponential amount of memory. Despite the DP’s ‘legacy’ it

was quickly superseded by the Davis-Logemann-Loveland Procedure, which introduced a minor syntac-

tic modification of the original algorithm to address this memory problem.
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(x0 ∨ x1 ∨ x2) ∧ (x̄0 ∨ x1 ∨ x̄2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x0 ∨ x̄1 ∨ x3) ∧ (x̄0 ∨ x̄2 ∨ x̄3)

(x1 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x3) (x1 ∨ x̄2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x̄2 ∨ x̄3)

(x2) ∧ (x̄2 ∨ x3) (x3) (x̄2) ∧ (x̄2 ∨ x3) ∧ (x̄2 ∨ x̄3) (x̄2 ∨ x̄3)

() (x3) (x3) (x3) {} () ∧ (x3) ∧ (x̄3) {} (x̄3)

() () () {} () {} () {} {} {} () () {} {} {} ()

Figure 2.4: A binary search tree of Formula 2.1.

2.5.5 Davis-Logemann-Loveland Procedure

Davis et al. (1962) replaced the Resolution Rule in DP by a splitting rule in order to avoid the exponential

memory explosion. This change resulted in the Davis-Logemann-Loveland Procedure (DLL), which

forms the foundations of most SAT-Solvers used today. The memory requirement for DLL is polynomial

and it can handle very large formulae without memory overflow. The DLL algorithm (Algorithm 1) is

categorised as a ‘branch and search’ procedure 2, which are typically represented as binary trees. At

the root of the tree is the CNF formula and each node represents the parent formula under a variable

assignment (this step is referred to as unit propagation). If any of the leaf nodes is an empty set then the

formula is satisfiable, otherwise if the procedure generates an empty clause then the algorithm backtracks

and continues down a different route (referred to as the conflict and splitting rule). The DLL algorithm

searches the entire tree unless an empty set is generated at a leaf. Figure 2.4 represents a binary search

2Also known as branching, and branch and bound
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tree for Formula 2.1. Notice that each path (from route to leaf) terminating with an empty set ({})

corresponds to one of the eight satisfying assignments to the formula shown in Table 3.3.

If a clause has all but one of its literals evaluate to False then the remaining ‘free’ literal must

evaluate to True to satisfy the clause. These clauses are called unit clauses and the ‘free’ literal is

called the unit literal. The process of iteratively forcing unit literals to be assigned a value is called

Boolean Constraint Propagation (BCP). BCP and backtracking constitute the core operations of the

DLL algorithm.

Algorithm 1 DLL algorithm on a CNF formula F .
DLL(F )
if F is empty then

return SAT
else if there is an empty clause in F then

return UNSAT
else if there is a pure literal x in F then

return DLL(F (x))
else if there is a unit clause (x) in F then

return DLL(F (x))
else

select a variable y mentioned in F
if DLL(F (y))=SAT then

return SAT
else

return DLL(F (¬y))
end if

end if

The DLL procedure is a backtracking depth-first search through partial truth assignments aug-

mented by the unit clause and pure literal rules. The ‘select a variable y mentioned in

F ’ rule from Algorithm 1 may use sophisticated heuristics as described in the PhD thesis by Zhang

(2003), one of the developers of CHAFF, which is probably one of the most influential SAT-Solvers

developed in recent times (see Moskewicz et al. (2001)).

Since the CNF format is very low-level, SAT-Solvers are not very structure-aware, but this can have

great advantages. SAT-Solvers are typically highly optimised to perform efficient deduction on CNF

Boolean formulae, which can be compactly stored in memory with very good cache behaviour. Highly

efficient deduction algorithms have been proposed to perform reasoning on clauses. Many branching

heuristics and conflict-driven learning techniques also rely on the fact that the formula is in CNF. By

combining these techniques, modern SAT-Solvers can routinely solve instances with hundreds of thou-

sands of variables (Bordeaux et al. (2006)).

2.5.6 Stochastic Search for SAT

The DP and DLL algorithms (and the majority of their variants) are complete; given enough time and

space they will always determine whether a CNF formula is satisfiable or not. Less so for SAT appli-
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cations than for CSP is the important trade-off between accuracy and speed. In Formal Verification for

example, it is critically important that SAT-Solvers produce the correct answer (usually) regardless of

the amount of time it takes, since the incorrect functioning of hardware could have devastating conse-

quences.

The GSAT algorithm, for instance, is stochastic (also known as local-search). As described in

Section 2.3.4, stochastic algorithms are based on mathematical optimisation techniques, and although

these classes of algorithms cannot prove a formula is unsatisfiable, given enough time they may find

a satisfying solution if there is one. Typically these algorithms are applied to problems where there is

likely to be a satisfying assignment, which I elaborate on more in later chapters.

2.5.6.1 GSAT

GSAT was proposed by Selman et al. (1992) and implements a greedy algorithm that attempts to min-

imise an objective function. The GSAT algorithm (Algorithm 2) begins by choosing a random variable

assignment, if the instance is not satisfied under this assignment then the algorithm chooses a variable

with the maximum score and negates it (also called flipping). The score of a variable is the difference

between the current number of unsatisfied clauses and the number of unsatisfied clauses if the variable

were negated. If some variables have the same score then one is chosen at random. If no variables have

a positive score (or a maximum number of flips have been performed) then the algorithm will restart

by choosing another random variable assignment. This process continues until a predefined number of

restarts have been reached.

Algorithm 2 GSAT algorithm.
for i = 1 to MAXTRIES do

T = a randomly generated assignment
for j = 1 to MAXFLIPS do

if no unsatisfied clause exists then
return T

else
x = choose variable in T with max score
if score of x < 0 then

break
else

negate x
end if

end if
end for

end for
return UNKNOWN

2.5.6.2 WALKSAT

Another popular stochastic search algorithm, called WALKSAT, was proposed by McAllester et al.

(1997). This differs from GSAT mainly in the selection of the variables to be negated. The score given

to the variables in WALKSAT is the number of clauses that will change from satisfied to unsatisfied if



2.6. Chapter Summary and Discussion 39

that variable were to be flipped. If the instance is not satisfied then an unsatisfied clause is chosen at

random. If this clause contains a variable with a score zero (i.e. flipping it will not make any unsatisfied

clauses satisfied) then the variables will be negated. If this is not the case, then a variable from the clause

is chosen probabilistically based on its score. This is referred to as random walk and tends to introduce

sufficient ‘noise’ to allow the algorithm to escape local minima3.

As with DLL, sophisticated enhancements have been made to these algorithms to guide the search

and provide ways to escape local-minima, many of which can be found in the PhD thesis by Hoos

(1999) who provides an excellent investigation into stochastic local search algorithms. Though slightly

outdated Gu et al. (1997) provides a comprehensive and thorough survey of the algorithmic ‘space’ of

the SAT problem.

2.6 Chapter Summary and Discussion

In this chapter I formally defined the CSP and SAT problems, as well as a number of basic Graph Theory

concepts. I demonstrated how CSPs are represented graphically and introduced the main algorithmic

techniques from each field. Although representing CSPs as graphs is certainly not novel, the aim of this

chapter was to present the framework upon which I draw heavily in the remainder of this thesis.

More specifically, in the next chapter I provide an extensive survey of SAT and CSP encodings.

Analysing the CSP micro-structure construction using this framework inspires a new type of CSP to

SAT encoding in Chapter 4, as well as providing a general framework to categorise these encodings. In

Chapter 5 I provide a new set of complexity analyses of these encodings with respect to Resolution and

Consistency algorithmic techniques. I use this graph-theoretic approach to demonstrate an equivalence

between Resolution and Consistency, which inspires the new concept of Extended-Consistency.

3areas of the search-space that algorithms may ‘waste effort’ exploring.



Chapter 3

Literature Review

As mentioned in Chapter 1, the fields of Propositional Satisfiability and Constraint Satisfaction have

developed as two relatively independent threads of research, cross-fertilising occasionally. Only in the

past few years have we developed a more intimate understanding of the similarities and differences

between these two problem domains, providing us with the ability to capitalise on synergies between

these areas.

One method used to explore the relationship between these fields is to study the mappings between

the two core problem domains. Rossi et al. (1990) published an excellent paper on the equivalence of

CSPs, though twenty years ago we were limited to only a few encodings. More specifically, Rossi et al.

(1990) defined CSPs as being equivalent if they are “mutually reducable”, and used this definition to

prove formally that binary and non-binary CSPs are equivalent in this sense. They pointed out that such

a result is useful because many efficient solution algorithms have been developed for binary CSPs, that

it is important to be able to transform a non-binary into a binary CSP, solve it, and finally be able to

go from that to the solution of the original problem. In recent years a wide range of encodings have

appeared in the literature providing a more complete picture of this relationship.

The advantage to the SAT community of such mappings is that all algorithms and heuristics de-

veloped within this framework can be exploited, for instance, the structure of the SAT problem can be

further analysed via its binary CSP expression with constraint techniques. The CSP community can

in turn profit from the practical aspects of how to implement effective algorithmic techniques that can

dramatically speed-up the search procedure. From a pragmatic perspective, problems that are hard for

constraint-based algorithms can utilise the brute-force power of SAT-Solvers, whereas problems difficult

for SAT-Solvers might be trivially solvable using constraints techniques.

In the first part of this chapter I review the encoding literature. I provide a thorough survey of

CSP and SAT encodings and critically assess the major theoretical and empirical studies. This analysis

highlights a number of gaps in the literature that this thesis addresses. The focus of the latter part of this

chapter shifts towards the proof-complexity of polynomial algorithms and problems that are considered
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computationally hard.

3.1 CSP to SAT Encodings

Encoding a CSP to a SAT instance is the process of taking a CSP and translating it to CNF. There are

three common encodings, called DIRECT, SUPPORT, and LOG. In this section I define these encodings

and review the major theoretical and empirical studies performed on them 1. In the next chapter I show

how these encodings can be categorised, which inspires a new type of CSP to SAT translation that I

demonstrate has some advantages over current encodings.

3.1.1 DIRECT Encoding

The DIRECT encoding, coined by Walsh (2000a), first appeared in the late 80’s in the seminal paper by

de Kleer (1989).

Definition 3.1.1 (DIRECT encoding). Given a CSP = (V ,D, C). For this encoding each SAT variable

xm
i is defined as True iff the CSP variable xi (∈ V) is assigned the domain value m (∈ Dxi). The SAT

instance is generated as a triple set of clauses {positive, negative, constraint}2 as follows:

• positive: (x0
0 ∨ x1

0 ∨ · · · ∨ xm−1
0 ) ∧ (x0

1 ∨ x1
1 ∨ · · · ∨ xm−1

1 ) ∧ · · · ∧ (x0
n−1 ∨ x1

n−1 ∨ · · · ∨ xm−1
n−1 )

• negative: for all xi ∈ V , (x̄p
i ∨ x̄q

i ) such that p, q ∈ Dxi and p < q (also known as the pairwise

encoding)

• constraint: every disallowed labelling in a constraint is encoded as a negated conjunction. For

example, η{xp
a, xq

b , x
r
c , . . . } is the negated conjunction¬(xp

a ∧xq
b ∧xr

c ∧ . . . ), which is (x̄p
a ∨ x̄q

b ∨
x̄r

c ∨ . . . ) in disjunctive form.

Recall Example 2.2.3:

• V = {x0, x1, x2, x3, x4}

• D = {Dx0 ,Dx1 ,Dx2 ,Dx3 ,Dx4}, such that Dx0 = Dx1 = Dx2 = Dx3 = Dx4 = {R, G, B}

• C = {Cx0,x1 , Cx0,x4, Cx1,x2 , Cx1,x3 , Cx2,x3 , Cx2,x4}, where

– Cx0,x1 = {η{xR
0 , xR

1 }, η{xG
0 , xG

1 }, η{xB
0 , xB

1 }}

– Cx0,x4 = {η{xR
0 , xR

4 }, η{xG
0 , xG

4 }, η{xB
0 , xB

4 }}

– Cx1,x2 = {η{xR
1 , xR

2 }, η{xG
1 , xG

2 }, η{xB
1 , xB

2 }}

– Cx1,x3 = {η{xR
1 , xR

3 }, η{xG
1 , xG

3 }, η{xB
1 , xB

3 }}
1There are other ‘less established’ encodings that have not been mentioned. For instance,Roussel (2004) defines the PHNF

encoding where the binary constraints between complementary SAT literals are mapped to CSP variables. Another SAT to CSP
encoding (the CGNF encoding), described byParis et al. (2006), aims to maintain the size and structure of the problem.

2positive, negative and constraint clauses are also referred to as at-least-one, at-most-one and conflict clauses respectively.
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– Cx2,x3 = {η{xR
2 , xR

3 }, η{xG
2 , xG

3 }, η{xB
2 , xB

3 }}

– Cx2,x4 = {η{xR
2 , xR

4 }, η{xG
2 , xG

4 }, η{xB
2 , xB

4 }}

From this CSP the following SAT instance is constructed using the DIRECT encoding as the con-

junction of this set of clauses:

• positive: (xR
0 ∨xG

0 ∨xB
0 )∧(xR

1 ∨xG
1 ∨xB

1 )∧(xR
2 ∨xG

2 ∨xB
2 )∧(xR

3 ∨xG
3 ∨xB

3 )∧(xR
4 ∨xG

4 ∨xB
4 )

• negative: (x̄R
0 ∨ x̄G

0 )∧(x̄R
0 ∨ x̄B

0 )∧(x̄G
0 ∨ x̄B

0 )∧(x̄R
1 ∨ x̄G

1 )∧(x̄R
1 ∨ x̄B

1 )∧(x̄G
1 ∨ x̄B

1 )∧(x̄R
2 ∨ x̄G

2 )∧
(x̄R

2 ∨ x̄B
2 )∧(x̄G

2 ∨ x̄B
2 )∧(x̄R

3 ∨ x̄G
3 )∧(x̄R

3 ∨ x̄B
3 )∧(x̄G

3 ∨ x̄B
3 )∧(x̄R

4 ∨ x̄G
4 )∧(x̄R

4 ∨ x̄B
4 )∧(x̄G

4 ∨ x̄B
4 )

• constraint: (x̄R
0 ∨ x̄R

1 )∧ (x̄G
0 ∨ x̄G

1 )∧ (x̄B
0 ∨ x̄B

1 )∧ (x̄R
0 ∨ x̄R

4 )∧ (x̄G
0 ∨ x̄G

4 )∧ (x̄B
0 ∨ x̄B

4 )∧ (x̄R
1 ∨

x̄R
2 ) ∧ (x̄G

1 ∨ x̄G
2 ) ∧ (x̄B

1 ∨ x̄B
2 ) ∧ (x̄R

1 ∨ x̄R
3 ) ∧ (x̄G

1 ∨ x̄G
3 ) ∧ (x̄B

1 ∨ x̄B
3 ) ∧ (x̄R

2 ∨ x̄R
3 ) ∧ (x̄G

2 ∨
x̄G

3 ) ∧ (x̄B
2 ∨ x̄B

3 ) ∧ (x̄R
2 ∨ x̄R

4 ) ∧ (x̄G
2 ∨ x̄G

4 ) ∧ (x̄B
2 ∨ x̄B

4 )

Figure 3.1 shows the micro-structure complement of this instance; where positive clauses map to the

component sets, negative clauses are represented by the edges between the nodes within the component

sets, and constraint clauses represent edges between the nodes in different component sets.
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0 xB
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xR
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�

�
�

xB
3
xG

3 xR
3

�
�

�
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2

xG
2

xR
2

Figure 3.1: The DIRECT encoding of Example 2.2.3, represented as a Ḡ5
3 graph.

3.1.1.1 DIRECT Encoding Complexity

For simplicity, let us assume a CSP has n variables (each with a fixed domain size m) and q explicit

nogoods (each with a fixed arity r). The DIRECT encoding will generate a SAT instance with nm

variables and n + n
(
m
2

)
+ q clauses:

• n positive clauses of size m

• n sets of
(
m
2

)
negative binary clauses

• q constraint clauses of size r
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It is not always feasible to encode CSP problems as SAT. Take for instance the implicit constraint

over variables a, b as a = b + 1. If each variable can take a value from the domain {1, 2, . . . , 10000},

this will generate over 100 million clauses using the DIRECT encoding; most of them negative clauses.

SAT instances necessarily encode nogoods explicitly, however, it is sometimes the case that implicit

constraints encode an exponential number of explicit nogoods, which makes encoding a CSP as SAT

impossible. Take for instance the implicit constraint:

xn mod y = z

which encodes O(xn) explicit nogoods.

Propositional Formulae do not have quantifiers (such as ∀ and ∃), however many problems are

most naturally expressed when using first-order logic that include quantification over elements within

the domain, such as

∀i, j, k (̄i ∨ j) ∧ (j ∨ k̄)

This can be expressed implicitly in a CSP, however converting this to SAT means expanding such quan-

tifiers with the result increase size exponential in the number of quantifiers. Parkes (1999) was one of

the early pieces of research to demonstrate that it can be practical to extend SAT-Solvers and apply them

to Quantifies Boolean Formulae (QBF), which has become an increasing popular research area in recent

years.

In the next chapter I describe a new encoding that can have a much more compact SAT represen-

tation in some circumstances. Whilst this new encoding may not completely alleviate this issue, it is an

alternative encoding that makes it possible to transform some CSP instances to SAT.

3.1.2 SUPPORT Encoding

The SUPPORT encoding was first defined by Kasif (1990) then later by Gent (2002), and only differs

from the DIRECT encoding by the definition of the constraint clauses. With this encoding each constraint

clause in the DIRECT encoding is replaced by two support clauses.

The SUPPORT encoding can be thought of as ‘preprocessed’ version of the DIRECT encoding in the

sense that each pair of support clauses are the resolvents of a binary constraint clause with two positive

clauses.

Recall the clauses generated by the DIRECT encoding of Example 2.2.3 in Section 3.1.1. If we take

the constraint clause (x̄R
0 ∨ x̄R

1 ) and the two positive clauses (xR
0 ∨ xG

0 ∨ xB
0 ) and (xR

1 ∨ xG
1 ∨ xB

1 ) as

an example, then two support clauses are a result of resolving:

xR
0 ∨ xG

0 ∨ xB
0 x̄R

0 ∨ x̄R
1 (1)

x̄R
1 ∨ xG

0 ∨ xB
0

xR
1 ∨ xG

1 ∨ xB
1 x̄R

0 ∨ x̄R
1 (2)

x̄R
0 ∨ xG

1 ∨ xB
1
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The support clauses implicitly encode the constraints in the DIRECT encoding. Figure 3.2 shows

how a constraint clause is encoded using the two support clauses resolved in the example above.

� � �
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0 xB
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�

�
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4
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�

�

�
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1

�

�
�
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3
xG

3 xR
3

�
�

�
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2
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2

xR
2

�

�

�

xB
0

xG
0

x̄R
1 �

�
�

x̄R
0 xG

1 xB
1

Figure 3.2: An example of how the support clauses imply the constraint clauses.

We can see in Figure 3.2 that by introducing these two constraints the edge {xR
0 , xR

1 } (dotted line)

is prevented from forming a solution with any node from either one of the support sets. A satisfying

assignment must contain exactly one node from each set, however, since {x R
0 , xR

1 } cannot form a local

clique with either of the support clause sets then the edge cannot form part of a global solution. I will

examine this inference method in more detail in Chapter 5. There are two support clauses for every

constraint clause resulting from the DIRECT encoding.

3.1.2.1 SUPPORT Encoding Complexity

Again for simplicity, let us assume a CSP has n variables (each with a fixed domain size m) and q

explicit nogoods (each with a fixed arity r). The SUPPORT encoding will generate a SAT instance with

nm variables and n + n
(
m
2

)
+ 2q clauses:

• n positive clauses of size m

• n sets of
(
m
2

)
negative clauses of size 2

• 2q support clauses of size m

Bessiere et al. (2003) generalises the SUPPORT encoding, calling it the k-AC encoding. The k-AC

encoding differs from the SUPPORT encoding in two ways. It captures a larger family of consistencies,

and it works for any constraint arity.

3.1.3 LOG Encoding

The LOG encoding, again coined by Walsh (2000b), appears in the literature under various names and is

applied to a variety of problems. Again, if we assume a CSP has n variables (each with a fixed domain

size m), the purpose of encoding a problem using this method is to reduce the number of propositional

variables from nm to n�log2(m)�.
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Definition 3.1.2 (LOG encoding3). Given our simplified CSP = (V ,D, C), v unique variables are gen-

erated for each domain such that v = �log2(m)�. These v variables are binary encodings and are used

to identify the mth domain value. For example, if variable xi has the domain Dxi = {R, G, B, Y },

then two SAT variables {vxi [0], vxi [1]} would be generated, where vj
xi

indexes the jth bit of the

binary encoding for the domain of xi. The set v encodes (in binary) each domain variable, i.e.

(v̄xi [0] ∧ v̄xi [1]) ≡ xR
i , (v̄xi [0] ∧ vxi [1]) ≡ xG

i , (vxi [0] ∧ v̄xi [1]) ≡ xB
i , and (vxi [0] ∧ vxi [1]) ≡ xY

i .

The LOG encoding generates two sets of clauses:

• negative: for domains that have fewer than �log2(m)� elements we must disallow any redundant

binary choices. For example, let us assume that xi has the domain Dxi = {R, G, B}. We must ar-

bitrarily disallow one of the redundant binary assignments, say 〈〈vxi [0], vxi [1]〉, \{〈1, 1〉}〉, which

in clausal form is (v̄xi [0] ∨ v̄xi [1]).

• constraint: every constraint clause is simply the negated conjunction of the restricted sets of binary

variables. For example, the constraint 〈〈x0, x1〉, \{〈G, G〉}〉 is the negated conjunction ¬(xG
0 ∧

xG
1 ), which is (x̄G

0 ∨ x̄G
1 ) in disjunctive form. On the assumption that the variables {vx0 [0], vx0 [1]}

encode the domain for x0, and {vx1 [0], vx1 [1]} encode the domain for x1, and G is assigned the

binary values (0, 1), then the resulting clause would be (vx0 [0] ∨ v̄x0 [1] ∨ vx1 [0] ∨ v̄x1 [1]).

Using the LOG encoding, the SAT instance of the GRAPH 3-COLOURABILITY Example 2.2.3 (on

the assumption that the binary values map to R = (0, 0), G = (0, 1) and B = (1, 0)) can be found in

Appendix B.1.

Notice that in this instance the encoding generates non-binary constraints (4-tuples), which are

difficult to represent graphically without introducing hyperedges. In Chapter 4 I categorise encodings by

their structure, so understanding how instances are translated is important. So although not a strict micro-

structure representation, Figure 3.3 is a graphical representation of the above SAT instance. The 4-ary

constraints are represented as binary edges between component set nodes. Edges within the component

set nodes represent the negative clauses. For example, the edge {{vx0[0] = 0, vx0 [1] = 0}, {vx1[0] =

0, vx1 [1] = 0}} represents the clause (vx0 [0] ∨ vx0 [1] ∨ vx1 [0] ∨ vx1 [1]).

Many of the encodings described in this chapter have appeared relatively recently in the literature,

and variants are often published. For instance Frisch & Peugniez (2001) describe a variant to the LOG

encoding (called the binary transformation) where the negative clauses are removed and redundant bi-

nary assignments are mapped to used binary assignments. As I will discuss later, there still remains a

great deal of analysis to be done in order to determine the relative merits of each encoding.

3I introduce some additional notation for this encoding and hope it does not cause confusion. Here, the index v[i] denotes the
ith bit. The Boolean assignments are associated to a variable with or without a ¯bar, i.e. v[i] means that this is assigned the value
True, otherwise a v̄[i] means that it is assigned the value False.
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Figure 3.3: A graphical representation of the LOG encoding of Example 2.2.3. Binary edges between
component set nodes correspond to the 4-ary constraints, whereas edges within the component set nodes
correspond to the negative clauses.

3.1.3.1 LOG Encoding Complexity

On the assumption that a CSP has n variables (each with a fixed domain size m) and q explicit nogoods

(each with a fixed arity r), the LOG encoding will generate a SAT instance with n�log 2(m)� variables, q

constraint clauses of size r�log2(m)� and q(2�log2(m)� − n) negative clauses of size �log2(m)�.

3.2 Analysis of CSP to SAT Encodings

In this section I introduce the major empirical and theoretical results published about CSP to SAT en-

codings.

3.2.1 Empirical Analysis

Representing problems as a CSP has an important advantage over SAT, which comes from its flexibility.

A range of constraints not easily represented in CNF are often trivially definable in the CSP framework,

such as the cumulative4 and alldiff 5 constraints (Bordeaux et al. (2006)). Indeed, the alldiff constraint

can make an exponential difference. Typically, search algorithms that do not use global information on a

group of disequalities will entirely explore the search tree to prove inconsistency. Hence, simple branch

and bound techniques are inadequate on problems such as the PIGEON-HOLE PROBLEM (defined in

Section 3.6.3) and take exponential-time. Régin (1994) shows that it is sometimes possible to express

these types of global constraints using a conjunction of logical constraints, but it is generally more

efficient to make deductions using specialised CSP algorithms6.

4For example, stating that the length, S, of a TRAVELLING SALESPERSON PROBLEM (TSP) journey must be less than some
value z:

S =

j∑
i=0

xi : S < z.

5For instance, the constraint ∀i∀j > i. xi �= xj .
6See Beldiceanu et al. (2005) for an exhaustive catalogue of global constraints.
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Instances formulated as CNF very often do not directly express the problem, instead they are usually

translated from the CSP definition, losing much of the problem structure during the translation stage.

However, the main strength of formulating problems in CNF is that all effort can be focused on a single

representation, resulting in highly optimised data-structures and efficient algorithms.

Although there are several ways to encode CSPs as SAT, there are few guidelines on how to choose

amongst them. As Prestwich (2003) highlights, this aspect of problem modelling is currently more an

art than a science, yet the choice of encoding can be as important as the choice of search algorithm.

Prestwich provides an extensive empirical investigation into the performance of stochastic algorithms on

GRAPH COLOURABILITY problems encoded as SAT with the aim of providing some guidelines about

how to choose an encoding that might improve the likelihood of solubility. Prestwich confirmed that —

in the case of MULTIVALUED vs. DIRECT — encodings with more solutions are typically easier to solve

by local search.

Gent (2002) showed that a DLL-based algorithm performed better on the SUPPORT encoded ran-

domly generated hard problems than the DIRECT encoding. Similarly, Gent’s research showed that

WALKSAT performs an order of magnitude faster on these randomly generated instances using the

SUPPORT encoding than it did on the DIRECT encoding. However, Prestwich observed the opposite re-

sult, reporting that DIRECT encoded GRAPH COLOURABILITY problems were often solved much faster

than when SUPPORT encoded. Van Gelder (2008) provided an extensive empirical survey of the perfor-

mance of several SAT-Solvers on DIRECT and LOG encoded GRAPH COLOURABILITY problems. Van

Gelder’s work showed that in all cases but one, the DIRECT encoding was superior. Prestwich also found

similar results.

