The Path to Satisfaction:

Polynomial Algorithmsfor SAT

Danidel J Hulme

A dissertation submitted in partia fulfillment
of the requirementsfor the degree of
Engineering Doctor ate
of the

University of London.

Department of Computer Science

University College London

2008

2

I, Daniel JHulme, confirm that the work presented in this thesisis my own. Where information has

been derived from other sources, | confirm that this has been indicated in the thesis.

Abstract

Twenty years ago the bottleneck preventing us from solving many practical problemslay in the limited
capacity and performance of computers. However, modern computers are now capabl e of storing a huge
amount of data and processing it at very high-speed. The bottleneck nowadays is in the efficiency and
effectiveness of the algorithms manipulating the data. Two fields of Computer Science related to this
issue - Constraint Satisfaction (CSP) and Propositional Satisfiability (SAT) - have developed relatively
independently over the past half century, it isonly in recent years that the mutual benefits of these fields
have started to be explored.

One method used to explore the relationship between these fields is to study the mappings between
the two core problem domains. After introducing the relevant background and providing a detailed
survey of SAT and CSP encodings, my analysis of these encodings uncoversthree categories, providing a
framework for current and future SAT and CSP encodingsto be devel oped. As aresult of this framework
| define a new encoding and | demonstrate that in certain circumstances this encoding may be more
advantageous than other encodings. This new encoding also opens up the potential for additional CSP to

SAT encodings.

After categorising SAT and CSP encodings the focus of this research shifts to characterising them.
Some empirical work on comparing algorithmic performance on instances with different solution-density
has been performed, and it has been shown that this feature is correlated with the solubility of a problem
instance and can be used to choose between using stochastic and branching algorithms. | provide a
characterisation of current SAT to CSP encodings and | prove that some encodings result in problems
with varying solution-densities. Since it has been shown that solution-density is an important factor in
determining the solubility of an instance, my work provides a guide to assist in choosing one encoding

over another.

A large amount of theoretical analysis has been published comparing stochastic and branching algo-
rithmic techniques on SAT and CSP encodings, however, very little research has compared the effect of
enforcing local-consistency in each of these domains. After introducing the main algorithmic techniques
from the SAT and CSP communities | use the graph-theoretic framework to reconfirm and strengthen

the equival ence between the SAT and CSP-based proof methods. | provide a comprehensive comparison

Abstract 4

between local -consistency techniques on each of the SAT to CSP encodings. One result of thiswork has
direct practical implications regarding the choice of encoding; that enforcing local-consistency on some
types of encoded problems does more work than when using other type of encodings. | also prove that
enforcing certain levels of local-consistency on some types of encoded SAT instances does zero work,
which is supported by the empirical results presented in this thesis.

In addition, | bridge further the CSP and SAT techniques by introducing the concept of Extended-
Consistency, thus providing a more complete picture of the extended proof-systems. Extended proof-
systems allow the introduction of auxiliary variables and are some of the most powerful proof-systems
known. Relatively little practical work has been done on extended proof-systems. Typically SAT and
CSP algorithms that employ additional variables tend to apply them in an ‘ad-hoc’ manner. The mo-
tivation of defining Extended-Consistency is to alow synergies between extended proof-systems to be
cultivated and explored.

| identify two key problematic aspects of empirical studies of encodings. First, typically one type
of problem is used as a benchmark to compare encodings. Second, either stochastic or backtracking
agorithms are applied to the encoded problems. Clearly both of these choices may bias the resuilts,
since an encoding/algorithm may ‘favour’ a particular problem. | address these issues by applying a
local-consistency algorithm to awide variety of unsatisfiable problems. These experiments support the
theoretical analysis and strongly indicate that the choice of encoding has a dramatic effect on reducing
the search-space when enforcing local-consistency. | demonstrate that enforcing a small local-level of
consistency on problems using a certain encoding does not solve any of the SAT benchmarks, which is
in stark contrast to problems encoded using a different method. | show empirically that enforcing such
alow-level of consistency can solve a large number of ‘hard’ SAT benchmark families. In particular,
converting SAT instances to CSP and applying local-consistency can not only solve many ‘hard’ SAT
instances, but this technique can even compete with state-of-the-art SAT-Solvers.

The results presented in this thesis are part of a research program aimed at bridging the gap be-
tween Propositional Seatisfiability and Constraint Satisfaction. Hence, the main goal of this thesisis to
strengthen this relationship and to capitalise on synergies between these two fields. The broader aimisto
develop a better understanding of Computer Science, which aims to benefit the scientific and industrial
communities by increasing the theoretical understanding of the complexity and tractability of natural
problems, thus improving practical algorithmsthat can be applied it to pertinent scientific and industrial

problems.

Acknowledgements

| wish to acknowledge the support of the EPSRC Engineering Doctorate from the EngD Programme at
UCL. The EngD is an excellent programme hosted by a fantastic university, it is a four-year postgrad-
uate award intended for the UK’s leading research engineers. With a taught component spanning both
Engineering and electives from an MBA at the London Business School, the EngD programmeis better
suited to the development of trandlational research, and providesa more vocationally oriented Doctorate
in Engineering.

| would like to thank Beau Lotto for providing me with a diverse environment, as well as the free-
dom to pursue this research. | thank Bernard Buxton - my supervisor and mentor - for his continuous
encouragement and advice, which has been invaluable throughout my academic and personal develop-
ment. | am indebted to Robin Hirsch for his help with this work and for his guidance and patience over
theyears.

| sincerely thank the members of the LottoLab and the 100 for a pleasant working environment
and our various stimulating discussions, including Martina Wicklein, Udi Schlessinger, David Malkin,
David Corney, Erwan Le Martelot and Steve Dakin, and in particular Rich Clarke for making the past
four years some of my most enjoyable. | thank Pete Jeavons, Dave Cohen, lan Gent and the members of
Oxford’s, Holloway’sand St Andrews Constraints group for our brief yet val uable conversations. Special
appreciation goes to my examiners Barbara Smith and Dave Cohen for their advice about how to greatly
strengthen this work.

I thank my family and friends for their continuous encouragement, enthusiasm and support; espe-
cially David Bradshaw for doing a great job of proof-reading the first version of this work.

Finally, and most importantly, avery special thank you goesto Nana, Grampy and Shona; to whom

thisthesisis dedicated — it would be impossible to have done it without them.

Contents

1

Introduction and M ot

ivatio

1.1 PvsNP Probl

1.2 Constraint Satisfaction e

1.2.1 Formal Verification e

1.4 Motivation and Thesis Contribution o i e

141 Theoretical ResUlts o o e

1.42 Empirica

Results e

143 Publications e

1.5 Thesis Organisati

O . . . e e e e e e e e e e

Definitions and Backgroun

1 PandNB . ..

2.1.1 Polynomi

a Reduction

212 NPandco-NP e

2 Constraint Satisfaction e e e e e

2.2.1 Implicit and Explicit CSP Representations« v v v v v v v e e

2.2.2 Graphs

2.3 CSP Algorithms

231 CONSIStENCY v v o e e e e e e e e e e

234 StochasticSearchforCSH

4 Boolean Satisfiab

R .

2.5 SAT Algorithms

251 Resolutio

252 Extended

-Resolution e

Contents 7

253 NG-RESProof-Systeml. 34

d Procedur

6 Chapter Summary and DiSCUSSION . .« v v v v v e e e e e e e e e e e 39

3 Literature Review 40

41,2 CONSTRAINT MappRING« v v o e e e e e e e e e e e e e e 75

Contents

41.3 COMBINED MaAoRING . . « « « v o e e e e e e e e e e e e e

4.3 Chapter Summary and DiSCUSSION . .« v v v v v e e e e e e e e e e e

. —

5.1 Solution Separationof SATtoCSPEncodingd o v v v v i v e

511 LITERAL EncodedSolutions o . v o e e e

512 Dual EncodedSolutiond e

513 NON-BINARY EncodedSolutions« v i ..

514 PLACEand HIDDEN VARIABLE Encoded Solutions

5.2 | oca-Consistency Analysisof SATtoCSPEncodingd

521 Resolution=ConsiSteNCY v . v e e e e e e e

5.2.2 | ocal-Consistency onthe NON-BINARY Encoding

523 Loca-Consistencyonthe LITERAL Encodingl v v v o ..

5.2.5 Loca-Consistency onthe PLACE and HIDDEN VARIABLE Encodings

53 Extended-ConSiStENCM o . v v o e e e e e e e

54 Chapter Summary and DISCUSSION v v e e e e e e e e e e

ﬁ.Q.J_ElLMAC_SLN.F_EQLmal
6.02 UUH
6.03 DUBOIS it
6.04 AIM
6.05 INH
6.06 BEand SSAl
6.0.7 PRETl
6,08 PigeonHOlE e
6.1 SAT CompetitionBenchmarks L
6.1.1 Competition COMPASON - « -« « « « v v o e v e e e e
6.2 Chapter Summary and DISCUSSION .+« « « « « v v v v v e e e e e

7 Discussion, Exploitation and Future Wor

7.1 Theoretical StUdIES e e

76
77
80

82
83
83

85
85
87
87
89
89
92
92
94
99

Contents 9

121

123

124

125

B SAT Encodings 132

B.1 LoGEncodingof Examplel223 132

B.2 INVERSE Encodingof Example23,, 132

Bibliography 134

List of Figures

1 Aninstanceof GRAPH 3-COLOURABILITY S . « « « v v v v v i e e e e e e e e e 28
2.2 A solution to Exam Iea 28
23 Example@ 30
2.4 A binary search tree of Formulag 36

42

44
3.3 A graphical representation of the L oG encoding of Example % 46
3.4 Formulal2llasa 5 aph using the RAL encoding. 54
3.5 The (partia) é§ graph of Formulal2.Tlmapped to CSP using the DUAL encodingd 55
3.6 FormulaZllasaG2 3-h peraraph using the NON-BINARY encodingd 57
3.7 Themicro-structure complement of Formulal2. 1l transformed to a CSP using the PL ACE encoding
3.8 The G graph of FormulalZ.lencoded using the HIDDEN VARIABLE encodingl 59

The (partial) G¢ graph of

The G2 LITERAL encoded Formula

Example

56

57
58
59

encoded k-SAT instances) 91
o-structurecomplement) 96
o-structure complement with added variablevgl 97

Example[5.3.11 CSP micro-structure complement with added variables vg, v; and vol . . . 98
Combining FiguresG.8andB8together] 99

58

List of Tables

CSPto SAT encodings.. 49

3.3 Theeight assignments that satisfy Formula H 53

4.3 The CSP to SAT encoding complexity, including the INVERSE encoding.f 79

4.4 Categorisingthe CSPto SAT encodingS)« v v v v o v e e e e e e e 81

6 he level of NG-R yvhen enforcing strong-k-consistency on SAT to CSP encodings.| . 100

6.4 nforcing path-consistency on DUAL encoded benchmarks. Timeisin seconds.| . . 106
6 nforcing 4-consistency on unsolved DUAL_encoded pbenchmarks| 106

6 nforcing strong-5-consistency on DUAL encoded PRET benchmarks.| 110

List of Tables 12

6 he Pigeon-Holeinstances) 0 i e e e 111
6 nforcing path-consistency on BV AT Competition benchmarks] 112
6.14 Enforcing path-consistency on GRAPHCOL ORS3 SAT Competition benchmarks.| 112
6 nforcing path-consistency on BARREL SAT Competition benchmarks| 112
6.16 Enforcing path-consistency on CMPADD SAT Competition benchmarks.f 112

6.20 Number of benchmarks solved by enforcing consistency compared to competition solvers.|115

List of Algorithms

37

38

K ith & 66

4 ___Incremental k-CON algorithm) 103

5 strong-3-CON algorithm) e e 104

Chapter 1

| ntroduction and M otivation

In the seminal paper by IHartmanis & Stearns (1965) Computational Complexity was born. Informally,
Computational Complexity is the discipline of Computer Science concerned with the number of algo-
rithmic operations required to solve awell-defined problem. In fact, |Sipset (1992) points out that several
papers around thistime proposed and devel oped the notion of measuring the complexity of a problem by
the number of steps required to solve it with an algorithm.

More generally, Complexity Theory is the study of the level of resource required to solve a mathe-
matically posed probl (i.e. time or space), and over the past 40 years research in this field has made
tremendous inroads to industry. We are unable to go from A to B without algorithms solving a plethora
of optimisation problems along the way — indeed, sometimes even the process of going from A to B
efficiently is an optimisation problem.

Twenty years ago the bottleneck preventing us from solving many practical problems lay in the
limited capacity and performance of computers. However, modern computersare now capable of storing
ahuge amount of data and processing it at very high-speed. The bottleneck nowadaysisin the efficiency
and effectiveness of the algorithms manipulating the data, which iswhy Complexity Theory has become
such an important and popular field.

Certainly, progress in this field continues to increase as witnessed by the growing number of
Complexity-related papers published in journals and presented at major conferences. However, it may
be safe to say that no other article in Computer Science has stimulated more discussion than the P vs NP

problenH, which has now been with us for over three decades.

1.1 PvsNP Problem

The P vs NP problem, formulated independently by Stephen |Cook (1971) and Leonid Levin
(Trakhtenbrot (1984)), is arguably one of the most important scientific questions posed to date. Simply

stated, the P vs NP question asks if there exists a polynomial solution to any of the problems shown

1FOLDOC: Free On-line Dictionary of Computing. http://foldoc.org
2polynomial (P) and Non-deterministic Polynomial (NP), defined in SectionZ1]

1.1. PvsNP Problem 15

to be NP-complete. Cook showed that the SATISFIABILITY PROBLEM is NP-complete, whilst Levin
proved NP-completenessfor avariant of the TILING PROBL EMH. Cook’s Theorem states that any prob-
lem that can be solved in polynomial-time by a non-deterministic Turing machine can be reduced (in

polynomial-time) to the problem of determining whether a Boolean formulais satisfiable.

Over the past several decades researchers have been trying to (dis)prove the P £ NP conjecture by
determining whether or not there is a polynomia solution to any of the known NP-complete problems,
many of which are described in (Garey & Johnson (1990) Computers and Intractability: A Guide to the
Theory of NP-completeness. If indeed we were to discover that one of these NP-complete problems
wasin P, then by the process of polynomial-reductionwe will have managed to solve every NP problem
polynomially. |Cook (2000) states that although a practical agorithm for solving an NP-complete prob-
lem would have devastating consequences for cryptography, it would aso have stunning implications of

amore positive nature,

“for example, it would transform mathematics by alowing a computer to find a formal
proof of any theorem which has a proof of reasonable length, since formal proofs can easily
be recognized in polynomial time. Example theorems may well include al of the Clay
Mathematical Ingtitute prize problems. Although the formal proofs may not be initially
intelligible to humans, the problem of finding intelligible proofswould be reduced to that of

finding a recognition algorithm for intelligible proofs.”

Similar remarks apply to diverse creative human endeavours, such as architecture, creating physical

theories, composing music or even automating intelligent behaviour. Though still unproven, the general

consensus from the|Gasarch (2002) poll is that P # NPH. Undoubtedly, even if P # NP were true the
consequences of showing that every NP problem important to science and industry is ‘susceptible’ to a
polynomial-time algorithm is difficult to imagine, since this might yield many of the practical benefits
that could be expected inaworldinwhich P =~ NP (|(Cook (2003)). Clearly, the significance of developing
practical techniques to improve the solubility of NP-complete problems is huge, and is one of the key

motivations for the work in this thesis.