Ansotegui & Manya (2004) evaluated several SAT encodings generated for a number of combina-

torial problems (graph coloring, random binary CSPs, pigeon hole, and all interval series) using two

leading SAT-Solvers. Their results provide empirical evidence that encoding combinatorial problems

with different mappings can provide substantial performance improvements for complete SAT-Solvers.

However, as with much of the empirical research, all of these studies restrict themselves to either

one type of problem or one type of algorithm, or both. It will not be until much more empirical research

is performed on various encodings of a plethora of problems running a multitude of algorithms that we

will develop a better idea about which encoding is likely to be ‘best’, and even then, the answer might

still be unclear. Several SAT communities have appeared with the aim to stimulate research in this area.

3.2.1.1 SATLIB and SAT Competition

SATLIB (Hoos & Stützle (2000)) is an online resource for SAT-related research that was established in

June 1998. SATLIB’s core component is a benchmark suite of SAT instances. The aim of SATLIB is to

facilitate empirical research on SAT by providing a uniform test-bed for SAT-Solvers, along with freely
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available implementations of high-performing SAT algorithms. SATLIB offers four different types of

problems:

1. Randomly generated native SAT instances.

2. SAT-encoded, randomly generated problem instances from other domains.

3. Instances from direct applications of SAT.

4. SAT-encoded instances from other application domains.

For most of these problem types there are instances of different sizes. For randomly generated

instances, such as Random-3-SAT, SATLIB provides standardised test-sets sampled from the underlying

distributions. For the most part, SATLIB collects problem instances that are intrinsically hard or difficult

to solve for a broad range of algorithms and avoids instances which are known to be trivially solvable.

While ‘easy’ instances can sometimes be useful for illustrating or investigating properties of specific

algorithms (for example polynomially solvable instances which are hard for certain, otherwise high-

performing algorithms), they are not used as general benchmark problems since this can easily lead to

heavily biased evaluations and assessments of the usefulness of specific algorithms. Hence, SATLIB’s

benchmark collection is comprised mostly of instances that are known to be hard for a wide range of

SAT algorithms.

Generally, benchmark sets should contain a large variety of different types of problem instances so

that they can be used as a basis for evaluating different types of algorithms in an unbiased way. The most

obvious - but also the most important - function of a benchmark library is to facilitate the use of the same

set of problem instances across different studies and thus to enhance the comparability of the respective

results. Furthermore, different types of studies will focus on problem instances with different properties,

and a benchmark set becomes more useful if it can support a broader range of studies.

Almost every year since 2002 there has been a SAT Competition. Organised by Daniel Le Berre

and Laurent Simon, the purpose of the competition is to identify new challenging benchmarks and to

promote new solvers for Propositional Satisfiability as well as to compare them with state-of-the-art

solvers. With thousands of instances this has now become the primary source of Industrial, Random

and Crafted benchmarks. The SAT Competition provides access to the results of the world’s leading

SAT-Solvers on instances that range from having tens of clauses to several million.

3.2.2 Theoretical Analysis

To address many of the issues that the empirical studies raise, a great deal of complementary theoretical

research has been carried out about the comparative algorithmic performances between the problem

domains (though more-so for SAT to CSP encodings than for CSP to SAT). Table 3.1 summarises the

theoretical analysis performed by Walsh (2000b), Gent (2002) and Bennaceur (2004) on CSP to SAT
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encodings, comparing DLL to MAC and FC. For notation, let us consider approach X vs. Y . X = Y

denotes that X and Y have equivalent behaviour, and X < Y denotes that Y is superior to X . We can see

for instance that enforcing arc-consistency on the original problem does more work than unit propagation

on the DIRECT encoding. That is, if unit propagation identifies unsatisfiability then enforcing arc-

consistency on the DIRECT encoding also does, but there are problems which enforcing arc-consistency

will show are insoluble that unit propagation will not. With equivalent branching heuristics, DLL applied

to the DIRECT encoding explores the same size search tree as FC applied to the original problem.

Comparison DIRECT SUPPORT LOG

Unit-Propagation vs. arc-consistency < <

DLL vs. MAC < =

DLL vs. FC = <

Table 3.1: A comparison of algorithmic techniques on CSP to SAT encodings.

The notion of ‘work’ can be confusing. When discussing the ‘work’ done by branching or stochas-

tic algorithms this typically is a reference to the amount of the search-space that is explored by the

algorithm. When we say that FC does more work than DLL on a particular encoding we mean that

FC explores more of the search-space that DLL. When discussing ‘work’ in the context of comparing

local-consistency (or pruning) algorithms (such as Resolution and Consistency), we mean to say that

one algorithm prunes the search-space more (or less) than the other. In Chapter 5 I compare the ‘work’

achieved by the same local-consistency algorithm applied to different encodings of a problem. For in-

stance, applying a certain level of local-consistency on an encoded version of a problem may achieve a

higher (or lower) level of local-consistency than the same algorithm applied to the original problem.

Notice that the work of constraint-based techniques are, for the most part, superior to SAT-based

techniques on the CSP to SAT encodings. However, one of the main problems with this theoretical anal-

ysis is that modern-day SAT-Solvers are almost beyond comparison with the original DLL procedure,

meaning that these studies will tell us very little about the actual comparative performance of today’s

CSP and SAT algorithms7.

3.2.2.1 NG-RES

It seems that de Kleer (1989) was the first to show the link between the Resolution and Consistency proof-

systems, stating that nogood-Resolution (NG-RES) is equivalent to establishing strong-k-consistency on

DIRECT encoded instances. de Kleer (1989) described several inference rules (H0, H3 and H5 below)

that described the NG-RES procedure on the CSP instance represented as SAT using the DIRECT encod-

ing (C is the SAT instance clauses set):

7Unless the innovation trajectory of CSP and SAT algorithms are developing at the same rate, which, as far as this author is
aware, they are not.
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• H0: This rule removes subsumed clauses from C. If clause a ∈ C is subsumed by some other

clause b ∈ C, then a is removed from C.

• H3: The unit resolution rule:

x̄i

xi ∨ x0 ∨ · · · ∨ xi−1

x0 ∨ · · · ∨ xi−1

• H5: The main rule:

(x0 ∨ x1 ∨ · · · ∨ xi−1)
(x̄0 ∨ X0)
(x̄1 ∨ X1)

...
(x̄i−1 ∨ Xi−1)

(X0 ∨ X1 ∨ · · · ∨ Xi−1)

where Xj are clauses and xj are literals, for j < i.

The H5 rule can generate a large number of clauses, de Kleer points out a restriction that can address

this:

• H5-k: H5 restricted to only infer clauses below size k.

Let I = {H0, H3, H5}. de Kleer proposed the following algorithmic properties that hold for DI-

RECT SAT encodings of a CSP.

Proposition 3.2.1. Given any subset of inference rules from I , any order of application will lead to the

same resulting clause set as long as the clause set is closed under those rules.

Proposition 3.2.2. Any algorithm incorporating any subset of inference rules from I achieves node-

consistency as long as the resulting clause set is closed under H3.

Proposition 3.2.3. Any algorithm incorporating any subset of inference rules from I achieves strong-k-

consistency as long as the resulting clause set is closed under H5-k.

If follows that any algorithm incorporating any subset of inference rules from I achieves node and

arc-consistency as long as the resulting clause set is closed under H3 and H5-2, and achieves node, arc

and path-consistency as long as the resulting clause set is closed under H3 and H5-3.

Interestingly, Mitchell (2002) proved that there is a super-polynomial separation between NG-RES

and constraint-Resolution (C-RES). C-RES is simply standard Resolution applied to a CSP that has

been transformed into CNF using the DIRECT encoding. Mitchell (2002) found that NG-RES takes

super-polynomial time to solve a variant of the PIGEON-HOLE PROBLEM (see Section 3.6.3), whereas

C-RES only takes quadratic-time. Hwang (2004) added to the super-polynomial separation result further

by proving an exponential separation between the two proof methods.
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3.2.2.2 Phase Transition

Many NP-complete problems display a rapid transition in solubility as the constrainedness ( Gent et al.

(1996)) of the problem increases (for randomly generated problem instances). This transition (referred to

as the phase transition) is associated with problems that are hard for backtracking procedures to solve.

It tends to be easy to solve problems that are either under-constrained (have many solutions) or over-

constrained (have few or no solutions). The phase transition is the intermediate point where problems

are critically constrained, i.e. out of a random sample of problems some will be soluble and some not,

and it is usually hard to find a solution or to prove that one exists (Cheeseman et al. (1991)).

Experiments performed by Cook & Mitchell (1997) on random 3-SAT instances show that the prob-

ability of an instance being satisfiable shifts with the ratio of clauses-to-variables from being almost 1

(with ratios much below 4) to being almost 0 (at ratios much above 5), and that the range of ratios over

which this transition occurs becomes smaller as the number of variables increases.

A large amount of research has been carried out to examine the phase transition of CSP and SAT

problems; most notably by Smith (1993); Smith et al. (1995); Gent & Walsh (1995); Gent et al. (1996);

Smith & Dyer (1996); Prosser (1996); Mitchell (1998); MacIntyre et al. (1998); Achlioptas et al. (2005)

for CSP, and Mitchell et al. (1992); Gent & Walsh (1994, 1996); Cook & Mitchell (1997); Istrate (2002)

for SAT. It is only within the past few years that attention has been paid to the phase transition of

encodings of SAT problems where only a specific number of literals must be satisfied (also known as

cardinality constraints) (see Bailleux & Boufkhad (2003) and Sinz (2005)8), and even more recently

Marques-Silva & Lynce (2007) published results indicating that some algorithms perform significantly

better on SAT encodings involving these types of constraints.

3.2.2.3 The MULTIVALUED Encoding and Solution Density

As Prestwich (2003) points out in his excellent survey of CSP to SAT encodings, it is often the case

that the negative clauses are omitted from the DIRECT encoding. Whilst omitting this set does not

effect the satisfiability of an instance, there is an important difference with this variant. Prestwich calls

the result the MULTIVALUED encoding, and mentions that MULTIVALUED encodings have a higher

solution-density than their counterparts containing negative clauses.

Definition 3.2.1 (Solution Density). The solution-density of a SAT instance is defined as the number of

solutions divided by 2n, where n is the number of SAT variables.

This definition can be generalised to any CSP, such that the number of full satisfying assignments

is divided by the total number of possible full assignments. For the micro-structure complement the

solution-density equals the number of independent sets divided by the total number of possible indepen-

dent sets of size n.
8Sinz also showed that instead of introducing the quadratic set of negative clauses, auxiliary variables can be introduced that

specify the same thing.



3.2. Analysis of CSP to SAT Encodings 52

Remark 3.2.1. The number of clauses generated by the DIRECT encoding is strictly greater than the

number of clauses generated by the MULTIVALUED encoding.

Table 3.2 shows a summary of the size-complexity of these encodings (including the MULTIVAL-

UED) based on a CSP with n variables of domain m, and q r-ary constraints. The propositions column

indicates the number of propositions generated, whereas positive, negative and constraint describes the

number of clauses of each type. The notation a : b denotes that a clauses are generated of arity b.

encoding propositions positive negative constraint

DIRECT nm n : m n
(
m
2

)
: 2 q : r

SUPPORT nm n : m n
(
m
2

)
: 2 2q : m

LOG n�log2(m)� 0 q(2�log2(m)� − n) : �log2(m)� q : r�log2(m)�
MULTIVALUED nm n : m 0 q : r

Table 3.2: The CSP to SAT encoding size-complexity.

Notice that the key difference between the DIRECT and MULTIVALUED encodings is that the SAT

instance resulting from the DIRECT contains negative clauses specifying that CSP variables cannot take

two contradictory domain values, whereas this is not explicitly constrained by the MULTIVALUED encod-

ing. MULTIVALUED encoded instance can have more solutions than DIRECT encoded instances. This

relates to research concerning the XSAT problem. The XSAT version (also known as exactly-1-SAT)

includes all negative clauses specifying that only one literal in each clause must be True. The 3-XSAT

problem (also known as 1-in-3-SAT) was originally shown to be NP-complete in the epic paper by

Schaefer (1978) and this problem has had relatively little attention since9. Recently, algorithmic upper-

bounds for the 1-in-3-SAT problem have been defined by Porschen et al. (2002), Madsen & Rossmanith

(2004) and Kulikov (2005). If we compare these recent algorithmic upper bounds for 3-XSAT with 3-

SAT, O(1.112n) versus O(1.38n) (Kulikov (2005) and Mitchell (2002) respectively), we can see that

3-XSAT appears to be easier to solve, though much more research remains to determine the effect of

including negative clauses.

A number of studies have been made to analyse the relationship between the solution-density and

solubility of a problem. Clark et al. (1996) found that the hardest problems have few solutions and

usually occur at the soluble phase. They showed that this finding was robust across problem class and

types of stochastic search procedure, though they determined that the number of solutions was not the

only factor influencing problem hardness.

Yokoo (1997) analysed the instances of 3-SAT and 3-COLOURING problems. Yokoo showed that as

more constraints are added the number of solutions decreases and that the number of local-minima also

9Its phase transition has been analysed byAchlioptas et al. (2001)
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decreases, and thus that the number of solution-reachable states increases. So, adding more constraints

(removing solutions) to take a problem beyond the phase transition removes local-minima and made it

easier to solve using stochastic algorithms. In Prestwich’s experiments using stochastic algorithms on

the GRAPH COLOURABILITY problem, he showed that the MULTIVALUED encoding was uniformly

better than the DIRECT encoding, concurring with the results of Selman et al. (1992). This suggests that

stochastic search performs better on instances with higher solution-density.

Given that solution-density is an important factor in problem solubility, in Chapter 5 I prove that

several SAT to CSP encodings can be differentiated by the proportion of solutions in the resulting trans-

lation. This is significant because the estimated solution-density is one factor that can influence our

decision about which encoding might be better to use in a particular situation.

3.3 SAT to CSP Encodings

Encoding a SAT instance as a CSP is the process of taking a propositional Boolean formula and trans-

lating it into a CSP. Naturally, a SAT instance is a restricted type of CSP, with the variables constrained

to the Boolean domain, and a list of explicit constraints (clauses). There are five common encodings,

called LITERAL, DUAL, NON-BINARY, PLACE and HIDDEN VARIABLE. In this section I define these

encodings and review the major theoretical and empirical studies performed on them. In Chapter 4 I

show how these encodings can be categorised, and in Chapter 5 demonstrate a number of ways in which

each encoding can be distinguished from each of the others.

As with the CSP to SAT encodings, I illustrate the SAT to CSP encodings using an example. Recall

Formula 2.1,

(x0 ∨ x1 ∨ x2) ∧ (x̄0 ∨ x1 ∨ x̄2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x0 ∨ x̄1 ∨ x3) ∧ (x̄0 ∨ x̄2 ∨ x̄3).

This 3CNF formula is a 3-SAT instance with four variables {x0, x1, x2, x3} and five clauses

{C0, C1, C2, C3, C4}, and it has eight satisfying assignments (shown in Table 3.3).
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1
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1
3} {x0

0, x
1
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3} {x0
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1
3} {x1

0, x
0
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0
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0
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1
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0
3} {x1
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1
1, x

0
2, x

1
3} {x1

0, x
1
1, x

1
2, x

0
3}

Table 3.3: The eight assignments that satisfy Formula 2.1

3.3.1 LITERAL Encoding

The LITERAL encoding is attributed to Bennaceur (1996) but could arguably be traced back to the early

seventies when Karp (1972) reduced 3-SAT to the CLIQUE PROBLEM.

Definition 3.3.1 (LITERAL encoding). Every clause C i is associated with a variable ci ∈ V . The
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domain of each variable is the set of literals in the corresponding clause. For example, given a clause

Cj = (a ∨ b̄), the CSP variable cj has the domain {1, 0}. Binary constraints are posted between

variables that have complementary literals.

Here is the CSP result obtained when Formula 2.1 is encoded using the LITERAL encoding.

• V = {c0, c1, c2, c3, c4}

• D = {Dc0 ,Dc1 ,Dc2 ,Dc3 ,Dc4}, where Dc0 = {x1
0, x

1
1, x

1
2},Dc1 = {x0

0, x
1
1, x

0
2},Dc2 =

{x1
1, x

0
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1
3},Dc3 = {x1

0, x
0
1, x

1
3},Dc4 = {x0

0, x
0
2, x

0
3}.

• C = {Cc0,c1 , Cc0,c2 , Cc0,c3 , Cc0,c4 , Cc1,c2 , Cc1,c3 , Cc1,c4 , Cc2,c3 , Cc,c4 , Cc3,c4}, where
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1 }}
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Figure 3.4 represents the corresponding Ḡ5
3 graph. Notice the solution-tuple γ{cx1
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4 }
represented as a dotted 5-clique, which corresponds to the satisfying assignment {x 0

0, x
0
1, x

1
2, x

1
3}.
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Figure 3.4: Formula 2.1 as a Ḡ5
3 graph using the LITERAL encoding.
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3.3.1.1 LITERAL Encoding Complexity

For simplicity let us assume a CNF formula has n variables and m clauses of cardinality k. The LITERAL

encoding of this k-SAT instance will generate a CSP with:

• m variables, each with a domain size k

• O(k2n2) binary constraints.

3.3.2 DUAL Encoding

Definition 3.3.2 (DUAL encoding). As described by Walsh (2000b), with the DUAL encoding (Dechter

(1992a)) each clause Ci is associated with a variable ci ∈ V . The domain of ci is the set of satisfying

assignments to the clause Ci. For instance if we had a clause Cj = (a∨ b̄), then the domain of cj would

be {{a0, b0}, {a1, b0}, {a1, b1}}. The set of constraints C are binary and are posted between the CSP

variables that have opposing proposition assignments.

Figure 3.5 represents the (partial) Ḡ5
7 graph of Formula 2.1 when encoded as a CSP using the DUAL

encoding. Although not shown in the figure, note that there is an edge between each pair of nodes in

each of the sets C0 and C1,
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Figure 3.5: The (partial) Ḡ5
7 graph of Formula 2.1 mapped to CSP using the DUAL encoding.

3.3.2.1 DUAL Encoding Complexity

Assuming a CNF formula has n variables and m clauses of cardinality k, the DUAL encoding of this

k-SAT instance will generate a CSP with:

• m variables

• each with a domain size d = 2k − 1, and

• O(d2n2) binary constraints.
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Notice that the DUAL encoding typically produces larger CSP instances than the LITERAL encod-

ing. Indeed, the DUAL encoding can be problematic since it requires an exponential number of CSP

domain values per SAT clause. For example, if the SAT instance we are translating has a clause with 20

literals, this will generate a CSP variable with domain size 220 (over 1 million values). To overcome this

problem one can use De Morgan laws (see Table 6.2), and introduce new variables to reduce the size of

the original clause by splitting it into lots of smaller clauses. I use this technique in my empirical study

of the DUAL encoding in Chapter 6. For instance, given a clause of size 20, we can split this into 19

ternary clauses by introducing 17 new auxiliary variables.

Given that space is one resource that can limit the representation of a problem one might ask the

question “why not use the most compact encoding?”. The answer to this question is that identical algo-

rithmic processes can perform more work on some encodings than others. That is, whilst one encoding

might require more space than another, enforcing a particular level of consistency might require less time,

or DLL might explore more branches. This begs the question of “which encoding is best?”, about which

little is currently know. In Chapters 5 and 6 I provide a theoretical and empirical study on the LITERAL

and DUAL encodings that sheds light onto some of the answers to these questions. In particular, I show

that although the DUAL encoding requires more space, enforcing local-consistency on DUAL encoded

problems achieves more than when the problems are encoded using the LITERAL encoding. Moreover,

I show that enforcing path-consistency on CSP encoded SAT instances using the DUAL encoding can

dramatically increase the solubility of many ‘hard’ unsatisfiable SAT benchmarks, in stark contrast to

none that are solved when represented LITERALLY.

3.3.3 NON-BINARY Encoding

The NON-BINARY encoding is the most compact and natural translation from SAT to CSP, it is simply a

(non-binary) description of a SAT instance as a CSP.

Definition 3.3.3 (NON-BINARY encoding). Every CNF propositional variable is associated with a

CSP variable xj , each with the domain {0, 1}. The constraints are the partial assignments that

fail to satisfy each clause. For instance, a clause (x0 ∨ x̄1 ∨ x2) would generate the constraint

〈〈x0, x1, x2〉, \{〈0, 1, 0〉}〉.

The CSP result of Formula 2.1 when encoded using the NON-BINARY encoding is:

• V = {x0, x1, x2, x3}

• D = {Dx0 ,Dx1 ,Dx2 ,Dx3}, where Dxi = {0, 1}, i < n

• C = {Cx0,x1,x2 , Cx0,x2,x3 , Cx0,x1,x3 , Cx1,x2,x3}, where

– Cx0,x1,x2 = {η{x0
0, x

0
1, x

0
2}, η{x1

0, x
0
1, x

1
2}}
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– Cx0,x2,x3 = {η{x1
0, x

1
2, x

1
3}}

– Cx0,x1,x3 = {η{x0
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3}}
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1
2, x

0
3}}

Figure 3.6 represents the corresponding Ḡ4
2 3-hypergraph. Though it is difficult to represent, note

that each closed curve connects only three points, one for each constraint.
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Figure 3.6: Formula 2.1 as a Ḡ4
2 3-hypergraph using the NON-BINARY encoding. Variables are repre-

sented by the components sets, whereas the ternary clauses are represented as hyperedges that connect
three nodes (i.e. the unsatisfying assignments to each clause).

3.3.3.1 NON-BINARY Encoding Complexity

Again on the assumption that a CNF formula has n variables and m clauses of cardinality k, the NON-

BINARY encoding of this k-SAT instance will generate a CSP with:

• n variables

• each with a domain size 2, and

• m k-ary constraints.

3.3.4 PLACE Encoding

This encoding was defined independently by Gent et al. (2003) and Jarvisalo & Niemela (2004) who

named it the EXTENDED LITERAL encoding and PLACE encoding respectively 10.

Definition 3.3.4 (PLACE encoding). The PLACE encoding has two sets of variables that make up V:

1. every clause Ci in the CNF formula is associated with a variable ci, and as with the LITERAL

encoding its domain is the set of literals in its clause.

10Although Jarvisalo & Niemela (2004) was published later thanGent et al. (2003) I adopt the name PLACE, so as not to confuse
the the reader between the EXTENDED LITERAL encoding and Extended proof-systems.



3.3. SAT to CSP Encodings 58

2. like the NON-BINARY encoding, every propositional variable in the CNF formula is associated

with a variable xj with the domain {0, 1}.

Binary constraints are only posted between ci and xj variables that have complementary literals.

Figure 3.7 represents the micro-structure complement of Formula 2.1 transformed to CSP using the

PLACE encoding. Note that this graph is a Ḡ9
3 since the maximum cardinality of any set is 3.
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Figure 3.7: The Ḡ graph of Formula 2.1 transformed to a CSP using the PLACE encoding. The com-
ponent sets c = {c0, . . . , c4} are the same as the LITERAL encoding, whereas the component sets
x = {x0, . . . , x3} are the same as the nodes in the NON-BINARY encoding. Binary edges are posted
between nodes in x and c that contain complementary literal assignments.

3.3.4.1 PLACE Encoding Complexity

For a k-SAT instance with n variables and m clauses the PLACE encoding will generate a CSP with:

• n variables with binary domains, plus

• m variables with a domain cardinality of k

• O(kn) binary constraints.

In Chapter 4 (Figure 4.3) I demonstrate that PLACE encoding is simply a combination of the LIT-

ERAL and NON-BINARY encodings.

3.3.5 HIDDEN VARIABLE Encoding

Originally defined by Dechter (1990), the HIDDEN VARIABLE encoding is a binary CSP similar to the

PLACE encoding described in Section 3.3.4.

Definition 3.3.5 (HIDDEN VARIABLE encoding). As with the PLACE encoding, V is constructed from

two sets of variables:

1. every propositional variable in the CNF formula is associated with a variable x j with the domain

{0, 1}.
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2. like the DUAL encoding, the set of satisfying assignments to each clause C i in the CNF formula is

the domain of each corresponding CSP c i.

Binary constraints are only posted between the complementary domain values of x j and cj .

To illustrate this, Figure 3.8 (partially) represents the micro-structure complement of encoding For-

mula 2.1 as a CSP using the HIDDEN VARIABLE encoding. Noticing that, although not drawn, there is

an edge between each pair of nodes within the component sets C 0 and C4.
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Figure 3.8: The Ḡ graph of Formula 2.1 encoded using the HIDDEN VARIABLE encoding. The
components sets c = {c0, . . . , c4} are the same as the DUAL encoding, whereas the component sets
x = {x0, . . . , x3} are the same as the nodes in the NON-BINARY encoding. Binary edges are posted
between nodes in x and c that contain complementary literal assignments.

3.3.5.1 HIDDEN VARIABLE Encoding Complexity

For a k-SAT instance with n variables and m clauses the HIDDEN VARIABLE encoding will generate a

CSP with:

• n variables with binary domains, plus

• m variables with a domain cardinality of 2k − 1

• O(kn) binary constraints.

In a similar manner to that for the PLACE encoding, in Chapter 4 I illustrate that HIDDEN VARIABLE

encoding is a combination of the DUAL and NON-BINARY encodings.

3.4 Analysis of SAT to CSP Encodings

As in Section 3.2 here I present the various empirical and theoretical results of studies performed on SAT

to CSP encodings.

It is well-known that non-binary CSPs can be transformed into equivalent binary CSPs, and this

work has generated a great deal of knowledge about the theory and practice of solving CSPs. The main
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reason cited for translating non-binary into binary constraints is that more is known about how to solve bi-

nary CSPs; including better heuristics, known tractable cases and optimised algorithms ( Bordeaux et al.

(2006)). Another advantage of these encodings is that the structure of a SAT problem can be further

analysed via its binary CSP expression using constraint techniques. However it is still largely unknown

whether or not these techniques have any potential advantages, and surprising only very recently has

work been done to examine the effectiveness of these encodings.

MAC and FC have been widely studied. In particular Grant & Smith (1995) published a rigorous

empirical study of the performance of MAC and FC algorithms over a broad range of problem topologies

and sizes, which highlighted many of the relative virtues of these algorithms with respect to the problem

structure11.

Table 3.4 summarises the CSP encoding complexity of a k-SAT instance with n propositional vari-

ables and m clauses. The variables column shows the number of CSP variables, and domain describes

the size of the variable domain. The number of constraints are shown in constraints, and the arity

denoted in arity. The a : b notation in the domain column denotes a variables of domain size b.

encoding variables domain constraints arity

LITERAL m k O(k2m2) 2

DUAL m 2k − 1 O(2km2) 2

NON-BINARY n 2 m k

PLACE n + m n : 2, m : k O(kn) 2

HIDDEN VARIABLE n + m n : 2, m : 2k − 1 O(kn) 2

Table 3.4: The SAT to CSP encoding size-complexity.