Aside from the algorithms that are being applied to problems discussed in thisthesis, there are also
many restricted versions of NP-complete problemsthat can be solved using polynomial-timea gorithms.
Markedly, Constraint Satisfaction research has provided various conditions that have been shown to be
sufficient to ensure tractability, most notably the works of Cohen and Jeavons (see |Cooper et al. (1994);
Jeavons & Cooper (1995); lJeavons et al. (1996,11997,11998); |Cohen et a | (2000)).

3See|Fortnow & Homet (2002) and[Sipsef (1992) for excellent introductions to the history of Computational Complexity and
the P vs. NP problem.
“meaning that no polynomial-time algorithm exists that can solve a class of NP-complete problems.

1.2. Constraint Satisfaction 16

1.2 Constraint Satisfaction

Pioneered by Montanari, Waltz and Mackworth in the 1970's, the Constraint Satisfaction Problem (CSP)
describesageneral framework for problemsin which values must be assigned to a set of variables subject
to specific constraints (Mackworth (1975)). It is one of the most prominent research areasin Theoretical
Computer Science and Artificial Intelligence.

Widely studied in academia for several decades, research in this field is successfully beginning to
penetrate mainstream industry (Wallace (1996)). With the advent of the modern computer contributing
to the significant growth of this field, Constraint Satisfaction research is being applied to numerous Op-
erational Research (OR) problems, including timetabli ngH, location, scheduling, car sequencing, cutting
stock, vehicle routing and rostering (see Brailsford et a | (1999)). In particular, one type of CSP, Propo-
sitional Satisfiability (SAT), has been adopted by the semiconductor industry as a methodology (Formal
Verification) for testing the design of Integrated Circuits (Chips).

1.2.1 Formal Verification

In the context of hardware and software systems, Formal Verification is the act of proving or disproving
the correctness of intended a gorithms underlying a system with respect to a certain formal specification
or property. Over the past decade (though much more so within the last few years) formal-methods have
been successfully integrated into Electronic Design Automation (EDA) tools as a technique to detect
‘bugs’ in Chip designs (Prasad et al. (2005)). Roughly half of the costs for any design project are on
verifying the design. About 70% of first fabricated silicon chips come back with errors, not because
of problems with yield or timing, but because of functional problems that were missed during testi ngH.
This, coupled with the increasing complexity of Chip design, is posing semiconductor companies with
escalating costly delays, potential recall of faulty chips and huge reputational risks.

With around 50% of the entire design effort currently focused on Verification this increasing bot-
tleneck is lengthening the design cycle, delaying time-to-market and eating into profits. Conseguently,
Chip manufacturers are applying pressure to EDA tool vendors to deliver more effective and robust
Verification algorithms.

These agorithms, typically SAT-based, have been embraced by industry because they help ease a
real ‘customer pain’, namely the Chip testing bottleneck. A lack of market opportunity could be one
reason why Constraint-based approaches to more common OR problems (such as timetabling) have
been adopted with less fervour in comparison (Broadfoot & Broadfoot (2003)) — besides the typical
‘barriers’ cited as the cost of technology/methodology transfer, and the level of knowledge required
(Bowen & Hincheyi (1997)).

5SeelSchaeri (1999) for an excellent survey of algorithmic techniques to solve the TIMETABLING PROBLEM.
6FPGA Explosion Will Test EDA - http://www.el ecdesign.com/Articles/Index.cfm?Articlel D=15910& bypass=1
"Fragmentation of the IC Verification Process - hitp://www.edat.com/NEA21.htm

1.3. Propositional Satisfiability 17

Asapotential consequence of this ‘market force'’ SAT-algorithms have evolved relatively indepen-
dently fromthefield of Constraint Satisfaction. Nevertheless, in recent years cross-fertilisation has begun
between these two research areas, particularly the techniques concerning Resolution (SAT) and Consis-
tency (CSP) (seelWalsh (2000¢); IRish & Dechterl (2000); Mitchell (2003); IKullmann (2004); Bennaceur
(2004)).

1.3 Propositional Satisfiability

The SATISFIABILITY PROBLEM in propositional logic (SAT) is the quintessential NP-complete prob-
lem, and is a particularly important type of CSP. Over the past decade dramatic improvements in Res-
olution-based algorithms have given rise to SAT-Solvers (such as IMoskewicz et al. (2001) zCHAFF,
Goldberg & Novikov (2002) BERKMIN and [Een & Sorensson (2003) MINISAT) that can solve in-
stances with thousands and even millions of variables (Hoos & Stiitzle (2000)).

Given a propositional formula on a set of Boolean variables, SAT asks whether or not there exists
an assignment to the set of variables such that the formula evaluates to True. More specifically, SAT, in
Conjunctive Norma Form (CNF), consists of the conjunction of a number of clauses, where aclauseis
adigunction of a number of propositions or their negations. Given a set of clauses C'¢,C1,...,Cp-1
on the propositions zg, z1, . . . , ,,—1, the problem is to determine whether the formula F' = /\ C; has

j<m
an assignment of values to the propositions such that it evaluates to True.

1.4 Motivation and Thesis Contribution

Two fields of Computer Science - Constraint Satisfaction and Propositional Satisfiability - have devel-
oped relatively independently over the past half century, it isonly in recent years that the mutual benefits
of these fields have started to be explored. As the performance of SAT-Solvers begins to plateau the
necessity to look towards other fields for inspiration to continue progression has become more preva-
lent. Since the SAT problem is a restricted type of CSP and many CSPs can be represented as SAT
instances it seems sensible to explore and strengthen the relationship between Constraint Satisfaction
and Propositional Satisfiability research and to capitalise on synergies between these two fields.
Theresults presented in thisthesis are part of aresearch program aimed at bridging the gap between
Propositional Satisfiability and Constraint Satisfaction. One of the main challenges is to combine the
inherent efficiencies of SAT-Solvers, operating on uniform encodings, with the much more sophisticated
propagation techniques of CSP formalisms. The aim is to develop a better understanding of Computer

Science as part of awider goal, which aims to benefit the scientific and industrial communitiesin three

ways:

1. Increase the theoretical understanding of the complexity and tractability of natural problems.

1.4. Motivation and Thesis Contribution 18

2. Provide practical tools and algorithmsthat will benefit both CSP and SAT research.
3. Demonstratethe value of thisresearch by applyingit to pertinent scientific and industrial problems.

Whilst most current research focuses on how SAT techniques can be utilised by the Constraint
Satisfaction community, this thesis addresses the opposite, asking what CSP techniques can aid the SAT
community. | have attempted to make the content of this thesis ‘broad’ enough so that it isinteresting to
the wider audience, but ‘deep’ enough so as to provide important and valuable theoretical and practical
insightsinto thefield. Althoughthe general consensusagreesthat bridging the two fields of Propositional
Satisfiability and Constraint Satisfaction is mutually beneficial only ahandful of researchershave crossed

the chasm.

14.1 Theoretical Results

After introducing the relevant background and providing a detailed survey of SAT and CSP encodings,
my in-depth analysis of these encodings uncovers three categories. These encoding categories are in-
spired by observing how the CSP micro-structure is constructed and expressed. Utilising the ideas
presented in this thesis, and cross-fertilising these two fields, | provide a framework for current and fu-
ture SAT and CSP encodings to be developed. As aresult of this framework | define a new encoding
and demonstrate that in certain circumstances this encoding is preferable to other encodings. This new
encoding also opens up the potential for additional CSP to SAT encodings.

After categorising SAT and CSP encodings the focus of this research shifts to characterising them.
Previous empirical work by others comparing the algorithmic performance on instances with different
solution-density has been performed, and it has been shown that this measure can be used as a guide for
choosing between using stochastic and branching algorithms. | provideacomprehensive characterisation
of current SAT to CSP encodings and | prove that some encodings result in problems with a higher
number of solutions than others. Since it has been shown in the literature that solution-density is an
important factor in determining the solubility of an instance the results in this thesis provide a guide to
assist in choosing one encoding over another.

Similarly, asignificant amount of theoretical analysis has been published comparing stochastic and
branching SAT and CSP a gorithmic techniques on SAT and CSP encodings, however, very little research
has compared the effect of enforcing local-consistency algorithms in each of these domains. After in-
troducing the main algorithmic techniques from the SAT and Constraint Satisfaction communities, | use
a graph-theoretic framework to reconfirm and strengthen the equivalence between the SAT and CSP-
based proof methods. | provide a comparison of local-consistency techniques on each of the SAT to CSP
encodings. One result of this work has direct practical implications regarding the choice of encoding;
that enforcing local-consistency on one type of encoded problem does more work than on other encoded

instances. | also prove that enforcing certain levels of local-consistency on some types of encoded SAT

1.4. Motivation and Thesis Contribution 19

instances does zero work if each clause has distinct literals, which is supported by the empirical results

presented in this thesis.

In addition, using this framework | bridge further between the CSP and SAT techniques by in-
troducing the concept of Extended-Consistency, thus providing a more complete picture of extended
proof-systems. Extended proof-systems are some of the most powerful systems known, by allowing the
introduction of auxiliary variables to maintain a constant arity. Relatively little practical work has been
done on extended proof-systems. SAT and CSP a gorithmsthat employ additional variablestend to apply
themin an ‘ad-hoc’ manner. This motivates the definition of Extended-Consistency, a new proof-system

that may make it easier for synergies between extended proof-systemsto be cultivated and explored.

142 Empirical Results

Reviewing previous empirical studies of encodings highlightstwo problematic issues that call into ques-
tion the validity of the wider implications of the results. First, typically one type of problem is used as
a benchmark to compare encodings. Second, either stochastic or backtracking algorithms are applied to
the encoded problems. Clearly both of these choices may bias the results, since an encoding/algorithm
may ‘favour’ a particular problem. Although each author may proclaim the benefits of their encoding, a
rigorous empirical and theoretical investigation remainsto be performed to better determine their advan-
tages and disadvantages. However, to perform a comprehensive and rigorous survey of these encodings

is arguably a mammoth task.

| address these two issues by applying alocal-consistency algorithm to awide variety of unsatisfi-
able problems. As aresult of applying this algorithm to CSP encoded SAT instances the experimental
results strongly indicate that the choice of encoding has a dramatic effect on reducing the search-space.
These empirical results are consistent with my theoretical results. | demonstrate that enforcing a small
local-level of consistency on problems using a certain encoding does not solve any of the SAT bench-
markig. Thisisin stark contrast to problems encoded using another encoding, where | show that en-
forcing such a low-level of consistency can solve a large number of ‘hard’ SAT benchmark families.
In particular | show that converting SAT instances to CSP and applying local-consistency can not only
solve many ‘hard’ SAT instances, but this technique can even compete with state-of-the-art SAT-Sol vers.
Branching a gorithms can prove both satisfiability and unsatisfiability, whereas stochastic a gorithms can
only prove satisfiability. Proving unsatisfiability has been shown to be more difficult for branching algo-
rithms, so | suggest that future research is focused on the devel opment of sophisticated local -consi stency

algorithms, which might be a viable approach to redress this balance.

8They do not prove unsatisfiability.

1.4. Motivation and Thesis Contribution 20
1.4.3 Publications

1.4.3.1 Conference Papers. Refereed
e Daniel JHulme, Robin Hirsch, Bernard Buxton, and R.Beau Lotto. A new reduction from 3-SAT
to n-Partite Graphs. In FOCI07: |EEE Symposium on Foundations of Computational Intelligence,
|EEE Symposium on Computational Intelligence, Hawaii, USA, April 2007.

Abstract. The Constraint Satisfaction Problem (CSP) is one of the most prominent prob-
lems in artificial intelligence, logic, theoretical computer science, engineering and many
other areas in science and industry. One instance of a CSP, the satisfiability problem in
propositional logic (SAT), has become increasingly popular and has illuminated important
insights into our understanding of the fundamentals of computation. Though the concept
of representing propositional formulae as n-partite graphsis certainly not novel, in this pa
per we introduce a new polynomial reduction from 3-SAT to G'# graphs and demonstrate
that this framework has advantages over the standard representation. More specifically, af-
ter presenting the reduction we show that many hard 3-SAT instances represented in this
framework can be solved using a basic path-consistency algorithm, and finally we discuss

the potential advantages and implications of using such a representation.

1.4.3.2 Papersin Preparation

In addition to the publications listed in this section, it is expected that at least two more papers will be

submitted post-completion of this thesis:
1. Solving SAT using a Polynomial Consistency Algorithm.

e This paper is constructed from Chapters[2,[3 and[@ It is an extended version of Hulme et al.

(2007) containing a more detailed definition of the encodings, experiments and resullts.
2. Categorising SAT and CSP Encodings.

e Theresultsfrom ChaptersidlandBwill be used for the content of thispaper. More specifically,
it will survey SAT and CSP encodings, describe how they can be characterised according to

their mapping and introduce the INVERSE encoding.
3. Characterising SAT to CSP Encodings.

e This paper will be constructed from Chapters[H and[@ In this paper | will show how to
characterise encodings according to their solution-density, detail the theoretical results of
comparing SAT and Consistency techniques and provide the empirical evidence to support

these claims.

1.5. Thesis Organisation 21

1.5 ThesisOrganisation

Here| give an overview of each chapter.

Chapter 1: Introduction and Motivation

In this chapter | introduce the context as well as the major topics covered in this thesis. | highlight the

contributionsto the field of Computer Science and give a content overview of each chapter.

Chapter 2: Definitions and Background

In Chapter [2 1 introduce the necessary definitions and background information required for the rest of
the thesis. | define the CSP and SAT problems, as well as a number of basic Graph Theory concepts,
and show how CSPs are represented graphically. The aim of this chapter is to lay the foundation for the
remainder of the thesis, where | provide a comprehensive and detailed theoretical analysis of how CSP
and SAT problemsare mapped using agraph-theoretic framework. Thisframework isused as an effective
bridge between each of the two problem domains and is the primary mechanism used throughout this

thesis to understand the similarities and differences between SAT and CSP techniques.

Chapter 3: Literature Review

In thefirst part of the Chapter [31 review the encoding literature, providing a detailed survey of CSP and
SAT encodings as well as critically assessing the major theoretical and empirical studies. The focus of
the latter part of this chapter shifts towards the proof-complexity of polynomial algorithms and problems

that are hard. This review highlights a number of gapsin the literature that are addressed in this thesis.

Chapter 4: Categorising Encodings

In Chapter [4 | demonstrate that all of the SAT to CSP encodings defined in this thesis (and vice-versa)
can be categorised as one of three types of mappings. Categorising the encodings in this way high-
lights scope for several new CSP to SAT encodings, one of which | formally define and demonstrateits
relative advantages over some of the other encodings; highlighting one major benefit of examining the

relationship between SAT and CSP research.

Chapter 5: Characterising SAT to CSP Encodings
In Chapter[H I demonstratethat the graph-theoretic approachis auseful framework to explore the similar-
ities and differences between Consistency and Resol ution techniques, and use it to show that Consistency
and Resolution are the same procedure. | separate SAT to CSP encodings according to their solution-
density and prove that some encodingswill result in CSPs with a higher number of solutionsthan others.
The second part of this chapter addresses a major gap in theoretical research, which is comparing
the performance of polynomial preprocessors on the various encodings. Here | provide a theoretical
comparison of Resolution and Consistency-based techniques on the SAT to CSP encodingsand | discuss

the practical implications. For instance, | show that enforcing a low-level of local-consistency on the

1.5. Thesis Organisation 22

DuaL encoded CSP does much more work in comparison to using the LITERAL encodi ngH. | also prove
that enforcing path-consistency on LITERAL encoded 3-SAT instances does zero work if each clause has
distinct literals, which is consistent with the empirical results presented in Chapter

Towardsthe end of this chapter | focus again on the rel ationship between the Consistency and Reso-
lution proof-systems. Inspired by the work of Tseitin, Baker and Mitchell, | build upon this relationship
by defining Extended-Consistency - the generalisation of Extended-Resolution - therefore allowing syn-
ergies between these two extended proof-systems to be explored. Using an example | demonstrate that

the use of auxiliary variables can be automated to maintain constraint arity.