Jarvisalo & Niemela (2004) pointed out that the PLACE encoding is the only encoding that is linear

in all of these parameters; that this encoding is the first which is “propagation-optimal”. That is, propa-

gation using the standard search algorithm MAC in the CSP encoding performs the same search as DLL

on the original SAT instance, and does so in the same worst-case time complexity. Gent et al. (2003)

pointed out that this theoretical equality is unlikely to lead to acceptable performance in practice, since

SAT-Solvers are highly-optimised algorithms12. Gent also showed that it is possible for CSP search to

take exponentially longer than the SAT search when using the PLACE encoding. More specifically, if

MAC sets some of the extra CSP variables before all SAT variables, it is possible for DLL to search

exponentially fewer nodes. Representing CSPs as SAT may thus produce an exponential saving, though

11Having implemented several variants of MAC for the empirical studies in Chapter6, for my purposes I found that the overhead
of queueing mechanisms could not compete with simply recursing through the data-structure.

12They suggested that “we might compare the SAT-Solvers and CSP algorithms to a Formula-1 car and a family saloon. You
would not want to pick up the kids from school and drop by the supermarket on the way home in the [Formula-1] car. However,
the saloon car might benefit from Formula-1 technology. Constraint programming is general purpose, whereas the SAT-Solvers
are specialised pieces of code.”
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it is still unclear under what circumstances it is advisable to convert one problem type to another.

Table 3.5 summarises the theoretical analysis performed by Walsh (2000b), Gent et al. (2003) and

Jarvisalo & Niemela (2004) on CSP to SAT encodings, comparing DLL to MAC and FC, as well as

Min-Conflicts to the stochastic SAT search techniques WALKSAT and GSAT13. Again, we consider

approaches X vs. Y and let X = Y denote that X and Y have equivalent behaviour. X > Y denote

that X is superior to Y and let X �= Y mean that X and Y are incomparable with each other.

Comparison NON-BINARY LITERAL DUAL HIDDEN VARIABLE PLACE

Unit-Propagation vs. < = < = =

arc-consistency

DLL vs. MAC > �= = =

DLL vs. FC = (nFC0), < (nFC1) > > = =

GSAT vs. MC �= �= �=
WALKSAT vs. MC = < <

Table 3.5: A comparison of algorithmic techniques on SAT to CSP encodings.

Bacchus & van Beek (1998) showed that algorithms applied to problems represented using the

DUAL encoding can be more efficient by orders of magnitude than HIDDEN VARIABLE encoded prob-

lems when the number of constraints is low relative to the number of variables and the constraints are

restrictive. They suggested that although translating a non-binary CSP into SAT involves some overhead

the number of satisfying assignments to a problem is perhaps the most important factor in determining

the worth of a particular encoding.

3.4.1 DOUBLE Encoding

Stergiou & Walsh (1999) showed how the HIDDEN VARIABLE encoding can be transformed into the

DUAL encoding, and introduced a new encoding that combined both the HIDDEN VARIABLE and DUAL

encodings. They called this the DOUBLE encoding but it was not shown to have any advantages, pos-

sibly because the HIDDEN VARIABLE encoding already contains the DUAL micro-structure and hence

it is superfluous to include it again. In fact, Stergiou & Walsh (1999) published a very nice survey on

the performance of solving Golomb Ruler problems and Cross-Word Puzzle generation using a variety

of encodings including the DOUBLE encoding. Interestingly, the results show that the time to generate

Cross-Words encoded by means of the DOUBLE encoding appears to be approximately the sum of the

time taken for the HIDDEN VARIABLE and DUAL encodings. Smith et al. (2000) also produced a thor-

ough survey of various encodings of Golomb Ruler problems (including the DOUBLE encoding), though

from their results I could identify no such linear correlation, only that the DOUBLE encoding performed

13Bessiere et al. (2002) describes nFC0 and nFC1, which refer to certain types of generalisations of FC for non-binary CSPs.
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significantly worse than the HIDDEN VARIABLE and DUAL encodings alone. The DOUBLE encoding is

a good example that highlights the lack of a formal framework to develop and compare encodings.

3.5 Preprocessing

Preprocessing is a recent area of research that has formed around CNF-formula transformation and sim-

plification. The aim of preprocessing a problem is to reduce the search-space (not necessarily reduce the

problem size), allowing stochastic and branching algorithms to find a solution more quickly. A smaller

problem implies that there is less that the SAT-Solver needs to process, however, this does not necessar-

ily imply it is easier to solve. Indeed, some of the hardest problems are those that have no ‘redundant’

information present in the problem.

In recent years a flurry of research has been published regarding the application and impact of pre-

processing SAT instances prior to the use of a SAT-Solver. This suggests that as the performance of SAT-

Solvers begins to plateau SAT researchers are exploring other methods to help improve performance.

Preprocessing a formula before solving is now known as an important step ( Lynce & Marques-Silva

(2001)), and many preprocessors have already been proposed, several of which are described below.

One of the first and simplest preprocessing algorithm, called 3-RESOLUTION, performed 4-Resolution

— adding to the formula all resolvent clauses of size less than or equal to 3 — until saturation, however,

this algorithm is often too slow and computationally expensive to be used in practice on large instances.

3.5.0.1 SIMPLIFY-2

Brafman (2004) proposed 2-SIMPLIFY, a less computationally heavy preprocessor than applying 4-

Resolution, which was developed to better manage real-world benchmarks that often contain many binary

clauses. Roughly, the idea is thus to use those binary clauses to construct an implication graph, from

which unit clauses can be deduced by computing the transitive closure. Any unit clauses that have been

obtained are propagated and this process is iterated until an exit point is reached.

3.5.0.2 HYPRE

HYPRE, developed by Bacchus & Winter (2003), employs a form of binary reasoning called ‘hyper-

binary resolution’ in addition to the techniques found in 2-SIMPLIFY. ‘Hyper-binary resolution’ per-

forms a resolution step involving more than two input clauses to generate binary clauses, using a method

that is similar to (but more restricted than) NG-RES.

3.5.0.3 NIVER

A weaker schema has been adopted by the NIVER procedure (Subbarayan & Pradhan (2004)), which

stands for “Non-Increasing Variable Elimination Resolution”. This technique attempts to overcome the

size-explosion problem associated with variable elimination by only eliminating variables by resolution

if this computation does not increase the number of literals of the CNF formula.
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3.5.0.4 SATELITE

SATELITE, by Een & Biere (2005), is one of the most effective preprocessing techniques, so much so

that it is currently integrated in many state-of-the-art SAT-Solvers. SATELITE improves on NIVER by

combining binary clause resolution simplification with non-increasing variable-elimination, adding new

resolution rules for clause subsumption. Clause subsumption proves to be useful for simplifying clauses

resulting from variable elimination, enabling an efficient clause-variable simplification procedure which

can be repeated until no more reductions are possible.

3.5.0.5 REVIVAL

Piette et al. (2008) points out that the main problem of these preprocessors is that it is difficult to measure

the relevance of each added or eliminated clause with respect to the resolution step. It is possible that a

preprocessor eliminates clauses but can derive a harder sub-formula. Similarly, adding new clauses may

increase the space complexity without reducing the search-space. Piette et al. (2008) proposes a new

preprocessing technique based on limited forms of resolution and conflict analysis, called REVIVAL.

REVIVAL uses clause redundancy checking to produce sub-clauses and to add new relevant clauses.

The aim is to substitute existing clauses by more constrained ones.

3.5.0.6 Preprocessor Results

Een & Biere (2005) published an excellent paper that definitively demonstrated that preprocessing

can not only significantly improve the solubility of industrial instances, but that the time invested

by the preprocessor is also worthwhile. More specifically, Een & Biere (2005) extended implemen-

tation aspects of NIVER, and demonstrated its performance with three of the world’s leading SAT-

Solvers (BERKMIN Goldberg & Novikov (2002), MINISAT Een & Sorensson (2003), and ZCHAFF

Moskewicz et al. (2001)). Although the encoding and preprocessing of SAT problems is cited as having

an important role, our understanding of how and when to use these techniques is still very limited. This

is highlighted none more so than by the winners of this year’s (2008) SAT Race, Een and Sorensson, who

state that although the preprocessing of MINISAT 2.1 scales relatively well, there are still cases where

it takes too much time or memory, so as a simple safe-guard measure preprocessing is deactivated if the

problem has more than 4 million clauses.

Recently Condrat & Kalla (2007) applied the Gröbner basis engine (see Buchberger & Winkler

(1998)) to many SATLIB benchmarks prior to using a state-of-the art SAT-Solver. On many instances

the benefits of applying these preprocessing techniques far outweighed the time spent during prepro-

cessing, but the processing varied greatly, with some problems benefiting from large numbers of clauses

processed, and others very few. Also the time saved during solving varied from only marginal improve-

ment to significant savings, however, in many cases the SAT-Solver could still find solutions in less time.

Condrat & Kalla (2007) also combined the Gröbner basis engine with SATELITE but the results were
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mixed.

However, it appears that combining several preprocessors often produces even better improve-

ments. Indeed, a combination of SATELITE and REVIVAL produced good results in SAT-Race 2008.

Anbulagan & Slaney. (2006) proposed a multiple preprocessing technique (using the preprocessors de-

scribed above) to boost the performance of systematic SAT-Solvers, and argued that applying multiple

preprocessors prior to the systematic search process can improve overall performance because each pre-

processor takes different strategy to simplify clause sets. One finding of Anbulagan & Slaney. (2006)

was that the use of multiple preprocessors one after the other can be much more effective than using any

one of them alone, but that the order in which they are applied is significant. Their empirical study of

the effects of several recently proposed SAT preprocessors prior to applying a two leading SAT-Solvers

highlighted several outcomes:

1. SAT-Solvers benefit greatly from preprocessing. Improvements of four orders of magnitude in

runtimes are not uncommon.

2. It is unlikely to equip a SAT-Solver with just one preprocessor of the kind considered. Very

different preprocessing techniques are appropriate to different problem classes.

3. There are frequently benefits to be gained from running two or more preprocessors in series on the

same problem instance.

4. SAT-Solvers can also benefit greatly from resolution between longer clauses, as in the 3-

RESOLUTION preprocessor, but the effects are far from uniform.

Relatively little study has been carried out on enforcing a local-level of consistency prior to ap-

plying complete or stochastic algorithms such as DLL and GSAT, owing to the likely reason that

making a problem more than strong-3-consistent can be very computationally expensive. However,

Kask & Dechter (1995) published a paper that focused on the problem of how enforcing a slight vari-

ant of path-consistency improves the performance of GSAT. In particular, they investigated the effect

of this preprocessing step on two different classes of problems; random uniform problems that do not

have any structure, and random structured problems. Though this study was performed on random prob-

lem types, they found that the effect of local consistency is sharply different on these two classes of

problems. When problems do not have any special structure, enforcing local-consistency does not have

a significant effect on the performance of GSAT. However, on certain classes of structured problems,

local-consistency can significantly improve the performance of GSAT. Their experiments showed that

enforcing local-consistency can make these problems almost trivial for GSAT, and that the overhead as-

sociated with this preprocessing is much less than the computation needed to solve the problem without

it. Kask & Dechter (1995) do not state what encoding of SAT to CSP was used to allow local-consistency



3.6. Proof Complexity 65

to be enforced, but from my theoretical and empirical analysis (see Chapters 5 and 6) it appears that the

choice of encoding can dramatically effect the performance of the preprocessor.

The motivation for applying the preprocessing algorithms is to reduce (or even totally eliminate)

the number of backtracks required to identify the solution. It is now well acknowledged that the perfor-

mances of SAT-Solvers is usually greatly improved by preprocessing, up to the point where SATELITE

is now often used by SAT competitors. Preprocessing approaches have traditionally concentrated on

reducing the overhead, and techniques such as HYPRE, NIVER, REVIVAL and SATELITE reduce this

overhead through resolution-based preprocessing. Whilst some empirical studies have been undertaken

to determine the effect of enforcing a local-level of consistency prior to applying a backtrack or stochas-

tic algorithm, little theoretical analysis has been performed. de Kleer (1989) shows the equivalence for

Consistency and Resolution algorithms on DIRECT encodings of CSPs and in Chapter 5 I provide a com-

prehensive study of the equivalence between these two algorithms on each of the SAT to CSP encodings.

I demonstrate these results empirically in Chapter 6 where I also show that enforcing a low-level of

local-consistency on DUAL encoded SAT instances can solve many ‘hard’ SAT instances.

3.6 Proof Complexity

Resolution is the most studied propositional proof-system owing to its simplicity and relation to auto-

mated theorem proving algorithms used in industry. Whereas Resolution is a proof-system for SAT,

Consistency is a proof-system for CSP. Although this is well-known (implicitly) in the Constraint Satis-

faction community it is only in the past few years that it has been explicitly stated. As far as I am aware

this was first ‘completely’ defined by Atserias et al. (2004), in their paper titled ‘Constraint Propagation

as a Proof System’, who argued the importance of ‘mapping’ the proof-system space. Atserias et al.

(2004) pointed out that “viewing constraint propagation as a proof system lifts proof complexity from

propositional logic to all constraint-satisfaction problems”, and suggested that this could lead to CSP-

Solvers that deal directly with the CSP instances, avoiding the need to translate to CNF and applying

a SAT-Solver. In this ‘spirit’, in Section 5.3, I extend the proof-system of Consistency inspired by the

synergies with Resolution techniques described throughout this thesis.

The complexity of a Resolution proof is the number of clauses generated during the course of the

proof (also known as the proof length and size). This ‘resource’ (size) has been related to the maximum

width of the proof (see Clegg et al. (1996); Beame & Pitassi (1996)) where the width of a problem is

simply any clause with the maximum number of literals generated by the proof ( Galil (1977)).

Definition 3.6.1 (Proof width). The width of a clause is the number of literals appearing in it. The width

of a set of clauses is the maximal width of a clause in the set. The width needed for the Resolution of an

unsatisfiable CNF formula is the minimal width needed over its Resolution refutations.
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3.6.1 The Width-Size Relation

This relation is extremely important for proving size lower bounds, since thanks to it, it is sufficient

to prove width lower bounds14. Since the SATISFIABILITY PROBLEM is an NP-complete problem, if

Resolution could always give proofs that are bounded polynomially in length (∝ width), then co-NP

would equal NP. Two decades after Robinson (1965) defined Resolution, Haken (1985) proved the first

exponential bounds for Resolution in his seminal thesis on the PIGEON-HOLE PROBLEM.

Haken was followed shortly by Urquhart (1987) who proved exponential Resolution bounds for

Tseitin Graphs. Ben-Sasson (2001) developed a general strategy for proving width based on Haken’s

original proof method. Ben-Sasson & Wigderson (1999) used this ‘simplified’ method to reaffirm proof

lower-bounds for the PIGEON-HOLE PROBLEM, Tseitin Graphs and Random CNFs, as well as new

lower bounds for two variants of the PIGEON-HOLE PROBLEM. The basic relation between the com-

plexity measure of resolution size and width is:

Theorem 3.6.1 (width-Size relation, Ben-Sasson & Wigderson (1999)). For an unsatisfiable formula F

in CNF with n variables, if F has a Resolution refutation of size S, then it has a refutation of maximal

width, W (F ), of O(
√

n logS(F )). If F has a maximal width W (F ), then its size, S(F ) is expΩ( W (F )2

n ).

Ben-Sasson & Wigderson (1999) describe an immediate consequence of this width-size relation

which is a procedure for refuting unsatisfiable formulae, described by Algorithm 3.

Algorithm 3 k-RES width algorithm.
Given F
for k = 1 to W (F ) do

if k-RES(F ) � ⊥ then
return ⊥

end if
end for
return �

It is easy to see that this algorithm runs in time nO(W (F )), where n is the number of variables in

formula F (with maximal width W (F )). This algorithm was originally investigated by Galil (1977).

However, Ben-Sasson & Wigderson (1999) proved that this dynamic algorithm never performs much

worse than the standard DP procedure (described in Section 2.5.4) and provided a family of formulae

for which Algorithm 3 performs exponentially faster than DP.

3.6.2 Local and Global Consistency

Though the importance of width did not appear in the SAT literature until the early nineties, it was already

becoming established in the Constraint Satisfaction community over ten years earlier in the seminal

paper by Freuder (1982). This research not only introduced the importance of the width-size relation,

14Space is another important ‘resource’ that was recently introduced byEsteban & Torán (2001) and Ben-Sasson (2001). The
space of a Resolution refutation is the number of clauses that have to be kept in memory simultaneously to infer a contradiction.
See Atserias & Dalmau (2003) and Toran (2004) for an excellent introduction to this research.
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but also described a procedure to solve CSPs similar to Algorithm 3; again highlighting how little the

SAT and CSP communities have communicated over the years. Later, Dechter (1992b) provided another

extremely important width-size relation for CSPs, proving that a strong-(d(r − 1) + 1)-consistent CSP

(with domain cardinality d and maximal arity r) is globally consistent. It is well-known that problems

with a guaranteed fixed width (not a function of n) can be solved in polynomial-time. For instance,

2-SAT has a fixed width of size 2, i.e. it is impossible to infer clauses with more than two literals.

Theorem 3.6.2 (strong-(d(r − 1) + 1)-consistency ensures global consistency, Dechter (1992b)). Any

d-valued r-ary constraint network that is strong-(d(r − 1) + 1)-consistent is globally consistent. In

particular, any d-valued binary constraint network that is strong-(d+1)-consistent is globally consistent.

van Beek & Dechter (1997) extended this work by identifying two new complementary properties

on the restrictiveness of the constraints in a network called constraint tightness and constraint looseness.

Definition 3.6.2 (m-tight). A constraint relation R of arity k is called m-tight if for any variable x i

constrained by R and any instantiation ā of the remaining k variables constrained by R either there are

at most m extensions of ā to xi that satisfy R or there are exactly |Di| such extensions, where Di is the

domain of xi.

Definition 3.6.3 (m-loose). A constraint relation R of arity k is called m-loose if for any variable x i

constrained by R and any instantiation ā of the remaining k variables constrained by R there are at

least m extensions of ā to xi that satisfy R.

Their results can be viewed as an improvement on Dechter’s theorem, in the sense that the tightness

of the constraints specify a level of strong-consistency that is less than or equal to the level of strong-

consistency required by Dechter’s theorem. They showed that these measures can be used to estimate the

level of local-consistency needed to ensure global consistency. In addition, they presented a sufficient

condition based on constraint tightness and the level of local-consistency that guarantees that a solution

can be found in a backtrack-free manner.

Theorem 3.6.3 (van Beek & Dechter (1994)). If a binary constraint network, R, is m-tight and if the

network is strong-(m + 2)-consistent, then the network is globally consistent.

The relation to CSP is that r (maximal arity) is analogous to clause width, so in general CSPs with

O(n) arity have exponential lower-bounds refutational complexity for strong-consistency. One example

widely studied in the Resolution proof complexity field is the PIGEON-HOLE PROBLEM (PHP).

3.6.3 Pigeon-Hole Problem

Definition 3.6.4 (Pigeon-Hole Problem). The PIGEON-HOLE PROBLEM, with p pigeons and h holes,

states that there is no one-one mapping from p to h when p > h. This is also referred to as PHP p
h .

A CSP formulation of PHP p
h is a triple (V ,D, C), where
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• V is a finite set of pigeons {x0, x1 . . . xp−1}

• D is a the domain is holes {y0, y1 . . . yh−1}

• C is the set of constraints stating that only one pigeon can be in a hole:

– xyk

i �= xyk

j , for 0 ≤ i < j < p, 0 ≤ k < h

As we have seen, this can be formulated as a CNF formula on p × h variables x ik , 0 ≤ i < p,

0 ≤ k < h, where x1
ik means that pigeon i is in hole k. The typical way of encoding PHP into CNF is

by the MULTIVALUED encoding described in Section 3.2.2.3:

positive :
∧

0≤i<p

∨
0≤k<h

xik (3.1)

constraint :
∧

0≤i<j<p

∧
0≤k<h

x̄ik ∨ x̄jk (3.2)

When there are more pigeons than holes the problem is unsatisfiable. Consider PHP n+1
n . This

instance is unsatisfiable with O(n2) variables and O(n2) clauses, where each positive clause has a width

of size n. With a domain cardinality n and binary constraints, according to Dechter (1992b), PHP n+1
n

requires strong-(n(2 − 1) + 1)-consistency (strong-(n + 1)-consistency), which is the maximum level

of consistency possible for this problem. Deduction techniques used in constraint-solvers are not very

effective when the difference constraints are considered independently of each other and a classical

search algorithm (Resolution) which does not use global information will explore the entire search tree

of size (n − 1)! to prove inconsistency. Search-based solvers have intrinsic limitations, and global

constraints have been a means, in the Constraint Satisfaction field, to overcome them. For instance

alldiff constraints (mentioned in the Introduction) can be propagated very efficiently using graph-based

algorithms to solve PHP.

The difficulty of PHP for Resolution should not be underestimated. For instance, it may sound

easier to determine unsatisfiability if the number of pigeons was much greater than the number of holes,

but it is just as hard. Proving exponential bounds for the PHP is still an active area of research.

Theorem 3.6.4 (Haken (1985)). S(PHP n+1
n ) = 2Ω(n).

Buss & Turan (1988) generalised Haken’s lower-bound where the number of pigeons is much larger

than the number of holes.

Theorem 3.6.5 (Buss & Turan (1988)). S(PHP p
h ) = 2Ω( h2

p log p ).

Razborov (2001) improved on the findings of Raz (2001) showing that when p > h:

Theorem 3.6.6 (Razborov (2001)). S(PHP p
h ) = 2Ω(h1/3).
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3.6.4 Extended Proof-Systems

Resolution is the most theoretically studied propositional proof-systems and though one of the simplest,

it proved extremely challenging to determine its first exponential complexity bounds. Given that the

DLL algorithm produces a search space that is tree-like a great deal of research has been carried out on

the complexity of tree-like Resolution15 (also called General Resolution in which identical clauses can

be derived more than once).

However, there are proof-systems that produce polynomial proofs for PHP, namely Frege-systems

and Extended-Resolution (Cook (1976)).

Definition 3.6.5 (Frege proof-system). A Frege system F consists of a language, a finite number of

axiom schemes and inference rules, which are sound and complete. For instance, a particular language

may contain the constants {0, 1}, connectives {¬,∧,∨} and some atoms {a, b, . . .}. An axiom is any

substitution instance of an axiom scheme. For example, F often has several axiom schemes and only one

inference rule (e.g. the modus ponens).

Analysis of Frege proof-system is beyond the scope of this thesis, but for the interested reader

the literature of Buss (1987), Ajtai (1994) and Bonet et al. (1994) is highly recommended. Extended-

Resolution (a less restricted version of Resolution) is one of the most powerful proof-systems available

(equal to Extended-Frege16) which allows the introduction of auxiliary variables to maintain a con-

stant arity (clause width). Remarkably, no known problems exist that demand exponential Extended-

Resolution (or Extended-Frege) proofs.

It has been shown that the Frege proof-system is strictly more powerful than Resolution proofs,

and that Extended-Resolution has the same power as Extended-Frege (one of the most powerful proof

systems at our disposal) (Krajicek & Pudlak (1989)). In fact, there are no proof-systems known to be

stronger than these extended proof-systems, and there are no known classes of problem that demand

exponential size proofs for them. However, the fact that a proof-system is strong does not mean that it

works well in practice. Very little is known about how to implement Extended-Resolution for the simple

reason that virtually nothing is known about how to select new variables so as to shorten proof length.

Although auxiliary variables have been used in the Constraint Satisfaction community for some

time, their application is still very much an art. For instance Smith et al. (2000) performed an extensive

study of the use of auxiliary variables and implied constraints in modelling a class of non-binary CSPs

called problems of distance. Their experiments show that the introduction of auxiliary variables and

implied constraints significantly reduced the size of the search-space.

15Analysis of restricted versions of Resolution are beyond the scope of this thesis, but the interested reader may want to start
with Mitchell (2003) and Ben-Sasson & Wigderson (1999).

16Extended-Frege is a simply a Frege proof-system extended in the same way that Resolution is extended to Extended-Resolution
with the Extension Rule.
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Only in recent years have papers begun to emerge in which these extended techniques have been

applied to SAT, namely Sinz & Biere (2006) and Jussila et al. (2006). This work evaluates a practical

method to obtain Extended-Resolution proofs for conjoining Binary Decision Diagrams (BDDs 17) in

SAT solving. Their results enable the use of BDDs for these purposes instead (or in combination with)

already established methods based on DLL with clause learning.

3.7 Chapter Summary and Discussion

In this chapter I provided an extensive survey of the main SAT and CSP encodings, as well as a de-

tailed review of the major theoretical and empirical investigations performed on them. This investigation

highlights several questions and areas of research that this thesis addresses:

• Some encodings that have been published that are useful, whilst others are not. Is there a com-

mon framework to allow researchers from both the SAT and CSP communities to assess existing

encodings and to develop and assess new encodings?

• It has been shown that solution-density can effect the performance of stochastic and branching al-

gorithms. Is there a distinction between the various encodings according to their solution-density?

• A large amount of theoretical research has been published comparing the performance of SAT and

CSP-based stochastic and branching algorithmic techniques on various encodings. Is there a way

to compare the relative theoretical performance of preprocessing (local-consistency) techniques

used in these two fields?

• Several empirical results have been published demonstrating the performance of stochastic and

branching algorithmic techniques on various encodings, yet relatively little on the effect of apply-

ing incremental levels of local-consistency. Do local-consistency algorithms perform better with

some encodings than others?

• Width is in important characteristic that correlates with the complexity of problems. Some theo-

retical and empirical work has been published that looks at ‘width management’ techniques, such

as Extended-Resolution and Extended-Frege proof-systems. Can the Consistency proof-system be

extended in a way that might facilitate synergies between these lines of research, and provide a

complete landscape of these three proof-systems?

3.7.1 Theoretical Studies Summary

I have highlighted several situations where research from the SAT and CSP communities has been re-

peated by the other. The aim of Chapter 4 is to provide a framework within which current and future SAT
17Briefly, a Binary Decision Diagram is a data structure that is used to represent a Boolean function as a rooted, directed, acyclic

graph, which consists of decision nodes and two terminal nodes called 0-terminal and 1-terminal. Each decision node is labelled by
a Boolean variable and has two child nodes called low child and high child. The edge from a node to a low (high) child represents
an assignment of the variable to 0 (1).
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and CSP encodings can be developed. This framework results in a new type of CSP to SAT encoding

that I show can have advantages over previous encodings.