Chapter 6: Empirical Analysisof the LITERAL and DUAL Encodings

One of the main results of Chapter [§is that enforcing local-consistency on DUAL encoded problems
does morework than on LITERAL encoded instances. In Chapter [61 address the two experimental issues
raised in Chapter [3 by enforcing local-consistency on a wide variety of ‘hard’ unsatisfiable problems.
Here | compare the performance of enforcing path-consistency on LITERAL and DUAL encoding prob-

lems, and demonstrate that it does not solve any of the SAT benchmarkswhen LITERAL encoded, which
isin stark contrast to problems encoded using the DUAL encoding. | show that enforcing alow-level of
consistency on the DUAL encoding can not only solve a surprising number of what are considered ‘ hard’

SAT benchmarks, but can also compete with state-of-the-art SAT-Solvers.

Chapter 7: Discussion, Future Work and Exploitation

Finally, in Chapter [4]1 provide a summary of the thesis contribution and | discuss the wider context and
implications of this research. | introduce other areas of study that complement this research, highlight
future work and discuss what | think are the next major areas of study relating these two fields.

As a requirement of the Engineering Doctorate, Research Engineers are asked to discuss the dis-
semination and expl oitation aspects of their research. | providean overview of the use of SAT algorithms
in EDA and highlight many of the prominent issues facing the Chip design industry. | discuss the di-
rect benefits that improvements in SAT technology can have to the Formal Verification aspect of the

semi-conductor industry and beyond.

9See SectionsB3dland[Z3 2 for definitions of the LITERAL and DUAL encodings respectively.

Chapter 2

Definitions and Background

In this chapter | introduce the necessary definitions and background information required for the rest of
thethesis. | start by introducing P, NP, and the concept of polynomial reduction. After formally defining
the two problems domains of Constraint Satisfaction and Propositional Satisfiability, | introduce several
basi ¢ graph-theoretic concepts and demonstrate one way that CSPs can be visualised. Finally | introduce
the algorithmic techniques that are applied to both the CSP and SAT problemsthat are discussed in later
chapters.

This chapter lays the foundation for the remainder of this thesis, where | provide a comprehensive
and detailed theoretical analysis of how CSP and SAT problems are encoded and mapped using a graph-
theoretic framework. Whilst the use of Graph Theory is a fundamental aspect of CSP research and
athough representing CSPs as graphs is certainly not novel, as far as | am aware, thisis the first magjor
attempt using this approach to show how these fields are related. This framework will be used as an
effective bridge between each of the two problem domains and is the primary tool used throughout this

thesis to understand the similarities and differences between SAT and CSP techniques.

21 PandNP

The following definitions are adapted from [Urquhart (1995).
Let X be afinite alphabet. ¥* is the set of al finite strings over X, and a language is defined as
asubset of ¥*; that is, a set of strings over a fixed alphabet 3. Let £ be the class of polynomial-time

computable (‘feasible’) functions.

Definition 2.1.1. If ¥, and X, are finite alphabets, a function f from X7 into 33 isin £ if it can be

computed by a deterministic Turing machinein time bounded by a polynomial in the length of the input.

Definition 2.1.2 (Proof-system). If L C ¥*, a proof system for L isa function f : ¥ — L for some
alphabet 3, , where f € £ and f isonto. A proof systemis polynomially boundedif thereisa polynomial

p(n) suchthat for all y € L, thereisanz € X5 suchthaty = f(z) and |z| < p(Jyl).

2.2. Constraint Satisfaction 24

A set of stringsisintheclass P (NP) if it isrecognised by adeterministic (non-deterministic) Turing
machine in time bounded by a polynomial in the length of the input. More specifically, aset S of strings
isin P if its characteristic functionisin £, while it isin NP if the conditiony € S can be expressed in
the form Jz(|z| < p(Jy|) A R(z,y)), where p is a polynomial and R is a polynomial-time computable

relation (Urquhart (1995)).

2.1.1 Polynomial Reduction

The method of showing that a problem is NP-complete by polynomial reduction is one of the most
elegant and productive in Computational Complexity (Adleman & Manders (1977)). It is a means of
providing compelling evidence that a problemin NP isnot in P.

CookK (2000) defines the following:

Definition 2.1.3. Supposethat L; isalanguageover ¥;,i = 1,2. Then L1 <, Ly (L; is polynomially
reducible to L) iff there is a polynomial-time computable function f : 31 — Y5 suchthat x € L; <

f(l‘) € Lo, forall x € Y.

Definition 2.1.4. A language L is NP-completeiff L isin NP, and L’ <,, L for every language L’ in
NP.

Proposition 2.1.1. Given any two languages, L, and Ls:
1L IfLy <, Lyand L, e Pthen L, € P.
2. If Ly isNP-complete, L, € NP, and L, <,, L, then L, is NP-complete.

3. If L e Pand L isNP-complete, then P = NP.

2.1.2 NP and co-NP

A set of strings is in the class co-NP if it is the complement of a language in NP. One of the most

important questions in Theoretical Computer Science liesin the result of |(Cook & Reckhow (1979):

Proposition 2.1.2. NP = co-NP iff there is a polynomial-bounded proof-system for the classical tau-

tologies.
Since the complexity class P is closed under complementation, it follows that if NP = co-NP then

P=NP.

2.2 Constraint Satisfaction

Here | formally define the Constraint Satisfaction Problem and relevant notations, which have been

adapted from|Green (2005) and|Rossi et al| (2006).

2.2. Constraint Satisfaction 25

Definition 2.2.1 (r-ary relation). Ar-ary relation over D isa subset of D", where D isany set. Atuple

isan element of an r-ary relation.
Definition 2.2.2 (Constraint Satisfaction Problem). ACSP istriple (V, D, C), where:
e Visafiniteset of variables, {Vo,...,V,_1}.

e Disaset, {Dy,...,D,_1}, Whereeach D; € D isthe set of valuesthat V; can take, called the

domain.

e Cisafiniteset of constraints, {Cy, ..., Cn—_1}, where each constraint C; € C isapair (s;, R;),

such that

— s; isan ordered tuple of variables, called the constraint scope

— R, isan |s;|-ary relation over D, called the constraint relation. |s;| is the arity of the

constraint.

The CSP asks if there is a solution, that is, a mapping 6 of all variables to domain values such
that for each (s, R) € C, 6(s;) € R.

The constraint scopeis alist of variables over which the constraint acts, and the constraint relation

defines the allowed combinations of values for thislist of variables.

Definition 2.2.3 (partial and full assignments). Givenany CSP = (V, D, (), apartial assignment A isa
subset of variables V' C V with some mapping V to domain values. A isa full assignment if |A| = V).

If Aisapartial assignment we may denotethisas {zg°, z1*, ..., z," 7' }, where {zg, 1, ..., 2p_1} IS

the domain of A and for eachi < n, a; = A(z;).

Definition 2.2.4 (satisfying assignments). Givenany CSP = (V, D, (), if the variables V, in the scope
of a constraint C' € C, are contained entirely by the variables in an assignment A, then A coversV. A
satisfies C'if V' is covered by A and V' is mapped to domain values allowed by C'. A partial satisfying
assignment is an assignment A to some subset of variables V' C V such that every covered constraint in
V issatisfied by A. If A isa partial assignment then | write v(A) to denotethat A is a partial satisfying
assignment.

Afull satisfying assignment (one that covers all variables) is also referred to as a solution-tuple or

solution. A CSP that has a satisfying assignment is satisfiable, otherwiseiit is unsatisfiable

Definition 2.2.5 (conflict). Given any CSP = (V, D, (), a conflict is a partial assignment A to some
subset of variables V' C V such that thereis at least one covered constraint in V' that is not satisfied by

A. lwrite x(A) to denotethat A isa conflict.

2.2. Constraint Satisfaction 26

Definition 2.2.6 (nogood). Givenany CSP = (V, D, (), a partial assignment, A, defined on k variables
isa k-ary nogood iff it cannot be extended to a solution. In this case | write n(A) to denotethat A isa

nogood. Any conflict is necessarily a hogood, but the converseis not true in general.

In summary, if apartial assignment A isdenoted as {z(°, z{*, ...,z 7"}, then:
e if Aisapartial satisfying assignment wesay v{z§°, ..., z%" !

o if Aisanogoodwesay n{zg°,... 201

»Yn—1
o if Aisaconflictwesay y{z3°,...,z% !

»Yn—1

2.2.1 Implicit and Explicit CSP Representations

When defining a CSP there are two typical representations for these relations:
1. implicit representation implies both the relation and scope by a definition.
2. explicit representation explicitly lists the tuples of the constraint relation.

Suppose we define a CSP that has variables « and y, over the domain {R, G, B} and enforce the

constraint, C, such that 2 and y must take different values.

Example 2.2.1 (Implicit Representation). The inequality relation allows pairs of values that are not
equal and can be written as # x, where X is the domain.

The example constraint, C', above can be written as:

z #{R,G,B} Y

In this case, the set of variablesin the definition form the scope.

Example 2.2.2 (Explicit Representation). C' may be written explicitly as:
((z,9),{(R,G),(R, B), (G, R), (G, B), (B, R), (B, G)})
This may also be written in complement notation as:
((z,9), \{(R, R), (G, G),(B, B)})
Inthisthesis| often write the constraints using the superscript notation:

vay = {n{xRa yR}v n{xGa yG}v 77{$B7 yB}}

2.2. Constraint Satisfaction 27

Though theimplicit representationistypically more compact than the explicit representation the ma-
jority of the literature bridging SAT and CSP techniques adopts the explicit approach since SAT clauses
are explicit list of nogoods. However, it is important to note that for general CSPs the compactness of
the implicit representation of a problem may be preferable since the successful application of an algo-
rithm is usually afunction of the size of the problems definition. For instance, it might be impractical to
represent a set of explicit nogoods of a constraint in memory, whereas the implicit constraint could be

trivialy represented (Do & Kambhampatil (2001)).

2.2.2 Graphs

One of the archetypal examples used to demonstrate CSPs is that of GRAPH 3-COLOURABILITY, Orig-
inally shown to be NP-complete by [Karp (1972). Before | define GRAPH K-COLOURABILITY firstitis

necessary to introduce some basic concepts from Graph Theory.

Definition 2.2.7 (Undirected graph). An undirected graph (V, E) consists of a set, V, of nodes together

with a set E of edges where all edges have the form {z, y} for somez,y € V.
All graphs are assumed to be undirected.

Definition 2.2.8 (Hypergraph). A hypergraph isapair (V, H) where V' isa set of nodesand H is a set
of hyperedges. Each hyperedge . is a set of nodes from V' (h C V). Hypergraphs are a generalisation

of graphs, where each hyperedge may connect more than two nodes.
A k-hypergraphis an hypergraph with all hyperedges having size k.

Definition 2.2.9 (GRAPH K-COLOURABILITY, |Garey & Johnson (1990)). GivenagraphG = (V, E)
and positive integer £ < |V| does there exist a function f : V' — {1,2...k} suchthat f(u) # f(v)

whenever {u,v} € E?

Example2.2.3 (GRAPH 3-COLOURABILITY asCSP). Asimpleinstanceof GRAPH 3-COLOURABILITY
isshown in Figure[21l Thisinstance hasfiveregions {xy, ..., x4} with atotal of six neighboring pairs
of regions. Each region can be coloured either Red (R), Green (G) or Blue (B).

One possible formulation of thisinstance asa CSP is as follows:
e V isthe set of nodesto be coloured, {x¢, z1, 2, 3,24}
e D isthedomain over eachvariable, D,, = D,, = D, = D, = D,, = {R,G, B}

o (istheset of restrictions (constraints) over sets of variables, where (z;, x;) meansthat =, and z;

are adjacent nodes:

- <<x05m1>5 \{<R7 R), <Ga G), <BaB>}>

= ((zo,z4), \{(R, R), (G, G), (B, B)})

2.2. Constraint Satisfaction 28
Zo
{R,G, B}

Ty X1
{R,G,B R,G, B}

{R,G, B} {R,G, B}
Zs3)

Figure 2.1: An instance of GRAPH 3-COLOURABILITY with five variables over the domain { R, G, B}
and six constraints.

— ((z1,22), \{(R, R), (G, G), (B, B)})
— ((z1,23), \{(R, R), (G, G), (B, B)})
— ((z2,23), \{(R, R), (G, G), (B, B)})
— ((z2,24), \{(R, R), (G, G), (B, B)})
In Example22.3apartial satisfying assignment isy{z?, z$, 2I'} andaconflictis x{z ¥, 2§, 2P }.
A full satisfying assignment isy{zf, 2%, 28 2§, 21} asshownin Figure2Z2

Lo
{B}

T4 Iy
{R} {R}

{G} {B}
T3 T2

Figure2.2: They{z8, »f 28 2§, =i} solutionto Example223

2.2.2.1 Representing CSPs Graphically

The work in this thesis draws heavily on graphical representations of CSPs. |Dechter (1992¢) describes
three types of graphical representations of CSPs:

1. Hypergraph: where nodes represent the variabl es, and hyperedges (drawn as regions) group those

variables that bel ong to the same constraint scope.

2.2. Constraint Satisfaction 29

2. Primal-graph: represents variables by nodes and associates an edge with any two nodes residing

in the same constraint scope.

3. Dual-graph: represents each constraint scope by a node and associates a labelled edge with any

two nodeswhose constraint scope share variables, where edges are l abelled by the shared variabl es.

Figure[2.1]is the Primal-Graph of Example[2.2.3

However, these do not represent the constraint relations (only the constraint scope) so only partially
capturethe CSP. Primal-graphsare binary, so they do not capturethetrue structure of ak-ary (for k > 2)
CSP. Indeed, the generaisation of the primal-graph would be identical to the hypergraph, if one were
to represent constraints as hyperedges. The dual-graph can also be confusing since it moves away from
the simple graph representation, allowing the labelling of edges. In Chapter [41 build upon this work and
present a homogeneous framework that captures the various families of encodings.

The graphical method to represent CSPs | adopt is referred to as the CSP micro-structure (see
Jegou (1993)). Unlike the graphical representation definitions above, the micro-structure captures the
full structure of the CSP.

Definition 2.2.10 (micro-structure). The micro-structure of a binary CSP (the cardinality of the con-
straints are size two) is constructed froma CSP instance P = (V, D, C). P isagraph with set of nodes
V x D where each edge corresponds either to an assignment allowed by a specific constraint or to an

assignment allowed because there is no constraint between the associated variables.

Definition 2.2.11 (n-partite graphs). A graph is n-partite iff the nodes can be partitioned into »n inde-
pendent subsets (classes), such that every edge hasits ends in different classes—i.e. nodesin the same

partition class must not be adjacent.

Definition 2.2.12 (clique). Given agraph GG, aclique C is a subset of nodes of G such that every pair

of distinct nodesin C' are adjacent.

A CSPiscalled k-ary if themaximum arity of any of itsconstraintsis k. Unless otherwise stated, the
CSPsinthisthesis have variableswith same domain cardinality (such asthe GRAPH K-COLOURABILITY
PrROBLEM). The magjority of CSPs in this thesis are represented graphically as a restricted type of n-
partite graph called aG'} graph.

Definition 2.2.13 (G} graph). A G} graph is an n-partite graph, with each independent set containing

at most k£ nodes. | refer to each set of £ nodes as a component set.