There has been a large amount of theoretical analysis comparing stochastic and branching SAT

and CSP algorithmic techniques. However, very little research has been done comparing the effect

of enforcing local-consistency algorithms for each approach, probably because these techniques have

previously been considered incomparable. This is true when comparing Resolution and Consistency on

many types of encodings, but with the introduction of NG-RES a theoretical comparison is now possible,

and in Chapter 5 I provide a comparative study between Resolution and Consistency on each of the SAT

to CSP encodings. The main result of my theoretical analysis is that enforcing local-consistency on

DUAL encoded problems does more work than on LITERAL encoded instances. Although this might not

be totally surprising (since DUAL encoded problems are typically larger than those that are LITERAL

encoded) the empirical results on each of these encodings in Chapter 6 are surprising.

In addition, some empirical work on comparing algorithmic performance on instances with differ-

ent solution-density has been performed, and it has been shown that this measure can be used to choose

between stochastic and branching algorithms. In Chapter 5 I demonstrate a new way of characterising

SAT to CSP encodings based on the solution-density. In particular, I show that DUAL encoded instances

can have a lower proportion of solutions than the LITERAL encoded instances, for example. Since it

has been shown that solution-density is an important factor in determining the solubility of an instance,

my work provides a guide to assist in choosing one encoding over another. Also in Chapter 5 I use the

graph-theoretic framework to reconfirm and strengthen the equivalence between the Resolution-based

and Consistency-based proof methods, and introducing the concept of Extended-Consistency, thus pro-

viding a complete picture of the Frege, SAT and CSP proof-systems.

3.7.2 Empirical Studies Summary

Two key problematic aspects of previous empirical studies of SAT and CSP encodings often arise that

call into question the wider implications of the results. First, typically one type of problem is used as a

benchmark to compare encodings. Second, either stochastic or backtracking algorithms are applied to

the encoded problems. Clearly both of these choices may bias the results, since an encoding/algorithm

may ‘favour’ a particular problem. Although each author may proclaim the benefits of their encoding, a

rigorous empirical and theoretical investigation remains to be performed to definitively determine their

advantages and disadvantages. However, to perform such a comprehensive and rigorous survey of these

encodings is a mammoth task.

Whilst much current research focuses on how SAT techniques can be utilised by the Constraint

Satisfaction community, this thesis addresses the opposite, asking what CSP techniques can aid SAT.

In particular I show in Chapter 6 that converting SAT instances to CSP and applying local-consistency
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can solve many ‘hard’ SAT instances and even compete with state-of-the-art SAT-Solvers. Currently

there are two families of algorithm adopted by the SAT community, stochastic and branching. Branching

algorithms can prove both satisfiability and unsatisfiability, whereas stochastic algorithms can only prove

the former. Sophisticated local-consistency algorithms might be a viable approach to redress this balance,

unable to determine whether an instance is satisfiable but capable of proving unsatisfiability.

Although the general consensus is that bridging the two fields of Propositional Satisfiability and

Constraint Satisfaction is mutually beneficial, only a handful of researchers have crossed the chasm. As

the performance of SAT-Solvers begins to plateau, the necessity to look towards other fields for improved

solutions has become more important. Bennaceur (2004) suggests that comparative analysis between the

methods of these two frameworks might lead to the conception of hybrid methods for the SAT problem.



Chapter 4

Categorising Encodings

As discussed in the previous chapter, problems encoded using the DOUBLE encoding (Section 3.4.1)

unnecessarily repeats aspects of its own data-structure. This instance highlights one reason why it is

important to categorise the encoding landscape. In this chapter I demonstrate how all of the SAT to

CSP encodings (and vice-versa) can be categorised as one of three types of mappings (DOMAIN, CON-

STRAINT and COMBINED). Categorising the encodings in this general way is useful because it highlights

gaps that can be filled by several new CSP and SAT encodings, one of which (the INVERSE encoding) I

formally define and demonstrate its relative advantages over some of the other encodings.

4.1 Mapping Categories

Analysis of the CSP and SAT encodings highlight three categories of CSP mappings that I call:

1. DOMAIN

2. CONSTRAINT

3. COMBINED

These categories are inspired by observing how the CSP micro-structure is constructed and expressed.

4.1.1 DOMAIN Mapping

DOMAIN mappings map the variable domains of a CSP to the variables of the resulting CSP. The con-

straints of the original CSP map to constraints in the resulting CSP. Recall the definition of the SAT to

CSP NON-BINARY encoding:

Definition 4.1.1 (NON-BINARY encoding). Every CNF propositional variable is associated with a CSP

variable xj , each with the domain {0, 1}. The constraints are the partial assignments that fail to satisfy

each clause.

The CSP resulting from the NON-BINARY encoding of Formula 2.1 on page 56 is:

• V = {x0, x1, x2, x3}
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• D = {Dx0 ,Dx1 ,Dx2 ,Dx3}, where Dxi = {0, 1}, i < n

• C = {Cx0,x1,x2 , Cx0,x2,x3 , Cx0,x1,x3 , Cx1,x2,x3}, where

– Cx0,x1,x2 = {η{x0
0, x

0
1, x

0
2}, η{x1

0, x
0
1, x

1
2}}

– Cx0,x2,x3 = {η{x1
0, x

1
2, x

1
3}}

– Cx0,x1,x3 = {η{x0
0, x

1
1, x

0
3}}

– Cx1,x2,x3 = {η{x0
1, x

1
2, x

0
3}}

Figure 4.1 (from Section 3.3.3) represents the micro-structure complement of this CSP. We can see

clearly that this is a DOMAIN mapping since the component sets (new variable domains) map to each

variable in V , the nodes to D, and the 3-hypercliques (the new constraints) to the nogoods defined by

C. That is, the SAT variables map to CSP variables, and the clauses to the CSP nogoods (defined by the

constraints).

x0

�

�

0

1 x1

�

�
0

1

x2�

�

1

0

x3

�

�

1

0

Figure 4.1: Formula 2.1 as a Ḡ4
2 3-hypergraph using the NON-BINARY encoding. Variables are repre-

sented at the component sets, whereas the ternary clauses are represented as hyperedges that connect
three nodes (i.e. the unsatisfiable assignments to each clause).

None of the other SAT to CSP encodings described in Chapter 3 fit into the DOMAIN category. This

is in contrast to the CSP to SAT encodings. Recall the definitions of the CSP to SAT DIRECT, SUPPORT

and LOG encodings described in Section 3.1. It is clear that the variable domains of the CSP map to

new SAT variables (and positive clauses), with the CSP nogoods mapping to SAT clauses. Although

this is less obvious in the case of the LOG encoding we can see that the SAT variables result from the

logarithmic encoding of the CSP variable domains, with the SAT clauses constructed from the nogoods

defined by the CSP constraints.

By observing how the CSP instances encoded to SAT we can see that all of the CSP to SAT encod-

ings described in Chapter 3 encode the CSP variable domains to SAT variables, and CSP nogoods to SAT
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clauses (i.e. they are all DOMAIN mappings). This is summarised in Table 4.1. Notice that there are no

CONSTRAINT or COMBINED CSP to SAT encodings.

DOMAIN CONSTRAINT COMBINED

DIRECT

SUPPORT

LOG

MULTIVALUED

Table 4.1: Categorising the CSP to SAT encodings.

However, the most common SAT to CSP encodings (DUAL and LITERAL) map the SAT clauses to

CSP variables, with the SAT variables encoded as CSP constraints. This type of transformation I call the

CONSTRAINT mapping.

4.1.2 CONSTRAINT Mapping

The CONSTRAINT mapping is quite different from the DOMAIN mapping. Encodings that fall into the

CONSTRAINT category are constructed in such a way that the resulting CSP variable domains map to

some representation of the satisfying tuples of the original constraints, and the resulting constraints are

enforced by the variable domains in the original CSP. Given a CSP P we construct a new CSP P ′ using

some encoding, the distinction between the DOMAIN and CONSTRAINT mappings is as follows:

• DOMAIN Mapping:

– P variables �→ P ′ variables.

– P constraints �→ P ′ constraints.

• CONSTRAINT Mapping:

– P constraints �→ P ′ variables.

– P variables �→ P ′ constraints.

Figure 4.2 (from Section 3.3.1) below represents the CSP micro-structure complement of the LIT-

ERAL encoding of Formula 2.1. Notice that the nodes in the component sets (the new CSP variable

domains) are constructed from the SAT clauses. The edges enforce that two variables cannot take differ-

ent values. The LITERAL encoding can therefore be categorised as a CONSTRAINT mapping.

Similarly, recall the definition of the DUAL encoding in Section 3.3.2.

Definition 4.1.2 (DUAL encoding). With the DUAL encoding each clause C i is associated with a vari-

able ci ∈ V . The domain of ci is the set of satisfying assignments to the clause Ci. The set of constraints

C are binary and are posted between the CSP variables that have opposing proposition assignments.
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Figure 4.2: Formula 2.1 as a Ḡ5
3 graph using the LITERAL encoding.

The DUAL encoding takes the partial satisfying assignments to a clause and represents each clause

as a new CSP variable with its domain as those partial assignments satisfying it. The CSP binary con-

straints enforce that no original propositional variable can take different domain values. Loosely, the

DUAL encoding maps satisfying solutions of SAT clauses to CSP variables, with the SAT domains en-

force the CSP constraints Therefore we can see that it fits into the CONSTRAINT mapping category.

4.1.3 COMBINED Mapping

Encodings that fall into the COMBINED mapping category simply take the variables resulting from the

DOMAIN and CONSTRAINT mappings, and constructs the constraints in such a way that these variables

cannot take conflicting domain values that would violate the variables in the original CSP.

Both the PLACE and HIDDEN VARIABLE encodings are instances of the COMBINED mapping.

Take the PLACE encoding of Formula 2.1 (Section 3.3.4) as an example, Figure 4.3 illustrates how

this encoding produces the two component set sets (i.e. the variables from the LITERAL and NON-

BINARY encodings) and that the edges between the nodes ensure that the original variable domains are

not violated. Notice that these edges infer the constraints (the dotted binary and ternary edges) that

are explicitly stated in the two resulting CSPs that it is constructed from. In this case, the nodes and

implied edges encode the combined micro-structure complements of the LITERAL and NON-BINARY

encodings. Take the dotted edge between the nodes {cx1
0

0 , c
x0
0

4 } in Figure 4.3 for instance. Owing to some

of the constraints this edge cannot form an independent set with the nodes in the component set x 0. Since

the dotted edge cannot form a local independent set, it cannot be part of a global independent set, so an

edge can be safely added to the graph. Similarly, the dotted ternary independent set between the nodes

{x0
0, x

0
1, x

0
2} cannot be extended to an independent set (of size 4) with any node in the component set c 0,

so a 3-clique can also be safely added to the graph. In the next chapter I demonstrate that this inference

method is equivalent to Consistency and Resolution proof techniques in the SAT and CSP fields.
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Figure 4.3: Illustrating that the PLACE encoding is a combined LITERAL and NON-BINARY encoding.

Similarly, it is easy to see that the HIDDEN VARIABLE encoding is a combination of both the DUAL

and NON-BINARY encodings in exactly the same way that the PLACE encoding is a combination of the

LITERAL and NON-BINARY encodings. Table 4.2 shows the SAT to CSP encodings described in this

Chapter 3 categorised as DOMAIN, CONSTRAINT, COMBINED mappings.

DOMAIN CONSTRAINT COMBINED

NON-BINARY LITERAL PLACE

DUAL HIDDEN VARIABLE

Table 4.2: Categorising the SAT to CSP encodings.

4.2 INVERSE Encoding

In this section I introduce a new type of encoding that I call the INVERSE encoding inspired by the three

categories of mappings identified in this chapter. The CSP to SAT encodings described thus far fall into

the DOMAIN family, since with all these encodings the CSP variable domains map to SAT variables and

the constraints map to constraint clauses. Encodings that fall into the CONSTRAINT category have the

opposite mapping such that CSP constraints map to SAT variables and the CSP variable domains map to

the constraint clauses. COMBINED mappings are a combination between DOMAIN and CONSTRAINT

mappings.

Definition 4.2.1 (INVERSE encoding). The INVERSE encoding maps CSP satisfying assignments to SAT

variables, and constrains these variables using the CSP domains:
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• positive: a positive clause Ci is generated for each constraint, Ci, in C. The literals of Ci

each map to a unique tuple satisfying C i (i.e. there is a bijection between the satisfying-tuples

and literals). For instance if cj and ck are adjacent nodes in a GRAPH 3-COLOURABILITY

PROBLEM (i.e. a constraint Ccjck
) then the set of satisfying tuples for (cj , ck) would be

{γ{cR
j , cG

k }, γ{cR
j , cB

k }, γ{cG
j , cR

k }, γ{cG
j , cB

k }, γ{cB
j , cR

k }, γ{cB
j , cG

k }}, each mapping to a literal

in Ci (lcR
j cG

k
∨ lcR

j cB
k
∨ lcG

j cR
k
∨ lcG

j cB
k
∨ lcB

j cR
k
∨ lcB

j cG
k
).

• constraint: constraint clauses are specified by the domains of the CSP variables, they contain two

literals that have been mapped to the same variables but assigned different domain values. Using

the GRAPH 3-COLOURABILITY for example, if positive clause Ca contains the literal lcR
j cG

k
and

Cb contains the literal lcR
k cB

p
then the constraint clause ( l̄cR

j cG
k
∨ l̄cR

k cB
p
) would be generated. Intu-

itively, the constraint clauses specify that two literals cannot assign two different domain values to

the same variable.

• negative: negative clauses may be included to constrain the positive clauses to only have one

satisfying assignment. That is, for each positive clause Ci

∧
S⊂Ci

|S|=2

⎛
⎝∨

j∈S

l̄j

⎞
⎠

4.2.0.1 INVERSE Encoding Complexity

On the assumption that a CSP has n variables (each with a fixed domain size m) and q constraints (with

arity r), the INVERSE encoding will generate a SAT instance with O(qm r) variables and q + O(q2mr)

clauses:

• q positive clauses of size O(mr)

• O(q2mr) binary constraint clauses

Recall Example 2.2.3 which has 5 variables (each with ternary domains) and 6 binary constraints. There

are 6 (O(33)) partial satisfying assignments to each of the 6 constraints. This generates 6 positive clauses

of size 6. The maximum number of unique binary clauses over these 36 literals is 6 2 + 33. Appendix

B.2 shows the SAT encoding of Example 2.2.3 using the INVERSE encoding (excluding the negative

clauses), and Figure 4.4 represents its (partial) G6
6 graph (note that this is the micro-structure, not the

complement).

Table 4.3 shows a summary of the complexity of the INVERSE encoding with respect to the others.

These encodings are based on a CSP with n variables with domain size m, and q r-ary constraints. The

notation a : b denotes that a clauses are generated of arity b.
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Figure 4.4: The (partial) G6
6 graph of Example 2.2.3 mapped to SAT using the INVERSE encoding.

Notice that the partial satisfying assignments to a constraint map to component sets, and binary edges
connect nodes that represent variables that do not violate the variable domain assignments.

encoding propositions positive negative constraint

DIRECT nm n : m n
(
m
2

)
: 2 q : r

SUPPORT nm n : m n
(
m
2

)
: 2 2q : m

LOG n�log2(m)� 0 q(2�log2(m)� − n) : �log2(m)� q : r�log2(m)�
MULTIVALUED nm n : m 0 q : r

INVERSE O(qmr) q : O(mr) 0 O(q2mr) : 2

Table 4.3: The CSP to SAT encoding complexity, including the INVERSE encoding.

As highlighted in Section 3.1.1, it is not always feasible to encode CSP problems into SAT using

the DIRECT encoding. Take a simple example CSP.

Example 4.2.1. Given a CSP = (V ,D, C), such that

• V : {a, b, c}

• D : Da = Db = Dc = {1, 2, . . . , 1024}

• C : b = 2a, c = (b − 1)2, a = 3
√

c

Translated to SAT using the DIRECT encoding, this example will generate:

• 3 positive clauses of arity 1024

• over 3 million binary constraint clauses

• over 1.5 million binary negative clauses

The INVERSE encoding is much more compact, generating only:
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• 3 positive clauses:

– 1 of arity 10 (Ca,b)

– 1 of arity 6 (Ca,c)

– 1 of arity 32 (Cb,c)

• less than 600 binary constraint clauses

• approximately 550 binary negative clauses

The INVERSE encoding is preferable when the number of partial satisfying assignments to the con-

straint is small, since each partial satisfying assignment gets mapped to a SAT variable. If, on the other

hand, a problem has constraints that have many partial satisfying assignments, then careful consideration

should be taken to decide which encoding is best to use.

4.3 Chapter Summary and Discussion

After defining three types of mapping categories, I demonstrate that the encodings described in the

previous chapter can be categorised as either a DOMAIN, CONSTRAINT or COMBINED mapping. As a

result of this categorisation a new encoding from CSP to SAT, the INVERSE encoding, is defined and it is

shown to have some benefits over other encodings with respect to the compactness of the representation.

I use a simple example to demonstrate that the INVERSE encoding is preferable when the number of

partial satisfying assignments to the constraints are small. With a simple calculation researchers might

find that they can now practically represent some CSP problems as SAT using the INVERSE encoding

that were previously impractical.

The INVERSE encoding resulting from this categorisation demonstrates another benefit of examin-

ing the relationship between SAT and CSP research. With the introduction of this new encoding it is now

possible to define COMBINED mappings for CSP to SAT encodings and explore the benefits that these

new encodings may bring. For instance, the same way that the PLACE encoding is the combination of

the LITERAL and NON-BINARY encodings a new encoding for CSP to SAT can be formed by combining

the DIRECT and INVERSE encodings. I summarise these in Table 4.4, however, since the focus of this

thesis is on SAT to CSP encodings, exploring the relative benefits of these new encodings is left as an

open challenge.
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DOMAIN CONSTRAINT COMBINED

DIRECT INVERSE INVERSE + DIRECT

SUPPORT INVERSE + SUPPORT

LOG INVERSE + LOG

Table 4.4: Categorising the CSP to SAT encodings.



Chapter 5

Characterising SAT to CSP Encodings

Though the fields of Constraint Satisfaction and Propositional Satisfiability have developed relatively

independently, I have shown that working with the micro-structure can help us understand the similarities

and differences between the two disciplines. In Chapter 4 the focus was on the expressive power of

SAT and CSPs, in this chapter I provide a theoretical analysis comparing the work that polynomial-

time techniques achieve on problems encoded as SAT and CSP, where ‘work’ is defined as the level of

consistency that these polynomial-time techniques achieve on CSP and SAT instances.

As discussed in Chapter 3 the solution-density is one measure that can sometimes be used to de-

termine performance of stochastic and branching algorithms on problem instances. In particular, it has

been shown that stochastic algorithms can perform better on problems with a higher solution-density.

In the first part of this chapter I separate SAT to CSP encodings according to their solution-density and

prove that some encodings will result in CSPs with more solutions than others. This is important, as it

may help guide which encoding should be used in a particular situation (i.e. problem type and available

algorithm).

The second part of this chapter addresses the gap in the theoretical research that compares the

performance of Resolution and Consistency based techniques on the various encodings. For instance, I

show that although there is a space overhead associated with DUAL encoded problems in comparison to

using the LITERAL encoding, enforcing local-consistency on the resulting CSP does much more work. I

also prove that enforcing path-consistency on LITERAL encoded 3-SAT instances does zero work if each

clause has distinct literals, which explains the empirical results presented in the next chapter.

Finally, I investigate the proof-systems in both the SAT and CSP research areas, and show that the

graph-theoretic approach is a useful framework to explore the similarities and differences between these

techniques. In particular, I demonstrate that (strong-)Consistency and Resolution are exactly the same

technique; in graph-theoretic terms both infer implicit nogoods by taking a clique and showing that it

cannot extend to a larger clique and hence cannot be part of a global clique. Inspired by the work of

Tseitin, Baker and Mitchell I define Extended-Consistency (the generalisation of Extended-Resolution)
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which allows synergies between these two extended proof-systems to be explored. Using an example I

demonstrate a simple automated method for introducing auxiliary variables with the aim of promoting

the development of algorithms that might exploit the potential of these powerful proof-systems.

5.1 Solution Separation of SAT to CSP Encodings

In this section I provide a characterisation of SAT to CSP encodings according to their solution-density.

By analysing the resulting micro-structure I show that CSP encoded SAT problems result in different

solution-densities.

5.1.1 LITERAL Encoded Solutions

When encoding SAT problems to CSP using the LITERAL encoding, it is important to notice that there

is a surjective and non-injective mapping from the n-cliques in the Gn
k graph to the solution-tuples

satisfying the original SAT instance. To phrase it another way, there may be more n-cliques in the

resulting CSP micro-structure than satisfying assignments to the original SAT instance. That is, the

CSP resulting from the LITERAL encoding of a SAT instance can include more solution-tuples than the

number of satisfying assignments.

Recall the CSP micro-structure complement of the LITERAL encoding of Formula 2.1 in Section

3.3.1 (shown in Figure 5.1). Notice for instance that a (dotted) 5-clique, γ{cx1
0

0 , c
x0
2

1 , c
x0
2

2 , c
x1
0

3 , c
x0
2

4 } can

be formed in Figure 5.1 stating that {x1
0, x

0
2} satisfies Formula 2.1 regardless of the assignments to the

remaining literals (this can be verified by looking at Table 3.3).
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� � �
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0
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1 x1
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�
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1
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�
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x1
3
x0
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3
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2
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1

Figure 5.1: The Ḡ5
3 LITERAL encoded Formula 2.1, highlighting the γ{x1

0, x
0
2} solution.

Remark 5.1.1. The CSP resulting from the LITERAL encoding of a satisfiable SAT instance Ψ may

contain more (but no less) solution-tuples than the number of assignments satisfying Ψ.

In terms of the micro-structure,
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Remark 5.1.2. the Gn
k graph resulting from the LITERAL encoding of a satisfiable SAT instance Ψ may

contain more (but no less) n-cliques than the number of assignments satisfying Ψ.

Remark 5.1.3. The size of the search-space of a LITERAL encoded k-SAT instance Ψ is k m, where m

is the number of clauses in Ψ.

5.1.2 DUAL Encoded Solutions

In contrast to the LITERAL encoding, given a SAT instance Ψ, the DUAL encoding produces a G n
k graph

where there is a bijection between the n-cliques and satisfying assignments to Ψ. This means that the

Gn
k graph contains exactly the same number of n-cliques as there are satisfying solutions to Ψ. As far as

I am aware this distinction has not been made previously.

Theorem 5.1.4. Let Ψ be a 3-SAT formula and let (Gn
7 , (Si : i < n)) be the instance of Gn

7 , which is

the micro-structure of the CSP obtained from Ψ using the DUAL encoding (where S i is an independent

set of nodes of Gn
7 ). There is a bijection from the set of valuations satisfying Ψ to the set of n-cliques of

Gn
7 .

Proof. Let υ be any valuation to the propositions occurring in a 3-SAT formula Ψ =
∧
i<n

Ci. For each

i < n let υi be the partial valuation obtained by restricting υ to the propositions in C i.

The required bijection is

θ : υ �→ {(i, υi) : i < n}.

Note that if υ satisfies Ψ (i.e. υ(Ψ) = �) then υ satisfies each of the n clauses of Ψ, hence the restriction

υi satisfies the i’th clause, so (i, υi) ∈ Si. Also, for any i, j < n, the partial valuations υi, υj cannot

contradict each other, since they are restrictions of the same valuation υ. Hence, if υ satisfies Ψ then

{(i, υi) : i < n} is an n-clique of Gn
7 , so θ is well-defined. To see that θ is injective, let υ �= ω be two

valuations on the propositions occurring in Ψ. Since υ �= ω there must be i < n such that υ i �= ωi, hence

θ(υ) �= θ(ω). To see that θ is surjective, let X be any n-clique of the graph Gn
7 . X contains exactly one

node from each independent set S i, so let (i, ωi) ∈ X (each i < n) where ωi ∈ Si. Since X is a clique,

none of the ωi’s contradict each other, hence ω =
⋃{ωi : i < n} is a well-defined valuation satisfying

Ψ, and ω maps to X , as required.

Remark 5.1.5. The size of the search-space of a DUAL encoded k-SAT instance Ψ is (2 k−1)m, where

m is the number of clauses in Ψ.

For DUAL encoded problems I show that there is a bijection between the CSP solutions and sat-

isfying assignments to the original SAT instance. This is significant because it highlights a way to

differentiate between the ‘nature’ of these encodings. Also, since the solution-density of these encodings
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may differ previous literature suggests that satisfiable LITERAL encoded problems could be easier to

solve by means of applying a stochastic algorithm than other encodings.

If we take Formula 2.1 as an example. Table 3.3 (Chapter 3) lists the eight satisfying assignments

to Formula 2.1. The CSP resulting from the DUAL encoding contains exactly eight full satisfying as-

signments (eight n-cliques in the CSP micro-structure), whereas the CSP generated by the LITERAL

encoding contains 48 full satisfying assessments. The difference between the two encodings is even

more compelling when one compares the solution-densities. The original SAT instance has 2 4 (16) pos-

sible full assignments, of which 50% (8) are satisfiable. Notice that there are 7 5 possible full assignments

in the DUAL encoding, whereas there are only 35 when LITERAL encoded. The DUAL encoded version

thus has a solution-density of
8

16, 807
with the LITERAL encoding having a solution-density of

48
243

.

5.1.3 NON-BINARY Encoded Solutions

Similarly for the NON-BINARY encoding, the Gn
2 also contains the same number of n-cliques1 as there

are satisfying solutions to a SAT instance translated to CSP using the NON-BINARY encoding.

Theorem 5.1.6. Let Ψ be a 3-SAT formula and let (Gn
2 , (Si : i < n)) be the instance of Gn

2 , which is the

micro-structure of the CSP obtained from Ψ by the NON-BINARY encoding (where S i is an independent

set of nodes of Gn
2 ). There is a bijection from the set of valuations satisfying Ψ to the set of n-cliques of

Gn
2 .

Proof. Since each n-clique must include one node from each set S i, and each Si represents a proposition,

then every n-clique must map to a valuation that includes all propositions (i.e. there are no possible

partial valuations to the propositions as in the case of the LITERAL encoding).

Remark 5.1.7. The size of the search-space of a NON-BINARY encoded k-SAT instance Ψ is 2n, where

n is the number of propositions in Ψ.

5.1.4 PLACE and HIDDEN VARIABLE Encoded Solutions

In Chapter 4 I showed that the PLACE and HIDDEN VARIABLE encodings are combinations of NON-

BINARY + LITERAL, and NON-BINARY + DUAL respectively. Given this, determining the mapping

between SAT satisfying assignments and CSP solution-tuples for these encodings is straightforward. For

instance, the number of solution-tuples resulting from the translation of SAT to CSP using the PLACE

encoding is the maximum number of solution-tuples in either the NON-BINARY or LITERAL encoding.

This means that the number of solution-tuples in CSP resulting from the PLACE encoding is equal to

the number of solution-tuples resulting from the LITERAL encoding, since the LITERAL encoding has at

least as many solution-tuples as the CSP generated using the NON-BINARY encoding. As a result, we

can make the following remark:

1Though in this case the n-cliques are made up of hyperedges rather than edges.
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Remark 5.1.8. The PLACE encoding of a SAT instance Ψ produces a CSP with the same number of

solution-tuples as the CSP resulting from the LITERAL encoding of Ψ. This CSP encoding can produce

more (but no less) solution-tuples than the number of satisfying solutions to the original SAT instance.

Similarly the CSP resulting from the HIDDEN VARIABLE encoding has the same number of

solution-tuples as the maximum number of solution-tuples resulting from using either the NON-BINARY

or DUAL encoding. I have proven that there is a bijection between the CSP solution-tuples and SAT

satisfying assignments for both the NON-BINARY and DUAL encodings. This means that the SAT and

resulting CSP instance both have the same number of solutions.

Remark 5.1.9. The HIDDEN VARIABLE encoding of a SAT instance Ψ produces a CSP with the same

number of solution-tuples as the CSP resulting from the NON-BINARY and DUAL encodings of Ψ. This

encoding produces a CSP with the same number of solutions as the original SAT instance.

It is easy to see that enforcing path-consistency on PLACE and HIDDEN VARIABLE encoded prob-

lems generate the nogoods that are already explicit in their constituent parts. For example, a PLACE

encoded instance contains the same nodes from both the NON-BINARY and LITERAL encodings. Re-

call Figure 5.2 below from the previous chapter. Notice the binary constraints are posted between the

two groups of component set (c and x), but not within each of the two sets. The dotted edges between c

nodes will only be found by enforcing path-consistency, whereas only 4-consistency will find the ternary

(dotted) hyperedges between the x nodes.
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x1
2
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�

�
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�
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1
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1
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1

0
�
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Figure 5.2: Illustrating that the PLACE encoding is a combined LITERAL and NON-BINARY encoding.

Given this, although Jarvisalo & Niemela (2004) points out that the PLACE encoding is the only

one that generates a linear number of clauses, this does come at a cost. This encoding requires en-
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forcing a level of local-consistency for it to explicitly represent the same constraints as the LITERAL

and NON-BINARY encodings. The nogoods in Figure 5.2 (dotted lines) are not explicitly added un-

til strong-4-consistency is applied to the CSP. In addition, although enforcing strong-k-consistency on

PLACE encoded ‘strict’ k-SAT instances will find the same constraints explicitly represented in the cor-

responding LITERAL encoding, it does zero extra work than when simply encoding the instance into its

two constituent parts (i.e. a LITERAL and NON-BINARY encoding).

5.2 Local-Consistency Analysis of SAT to CSP Encodings

In Chapter 3 I argued that although a large amount of theoretical analysis comparing stochastic and

branching SAT and CSP algorithmic techniques has been carried out very little research has been done

comparing local-consistency algorithms for each framework. As the performance of SAT-Solvers be-

gins to plateau the SAT community are looking for alternative methods to improve the performance of

their algorithms, and in recent years a flurry of work has looked at the use of ‘practical’ preprocessing.

Enforcing local-levels of consistency is one form of preprocessing, and in this section I provide a com-

prehensive theoretical comparison of the work Resolution and Consistency do on the various SAT to CSP

encodings.

5.2.1 Resolution ≡ Consistency

In this section I show that it is possible to compare strong-consistency with nogood-Resolution for these

encodings, but first it is necessary to define several extensions to the NG-RES proof-system.

Definition 5.2.1 (k-NG-RES). Given that the domain of a variable x is {0, 1, . . . , d− 1}, the k-nogood

Resolution Rule allows one to infer nogoods of arity less than k:

η{{x0} ∪ X0}
η{{x1} ∪ X1}

...
η{{xd−1} ∪ Xd−1}

N = η{X0 ∪ X1 ∪ · · · ∪ Xd−1}, where |N | < k

where Xi is a partial assignment (for i < d), and η{{x0}∪X0}, η{{x1}∪X1}, . . . , η{{xd−1}∪Xd−1}
are nogoods.

It is well known that the various CSP techniques I have discussed are essentially constructing resolu-

tion proofs (Baker (1995)). This is easy to see using graphs as an intermediary framework and observing

the behaviour of the respective algorithmic techniques. In graph-theoretic terms both the Resolution and

Consistency algorithms state the same thing, namely, given a Gn
k graph if a k-clique cannot extend to

a (k + 1)-clique, then this k-clique cannot be part of an n-clique. These two concepts can be seen in

Figures 5.3 and 5.4.
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Figure 5.3 uses the GRAPH COLOURABILITY Example 2.2.3 and shows how a 3-ary nogood,

{xR
0 , xG

3 , xB
2 }, can be added to the graph (using a strong-4-consistency algorithm) because this set cannot

extend to any domain value (node) in x1.
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Figure 5.3: Consistency as a clique proof-system. Enforcing 4-consistency would uncover the nogood
η{xR

0 , xB
2 , xG

3 } since it cannot to extend to any domain value in variable x 1. Enforcing 4-NG-RES
achieves the same result.
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Figure 5.4: Resolution as a clique proof-system. Enforcing 5-consistency would uncover the nogood
η{x1

1, x
0
2, x

1
3, x

1
4} since it cannot to extend to any domain value in variable x 0. Enforcing 5-NG-RES

achieves the same result.

Similarly, Figure 5.4 shows a hypothetical situation where two ternary constraints, 〈〈x0, x3, x4〉, \{〈0, 1, 1〉}〉
and 〈〈x0, x1, x2〉, \{〈1, 1, 0〉}〉, (derived from the clauses (x0 ∨ x̄3 ∨ x̄4) and (x̄0 ∨ x̄1 ∨ x2)) imply that

the set {x1
1, x

0
2, x

1
3, x

1
4} cannot extend to any domain node in x0, so the corresponding 4-ary nogood can

be safely added to the graph:

η{x0
0, x

1
3, x

1
4}

η{x1
0, x

1
1, x

0
2}

η{x1
1, x

0
2, x

1
3, x

1
4}
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This is exactly the same as resolving on x0 over the two clauses (x0 ∨ x̄3 ∨ x̄4) and (x̄0 ∨ x̄1 ∨ x2)

as follows:

x0 ∨ x̄3 ∨ x̄4 x̄0 ∨ x̄1 ∨ x2

x̄3 ∨ x̄4 ∨ x̄1 ∨ x2

5.2.2 Local-Consistency on the NON-BINARY Encoding

Hooker (2007) showed that k-resolution is equivalent to strong-k-consistency; where k-resolution is a

version of the Resolution proof method restricting all resolvent clauses to less than size k.

Theorem 5.2.1 (Hooker (2007), Theorem 3.22). Enforcing k-Resolution on a SAT instance Ψ is equiva-

lent to enforcing strong-k-consistency on the CSP resulting from the NON-BINARY encoding of Ψ. More

precisely, the diagram shown in Table 5.1 is a commuting diagram.

For instance, enforcing strong-3-consistency on NON-BINARY encoded SAT instances achieves

3-Resolution on the original instance.

k-SATm
n −→ NON-BINARY −→ CSPn

2

Ψ Φ

↓ ↓
k-Resolution strong-k-consistency

↓ ↓
Ψ’ −→ NON-BINARY −→ Φ’

Table 5.1: The algorithmic equivalence of Resolution and Consistency on NON-BINARY encodings.

5.2.3 Local-Consistency on the LITERAL Encoding

de Kleer (1989) originally defined the set of CNF-based inference rules (described in Section 3.2.2.1)

that do the same work as strong-k-consistency on DIRECT encoded CSP instances:

(x0 ∨ x1 ∨ · · · ∨ xi−1)
(x̄0 ∨ X0)
(x̄1 ∨ X1)

...
(x̄i−1 ∨ Xi−1)

(X0 ∨ X1 ∨ · · · ∨ Xi−1)

where Xj are clauses and xj are literals, for j < i.

de Kleer’s inference rules describe a Resolution procedure - that is equivalent to enforcing Consis-

tency - of a CSP that has been encoded to CNF using the DIRECT encoding. Without wishing to cause

confusion I will refer to de Kleer’s inference rules as NG-RES so as to be able to distinguish between

the application of Resolution and Consistency-based techniques on their respective problem domains. In

summary,



5.2. Local-Consistency Analysis of SAT to CSP Encodings 90

• NG-RES is a Resolution-based procedure applied to SAT instances.

• strong-consistency is a Consistency-based procedure applied to CSP instances.

Remark 5.2.2 (de Kleer (1989)). Enforcing strong-k-consistency on a CSP Φ is equivalent to enforcing

k-NG-RES on the SAT instance resulting from the DIRECT encoding of Φ. More precisely, the diagram

shown in Table 5.2 is a commuting diagram.

CSP −→ DIRECT −→ SAT

Φ Ψ

↓ ↓
strong-k-consistency k-NG-RES

↓ ↓
Φ’ −→ DIRECT −→ Ψ’

Table 5.2: The algorithmic equivalence of Resolution and Consistency on DIRECT encodings.

Similarly for the LITERAL encoding of a SAT instance, enforcing strong-k-consistency on the re-

sulting CSP performs exactly the same procedure as k-NG-RES (see Table 5.3). When applying strong-

k-consistency, a partial assignment (of arity (k − 1) or less) becomes a nogood if it cannot extend to

at least one partial satisfying assignment that includes each other variable. Recall that the LITERAL

encoding derives each CSP variable from each SAT clause. With k-NG-RES, clauses are resolved if a

set of literals cannot extend to at least one other literal in each clause. Since both of these methods have

the same variables and domains, and both ‘exhaust the domain’ to resolve conflicts, they both do exactly

the same amount of work. This can be verified easily by observing the behaviour of two algorithmic

procedures on the resulting micro-structure.

Theorem 5.2.3. Enforcing k-NG-RES on a SAT instance Ψ is equivalent to enforcing strong-k-

consistency on the CSP resulting from the LITERAL encoding of Ψ. More precisely, the diagram shown

in Table 5.3 is a commuting diagram.

j-SATm
n −→ LITERAL −→ CSP m

j

Ψ Φ

↓ ↓
k-NG-RES strong-k-consistency

↓ ↓
Ψ’ −→ LITERAL −→ Φ’

Table 5.3: The algorithmic equivalence of Resolution and Consistency on LITERAL encodings.
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For instance, enforcing strong-3-consistency on LITERAL encoded SAT instances achieves 3-NG-

RES on the original instance.

A very important practical result of this theorem is that enforcing strong-k-consistency achieves

nothing on k-SAT instances with clauses containing distinct literals.

Theorem 5.2.4. Given any k-SAT instance encoded to a CSP using the LITERAL encoding, enforcing

strong-k-consistency has no effect when the k-SAT instances have clauses containing distinct literals.

Proof. Proof by contradiction. Let us assume that some nogood, N , of arity k − 1 has been discovered

by enforcing strong-k-consistency. This means that the partial assignment N cannot form a partial

satisfying assignment with some variable, I , that has a domain of size k. I has been derived from some

clause of size k, and by definition each literal was distinct. However, since the size of N is less than k,

some element of N must be inconsistent with two values of I . Given that, in the LITERAL encoding,

binary constraints are posted between variables that have complementary assignments, this means that I

must contain literals that are not distinct. Hence, we have a contradiction.

For example, enforcing strong-3-consistency on a LITERAL encoded 3-SAT instance (with each

clause having three distinct literals) will prune zero edges from the corresponding micro-structure.

Figure 5.5 is the CSP micro-structure complement of the LITERAL encoding of 3-SAT Formula 2.1.

Notice that if we enforce strong-3-consistency on this instance that every binary independent set can

form an independent set with at least one node from each other component set. For a binary nogood

(edge) to be derived it must not extend to a solution to any node in at least one component set, but this

would only be possible if a component set did not have three distinct literals. For example, the dotted

edge {Cx1
0

0 , C
x0
1

3 } can extend (dashed lines) to only one node in the component set C 1 (Cx0
2

1 ), since the

arity of the component set is greater than the arity of the nogood we are trying to derive.
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Figure 5.5: Illustrating that enforcing strong-3-consistency on LITERAL encoded 3-SAT instances (that
have distinct literals) does zero work.



5.2. Local-Consistency Analysis of SAT to CSP Encodings 92

Notice also that the relative work done by the Resolution and Consistency techniques on instances

encoded using the NON-BINARY and LITERAL encodings appear to be identical. However, there are

cases in which more nogoods are found in instances using the NON-BINARY encoding than using the

LITERAL when applying strong-k-consistency techniques. For instance, given two clauses (x 0∨x1∨x2)

and (x̄0 ∨ x1 ∨ x2), strong-3-consistency applied to the NON-BINARY encoding would resolve:

η{x0
0, x

0
1, x

0
2}

η{x1
0, x

0
1, x

0
2}

η{x0
1, x

0
2}

Whereas in the LITERAL encoded instance the pair {x0
1, x

0
2} can form a partial satisfying solution with

the x0
0 and x1

0 variables in the two component sets derived from the two clauses. Another practical con-

sequence of this result is that (in this instance) enforcing a local-level of consistency on NON-BINARY

encoded SAT instances does more work than when they are encoded using the LITERAL encoding.

5.2.4 Local-Consistency on the DUAL Encoding

Definition 5.2.2 ((i, j)-NG-RES). Given a CSP = (V ,D, C). The (i, j)-nogood Resolution Rule allows

one to infer nogoods of arity i or less. Given a partial assignment A, |A| ≤ i, if for all partial satisfying

assignments B, |B| ≤ j A ∪ B is a conflict, then we can deduce that A is a nogood, η(A).

That is, if some partial assignment I (of size i and less) cannot extend to a partial satisfying assign-

ment J (of arity j and less), then I is a nogood.

Theorem 5.2.5. Enforcing (j(k − 1), j)-NG-RES on a j-SAT instance Ψ is equivalent to enforcing

strong-k-consistency on the CSP resulting from the DUAL encoding of Ψ. More precisely, the diagram

shown in Table 5.4 is a commuting diagram.

Proof. For any j-SAT instance, CSP variable domains represent partial satisfying assignments to j literals

when DUAL encoded. This means that any set of (k − 1) CSP variables encodes at most j(k − 1) SAT

literals. When enforcing strong-k-consistency, if a partial satisfying variable assignment of size (k−1) (a

partial satisfying assignment to j(k−1) SAT literals) cannot extend to a k th partial satisfying assignment

(a partial satisfying assignment to j SAT literals) in each domain then it becomes a nogood. By definition,

this is exactly the same procedure as (j(k − 1), j)-NG-RES.

For instance, enforcing strong-3-consistency on DUAL encoded 3-SAT instances achieves (3(3 −
1), 3)-NG-RES on the original instance, i.e. (6, 3)-NG-RES. Notice that enforcing a local-level of con-

sistency on DUAL encoded k-SAT instances does more work than it does on either the NON-BINARY

and LITERAL encoded instances (3-Resolution and 3-NG-RES respectively).

5.2.5 Local-Consistency on the PLACE and HIDDEN VARIABLE Encodings

Using the framework defined in Chapter 4 it is easy to extend these theoretical results to the PLACE and

HIDDEN VARIABLE encodings. I showed in Chapter 4 that these two encodings were constructed by
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j-SATm
n −→ DUAL −→ CSP m

2j−1

Ψ Φ

↓ ↓
(j(k − 1), j)-NG-RES strong-k-consistency

↓ ↓
Ψ’ −→ DUAL −→ Φ’

Table 5.4: The algorithmic equivalence of Resolution and Consistency on DUAL encodings.

combining NON-BINARY + LITERAL and NON-BINARY + DUAL, respectively. Let us label the CSP

variables resulting from the PLACE and HIDDEN VARIABLE encodings in the following way:

• PLACE: PLACENON-BINARY + PLACELITERAL

• HIDDEN VARIABLE: HIDDEN VARIABLENON-BINARY + HIDDEN VARIABLEDUAL

As a result we can prove the following theorems:

Theorem 5.2.6. Enforcing strong-k-consistency on PLACE encoded SAT instances achieves k-NG-RES

on the SAT literals represented by the PLACELITERAL variables and k-NG-RES on the PLACENON-BINARY

variables.

Proof. Theorem 5.2.1 and Theorem 5.2.3 states that enforcing strong-k-consistency on NON-BINARY

and LITERAL encoded SAT instances (respectively) achieves k-NG-RES on each instance. Since PLACE

encoded SAT instances are constructed by adding constraints between NON-BINARY and LITERAL en-

coding variables (defined by PLACE NON-BINARY and PLACELITERAL ) that have contradictory assignments,

then enforcing strong-k-consistency on these instances achieves k-NG-RES on PLACE NON-BINARY and

PLACELITERAL .

Theorem 5.2.7. Enforcing strong-k-consistency on HIDDEN VARIABLE encoded j-SAT instances

achieves (j(k − 1), j)-NG-RES on the SAT literals represented by the HIDDEN VARIABLEDUAL vari-

ables and k-NG-RES on the HIDDEN VARIABLENON-BINARY variables.

Proof. Theorem 5.2.1 states that enforcing strong-k-consistency on NON-BINARY encoded SAT in-

stances achieves k-NG-RES. Theorem 5.2.5 states that enforcing strong-k-consistency on DUAL en-

coded SAT instances achieves (j(k − 1), j)-NG-RES. Since HIDDEN VARIABLE encoded SAT in-

stances are constructed by adding constraints between NON-BINARY and DUAL encoding vari-

ables (defined by HIDDEN VARIABLENON-BINARY and HIDDEN VARIABLEDUAL) that have contradic-

tory assignments, then enforcing strong-k-consistency on these instances achieves k-NG-RES on

HIDDEN VARIABLENON-BINARY and (j(k − 1), j)-NG-RES on HIDDEN VARIABLEDUAL .
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5.3 Extended-Consistency

In the same way that Baker (1995) generalises the Resolution Rule for CSP (which Mitchell (2003) calls

NG-RES, described in Section 5.2.1) here I generalise the Extended-Resolution Extension Rule for any

CSP with a finite size domain. I call this Extended-Consistency.

As discussed in Chapter 3, the Consistency proof-system was only recently explicitly defined by

Atserias et al. (2004) who argued importance of ‘mapping’ the proof-system space. In this section, I

demonstrate the value of using a graph-theoretic approach and use it to extend the Consistency proof-

system. Inspired by the relationship between the Resolution and Consistency algorithmic techniques

described throughout this chapter, the aim of introducing Extended-Consistency is to provide a general

platform to allow the CSP and SAT communities to share knowledge about these extended proof-systems

and to begin to exploit synergies that might be mutually beneficial to each field.

Recall that given that the domain of a variable x is {0, 1, . . . , (d− 1)}, the nogood Resolution Rule

allows one to infer nogoods by resolving on x:

η{{x0} ∪ X0}
η{{x1} ∪ X1}

...
η{{xd−1} ∪ Xd−1}

η{X0 ∪ X1 ∪ · · · ∪ Xd−1}
where Xi is a partial assignment (for i < d), and η{{x0}∪X0}, η{{x1}∪X1}, . . . , η{{xd−1}∪Xd−1}

are nogoods. This may result in the inference of a nogood with arity
d−1∑
i=0

|Xi|. Sometimes is it undesirable

to generate constraints with large arity, so by introducing new variables one can ensure a problem’s arity

never exceeds either |(d − 1)| or max(|Xi| + 1), whichever is larger.

Definition 5.3.1 (Extended-Consistency). Given a CSP = (V ,D, C) (for simplicity assume that each

variable has the same domain cardinality d, apart from the new variables, which are Boolean), and a set

of nogoods η{{x0} ∪X0}, η{{x1} ∪X1}, . . . , η{{xd−1} ∪Xd−1}, where a variable x has the domain

{0, 1, . . . , (d − 1)}. We add a new Boolean variable vi to V (not previously in V) for each Xi such that

vi ↔ Xi.

That is, for each yb
i ∈ Xi the following set of constraints are added to C:

d−1⋃
j=0,j 	=b

〈〈vi, yi〉, \{〈0, j〉}〉

where b is the domain assignment to variable yi. Also, for each Xi we add 〈〈vi, V (Xi)〉\{〈1, D(Xi)〉}〉,
where V (Xi) is the list of variables of Xi and D(Xi) is the list of domain assignments that map to those
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variables. Once the set of new variables have been included the last constraint that remains to be added

to C is 〈〈v1, v2, . . . , vd〉, \{〈1, 1, . . . , 1〉}〉.

This is best illustrated by use of an example.

Example 5.3.1. Suppose we have the CSP = (V ,D, C):

• V : {x0, x1, x2, x3, x4, x5, x6}

• D : Dx0 = Dx1 = Dx2 = Dx3 = Dx4 = Dx5 = Dx6 = {0, 1, 2}

• C :

– 〈〈x0, x5, x6〉, \{〈0, 2, 0〉}〉

– 〈〈x0, x3, x4〉, \{〈1, 1, 2〉}〉

– 〈〈x0, x1, x2〉, \{〈2, 2, 0〉}〉

The micro-structure complement for this CSP is shown in Figure 5.6, which has seven vari-

ables (with domains {0, 1, 2}) and three ternary constraints. In this example the three constraints

〈〈x0, x5, x6〉, \{〈0, 2, 0〉}〉, 〈〈x0, x3, x4〉, \{〈1, 1, 2〉}〉 and 〈〈x0, x1, x2〉, \{〈2, 2, 0〉}〉 imply that the set

of nodes {x2
5, x

0
6, x

1
3, x

2
4, x

2
1, x

0
2} cannot extend to any domain value in x0, generating the nogood

η{x2
5, x

0
6, x

1
3, x

2
4, x

2
1, x

0
2} (represented as new dotted 6-ary hyperedge):

η{x0
0, x

2
5, x

0
6}

η{x1
0, x

1
3, x

2
4}

η{x2
0, x

2
1, x

0
2} Dx0 = 0, 1, 2

η{x2
5, x

0
6, x

1
3, x

2
4, x

2
1, x

0
2}

Let us assume that it is undesirable to generate constraints with arity larger than three. We can

introduce three new Boolean variables {v0, v1, v2} such that

v0 ↔ {x2
5, x

0
6}

v1 ↔ {x1
3, x

2
4}

v2 ↔ {x2
1, x

0
2}.

Take v0 ↔ {x2
5, x

0
6}, for instance, the following constraints are required to represent this formula (this

is illustrated in Figure 5.7, where the dashed tri-clique is a hyperedge).

〈〈v0, x6〉, \{〈0, 1〉}〉
〈〈v0, x6〉, \{〈0, 2〉}〉
〈〈v0, x5〉, \{〈0, 0〉}〉
〈〈v0, x5〉, \{〈0, 1〉}〉

〈〈v0, x5, x6〉, \{〈1, 2, 0〉}〉.
The desired outcome is that when {x2

5, x
0
6} is assigned, then we have v0

0 , otherwise v1
0 . Notice in Figure

5.7 that v0
0 can only form a clique with {x2

5, x
0
6}, whereas all other combinations of x5 and x6 can only

extend to v1
0 .
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Figure 5.6: Example 5.3.1 CSP micro-structure complement.

We do the same for v1 and v2, finally adding the constraint 〈〈v0, v1, v2〉, \{〈0, 0, 0〉}〉 (implying

η{x2
5, x

0
6, x

1
3, x

2
4, x

2
1, x

0
2}) as illustrated in Figure 5.8.

Figure 5.9 is the final result of encoding this 6-ary nogood, by including three auxiliary Boolean

variables, twelve binary constraints and four ternary constraints, resulting in the new CSP:

• V : {x0, x1, x2, x3, x4, x5, x6, v0, v1, v2}

• D :

– Dx0 = Dx1 = Dx2 = Dx3 = Dx4 = Dx5 = Dx6 = {0, 1, 2}

– Dv0 = Dv1 = Dv2 = {0, 1}

• C :

– 〈〈x0, x5, x6〉, \{〈0, 2, 0〉}〉

– 〈〈x0, x3, x4〉, \{〈1, 1, 2〉}〉

– 〈〈x0, x1, x2〉, \{〈2, 2, 0〉}〉

– 〈〈v0, x6〉, \{〈0, 1〉}〉
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Figure 5.7: Example 5.3.1 CSP micro-structure complement with added variable v0.

– 〈〈v0, x6〉, \{〈0, 2〉}〉

– 〈〈v0, x5〉, \{〈0, 0〉}〉

– 〈〈v0, x5〉, \{〈0, 1〉}〉

– 〈〈v0, x5, x6〉, \{〈1, 2, 0〉}〉

– 〈〈v1, x4〉, \{〈0, 1〉}〉

– 〈〈v1, x4〉, \{〈0, 0〉}〉

– 〈〈v1, x3〉, \{〈0, 0〉}〉

– 〈〈v1, x3〉, \{〈0, 2〉}〉

– 〈〈v1, x3, x4〉, \{〈1, 1, 2〉}〉

– 〈〈v2, x1〉, \{〈0, 0〉}〉

– 〈〈v2, x1〉, \{〈0, 1〉}〉

– 〈〈v2, x2〉, \{〈0, 1〉}〉

– 〈〈v2, x2〉, \{〈0, 2〉}〉
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Figure 5.8: Example 5.3.1 CSP micro-structure complement with added variables v0, v1 and v2.

– 〈〈v2, x1, x2〉, \{〈1, 2, 0〉}〉

– 〈〈v0, v1, v2〉, \{〈0, 0, 0〉}〉

It could be argued that the fact that no hard problems are known for extended proof-systems is not

so astonishing, since very little is known about how to use auxiliary variables effectively. However, it is

only in the past five years that researchers have begun to understand how to guide basic Resolution effec-

tively, as evident by the remarkable performance of some of the most recent SAT-Solvers. By introducing

Extended-Consistency it might be possible for the SAT community to benefit from the wealth of theo-

retical results from CSP research, including the idea of symmetry (Crawford et al. (1996)), m-tightness

(van Beek & Dechter (1994)), etc. Similarly, the Constraints community may be able employ the effi-

cient implementation of Extended-Resolution techniques of SAT research to improve the effectiveness

of CSP algorithms.

MINION, developed by Gent et al. (2006), is an excellent example of the CSP community adopt-

ing techniques from SAT research to improved the practical performance of CSP solving. MINION is a

fast and scalable CSP-Solver that has been optimised for solving large and hard problems. Several of

MINIONS design decisions are modelled on those of ZCHAFF, including the use of very small data struc-
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Figure 5.9: Combining Figures 5.6 and 5.8 together.

tures, making memory usage very small and greatly increasing speed on modern computer architectures.

MINION has been shown to perform between one and two orders of magnitude faster than state-of-the-art

CSP-Solvers.