Definition 2.2.14 (The G Graph Problem). An instance of G;! is a G} graph (for some n), and is a
satisfiable instance if it contains an n-clique and is an unsatisfiabl e instance otherwise. Any n-clique of

G contains at most one node from each component set.

2.3. CSP Algorithms 30

For convenience and clarity it is often easier to represent disallowed constraintsin agraph G, called

the micro-structure complement or G | denote a CSP that has i variables of arity j as CSP}.

Definition 2.2.15 (micro-structure complement). The micro-structure complement of a binary CSP is
constructed froma CSP instance P = (V, D, C). P isagraphwith set of nodesV x D where the edges
joining pairs of nodes are disallowed by some constraint or are incompatible assignments for the same

variable.

Whereas an n-clique describes a solution in a CSP's micro-structure with n variables, an indepen-
dent set of size n describes a solution in its complement. For instance, the C?}g graph of Example2.2.3
is shown in Figure2Z3 A full satisfying assignment to Example 223 is y{z&, 2, 28, 2§, zI*}. This
independent set is highlighted in Figure[2.3, connecting a node from each of the five component sets by

dotted lines.

Figure 2.3: Example[Z2.3 as a G graph, with a solution-tuple, v{z &, 2, 28, z§, 2R}, highlighted
with dotted lines between the corresponding set of independent nodes.

So far these graph definitions have been restricted to binary CSPs, with edgesin the micro-structure
complement corresponding to disall owed constraints, and sol utions mapping to independent sets between
the component set nodes. These definitions extend naturally to non-binary cases. Hypergraphs (micro-
structure complements) are constructed from CSPs with k-ary constraints. In this case, a set of nodesis
ahyperedge of the micro-structure complement if it represents an assignment disallowed by a constraint,

or else consists of a pair of incompatible assignments for the same variable.

2.3 CSP Algorithms

2.3.1 Consistency

Local-consistency conditions are properties of CSPs related to the consistency of subsets of variables

or congtraints. IMackworth (1975) defines three properties that characterise the local-consistency of

2.3. CSP Algorithms 31

networks. node-, arc-, and path-consistent. |[Freuder (1978) later generalises this to k-consistent.

Definition 2.3.1 (k-consistent). Abinary CSP = (V, D, () is k-consistent if for every partial satisfying
assignment P onany k — 1 variables (C V) for any other variablev € V there exists a domain value d
such that P U {v — d} isalso a satisfying partial assignment. If a CSP is k consistent for some k& then
we say that it is locally consistent. A 2-consistent binary CSP is called arc-consistent. A 3-consistent

binary CSP is called path-consistent.

A CSPthat is k-consistent issaid to have k-consistency. Analgorithm that establishes a k-consistent
CSP is said to enforce k-consistency. Loca-consistency can be enforced via transformations of the
problem called constraint propagation. Local-consistency conditions require that every consistent as-
signment can be consistently extended to a domain assignment in another variable. An algorithm that
establishes the consistency of a problem is said to enforce local-consistency (also referred to as estab-
lishing alocal-level of consistency).

Informally, abinary CSP is 1-consistent if every variable has a domain value that satisfies it. This
is often referred to as enforcing node-consistency. Following from the definition above, a CSP is 2-
consistent (or arc-consistent) if every pair of variables have domain assignments that can form a partial
satisfying assignment. Path-consistent is the name given to a CSP such that every pair of partial satis-
fying assignments between two variables can form an extended partial satisfying assignment with every

other variable.

Definition 2.3.2 ((4, j)-consistent). ACSP = (V,D, () is (i, j)-consistent if for every satisfying partial
assignment P on any ¢ variables (C V) there exists a satisfying assignment () on every other set of j
variables such that P U @ isalso a satisfying partial assignment. Note that (%, 1)-consistent is the same

as (k + 1)-consistent.

Enforcing a particular level of k-consistency does not necessarily determine the satisfiability of
a problem, nor does it mean that the problemis j-consistent for any j < k. [Tsang (1993) provides an
excellent introduction to the foundations of the CSP field with many valuable examplesto illustrate these

points. A stronger notion of local-consistency is strong-k-consistency.

Definition 2.3.3 (strong-k-consistent, [Tsang (1993)). If a CSP is j-consistent, for all j < k, theniit is

strong-k-consistent. A CSP with n variablesthat is strong-n-consistent is called globally consistent.

A large amount of work has been published on the development of efficient polynomial-time algo-
rithms that enforce these various levels of consistency. Thisis because it is often the case that the CSP
solution space can be significantly pruned using these techniques, which typically allows search-based

algorithms to determine satisfiability more quickly.

2.3. CSP Algorithms 32

2.3.2 Maintaining Arc-Consistency

Waltz Filtering Algorithm (Waltz (1975)), originally developed for computer vision, was probably the
first arc-consistency algorithm (AC-1), which has a space-time complexity of O(c + nd) and O(d>nc)
respectively (where ¢ is the number of constraints, n the number of variables, and d the size of the max-
imum domain). Twenty years later, and six iterations on, AC-6 was published by Bessiere & Cordier
(1994) with a space-time complexity of O(cd) and O(d?c). One of the most recent arc-consistency
agorithms was published by ILecoutre et al. (2003), named AC-2001/3.3. This agorithm combines
the properties of two previous AC methods, namely the simple implementation methods of AC-3
(Mackworth & Freuder (1985)) and the bi-directionality of AC-7 (Bessiére et al. (1999)).

Gaschnig (1974) suggests Maintaining Arc-Consistency (MAC) during backtracking search and
givesthefirst explicit algorithm containing thisidea. The M AC algorithm maintains arc-consistency on
constraints with at least one uninstantiated variable. At each node of the search tree, an algorithm for
enforcing arc-consistency is applied to the CSP. Since arc-consistency was enforced on the parent of a
node, initially constraint propagation only needs to be enforced on the constraint that was posted by the
branching strategy. In turn, this may lead to other constraints becoming arc inconsistent and constraint
propagation continues until no more changes are made to the domains. If, as a result of constraint
propagation, a domain becomes empty, the branch is a deadend and is rejected. If no domain is empty,

the branch is accepted and the search continuesto the next level.

2.3.3 Forward Checking

The Forward Checking algorithm (FC), introduced by Haralick & Elliott (1980), maintains arc-
consistency on constraints with exactly one uninstantiated variable, which can be enforced in O(d)
time (where d is the size of the domain of the uninstantiated variable). FC is essentially a backtracking
search algorithm that branches on variable labels until a solution-tupleis found or backtracksif another
variable’'sdomain is exhausted (often called ‘wiped-out’ in the literature).

FC analogous to the DL L procedure described in Section and as with DL L many sophisti-
cated improvements to the search procedure have been proposed. The focus of thisthesis is on polyno-
mial algorithms, but for the interested reader Bacchus & Grove (1995) provides an excellent introduction
to FC and its variants, and Bessiere et al| (2002) published a more involved paper on solving non-binary

CSPsusing FC.

2.3.4 Stochastic Search for CSP

For dynamic vehicle routing where real-time performance is important, finding afast ‘good’ solution is
often much more valuable than finding the optimum too late. In the cases where speed is more impor-
tant than accuracy stochastic methods are often preferable. As mentioned in Section [25.6, stochastic

algorithms are a class of search that includes heuristics and an element of non-determinism to traverse

2.4. Boolean Satisfiability 33

the search-space. The next moveis partly determined by the outcome of the previous move, and these

methods tend to be incomplete.

2.34.1 Min-Conflicts
Min-Conflicts (MC) is stochastic algorithm for CSPs in which a variable in a violated constraint is
picked at random, and a value (in the domain of that variable) is assigned that most reduces the number

of violated constraints.

2.4 Boolean Satisfiability

One of the original problems shown by ICook (1971) to be NP-complete, SAT is considered the one of
the most important NP problems. The obvious difference cited between general CSPs and the SATIS-
FIABILITY PROBLEM isthat the former traditionally have non-binary domains with binary constraints,

whereas the latter have binary domains with non-binary constraints.