5.4 Chapter Summary and Discussion

In this chapter I prove that transforming SAT instances into CSP using the LITERAL encoding produces

problems that typically have more solutions than those produced by using the DUAL and NON-BINARY

encodings. This is summarised in Table 5.5; for notation, we consider X vs. Y . X = Y denotes that

X and Y have equal number of solutions, and X ≥ Y denotes that X has at least the same number of

solution tuples as Y . I mentioned in Chapter 3 that stochastic algorithms can perform better on problems

with a higher solution-density, so these theoretical results might be practically useful in helping guide

which encoding should be chosen for a particular problem instance, as this choice could mean that the

problem could be solved more easily by using one encoding than another.

Having characterised the encodings according to their solution-density, the second part of this chap-

ter addresses the gap in theoretical research identified in Chapter 3. I compared the performance of Res-
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NON-BINARY LITERAL DUAL HIDDEN VARIABLE PLACE

CSP vs. SAT = ≥ = = ≥

Table 5.5: Comparing the number of solution of SAT to CSP encodings.

olution and Consistency based techniques on the various encodings. This is summarised in Table 5.6,

where the row values indicate the level of NG-RES when applied to a CSP encoded SAT instance. I

show that although there is a space overhead associated with DUAL encoded problems in comparison to

using the LITERAL encoding, enforcing local-consistency on the resulting CSP does much more work. I

also prove that enforcing strong-k-consistency on LITERAL encoded 3-SAT instances does zero work if

each clause has distinct literals, which explains the empirical results presented in the next chapter.

NON-BINARY LITERAL DUAL HIDDEN VARIABLE PLACE

NG-RES k(-Resolution) k (j(k − 1), j) k (NON-BINARY) k (NON-BINARY)

k (LITERAL) (j(k − 1), j) (DUAL)

Table 5.6: The level of NG-RES when enforcing strong-k-consistency on j-SAT to CSP encodings.
Notice that we have to make a distinction between the amount of local-consistency achieved on two
constituent component sets in the COMBINED encodings.

This analysis highlights several important questions. Since HIDDEN VARIABLE and PLACE encod-

ings are combinations of DUAL, LITERAL and NON-BINARY encodings, what advantages do they bring?

This I leave as an open question, but my theoretical analysis predicts that enforcing local-consistency

on HIDDEN VARIABLE and PLACE encodings should never outperform at least one of the ‘constituent’

encodings from which they are constructed. Indeed, the extra space cost associated with the HIDDEN

VARIABLE and PLACE encodings may even hinder algorithmic performance.

Since the DUAL encoding produces relatively large data-structures compared to the LITERAL en-

coding, it might be the case that enforcing path-consistency on DUAL encoded instances is currently

too expensive. In the next chapter I provide empirical results of applying path-consistency to unsatisfi-

able SAT instances with up to 10,000 clauses. However Kask & Dechter (1995) showed that enforcing

partial-path-consistency2 can perform almost as well as full path-consistency, especially for problems

with tight constraints. Hence, enforcing partial-path-consistency on DUAL encoded problems may ad-

dress this complexity issue by significantly pruning the search-space for complete algorithms without

the space/time overhead of full path-consistency.

I propose a simple heuristic for choosing encodings and algorithms for instances that have been

predicted3 and be satisfiable or not:

2A slight variant of path-consistency where path-consistency is performed on the sub-problem induced by a chosen subset of
the variables that have the highest degree and are tightly grouped together.

3In Section 7.2.1 I discuss the idea of using feature analysis to correlate between instances and the performance of SAT-Solvers.
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1. Predicted satisfiable instances: choose the LITERAL encoding and use a stochastic algorithm.

2. Predicted unsatisfiable instances: choose the DUAL encoding and run a branching algorithm.

In Case 1. it is ill-advised to enforce local-consistency, since my theoretical (and empirical) results sug-

gest that it might not have any tangible pruning effect. However, it is strongly advised to enforce local-

consistency in Case 2, since this might significantly (or entirely) prune the search-space in polynomial-

time. In the next chapter I demonstrate the practical benefit of cross-fertilising techniques between the

SAT and CSP research. I show that representing SAT instances as a particular type of CSP and enforcing

a low-level of consistency can solve many SAT benchmarks.

Finally, I introduce the concept of Extended-Consistency. This extends the work of Tseitin, Baker

and Mitchell, and provides a platform to communicate the wealth of theoretical results that have been

discovered about the power of extended proof-systems in each of these two domains. Whilst the notion

of Extended-Consistency is not a major contribution to the field per-se, this does highlight another benefit

of bridging the fields. By introducing the concept of Extended-Consistency I provide a more complete

picture of the SAT and CSP proof-systems. Relatively little practical work has been done on extended

proof-systems. SAT and CSP algorithms that employ additional variables tend to apply them in an

‘ad-hoc’ manner. Extended-Consistency describes a technique to automate this process, and may allow

synergies between these two extended proof-systems to be cultivated and explored.



Chapter 6

Empirical Analysis of SAT to CSP Encodings

Strictly speaking, the title of this thesis should be “The Path to Unsatisfaction”, since the focus of this

research is on how effective polynomial algorithms (encoding plus local-consistency enforcement) are

at determining unsatisfiability. Moe specifically, this thesis is not concerned with the effectiveness of

SAT-Sovlers prior to enforcing local-consistency. One of the main results of the previous chapter is that

enforcing local-consistency on DUAL encoded problems does more work than on LITERAL encoded in-

stances. Although this might not be totally surprising (since DUAL encoded problems are typically larger

than LITERAL encoded) the empirical results on each of these encodings in this chapter are surprising.

Not only do the empirical results strongly support the theoretical results in the previous chapter, but we

find that enforcing a low-level of local consistency can solve what are regarded as ‘hard’ unsatisfiable

SAT instance and can even compete with state-of-the-art SAT-Solvers.

Stochastic and branching algorithms are two families of algorithm adopted by the SAT community;

branching algorithms can prove both satisfiability and unsatisfiability 1, whereas stochastic algorithms

can only prove satisfiability. In Chapter 3 I suggested that local-consistency algorithms might be a

viable approach to redress this balance. In this chapter I address the two experimental issues raised in

Chapter 3 and provide empirical evidence to support the theoretical results presented in the previous

chapter.

More specifically, I apply a well-known Consistency-based procedure (Algorithm 4) proposed by

Freuder (1982) to many ‘hard’ unsatisfiable SAT instances encoded using the DUAL and LITERAL en-

codings. This algorithm incrementally enforces strong-1-, 2-, 3- . . . n-consistency until the problem is

solved.

Ten years ago, enforcing path-consistency (i.e. strong-3-consistency in binary constraint networks)

was extremely difficult owing to the availability of computer resources. Nowadays it is possible to

enforce this level of consistency on problem instances that have over 15,000 clauses. The number of bits

used to represent the DUAL encoding data-structure of a k-SAT is 2 k2 × (
c
2

)
, which is O(c2), where c is

1Though it is well known that branching algorithms perform better on satisfiable instances than on unsatisfiable ones.
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Algorithm 4 Incremental k-CON algorithm.
Given a CSP F
for k = 1 to n do

if k-CON(F ) � ⊥ then
return ⊥

end if
end for
return �

the number of clauses.

The procedure used to enforce path-consistency is described by Algorithm 5 and has a worst time

complexity of O(c4), where c is the number of clauses. Notice that although this procedure is more

expensive than some of the path-consistency procedures it is extremely simple and does not use any of

the heuristics or queuing mechanisms described in the more recent Consistency algorithms (see Tsang

(1993)). One reason for this is that since the SAT instances are in 3CNF I can utilise bitwise calculations

of blocks of bytes; each representing the seven edges that can connect each node to each other variable.

Recursing over each variable and determining whether a bit (an edge {i, j}) should be 0 or 1 is calculated

by simply intersecting three bytes and checking whether the result is non-zero:

if((iv ∩ jv) ∩ v) = 0 : {i, j} → 0; {i, j} → 1

where iv and jv represent the edges in node-set v to which the nodes i and j are connected. For 3-SAT

instances iv, jv and v are all bytes.2 This process is repeated until no more changes are made to the

data-structure, i.e. that no more edges are pruned.

Table 6.1 represents the memory (in GigaBytes) required to run these experiments to enforce strong-

k-consistency on DUAL encoded 3-SAT instances with a varying number of clauses. The values for the

number of clauses in the table have not been chosen arbitrarily, they correspond to the level of local-

consistency requiring 1GB of memory (along the diagonal from right to left). For instance, row 3: given

36 clauses, enforcing strong-6-consistency requires approximately 1GB of memory. All experiments

presenting in the chapter were performed on a DELL PRECISION 470 DUAL CORE ZEON 5.6GHZ

with 3GB RAM and the units of time are seconds.

These experiments originally focused on applying the incremental local-consistency algorithm on

randomly generated SAT instances and SATLIB benchmarks (see Section 3.2.1.1). The aim was to com-

pare the effect of enforcing local-consistency on problems encoded using both the LITERAL and DUAL

encodings. Recall that both of these encodings are classed as CONSTRAINT mappings. Although the

LITERAL encoding creates graph instances with k 2 × (
c
2

)
nodes - compared to 2k2 × (

c
2

)
for the DUAL

2The simplicity of this algorithm is one of its main strengths. Indeed it may be possible to implement in hardware and utilise
parallel bit processing, which may also improve its performance.
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enforcing the level of strong-k-consistency

clauses 3 4 5 6 7 8

15 7.4E-07 2.2E-05 4.7E-04 7.2E-03 8.4E-02 7.6E-01

21 1.5E-06 6.5E-05 2.1E-03 4.9E-02 9.1E-01 1.4E+01

36 4.4E-06 3.5E-04 2.0E-02 9.1E-01 3.3E+01 9.8E+02

92 2.9E-05 6.2E-03 9.6E-01 1.2E+02 1.2E+04 1.0E+06

497 8.6E-04 1.0E+00 8.6E+02 5.9E+05 3.4E+08 1.7E+11

16903 1.0E+00 3.9E+04 3.9E+04 2.8E+13 5.4E+17 9.2E+21

Table 6.1: Memory (GB) required to enforce strong-k-consistency on DUAL encoded SAT problems.

Algorithm 5 strong-3-CON algorithm.
Given a DUAL encoded CSP constraint graph F
while changed(F ) do

for each edge {i, j} do
for each set of nodes represented by variable v do

if v is empty then
return UNSAT

end if
if (i,j) cannot form a triangle with a domain value in v then

remove (i,j)
end if

end for
end for

end while
return UNKNOWN

graph - the edge-density3 of the DUAL graph can be much less than that of the LITERAL graph (for

satisfiable instances; unsatisfiable instance have no solutions in either graph). In Chapter 4 I proved

that enforcing strong-k-consistency does at least as much work on DUAL encoded instances as it does

when using the LITERAL encoding. In addition, I proved that enforcing strong-k-consistency on k-SAT

instances (encoded using the LITERAL encoding) does zero work when the literals in each clause are

distinct. It should be noted that several of the SATLIB benchmark families are in ‘strict’ 3CNF format

(UUF, AIM and DUBOIS), to it is expected that enforcing path-consistency on these LITERAL encoded

instances will have no effect. However, several benchmark families are constructed from industrial prob-

lems, and have binary and even unary clauses. In these cases enforcing path-consistency on LITERAL

encoded instances will have some effect.

6.0.1 DIMACS CNF Format

There exists a widely used format for SAT instances: the cnf format from the Second DIMACS Bench-

mark Challenge. The DIMACS (1993) cnf format (described in detail in Appendix A.1) is currently

accepted by almost all of the best-performing SAT-Solvers and tools. It is simple to parse and generate,

3the number of binary edges over the number of possible binary edges.
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reasonably concise and flexible, portable across different platforms, and human-readable. Therefore, all

benchmark instances in this thesis are in this format.

To utilise the bitwise calculations of my strong-3-consistency algorithm it is necessary only to work

with 3-SAT instances. Since the DIMACS CNF format does not strictly enforce 3CNF, I converted

the cnf files into 3CNF using De Morgan’s Laws. These instances have been converted to 3-SAT, so

in many cases the numbers of propositions and clauses are larger than they were in the original. The

conversion rules for clauses with n literals are shown in Table 6.2.

# lits original new

one (x1) (x1 ∨ x1 ∨ x1)

two (x1 ∨ x2) (x1 ∨ x2 ∨ x2)

four (x1 ∨ x2 ∨ x3 ∨ x4) (x1 ∨ x2 ∨ y1) ∧ (−y1 ∨ x3 ∨ x4)

five (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5) (x1 ∨ x2 ∨ y1) ∧ (−y1 ∨ x3 ∨ y2) ∧ (−y2 ∨ x4 ∨ x5)

≥ 6 (x1 ∨ x2 ∨ · · · ∨ xn−1 ∨ xn) (x1 ∨ x2 ∨ y1) ∧ (−y1 ∨ · · · ∨ xn−1 ∨ xn)

Table 6.2: Rules to convert a general CNF formula into 3CNF.

6.0.2 UUF

Uniform Random-3-SAT is a family of SAT problems obtained by randomly generating 3CNF formu-

lae then determining their satisfiability by using a complete SAT-Solver. These were generated in the

following way:

• For an instance with n variables and c clauses, each of the c clauses is constructed from 3 literals,

which are randomly drawn from the 2n possible literals such that each possible literal is selected

with the same probability.

• Clauses are not accepted for the construction of the problem instance if they contain multiple

copies of the same literal or if they are tautological (i.e. they contain a variable and its negation).

Uniform Random-3-SAT is the union of these distributions over all n and c.

These instances are sampled from the ‘hard’ region of the phase transition, the complete set is

shown in Table 6.3. Empirical analysis, by Yokoo (1997) and Crawford & Auton (1996), shows that

problem instances from the phase transition region of uniform Random-3-SAT tend to be particularly

hard for both tree-based and stochastic SAT-Solvers.

Table 6.4 shows the results of applying path-consistency to many DUAL encoded UUF instances.

Note that instances were solved from the uuf50-218, uuf75-325 and uuf100-430 groups. All 1000 uuf50-

218 instances were solved by enforcing path-consistency, as well as 55 from the 100 uuf75-325 instances.

The remaining 45 uuf75-325 instances were solved using strong-4-consistency (shown in Table 6.5), but
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test-set instances clause-len vars clauses

uuf50-218 1000 3 50 218

uuf75-325 100 3 75 325

uuf100-430 1000 3 100 430

uuf125-538 100 3 125 538

uuf150-645 100 3 150 645

uuf175-753 100 3 175 753

uuf200-860 100 3 200 860

uuf225-960 100 3 225 960

uuf250-1065 100 3 250 1065

Table 6.3: Uniform Random-3-SAT unsatisfiable instances.

unfortunately uuf100-430 were too large to enforce this level of consistency. When the instances are

encoded using the LITERAL encoding the path-consistency algorithm failed to have any effect, which is

not surprising given Theorem 5.2.4, and that these are ‘strict’ 3CNF instances.

benchmark set inst’s ran solves props clauses avg. time (s)

uuf50-218 1000 1000 1000 50 218 1.16

uuf75-325 100 100 55 75 325 25.05

uuf100-430 1000 1000 4 100 430 120.45

uuf125-538 100 100 0 125 538 378.34

uuf150-645 100 100 0 150 645 783.98

uuf175-753 100 100 0 175 753 1034.45

Table 6.4: Enforcing path-consistency on DUAL encoded UUF benchmarks. Time is in seconds.

benchmark set inst’s ran solves props clauses avg. time

uuf75-325 (unsolved) 45 45 45 75 325 4766.51

Table 6.5: Enforcing 4-consistency on unsolved DUAL encoded UUF benchmarks.

6.0.3 DUBOIS

The DUBOIS instances are considered the easiest unsatisfiable SATLIB family. However, LITERAL

encoded instances from this family cannot be solved using path-consistency, though they can all easily

be solved when represented using the DUAL encoding (as shown in Table 6.6).

Out of the 23 SAT-Solvers submitted to SAT-Competition 2003 this algorithm would have ranked

in the top 10 on this benchmark set, with twelve SAT-Solvers failing to solve every instance.
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benchmark set inst’s ran solves props clauses avg. time

dubois20 1 1 1 60 160 0.24

dubois21 1 1 1 63 168 0.27

dubois22 1 1 1 66 176 0.31

dubois23 1 1 1 69 184 0.34

dubois24 1 1 1 72 192 0.39

dubois25 1 1 1 75 200 0.44

dubois26 1 1 1 78 208 0.49

dubois27 1 1 1 81 216 0.56

dubois28 1 1 1 84 224 0.61

dubois29 1 1 1 87 232 0.67

dubois30 1 1 1 90 240 0.75

dubois50 1 1 1 150 400 3.75

dubois100 1 1 1 300 800 30.2

Table 6.6: Enforcing path-consistency on DUAL encoded DUBOIS benchmarks.

6.0.4 AIM

The AIM instances are all generated with a particular Random-3-SAT instance generator described by

Asahiro et al. (1993). It should be noted that all of these instances can be solved with polynomial pre-

processing, therefore, they cannot be considered as intrinsically hard. However, some stochastic search

algorithms, such as WALKSAT and GSAT variants, show a very poor performance on the instances with

low clause/variable ratio; in particular for ratios of 1.6 and 2.0.

All instances are easily solvable by path-consistency when transformed to a CSP using the DUAL

encoding (see Table 6.7), yet when they are LITERAL encoded path-consistency fails to solve a single

instance.

benchmark set inst’s ran solves props clauses avg. time

aim-50-1 6-no 4 4 4 50 80 0.032

aim-50-2 0-no 4 4 4 50 100 0.062

aim-100-1 6-no 4 4 4 100 160 0.27

aim-100-2 0-no 4 4 4 100 200 0.40

aim-200-1 6-no 4 4 4 200 320 1.85

aim-200-2 0-no 4 4 4 200 400 3.00

Table 6.7: Enforcing path-consistency on DUAL encoded AIM benchmarks.

6.0.5 JNH

JNH instance are generated randomly in the following way:
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benchmark set inst’s ran solves props clauses avg. time

jnh10 1 1 1 1796 2546 108.02

jnh11 1 1 1 1749 2499 305.20

jnh13 1 1 1 1763 2513 126.41

jnh14 1 1 1 1780 2530 142.94

jnh15 1 1 1 1759 2509 168.14

jnh16 1 1 0 1777 2527 10,436.73

jnh18 1 1 1 1794 2544 662.94

jnh19 1 1 1 1759 2509 239.71

jnh2 1 1 1 1819 2569 83.19

jnh20 1 1 1 1786 2536 159.87

jnh202 1 1 1 1733 2433 115.57

jnh203 1 1 1 1683 2383 314.92

jnh206 1 1 1 1678 2378 446.45

jnh208 1 1 1 1686 2386 308.70

jnh211 1 1 1 1672 2372 102.17

jnh214 1 1 1 1667 2367 271.44

jnh215 1 1 1 1665 2365 187.97

jnh216 1 1 1 1669 2369 307.02

jnh219 1 1 1 1665 2365 480.90

jnh3 1 1 1 1797 2547 436.97

jnh302 1 1 1 1924 2724 82.09

jnh303 1 1 1 1859 2659 322.20

jnh304 1 1 1 1887 2687 118.10

jnh305 1 1 1 1895 2695 130.85

jnh306 1 1 1 1887 2687 1,702.63

jnh307 1 1 1 1854 2654 72.80

jnh308 1 1 1 1877 2677 273.41

jnh309 1 1 1 1892 2692 124.30

jnh310 1 1 1 1854 2654 57.36

jnh4 1 1 1 1770 2520 178.89

jnh5 1 1 1 1797 2547 166.14

jnh6 1 1 1 1770 2520 462.83

jnh8 1 1 1 1780 2530 113.17

jnh9 1 1 1 1766 2516 117.78

Table 6.8: Enforcing path-consistency on DUAL encoded JNH benchmarks.
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• For an instance with n variables and c clauses, each of the c clauses is constructed by including a

variable with a fixed probability p, and then negating the variable with probability 0.5.

• Empty clauses and unit clauses are rejected in the generation process.

Empirical evidence provided by Mitchell & Levesque (1996) indicate that instances generated by this

model tend to be much easier to solve than the Uniform Random-3-SAT (UUF) instances described

earlier.

There are 34 unsatisfiable JNH benchmarks, 33 of which can be solved using path-consistency on

the DUAL encoding, and none using path-consistency on the LITERAL encoding (as shown in Table 6.8).

The 34th unsolvable instance (jnh16) is too large to enforce 4-consistency, and it is unknown as to why

this particular instance was not solved. It is also unknown as to why instance jnh306 took significantly

longer to solve than the other instances, though, compared to the others, it took several more iterations

through the data-structure before the algorithm was able to determine unsatisfiable

6.0.6 BF and SSA

benchmark set inst’s ran solves props clauses avg. time

ssa0432-003 1 1 1 504 1096 21.32

ssa2670-130 1 1 1 1583 3545 1309.45

ssa2670-141 1 1 1 1129 2458 503.51

ssa6288-047 1 0 0 10410 34238 -

Table 6.9: Enforcing path-consistency on DUAL encoded SSA benchmarks.

The BF and SSA instances are selected formulae from those generated by a circuit-fault-analysis

test-pattern generation program called Nemesis. These formulae are in CNF and contain clauses of

lengths 1-6, with more than half the clauses of size 2. The instances are of rather large size (most of

them have more than 1000 variables), though some of the instances contain unit clauses and hence can

be simplified by unit propagation. According to the benchmark description, of the unsatisfiable instances

only instances ssa2670-130 and ssa2670-141 may be considered hard. However, when encoded using

the DUAL encoding all instances can be solved by enforcing path-consistency. The results are shown

in Tables 6.9 and 6.10. Unfortunately, ssa6288-047 was too large to enforce path-consistency, since the

DUAL encoding would require approximately 600MB of RAM to represent the data-structure.

6.0.7 PRET

The PRET instances are an encoding of GRAPH-2-COLOURABILITY, along with a parity constraint to

force unsatisfiability. According to SATLIB, these instances are considered amongst the hardest unsat-

isfiable benchmarks. In fact, as shown in Table 6.11, solving these instances required enforcing strong-

5-consistency using the DUAL encoding. Thirteen of the 23 SAT-Solvers submitted to SAT-Competition
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benchmark set inst’s ran solves props clauses avg. time

bf0432-007 1 1 1 1417 4045 2675.78

bf1355-075 1 1 1 2706 7304 4949.39

bf1355-638 1 1 1 2701 7292 3908.81

bf2670-001 1 1 1 1625 3666 550.36

Table 6.10: Enforcing path-consistency on DUAL encoded BF benchmarks.

benchmark set inst’s ran solves props clauses

pret60 25 1 1 1 60 160

pret60 40 1 1 1 60 160

pret60 60 1 1 1 60 160

pret60 75 1 1 1 60 160

pret150 25 1 1 1 150 400

pret150 40 1 1 1 150 400

pret150 60 1 1 1 150 400

pret150 75 1 1 1 150 400

Table 6.11: Enforcing strong-5-consistency on DUAL encoded PRET benchmarks.

2003 failed to solve every PRET benchmark, meaning that they reached the time-out limit enforced by

the competition.

6.0.8 Pigeon Hole

As discussed in Chapter 3, the PIGEON-HOLE PROBLEM is probably one of the most important and

well-studied class of problems. It asks whether it is possible to place n + 1 pigeons in n holes without

two pigeons being in the same hole.

The SAT encoding of this problem (also referred to as PHOLE) is very straightforward and although

there are various different mappings, these instance were constructed from the original CSP definition to

SAT using the DIRECT encoding in the following way:

• For each pigeon p we have a variable xph meaning that pigeon p is placed in hole h.

• n + 1 clauses say that a pigeon has to be placed in some hole.

• For each hole a set of clauses ensure that only one single pigeon is placed into that hole.

There are five instances available, which encode the PIGEON-HOLE PROBLEM for six to ten holes (and

therefore seven to eleven pigeons); details on the instances are given in Table 6.12.

Haken (1985) proved the first exponential bounds for Resolution, showing that a Resolution refuta-

tion would require an exponential number of clauses to be generated to solve this problem. To solve these
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instance holes vars clauses satisfiable?

hole6 6 42 133 no

hole7 7 56 204 no

hole8 8 72 297 no

hole9 9 90 415 no

hole10 10 110 561 no

Table 6.12: The Pigeon-Hole instances.

instance would require strong-p-consistency, where p is the number of pigeons, and it is not surprising

that path-consistency failed to solve a single instance.

6.1 SAT Competition Benchmarks

Given the unexpected success of enforcing such a low-level of consistency on DUAL encoded SATLIB

problems I sought harder benchmarks to which to apply this algorithm. The obvious place to find difficult

SAT instances is from the SAT Competition. Although the majority of these benchmarks are from Formal

Verification applications and tend to be very large, some were small enough to represent using the my

DUAL encoding data-structure. Since the space complexity is O(n2), instances with above n = 10, 000

clauses require over 700MBytes of RAM. Many of these benchmarks are therefore untestable on a stan-

dard computer. For larger benchmarks I recommend that sparse-matrix techniques are used to represent

the data-structure, which may help address this space-complexity issue. Since these are competition

benchmarks, relatively little information is given about their construction. Tables 6.13-6.18 show how

enforcing path-consistency performs on the following SAT-Competition benchmark families encoded

using the DUAL encoding.

• BMC1, Table 6.13

• GRAPHCOLORS3, Table 6.14

• BARREL, Table 6.15

• CMPADD, Table 6.16

• DINPHIL, Table 6.17

• LONGMULT, Table 6.18

The success of enforcing a local-level of consistency on DUAL encoded unsatisfiable SAT instances

is very interesting. By comparing these results with the SAT-Solvers submitted to the SAT Competition

2003, we see that this basic constraints-inspired polynomial-time algorithm can compete favourably with
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benchmark set inst’s ran solves props clauses avg. time k-con

goldberg/bmc1/23.shuffled 1 1 1 217 493 1.50 3

goldberg/bmc1/4.shuffled 1 1 1 217 493 1.53 3

goldberg/bmc1/42.shuffled 1 1 1 417 943 9.69 3

goldberg/bmc1/61.shuffled 1 1 1 417 943 9.81 3

Table 6.13: Enforcing path-consistency on BMC1 SAT Competition benchmarks.

benchmark set inst’s ran solves props clauses avg. time k-con

graphcolors3/3col20 20 20 20 190 326 0.38 3

graphcolors3/3col40 20 20 20 380 646 4.87 3

graphcolors3/3col60 20 20 20 570 966 35.6 3

Table 6.14: Enforcing path-consistency on GRAPHCOLORS3 SAT Competition benchmarks.

benchmark set inst’s ran solves props clauses avg. time k-con

barrel2 1 1 1 58 167 0.11 3

barrel3 1 1 1 307 974 20.49 3

barrel4 1 1 1 654 2111 172.313 3

barrel5 1 1 1 1703 5679 3364.344 3

barrel6 1 1 1 2806 9431 14977.031 3

barrel7 1 0 0 4303 14545 - -

barrel8 1 0 0 6254 21231 - -

Table 6.15: Enforcing path-consistency on BARREL SAT Competition benchmarks.

benchmark set inst’s ran solves props clauses avg. time k-con

biere/cmpadd/ca002.shuffled 1 1 1 26 70 0.00 3

biere/cmpadd/ca004.shuffled 1 1 1 60 168 0.06 3

biere/cmpadd/ca008.shuffled 1 1 1 130 370 1.23 3

biere/cmpadd/ca016.shuffled 1 1 1 272 780 15.77 3

biere/cmpadd/ca032.shuffled 1 1 1 558 1606 195.83 3

biere/cmpadd/ca064.shuffled 1 1 1 1132 3264 1936.453 3

Table 6.16: Enforcing path-consistency on CMPADD SAT Competition benchmarks.

highly optimised and efficient DLL-based SAT-Solvers. Moreover, these empirical results suggest that

many of the SATLIB and Competition benchmark families are tractable, that is, they can be solved by

enforcing a constant level of local-consistency.

A list of unsatisfiable benchmark families that enforcing path-consistency fails to solve are shown

in Table 6.19.
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benchmark set inst’s ran solves props clauses avg. time k-con

biere/dinphil/dp02u01.shuffled 1 1 1 213 376 0.28 3

biere/dinphil/dp03u02.shuffled 1 1 1 478 1007 10.16 3

biere/dinphil/dp04u03.shuffled 1 1 1 1018 2412 345.076 3

biere/dinphil/dp05u04.shuffled 1 1 1 1573 3904 1485.036 3

Table 6.17: Enforcing path-consistency on DINPHIL SAT Competition benchmarks.

benchmark set inst’s ran solves props clauses avg. time k-con

longmult0 1 1 1 558 1327 8.94 3

longmult1 1 1 1 1035 2579 249.938 3

longmult2 1 1 1 1535 3896 1082.625 3

longmult3 1 1 0 2051 5263 7122.125 3

longmult4 1 0 0 2587 6690 - -

longmult5 1 0 0 3143 8177 - -

longmult6 1 0 0 3719 9724 - -

longmult7 1 0 0 4315 11331 - -

longmult8 1 0 0 4931 12998 - -

longmult9 1 0 0 5567 14725 - -

longmult10 1 0 0 6223 16512 - -

longmult11 1 0 0 6899 18359 - -

longmult12 1 0 0 7595 20266 - -

longmult13 1 0 0 8311 22233 - -

longmult14 1 0 0 9047 24260 - -

Table 6.18: Enforcing path-consistency on LONGMULT SAT Competition benchmarks.

benchmark set inst’s ran solves

crafted/jarvisalo05/mod2-rand3bip-unsat/ 15 15 0

crafted/jarvisalo05/mod2c-rand3bip-unsat/ 15 15 0

crafted/jarvisalo05/mod2c-3cage-unsat/ 6 6 0

crafted/jarvisalo05/mod2-3cage-unsat/ 24 24 0

crafted/sabharwal05/counting/fphp/unsat/ 28 28 0

crafted/sabharwal05/counting/php/unsat/ 28 28 0

Table 6.19: SATLIB Benchmark families path-consistency fails to solve.

The MOD2 benchmark families, created by Haanpaa et al. (2005), are very small but hard instances

based on linear equations modulo 2, where the underlying structure is derived from 3-regular graphs:

• mod2-rand3bip-unsat: Unsatisfiable instances with the number of variables v = 90, 105, 120, 135,
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150. For each v there are 15 instances. The underlying graphs are random 3-regular bipartite

graphs.

• mod2c-rand3bip-unsat: As mod2-rand3bip-unsat but with “simple camouflage” applied on the

instances.

• mod2-3cage-unsat: The underlying graphs are (3, g)-cages with girth g ∈ {9, 10, 11, 12}. 18 (3,

9)-cages, 3 (3, 10)-cages, 1 (3, 11)-cages, and 1 (3, 12)-cage exist.

• mod2c-3cage-unsat: As mod2-3cage-unsat but with “simple camouflage” applied on the instances.

6.1.1 Competition Comparison

I have shown that enforcing such a low-level of consistency can determine the unsatisfiability of many

DUAL encoded SAT instances. It appears from a general comparison with the 23 SAT-Solvers submitted

to SAT Competition 2003 that this polynomial-time algorithm is competitive on many of the unsatisfiable

DUAL encoded benchmarks. Table 6.20 provides an overview of how enforcing path-consistency in this

way compares to SAT-Solvers on many SATLIB and SAT Competition 2003 instances. The left column

lists the SAT-Solver, with each row describing how many instances of the benchmark families were

solved which are listed at the top. The tested row shows the number of instance that were tested in my

experiments and the path-consistency row shows the number of those instances that path-consistency

solves4.

Comparing the execution time of this polynomial-time algorithm with the competition SAT-Solvers

is not interesting since they have ran in different architectures and my code was not designed to test such

large instances. However, out of the 276 benchmark-algorithm combinations this simple polynomial-

time algorithm outperformed 70 cases and was as successful as 96 cases; a total of 166 out of 276.

Notice that ZCHAFF solved every instance correctly.

6.2 Chapter Summary and Discussion

This investigation began by comparing the performance of enforcing a local-level of consistency on

LITERAL and DUAL encoded SAT instances. I found that enforcing path-consistency on the LITERAL

encoding does not solve any of the SAT benchmarks. This is in stark contrast to problems encoded using

the DUAL encoding, which took these experiments into a new direction by showing that enforcing such

a low-level of consistency can not only effectively prune the problem, but also solve a surprising number

of what are considered ‘hard’ SAT benchmarks.

We know from the theoretical results presented in Chapter 5 that:

4Note that all of the PRET instances required strong-5-consistency to determine unsatisfiability, and that they were small
enough to enforce this level of consistency.
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# instances 8 8 8 8 4 13 5 34 16 4 4 4

tested 8 8 8 6 4 13 5 34 4 4 4 3

path-consistency 8 8 8 6 4 13 0 33 3 4 4 3

asat 8 0 8 7 1 9 5 34 15 0 4 1

calcres 4 0 8 3 2 13 1 0 4 0 4 4

csat 8 8 8 5 2 0 5 34 16 0 0 4

dr 0 0 5 1 0 13 1 0 2 4 4 2

eqsatz 8 8 8 8 4 13 5 34 16 4 4 4

heerhugo 8 8 8 7 4 13 3 34 7 4 4 4

modoc 8 8 8 7 4 7 5 34 4 0 4 4

modoc-2.0 8 8 8 7 4 5 4 34 5 0 4 4

nsat 8 8 8 0 3 13 4 34 16 4 4 2

ntab 5 0 5 5 1 8 0 34 6 0 4 2

ntab back 5 0 5 5 3 7 0 34 7 0 4 3

ntab back2 5 3 5 5 3 7 0 34 7 0 4 3

posit 8 0 8 3 2 8 5 34 15 0 4 3

relsat 8 8 8 5 4 13 5 34 9 4 4 4

relsat-200 8 8 8 7 4 13 5 34 16 4 4 4

sat-grasp 8 8 8 4 4 13 4 34 9 4 4 4

sato 8 8 8 7 4 13 5 34 15 4 4 4

sato-3.2.1 8 8 8 7 4 13 5 34 16 4 4 4

satz 8 8 8 6 4 11 5 34 12 0 4 4

satz-213 8 8 8 7 4 9 5 34 16 0 4 4

satz-215 8 8 8 8 4 9 5 34 16 0 4 4

zchaff 8 8 8 8 4 13 5 34 16 4 4 4

zres 4 0 8 3 3 13 3 0 4 4 4 3

Table 6.20: The number of DUAL encoded SATLIB benchmarks solved by enforcing a local-level of
consistency compared to the number solved by competition entrants.

1. Enforcing strong-k-consistency on LITERAL encoded ‘strict’ k-SAT instances has no pruning ef-

fect.

2. Enforcing strong-k-consistency on DUAL encoded j-SAT instances is equivalent to performing

(j(k − 1), j)-NG-RES.

Given this, it is not surprising that the empirical tests demonstrated that enforcing path-consistency
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on LITERAL encoded 3-SAT instances had very little impact on pruning the search-space and failed to

solve a single instance. In fact, it was observed that in some cases a little pruning did take place on

LITERAL encoded instances, but (as predicted) only when the level of consistency being enforced was

greater than the number of literals in some of the clauses.

Recall from Chapters 2 and 3 that there are two families of algorithm used, stochastic and branching.

Branching algorithms can prove both satisfiability and unsatisfiability (though proving unsatisfiability is

typically more difficult5), whereas stochastic algorithms can only prove satisfiability. Although local-

consistency algorithms are unable to determine whether an instance is satisfiable, they are able to prove

unsatisfiability. The development of sophisticated local-consistency algorithms might thus be a viable

approach to redress the ‘algorithmic’ bias.

The empirical results presented in this chapter strengthen the theoretical results that enforcing a

local-level of consistency on unsatisfiable DUAL encoded problems does more work when LITERAL

encoded. In Chapter 3 I mentioned that Prestwich (2003) had established a correlation between solution-

density and problem solubility. Since these experiments are primarily concerned with the effect of local-

consistency algorithms on CSP encoded unsatisfiable SAT instances, the solution-density is the same

(zero) in every case. Therefore, solution-density cannot be a factor in understanding what conditions

are necessary for local-consistency to determine unsatisfiability. As with previous research I could find

no definable characteristic that distinguished unsatisfiable instances that were solvable versus ones that

were not. The question of whether we can characterise instances (and families) that are ‘polynomially

solvable’ is open. Such analysis is left as future work, but a specific pointer to future work would be

to look for the characteristics of the solved benchmark families that made them ‘polynomially solvable’

and extrapolate (hopefully new) generic features that we can use to test for tractability.

As described in Section 3.5, in recent years there has been a large amount of research devoted to

analysing the effect of preprocessing SAT instances prior to applying a branching or stochastic algo-

rithms. Whilst these resolution-based preprocessors have been proven (on average) to improve problem

solubility, it is still unclear as to what type of preprocessing should be applied, when it should be ap-

plied and to what part of the problem. Preprocessors such as HYPRE and SATELITE are now routinely

employed by modern SAT-Solvers, however most research is still unconcerned with how the problem is

encoded. The main result of this thesis is the remarkable success of enforcing a local-level of consistency

on DUAL encoded unsatisfiable SAT instances. What is also important to highlight is that although this

technique managed totally to prune the search-space of instances from a variety of problem domains, it

is not yet a viable practical technique for two reasons:

1. DUAL encoded instances typically require much more memory than LITERAL or NON-BINARY

encoded instances.
5Verbal communication with members of Princeton’s SAT Research Group.
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2. It is still computationally expensive and time consuming to enforce larger levels of local-

consistency.

In Chapter 7 I discuss how we might overcome some of these issues. The purpose of this chap-

ter, however, is not to present a comprehensive solution, but to show the potential that lies in encoding

instances differently. One stand-out result of preprocessing research is that despite the preprocessing

overhead and number of additional constraints and variables produced, in many cases the SAT-Solver

could still find solutions in less time. Such results are encouraging, I propose that developing refined

versions of this method is a sensible approach for researchers wishing to explore practical preprocess-

ing techniques. A natural extension of this research is to explore practical implementations of these

techniques as well as to explore effect that the resulting encoded/preprocessed instances have on the

effectiveness of SAT-Solvers on both unsatisfiable and satisfiable instances.



Chapter 7

Discussion, Exploitation and Future Work

In this thesis I show how we might use Graph Theory as a framework to bridge SAT and CSP research.

I hinted at the benefits of this approach by demonstrating that even the most basic of polynomial-time

Consistency algorithms on DUAL encoded instances can be used to solve a variety of problems that might

be encountered in practice. I suggested that using more sophisticated constraint-based algorithms and

techniques than the ones used in my experiments could highlight tractable SAT benchmark families and

problems, yielding many of the practical benefits described throughout this thesis. Whilst research into

the structure of these problems has started to established itself in recent years relatively little research

has begun to exploit these findings either to gain a deeper understanding of the complexity of problems,

or to develop better performing algorithms and tools to solve them. Future research will aim to utilise

these findings in order to develop new techniques to solve a larger set of problems.

This work relates to a much wider programme which aims to contribute to bridging the fields of

Constraint Satisfaction and Propositional Satisfiability. More specifically, the work in this thesis explores

the structural relationship between CSP and SAT problems and their algorithmic methods by viewing

them in a graph-theoretic framework. Using this framework we are able to identify synergies between

these two research domains. Ten years ago Selman et al. (1997) proposed “Ten Challenges in Proposi-

tional Reasoning and Search”. Although many of these challenges have been met, several still remain

open. This research addresses three in particular:

1. CHALLENGE 1: Prove that a hard 700 variable random 3-SAT instance is unsatisfiable.

2. CHALLENGE 3: Demonstrate that a propositional proof-system more powerful than Resolution

can be made practical for satisfiability testing.

3. CHALLENGE 8: Characterise the computational properties of different encodings of a real-

world problem domain, and/or give general principles that hold over a range of domains.

In each section below I summarise this research and propose how it relates to Selman’s ‘challenges’. I

discuss how the findings of this research could be used to address several prominent issues with modern
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SAT-Solvers and have wider implications in the field.

7.1 Theoretical Studies

7.1.1 Categorising Encodings

After introducing the necessary background in Chapter 2, in Chapter 3 I provided a detailed survey of

CSP and SAT encodings, algorithmic techniques and proof-systems. After providing a detailed example-

led survey of SAT and CSP encodings, in Chapter 4 I show how all of the encodings can be categorised

as one of three types of mapping. I introduce the new INVERSE encoding (Section 4.2), the only member

of the CONSTRAINT mapping group, and in this chapter I also defined the DOMAIN and COMBINED

mappings. The CSP to SAT encodings described in Chapter 3 are categorised and shown in Table 7.1.

By using an example, I demonstrate that the INVERSE encoding is preferable when the number of partial

satisfying solutions to the constraints is small, since each partial satisfying solution gets mapped to a

SAT variable. In fact, given certain kinds of constraints the INVERSE encodings can be several orders of

magnitude smaller than DIRECT encodings. Thus, careful consideration should be taken when deciding

which encoding is best to use, and using the result of simple calculation (the encoding space complexity)

researchers might find that they can now practically represent problems in CNF that were previously

incredibly difficult.

The new INVERSE encoding (defined in Chapter 4) is the only member of the CONSTRAINT cate-

gory. As mentioned, with the introduction of the INVERSE encoding it is now possible to define COM-

BINED mappings for CSP to SAT encodings (listed in Table 7.1) and explore the potential benefits that

these new encodings may bring. Analysis of these new encodings I leave as open questions. I aim

to cultivate this important link between SAT and CSP further and perform a comprehensive study on

how expressing a wide variety of real problems - using various encodings - affects the performance of

polynomial-time algorithms as well as state-of-the-art SAT-Solvers.

DOMAIN CONSTRAINT COMBINED

DIRECT INVERSE INVERSE + DIRECT

SUPPORT INVERSE + SUPPORT

LOG INVERSE + LOG

MULTIVALUED INVERSE + MULTIVALUED

Table 7.1: Categorising the CSP to SAT encodings.

Similarly, Table 7.2 shows the SAT to CSP encodings described in Chapter 3 categorised as DO-

MAIN, CONSTRAINT, and COMBINED mappings.

Recently I have been developing the notion of HYBRID mappings, which are constructed using a
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DOMAIN CONSTRAINT COMBINED

NON-BINARY LITERAL PLACE

DUAL HIDDEN VARIABLE

Table 7.2: Categorising the SAT to CSP encodings.

mixture of DOMAIN and CONSTRAINT mappings. In this case one can choose how individual constraints

are encoded. For example, it might be more compact to encode Alldiff constraints using the DOMAIN

mapping, yet encode not-equals constraints using CONSTRAINT mappings. A hybrid approach might

yield encodings that are more compact and might potentially improve the effectiveness of preprocessing

and search-based algorithms. However, this is still in the concept stage and a great deal of work is

required to determine whether there are any tangible benefits to using this approach.

7.1.2 Characterising Encodings

In Chapter 5 I prove that these encodings can be characterised in accordance with the number of solu-

tions they encapsulate, that the different SAT to CSP encodings can produce micro-structures that have

different levels of solution-density. I prove that transforming SAT instances into CSP using the LITERAL

encoding produces problems that can have a higher proportion of solutions than the DUAL and NON-

BINARY encodings, for instance. These results are summarised in Table 7.3. This theoretical insight

might be practically useful in helping guide which encoding should be chosen for a particular problem

instance, as the literature shows that solution-density can affect the solubility of a problem, particularly

for stochastic algorithms.

NON-BINARY LITERAL DUAL HIDDEN VARIABLE PLACE

CSP vs. SAT = ≥ = = ≥

Table 7.3: Comparing the number of solution of SAT to CSP encodings. If we consider X vs. Y . X = Y
denotes that X and Y have an equal amount of solutions, and X ≥ Y denotes that X has at least the
same number of solution tuples as Y .

CHALLENGE 8: Characterise the computational properties of different encodings of a

real-world problem domain, and/or give general principles that hold over a range of do-

mains.

The work presented in Chapter 5 directly addresses this challenge. Having characterised the encod-

ings according to their solution-density, the second part of this chapter addresses the gap in theoretical

research identified in Chapter 3. I compare the performance of Resolution and Consistency based tech-

niques on the various encodings (summarised in Table 7.4) and show that enforcing local-consistency on
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the resulting CSP does varying amounts of work on different encodings 1. Notice that enforcing the same

level of local-consistency on DUAL encoded problems does more work than on LITERAL and NON-

BINARY encoded instances. Since DUAL encoded problems can be significantly larger than LITERAL or

NON-BINARY instances it is left as an open question as to whether the extra ‘work’ achieved is worth

the space overhead. However, the empirical results in Chapter 6 suggest that this is certainly worth it, at

least with respect to the types of problems in used in these experiments.

I also prove that enforcing strong-k-consistency on LITERAL encoded k-SAT instances does zero

work if each clause has distinct literals and I suggest that these theoretical results might be practically

useful in helping guide which encoding should be chosen for a particular problem instance. The empiri-

cal results in Chapter 6 demonstrate that this is most likely true.

NON-BINARY LITERAL DUAL HIDDEN VARIABLE PLACE

NG-RES k(-Resolution) k (j(k − 1), j) k (NON-BINARY) k (NON-BINARY)

k (LITERAL) (j(k − 1), j) (DUAL)

Table 7.4: The level of NG-RES when enforcing strong-k-consistency on SAT to CSP encodings. The
row values indicate the level of NG-RES when applied to a CSP encoded SAT instance.

7.2 Empirical Studies

I attempt to address two issues raised in the literature review that may bias empirical studies of encodings,

and identify a set of tests that have not been investigated previously. More specifically, I apply a relatively

basic polynomial-time constraint-based technique to an extensive suite of SAT benchmarks represented

as a CSP using the DUAL and LITERAL encodings. Table 7.5 provides a summary of the results of

applying path-consistency to DUAL encoded SATLIB benchmarks discussed in Chapter 6.

Given the theoretical results in Chapter 5, it is not surprising that the empirical results demonstrate

that enforcing path-consistency on LITERAL encoded 3-SAT instances had very little impact; failing to

solve a single instance. However, the success of enforcing a local-level of consistency on DUAL encoded

unsatisfiable SAT instances is very interesting. By comparing these results with the SAT-Solvers submit-

ted to the SAT Competition 2003, we see that this basic constraints-inspired polynomial-time algorithm

can compete favourably with highly optimised and efficient DLL-based SAT-Solvers on unsatisfiable

instances. As discussed, branching algorithms can prove both satisfiability and unsatisfiability, whereas

stochastic algorithms can only prove satisfiability. Proving unsatisfiability has been shown to be more

difficult for branching algorithms, so the results in this thesis encourage the development of sophisticated

local-consistency algorithms which might be a viable approach to redress this balance. I conjecture that

1Remember that the notion of ‘work’ refers to the relative level of consistency achieved on the encoded problem instance
(compared to the original) when enforcing a certain level of local-consistency.
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benchmark set inst’s ran solves props clauses avg. time (s)

dubois(20-30) 11 11 11 60-90 160-240 0.24-0.75

dubois50 1 1 1 150 400 3.75

dubois100 1 1 1 300 800 30.2

aim-50-1 6-no 4 4 4 50 80 0.032

aim-50-2 0-no 4 4 4 50 100 0.062

aim-100-1 6-no 4 4 4 100 160 0.27

aim-100-2 0-no 4 4 4 100 200 0.40

aim-200-1 6-no 4 4 4 200 320 1.85

aim-200-2 0-no 4 4 4 200 400 3.00

uuf50-218 1000 1000 1000 50 218 1.16

uuf75-325 100 100 55 75 325 25.05

uuf100-430 1000 1000 4 100 430 120.45

bf0432-007 1 1 1 1417 4045 2675.78

bf1355-075 1 1 1 2706 7304 4949.39

bf1355-638 1 1 1 2701 7292 3908.81

bf2670-001 1 1 1 1625 3666 550.36

ssa0432-003 1 1 1 504 1096 21.32

ssa2670-130 1 1 1 1583 3545 1309.45

ssa2670-141 1 1 1 1129 2458 503.51

goldberg/bmc1 4 & 23 2 2 2 217 493 1.5

goldberg/bmc1 42 & 61 2 2 2 417 943 9.7

graphcolors3/3col20 20 20 20 190 326 0.38

graphcolors3/3col40 20 20 20 380 646 4.87

graphcolors3/3col60 20 20 20 570 966 35.6

barrel-(2-9) 8 6 6 58-2806 167-9431 0.11-14977.031

biere/cmpadd 6 6 6 26-1132 70-3264 0.01-1936.453

biere/dinphil 4 4 4 213-1573 376-3904 0.28-1485.036

jnh 38 38 34 1665-2119 2365-2919 254.70

longmult(0-15) 16 4 3 558-2051 1327-5263 8.94-7122.125

Table 7.5: Summary of the unsatisfiable benchmark instances solved by enforcing path-consistency on
DUAL encoded SAT instances. The notations X − Y represents the spread of times that correspond to
the spread of benchmarks in each family. A more detailed set of results are shown in Chapter 6.

enforcing higher levels of consistency may even outperform state-of-the-art SAT-Solvers in determining

the unsatisfiability of many instances.
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CHALLENGE 1: Prove that a hard 700 variable random 3-SAT instance is unsatisfiable.

Although modern SAT-Solvers have solved 700 variable instances 2, random problems are still no-

toriously difficult for search-based and stochastic algorithms. One aim of this (and related) research is

to design hybrid algorithms - exploiting the strengths of each field - yielding benefits that are mutually

advantageous not only to the CSP and SAT communities, but also to the wider scientific community and

to industry.

An obvious line of research is to compare the performance of stochastic and branching algorithms

on DUAL encoded problems that have been made locally consistent (or partially consistent). The empir-

ical results in Chapter 6 and the results described by Prestwich (2003) and Een & Biere (2005) suggest

that practical techniques to prune search-spaces will most likely result in problems that are easier for

search-based algorithms to solve.

Another future direction of this research is to utilise the wealth of theoretical work in the CSP

community, and use it to test SAT instances for tractability. Tractability testing can help researchers

decide when to use polynomial-time or search-based algorithms ( Jeavons et al. (1996)).

Inspired by Prestwich’s research, I currently have several ideas to explore in the future that could

help alleviate in particular some bottlenecks in the DLL algorithm (the core of most modern SAT-

Solvers), two of which are:

1. The time spent performing unit propagation.

2. The time spent exploring dead-end branches.

I intend to tackle the former by introducing an exactly-1-SAT pruning concept inspired by the difference

between the DIRECT and MULTIVALUED CSP to SAT encodings. I also intend to improve the branching

rule in DLL to explore only local areas of the search-tree with the aim to prevent the algorithm from ex-

ploring dead-end branches thereby potentially reducing unnecessary backtracking and greatly increasing

performance.

7.2.1 Feature Analysis

Recently, the idea of dynamically applying heuristics according to some ‘fitness measure’ has been

proven to be successful by Shacham & Yorav (2006) who propose the notion of Adaptive Solving, in

which a SAT-Solver monitors the effectiveness of the search ‘on-the-fly’. Using a Performance Metric

to score the search progress one or more heuristics are turned on or off dynamically. The goal is to use a

specific heuristic or strategy when it is advantageous, and to turn it off when it is not. Shacham & Yorav

(2006) suggest several possible metrics and compare their effectiveness, showing that their adaptive

solver achieves significant speedups on a large set of examples.

2Verbal communication with Ian Gent, St Andrews Constraints Research Group.
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The notion of using ‘problem features’ to guide algorithm search (or choice) has been shown to be

very successful by SATZILLA2007. SATZILLA incorporates so-called empirical hardness models that

calculate features of the problem instance and use these to choose amongst a portfolio of SAT-Solvers.

Nudelman et al. (2004) describe 91 SAT instance features, of which SATZILLA2007 uses around 70. It

is widely known that there is no dominant SAT-Solver and that different solvers perform better or worse

according to the ‘type’ of the problem instance. SATZILLA2007, described by Xu et al. (2007), is a

‘meta-algorithm’ that decides to apply one of a portfolio of state-of-the-art SAT-Solvers on a per-instance

basis. Using empirical hardness models to choose among its constituent solvers, SATZILLA2007 signif-

icantly outperforms its constituent algorithms on every data set; winning three gold medals, one silver,

and one bronze in 2007’s SAT Competition.

We can extend this paradigm to the choice of encodings and (multiple) preprocessors. For example,

in Chapter 5 I propose a simple heuristic for choosing encodings and algorithms for instances that have

been predicted to be satisfiable or not. If an instance is likely to be satisfiable, then it might be appropriate

to choose the LITERAL encoding and use a stochastic algorithm. Whereas if an instance is likely to

be unsatisfiable, then choosing the DUAL encoding and running a branching algorithm might be more

successful. In the former example it is ill-advised to enforce local-consistency, since it might not have

any tangible pruning effect. However, it might be strongly advised to enforce local-consistency in the

latter example, since this might entirely prune the search-space.

Given the success of these types of dynamic algorithms described above, I suspect that the research

in these areas will become extremely important over the next few years. At present these features are SAT

orientated, utilising none of the wealth of theoretical knowledge from the Constraints Satisfaction field

devoted to understanding the tractability of these problems. If the performance of SAT-Solvers continues

to plateau, the SAT community may turn to Constraint Satisfaction and Graph Theory research to provide

a richer set of problem-features that these empirical hardness models can exploit. These methods may

alleviate the plateau in the short to medium term, but it will take new paradigm shifts to make larger

leaps in algorithmic performance. This supports the importance of providing a common framework to

bridge the research between these fields. Moreover, I intend to investigate the ‘meta-algorithm’ paradigm

further and explore other fields in search of ‘better’ features.

7.3 Extended Proof-Systems and Symmetry

In Chapter 3 I survey the pertinent theoretical work that is related to both Resolution and Consistency

research. I argue that although extended proof-systems are the most powerful at our disposal (and that

no known hard problems exist for them) little is known about how to use auxiliary variables effectively.

Indeed, this area of research has not progressed greatly over the past ten years. Kullmann (1999) made

some advances in proving lower-bounds for restricted versions of Extended-Resolution. Kullmann’s
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research may have a huge impact in the future, since the proof of exponential bounds would likely result

in a paradigm shift in the way that complexity bounds are proved, as Haken (1985) results did when

proving the first exponential bounds for standard Resolution.

7.3.1 Symmetry

Symmetries in the search-space can be broken by adding appropriate symmetry-breaking predicates to

a SAT instance. These predicates prune the search-space by acting as a filter that confines the search to

non-symmetric regions of the space without affecting the satisfiability of the instance. Crawford et al.

(1996) attempted to utilise these techniques to break symmetry in some CSPs. This work showed how

symmetries can be utilised by adding additional constraints to search problems, thereby ensuring that the

SAT-Solver never visits two points in the search-space that are equivalent under some symmetry of the

problem. The complexity results in this study suggested that generating symmetry-breaking predicates

is exponential in the general case. Crawford’s empirical results were not compelling, but suggested that

partial symmetry breaking - that can be done in polynomial-time - might address this issue. As with any

form of preprocessing, for symmetry-breaking to be effective in practice, the computational overhead

of generating and manipulating the predicates must be significantly less than the run-time savings they

yield due to search-space pruning. Recently Aloul et al. (2006) showed that formulae can be simplified

using symmetry-breaking techniques that lead to run-time reductions on many benchmarks.

7.3.2 Extended Proof-Systems

Notable research has been developed around symmetry during the past 20 years, and despite extended

proof-systems appearing in the literature 40 years ago, very little practical and theoretical advances have

been made. There is a close relationship between extended proof-systems and symmetry; both add

predicates with the aim to improve the solubility (or tractability) of a problem.

CHALLENGE 3: Demonstrate that a propositional proof-system more powerful than Res-

olution can be made practical for satisfiability testing.

Although I have provided no major contribution to the area of extended proof-systems in this thesis,

I imagine that this topic will become more important over the next decade. I argue that although almost

nothing is known about how to ‘intelligently’ use auxiliary variables, in Section 5.3 I have described

a simple way to automate this process. As with recent advances in branching heuristics and use of

symmetry-breaking clauses, I predict that the use of auxiliary variables will provide the next great leaps

in algorithmic performance.

The aim of introducing Extended-Consistency was to provide a general platform to allow the Con-

straint Satisfaction and SAT communities to share knowledge about these extended proof-systems and

to begin to exploit synergies that are mutually beneficial to each field. This extends the work of Tseitin,
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Baker and Mitchell, and provides a platform to communicate the wealth of theoretical results that have

been previously discovered about the power of extended proof-systems.

By demonstrating how this graph-theoretic framework can help unify the findings in these various

lines of work, I hope to utilise techniques from Graph Theory (and the wider Theoretical Computer

Science community) that can be exploited and that are mutually beneficial. For instance, Yang (2005)

published a Graph Theory paper describing an algorithm for ‘Finding k-cliques on a k-partite Graphs’.

These techniques (as with constraint-based techniques) are largely ignored by the SAT community. I

intend to further the research into extended proof-systems in two ways:

1. To utilise the wealth of theoretical knowledge from the CSP community to develop Extended

SAT algorithms that more effectively employ auxiliary variables, yet attempting to maintain the

performance benefits of modern SAT-Solvers.

2. To look for (in)tractable cases for Extended-Consistency and Extended-Resolution and identify

worse-case complexity bounds for these types of proof-systems.

Since there are no known hard problems for extended proof-systems, this research may prove useful

in answering a question raised by Rossi et al. (1990), which is “Can you reduce in polynomial-time a

SAT problem to a polynomial bounded graph that contains the same amount of information?”. In fact, I

envisage that some of the most important theoretical discoveries yet to be made in Complexity Theory

will centre around extended proof-systems.

From a practical perspective, it is well-known that many modern SAT-Solvers suffer from wide

clauses (Van Gelder (2006)), so by introducing auxiliary variables we can implement techniques to

maintain a constant arity (width), employ symmetry-breaking, and develop this research to exploit

the potential of these powerful proof-systems. We are still quite far from understanding the reason-

ing power of even the most simple Resolution algorithms with many of the basic questions still open

(Ben-Sasson & Wigderson (1999)). The main aim of this thesis (and the subsequent research I propose)

is to attempt to cultivate cross-fertilisation between the CSP and SAT research, providing the oppor-

tunity to gain deeper insights into Theoretical Computer Science by bridging the fields of Constraint

Satisfaction and Propositional Satisfiability.

7.4 Exploitation

In this section I provide an overview of the use of SAT algorithms in EDA and highlight many of the

prominent issues facing the industry. I discuss the direct benefits that improvements is SAT technology

may have on the Formal Verification aspect of the EDA industry and beyond.
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7.4.1 Electronic Design Automation

Electronic Design Automation (EDA) is the umbrella term for the category of tools used for designing

and producing electronic systems ranging from Printed Circuit Boards (PCBs) to Integrated Circuits

(also referred to as IC, microchips, silicon chips, or chips). Formal Verification is the process of testing

chip designs for correctness using exhaustive and complex mathematical algorithms. It is estimated that

around two thirds of IC projects fail to complete on schedule. As the design complexity of chips rapidly

increases, it is becoming more and more difficult to test for errors with ‘functional failure’ cited as the

number one cause by a wide margin3.

7.4.1.1 Chip Verification

There are two mechanisms to test a chip design for correctness, 1. Simulation-based Verification 2.

Formal-based Verification. The consensus is that Simulation and Formal Verification are complementary

and that together they have the potential of giving the highest verification coverage in the fastest time 4.

In 2003, a typical 90nm design project cost about $25million to undertake and approximately half

of the costs of any design project are on verification5. About 70% of new designs come back with

errors when fabricated and tested. This is not because of problems with yield or timing, but because

of functional problems that were missed during design verification 6. On average 50% of the entire

design effort is currently focused on verification and as the design of chips become more complex this

increasing verification bottleneck is lengthening the design cycle, delaying time-to-market and reducing

profits. Consequently, chip manufacturers - faced with increasingly costly designs and delays, potential

recall of faulty chips and huge reputational risks - are applying pressure to EDA tool vendors to deliver

more effective and robust verification solutions. This is just one issue adding the “design catastrophe”

facing chip designers and threatening the accepted prediction of Moore’s Law ( Mann (2000)).

As design complexity has increased the tools that design engineers have at their disposal have be-

come insufficient. Desperate to provide sufficient verification services, but limited by the capabilities of

the verification algorithms, EDA suppliers are struggling to meet current needs and expected demands 7.

Traditional simulation-based verification techniques are being pushed past their limits in an effort to

produce functionally correct new designs. It is not uncommon for IC design teams to write hundreds or

thousands of tests in addition to many months of pseudo-random simulations in an effort to test all chip

functionality and hit all the ‘corner cases’ (difficult cases) of the design.

Ultimately, trying to verify large designs by simulation alone is a losing battle. The size and com-

plexity of chips are growing much faster than development teams can generate tests and servers can run

3Mentor Graphics: European ESL Survey 2005.
4Formal Verification Usage with FPGAs -http://latticeblogs.typepad.com/frontier/2006/08/formal_verifica.html
5Nowadays a typical 65nm design project costs $60, with around 70% of the cost on verification.
6Fragmentation of the IC Verification Process -http://www.edat.com/NEA21.htm
7FPGA Explosion Will Test EDA -http://www.elecdesign.com/Articles/Index.cfm?ArticleID=15910&bypass=1

http://latticeblogs.typepad.com/frontier/2006/08/formal_verifica.html
http://www.edat.com/NEA21.htm
http://www.elecdesign.com/Articles/Index.cfm?ArticleID=15910&bypass=1
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them. A fundamentally different approach is needed in order to address this dilemma. The only viable

alternative to simulation is Formal Verification - the use of mathematical analysis to prove properties

about a design or, when proofs cannot be found, to generate diagnostic data to show how the design is

inconsistent with the properties. Formal Verification has been around for decades in academia, used in

a few large companies for nearly as long, and been available in commercial EDA products for about ten

years8. While large companies like IBM, Intel and Motorola have routinely hosted Formal Verification

experts since the early ‘90s (Gupta et al. (2003)) the algorithms to support this type of analysis were not

sufficient to use as a routine part of the design process.

7.4.1.2 Adopting SAT-Solvers

Verification methods based on SAT-Solvers have recently emerged as a promising solution ( Prasad et al.

(2005)). For this reason SAT has been extensively studied in theory for the past 50 years and in practice

for the past 15 years. Hundreds of academic and industrial researchers are actively working on SAT

algorithms, and thousands of articles have been published to date. Dramatic improvements in SAT-solver

technology over the past decade have led to the development of several powerful SAT-Solvers.

As a result the use of Formal Verification has increased significantly over the last few years and it

is now estimated that about 15% of the bugs in chip designs can only be found using Formal Verification

and up to 40% of the logic in a typical design project can be tested using Formal Verification analysis

subject to careful planning (Ludden et al. (2002)). This is in marked contrast with the situation a decade

and a half ago, when the fact that “every problem in NP can be reduced to SATin polynomial-time” was

widely regarded as being of only theoretical interest. Conventional wisdom was that a general purpose

algorithm could not be expected to perform well on real-world search or decision problems.

So, once a bit of a novelty, SAT-Solving is now a commercially valuable and competitive activ-

ity, with widespread interest in academia and increasingly attracting the attention of a growing base in

industry. SAT-based verification is now been applied to software as well as hardware ( Jackson et al.

(2000)), with the SAT-Solver’s major advantage over simulation-based techniques attributed to their ca-

pacity either to assert that a property holds, or to compute a sequence that violates the property. Indeed,

Formal Verification often uncovers bugs and corner cases that are very unlikely to be discovered by sim-

ulation alone. Formal Verification can also be initiated earlier in the design cycle and therefore improves

time-to-market over the conventional verification by simulation. This means that Formal Verification can

improve the design process in two ways, reduce the time to tape out (time-to-market), and reducing risk

through better verification coverage.

However, the transfer of Formal Verification technology is a time consuming and costly business.

This means that although the returns in investing in learning about and using formal methods in the

8FPGA Explosion Will Test EDA-http://www.elecdesign.com/Articles/Index.cfm?ArticleID=15910&bypass=1

http://www.elecdesign.com/Articles/Index.cfm?ArticleID=15910&bypass=1
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long term may be large, the effects and benefits are less obvious than some of the other more popular

techniques that come and go with fashion (Bowen & Hinchey (1997)).

Despite this, even marginal improvements in SAT algorithms can help IC design engineers to test

their designs more quickly, allowing IC manufacturers to significantly reduce time-to-market, decrease

the risk of faulty chips and thereby increase profits. As I have discussed throughout this thesis, although

it is well-know that the encoding can have a significant impact on the solubility of a problem the SAT

community typically adopt only one. Moreover, I have shown that coupling the encoding with an efficient

preprocessor, it is possible to solve many of the problems thought to be ‘hard’ for traditional SAT-

Solvers.

Many ‘natural’ CSPs can be encoded into SAT. This property makes the value of improving SAT-

Solvers extend beyond the area of EDA and Verification, offering the possibility to benefit other in-

dustries by incorporating a whole range of ‘hard’ natural problems, such as timetabling or scheduling.

Developing theoretical knowledge should be complemented by practical application. With some re-

search, too much emphasis is paid to either one or the other, which is why I attempt to find a balance

between both in this thesis.



Appendix A

Benchmark File Format

A.1 DIMACS CNF Format

To represent an instance of CNF problems, DIMACS (1993) has suggested a file format that contains all

of the information needed to define a satisfiability problem. This file will be an ASCII file consisting of

a two major sections: the preamble and the clauses.

The Preamble. The preamble contains information about the instance. This information is con-

tained in lines. Each line begins with a single character (followed by a space) that determines the type

of line. The type of lines are as follows:

• Comments. Comment lines give human-readable information about the file and are ignored by

programs. Comment lines appear at the beginning of the preamble. Each comment line begins

with a lower-case character c.

c This is an example of a comment line.

• Problem line. There is one problem line per input file. The problem line must appear before any

node or arc descriptor lines. For cnf instances, the problem line has the following format.

p FORMAT VARIABLES CLAUSES

The lower-case character p signifies that this is the problem line. The FORMAT field allows pro-

grams to determine the format that will be expected, and should contain the word ‘cnf’. The

VARIABLES field contains an integer value specifying n, the number of variables in the instance.

The CLAUSES field contains an integer value specifying m, the number of clauses in the instance.

This line must occur as the last line of the preamble.

The Clauses. The clauses appear immediately after the problem line. The variables are assumed to

be numbered from 1 up to n. It is not necessary that every variable appear in an instance. Each clause

will be represented by a sequence of numbers, each separated by either a space, a tab, or a new line
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character. The non-negated version of a variable i is represented by i; the negated version is represented

by −i.

Each clause is terminated by the value 0. Unlike many formats that represent the end of a clause by

a new-line character, this format allows clauses to be on multiple lines.

Example. Using the example

(x1 ∨ x3 ∨ x̄4) ∧ (x4) ∧ (x2 ∨ x̄3) (A.1)

a possible input file would be

c Example CNF format file

c

p cnf 4 3

1 3 -4 0

4 0 2

-3

and the input file for formula 2.1 could be

c 3SAT Equation example

c Daniel J Hulme

c

p cnf 4 4

1 2 3 0

-1 2 -3 0

1 -2 4 0

-2 -3 -4 0

CNF format files will generally have a .cnf extension.



Appendix B

SAT Encodings

B.1 LOG Encoding of Example 2.2.3

If we use the LOG encoding, the SAT instance of the GRAPH 3-COLOURABILITY Example 2.2.3 (on the

assumption that the binary values map to R = (0, 0), G = (0, 1) and B = (1, 0)) is:

• negative: (v̄x0 [1]∨v̄x0 [1])∧(v̄x1 [1]∨v̄x1 [1])∧(v̄x2 [1]∨v̄x2 [1])∧(v̄x3 [1]∨v̄x3 [1])∧(v̄x4 [1]∨v̄x4 [1])

• constraint: (vx0 [0]∨vx0 [1]∨vx1 [0]∨vx1 [1])∧(vx0 [0]∨vx0 [1]∨vx2 [0]∨vx2 [1])∧(vx0 [0]∨vx0 [1]∨
vx3 [0]∨vx3 [1])∧(vx0 [0]∨vx0 [1]∨vx4 [0]∨vx4 [1])∧(vx1 [0]∨vx1 [1]∨vx2 [0]∨vx2 [1])∧(vx1 [0]∨
vx1 [1]∨vx3 [0]∨vx3[1])∧ (vx1 [0]∨vx1[1]∨vx4 [0]∨vx4 [1])∧ (vx2 [0]∨vx2 [1]∨vx3 [0]∨vx3[1])∧
(vx2 [0]∨vx2 [1]∨vx4 [0]∨vx4[1])∧ (vx3 [0]∨vx3[1]∨vx4 [0]∨vx4 [1])∧ (vx0 [0]∨ v̄x0 [1]∨vx1 [0]∨
v̄x1 [1])∧(vx0 [0]∨ v̄x0 [1]∨vx2 [0]∨ v̄x2 [1])∧(vx0 [0]∨ v̄x0 [1]∨vx3 [0]∨ v̄x3 [1])∧(vx0 [0]∨ v̄x0 [1]∨
vx4 [0]∨ v̄x4 [1])∧(vx1 [0]∨ v̄x1 [1]∨vx2 [0]∨ v̄x2 [1])∧(vx1 [0]∨ v̄x1 [1]∨vx3 [0]∨ v̄x3 [1])∧(vx1 [0]∨
v̄x1 [1]∨vx4 [0]∨ v̄x4[1])∧ (vx2 [0]∨ v̄x2[1]∨vx3 [0]∨ v̄x3 [1])∧ (vx2 [0]∨ v̄x2 [1]∨vx4 [0]∨ v̄x4[1])∧
(vx3 [0]∨ v̄x3 [1]∨vx4 [0]∨ v̄x4[1])∧ (v̄x0 [0]∨vx0[1]∨ v̄x1 [0]∨vx1 [1])∧ (v̄x0 [0]∨vx0 [1]∨ v̄x2 [0]∨
vx2 [1])∧(v̄x0 [0]∨vx0 [1]∨ v̄x3 [0]∨vx3 [1])∧(v̄x0 [0]∨vx0 [1]∨ v̄x4 [0]∨vx4 [1])∧(v̄x1 [0]∨vx1 [1]∨
v̄x2 [0]∨vx2 [1])∧(v̄x1 [0]∨vx1 [1]∨ v̄x3 [0]∨vx3 [1])∧(v̄x1 [0]∨vx1 [1]∨ v̄x4 [0]∨vx4 [1])∧(v̄x2 [0]∨
vx2 [1]∨ v̄x3 [0]∨ vx3 [1])∧ (v̄x2 [0]∨ vx2 [1]∨ v̄x4 [0]∨ vx4 [1])∧ (v̄x3 [0]∨ vx3 [1]∨ v̄x4 [0]∨ vx4 [1])

B.2 INVERSE Encoding of Example 2.2.3

The CNF formula (excluding negative clauses) resulting from the INVERSE encoding of Example 2.2.3,

is the conjunction of:
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Buchberger, B., & Winkler, F. (1998). Gröbner Bases and Applications. Cambridge University Press.

Buss, S. (1987). Polynomial Size Proofs of the Propositional Pigeonhole Principle. The Journal of

Symbolic Logic, 52(4), 916–927.

Buss, S., & Turan, G. (1988). Resolution Proofs of Generalized Pigeonhole Principles. TCS, 62(3),

311–317.

Cheeseman, P., Kanefsky, B., & Taylor, W. (1991). Where the really hard problems are. Proceedings of

the 12th IJCAI, (pp. 331–337).

Clark, D., Frank, J., Gent, I., MacIntyre, E., Tomov, N., & Walsh, T. (1996). Local search and the number

of solutions. Proc. 2nd Int. Conf. on the Principles and Practices of Constraint Programming, (pp.

119–133).

Clegg, M., Edmonds, J., & Impagliazzo, R. (1996). Using the Groebner basis algorithm to find proofs of

unsatisfiability. Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,

(pp. 174–183).

Cohen, D., Jeavons, P., Jonsson, P., & Koubarakis, M. (2000). Building tractable disjunctive constraints.

Journal of the ACM (JACM), 47(5), 826–853.

Condrat, C., & Kalla, P. (2007). A Grobner Basis Approach to CNF-Formulae Preprocessing. In Tools

and Algorithms for the Construction and Analysis of Systems 13th International Conference, TACAS



BIBLIOGRAPHY 137

2007, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS

2007, Braga, Portugal, March 24-April 1, 2007: Proceedings. Springer.

Cook, S. (1976). A short proof of the pigeon hole principle using extended resolution. ACM SIGACT

News, 8(4), 28–32.

Cook, S. (2003). The importance of the P versus NP question. J. ACM, 50(1), 27–29.

URL citeseer.ist.psu.edu/634970.html

Cook, S., & Mitchell, D. (1997). Finding hard instances of the satisfiability problem: A survey. Satisfi-

ability Problem: Theory and Applications, 35, 1–18.

Cook, S., & Reckhow, R. (1979). The Relative Efficiency of Propositional Proof Systems. The Journal

of Symbolic Logic, 44(1), 36–50.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In STOC ’71: Proceedings of the

third annual ACM symposium on Theory of computing, (pp. 151–158). New York, NY, USA: ACM

Press.

Cook, S. A. (2000). The P Versus NP Problem. Computer Science Department, University of Toronto.

Available at http://www.cs.toronto.edu/sacook/homepage/PvsNP.ps.

URL citeseer.ist.psu.edu/302888.html

Cooper, M. C., Cohen, D. A., & Jeavons, P. (1994). Characterising Tractable Constraints. Artificial

Intelligence, 65(2), 347–361.

URL citeseer.ist.psu.edu/cooper94characterising.html

Crawford, J., & Auton, L. (1996). Experimental results on the crossover point in random 3-SAT. Artifi-

cial Intelligence, 81(1-2), 31–57.

Crawford, J., Ginsberg, M., Luks, E., & Roy, A. (1996). Symmetry-breaking predicates for search prob-

lems. Proceedings of the Fifth International Conference on Principles of Knowledge Representation

and Reasoning.

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem-proving. Communi-

cations of the ACM, 5(7), 394–397.

Davis, M., & Putnam, H. (1960). A Computing Procedure for Quantification Theory. Journal of the

ACM (JACM), 7(3), 201–215.

de Kleer, J. (1989). A comparison of ATMS and CSP techniques. Proceedings of the Eleventh Interna-

tional Joint Conference on Artificial Intelligence, (pp. 290–296).

citeseer.ist.psu.edu/634970.html
citeseer.ist.psu.edu/302888.html
citeseer.ist.psu.edu/cooper94characterising.html


BIBLIOGRAPHY 138

Dechter, R. (1990). On the Expressiveness of Networks with Hidden Variables. In Eighth national

conference on Artificial intelligence, (pp. 556–562).

Dechter, R. (1992a). Constraint Networks. Information and Computer Science, University of California,

Irvine.

Dechter, R. (1992b). From Local to Global Consistency. Artificial Intelligence, 55(1), 87–108.

URL citeseer.ist.psu.edu/dechter92from.html

DIMACS (1993). Satisfiability Suggested Format.

Do, M., & Kambhampati, S. (2001). Planning as constraint satisfaction: Solving the planning graph by

compiling it into CSP. Artificial Intelligence, 132(2), 151–182.

Een, N., & Biere, A. (2005). Effective preprocessing in SAT through variable and clause elimination.

SAT 2005: international conference on theory and applications of satisfiability testing, 3569, 61–75.

Een, N., & Sorensson, N. (2003). MiniSat: A SAT solver with conflict clause minimization. Proc. SAT,

5.

Esteban, J., & Torán, J. (2001). Space Bounds for Resolution. Information and Computation, 171(1),

84–97.

Fortnow, L., & Homer, S. (2002). A Short History of Computational Complexity. Bull. Eur. Assoc.

Theor. Comput. Sci, 80, 95–133.

URL citeseer.ist.psu.edu/fortnow02short.html

Freuder, E. (1978). Synthesizing constraint expressions. Communications of the ACM, 21(11), 958–966.

Freuder, E. (1982). A Sufficient Condition for Backtrack-Free Search. Journal of the ACM (JACM),

29(1), 24–32.

Frisch, A., & Peugniez, T. (2001). Solving non-boolean satisfiability problems with stochastic local

search. Proc. IJCAI, 1, 282–288.

Galil, Z. (1977). On Resolution with Clauses of Bounded Size. SIAM Journal on Computing, 6, 444.

Garey, M. R., & Johnson, D. S. (1990). Computers and Intractability; A Guide to the Theory of NP-

Completeness. New York, NY, USA: W. H. Freeman & Co.

Gasarch, W. (2002). Guest column: The P=? NP poll. SIGACT NEWS, 33(2), 34–47.

Gaschnig, J. (1974). A constraint satisfaction method for inference making. In Proceedings of the

Twelfth Annual Allerton Conference on Circuit Systems Theory, (pp. 866–874).

citeseer.ist.psu.edu/dechter92from.html
citeseer.ist.psu.edu/fortnow02short.html


BIBLIOGRAPHY 139

Gent, I. (2002). Arc consistency in SAT. Fifteenth European Conference on Artificial Intelligence, (pp.

121–125).

Gent, I., Jefferson, C., & Miguel, I. (2006). Minion: A Fast Scalable Constraint Solver. FRONTIERS IN

ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 141, 98.

Gent, I., MacIntyre, E., Prosser, P., & Walsh, T. (1996). The constrainedness of search. Proceedings of

AAAI-96, 1, 246–252.

Gent, I., Prosser, P., & Walsh, T. (2003). The extended literal encoding of SAT into CSP. Tech. rep., Tech-

nical Report APES-73-2003, APES Research Group, November 2003. Available from http://www.

dcs. stand. ac. uk/apes/apesreports. html.

Gent, I., & Walsh, T. (1996). The Satisfiability Constraint Gap. Artificial Intelligence, 81(1), 59–80.

Gent, I. P., & Walsh, T. (1994). The sat phase transition. In Proceedings of 11th ECAI, (pp. 105–109).

John Wiley & Sons.

Gent, I. P., & Walsh, T. (1995). Phase transitions from real computational problems. In In Proceedings

of the 8th International Symposium on Artificial Intelligence, (pp. 356–364).

Goldberg, E., & Novikov, Y. (2002). BerkMin: A fast and robust SAT-solver. Design, Automation and

Test in Europe Conference and Exhibition, 2002. Proceedings, (pp. 142–149).

Grant, S., & Smith, B. (1995). The Phase Transition Behaviour of Maintaining Arc Consistency. Uni-

versity of Leeds, School of Computer Studies.

Green, M. (2005). New Methods for the Tractability of Constraint Satisfaction Problems. Ph.D. thesis,

University of London, Department of Computer Science, Royal Holloway, Egham, Surrey, UK.

URL http://www.cs.rhul.ac.uk/home/green/publications/thesis/MJGreen_PhDThesis.ps

Gu, J., Purdom, P., Franco, J., & Wah, B. (1997). Algorithms for the Satisfiability (SAT) Problem: a

Survey. Discrete Mathematics and Theoretical Computer Science: Satisfiability, (pp. 378–383).

URL citeseer.ist.psu.edu/56722.html

Gupta, R., et al. (2003). Panel: Formal Verification: Prove It or Pitch It. Design Automation Conference,

June.

Haanpaa, H., Jarvisalo, M., Kaski, P., & Niemela, I. (2005). SAT Benchmarks based on 3-Regular

Graphs. In SAT Competition 2005.

Haken, A. (1985). The Intractability of Resolution. TCS, 39, 297–308.

http://www.cs.rhul.ac.uk/home/green/publications/thesis/MJGreen_PhDThesis.ps
citeseer.ist.psu.edu/56722.html


BIBLIOGRAPHY 140

Haralick, R., & Elliott, G. (1980). Increasing Tree Search Efficiency for Constraint Satisfaction Prob-

lems. Artificial Intelligence, 14(3), 263–313.

Hartmanis, J., & Stearns, R. (1965). On the Computational Complexity of Algorithms. Transactions of

the American Mathematical Society, 117, 285–306.

Hooker, J. (2007). Integrated Methods for Optimization. Springer.

Hoos, H. (1999). Stochastic Local Search-Methods, Models, Applications. IOS Press.
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