Definition 2.4.1 (BOOLEAN SATISFIABILITY PROBLEM). The SAT problem in Conjunctive Normal
Form (CNF) consists of the conjunction (A representing the Boolean and connective) of a number of
clauses, where a clause is a digunction (V' representing the Boolean or connective) of a number of
propositions or their negations (literals).

If ; represent propositions that can assume only thevaluesTrue (= 1 = T) or Fdse (= 0 = 1),

then an example formula in CNF would be
(LL'() V xo V i’g) A\ ((Eg) A\ ((El \Y LZ'Q)

where z; isthe negation of z;.
Given a set of clauses Cy, C1, .. ., C,,,—1 On the propositions g, 1, . . ., z,—1, the problemis to
determine whether the formula F' = /\ C; has an assignment of truth values to the propositions such

j<m
that it evaluatesto True.

Definition 2.4.2 (k-SAT). The k-SAT problem is a CNF formula with exactly & literals in each clause.
For example, instances of 3-SAT are restricted to Boolean formulae in CNF with exactly three literals

per clause.

FormulalZ.dlis a 3CNF formulawith four variables and five clauses, and is a satisfiabl e instance of

3-SAT; where one of the eight satisfying assignments (solution-tuples) is {z }, 21, 29, 25 }:
(.130 VzV .132) A (i‘o ViV i‘g) A (.131 V Za V J)g) A\ (.130 ViV .133) A (i‘o V To V i‘g) (21)

| denote the set of k-SAT instances that has n variablesand m clauses as k-SAT".

2.5. SAT Algorithms 34
2.5 SAT Algorithms

25.1 Resolution

Propositional Resolution is a sound and complete proof-system for SAT defined by |[Robinson (1965).
Definition 2.5.1 (Resolution). Asusual = denotes a Boolean variablewith domain {0, 1}. Aliteral over
x iseither x or z, and a clause is a digunction of literals. The main ruleisthe

AVZT zV B
AV B

Resolution Rule:
wherez € {z¢,z1,...,2,—1} and A and B arearbitrary clauseﬂ.

Resolution is a complete theorem proving method that ‘ searches' for a contradiction (i.e. the empty
clause) by refutationally saturating agiven clause set — that is, systematically and exhaustively applying

all possible inferences using the Resolution Rule (Bachmair & Ganzinger (2001)).

Definition 2.5.2 (Resolution derivation). A Resolution derivation froma CNF formula W is a sequence of
clausesin which each clauseiseither in ¥ or derived fromclausesin ¥ using the Resolution Rule. Given
z

LT can always be derived using Resolution.

any unsatisfiable set of clauses, a contradiction, T

Definition 2.5.3 (k-Resolution). A k-Resolution derivation on a CNF formulais a Resolution derivation

of all of the possible clauses that contain at most k& — 1 literals.

2.5.2 Extended-Resolution

Extended-Resol ution proofs are exactly the same as standard Resolution proofs but with the addition of
the Extension Rule. The Extension Rule, first suggested by [Tseitin (1968), is a powerful addition to the
Resolution system that allows the use of new literals as abbreviationsfor longer formulae. The length of

an Extended-Resolution proof is the total number of different clausesin it.

Definition 2.5.4 (Extension Rule, [Tseitin (1968)). Given a CNF formula ', for arbitrary variablesa, b,

the Extension Rule introduces a new variable v (new relative to the CNF formula £) such that

F—FU{(5VaVb)A(wVa)A Vbl

Theclause-set {(v VaVb)A(vVa)A (vVb)}isthe CNF representation of v < (a \V b).

2.5.3 NG-RES Proof-System

de Kleer (1989) showed how to transform CSP instances into SAT and described a Resolution proof-

system that is equivalent to enforcing local-consistency on the original CSP:

1Some authors often include the Weakening Rule for completeness, though it is not essential.

A
AV B

Weakening Rule:

2.5. SAT Algorithms 35

((Eo\/l’l \/"'\/1'1;1)
(i‘o \/Xo)
({fl V Xl)

(Zi—1 V Xi21)
(XO\/XlV"'\/Xi_l)

where X ; are clauses and x; areliterals, for j < .

Thisideaof ‘exhausting the domain’ to deriveimplicit constraintswas later defined by |Baker (1995)
who referred to it as ‘a Resolution proof method for a CSP'. Recently IMitchelll (2003) redefined it as
nogood-Resolution (NG-RES).

Definition 2.5.5 (nogood-Resolution). Given a CSP = (V, D, (). Given that the domain of a variable
xis{0,1,...,(d — 1)}, the nogood Resolution Rule allows one to infer a nogood, called the resolvent,

froma set of nhogoods, the premises, by resolving on z:

n{{z°} U Xo}
n{{z'} U Xy}

n{{z? U X1}
7]{X0 UuXxju---u del}

where X; isapartial assignment (for i < d), andn{{z°}UXo},n{{z'}UX1}, ..., p{{z 1 }UX4_1}
are nogoods.
A nogood Resolution refutation of a CSP is a derivation of the empty set, which meansthat thereis

a variable that cannot be part of a solution, hence there is no global solution.

Mitchell showed that NG-RES is a sound and complete refutation system, that there is aNG-RES

refutation of a CSP instance iff it is unsatisfiable.

25.4 Davis-Putnam Procedure

Although [Robinson (1965) defined the Resolution proof-system, the basic Resolution Rule appeared
several years earlier, most notably in an algorithm defined by IDavis & Putnam (1960). This algorithm,
the Davis-Putnam Procedure (DP), was the birth of the modern-day SAT-Solver. Besides the Resolution

Rule, the DP algorithm introduces two more rules:

1. unit literal rule: this rule causes variable elimination and states that if there exists a clause in
the CNF formulathat contains only one literal, then the formularesulting from making that literal

True has the same satisfiability as the original formula.

2. pureliteral rule: if aliteral either appears only positive or negative in the CNF formulathenit is
pure. This means that all clauses containing that literal can be deleted from the formula without

altering its satisfiability.

2.5. SAT Algorithms 36

The DP agorithm applies each of these rules until the CNF formula cannot be simplified further.
The Resolution Rule is applied to eliminate one variable, and if successful applies each of the above
rules again. This process continues until either the empty clause is generated (meaning that the formula
is unsatisfiable) or there are no variables left to remove (henceit is satisfiable).

In the worst-case, each time avariableis eliminated the number of clauses may grow quadratically,
therefore the DP algorithm may require an exponential amount of memory. Despite the DP’s ‘legacy’ it
was quickly superseded by the Davis-L ogemann-L oveland Procedure, which introduced aminor syntac-

tic modification of the original algorithm to address this memory problem.

.0,
(:L'o VvV V mg) A (i’o VaxrV i‘g) A (:L'.L .\/':i'g'\'/.:%jg) A (:L'o ViV mg) A (i’o V x2 V i‘g)

(m‘1 V 1’2) A (:L'l \/i'.g\/ 1’3) A (i’l V mg) (:L'l V 1'2) N (m‘1 \/1?2\/ 1’3) N (i‘z \Y :Z'g)
fc.? wj fc.‘i K4
(x2) A €2V 23) (#3) (Z2) A (T2 V @3) A (T2 V T3) (T28.23)
z) I'iv..% {8 iz} z) :6.3' I'iv..%
Pd D h foehe § @)
Qo da S dd dd Qd gy g
0 0 0 {} 0 {} O U0 0 0 g4 00

Figure 2.4: A binary search tree of Formula2.1l

255 Davis-Logemann-Loveland Procedure

Davis et al| (1962) replaced the Resolution Rulein DP by asplitting rulein order to avoid the exponential
memory explosion. This change resulted in the Davis-Logemann-Loveland Procedure (DL L), which
formsthe foundations of most SAT-Solvers used today. The memory requirement for DL L is polynomial
and it can handle very large formulae without memory overflow. The DLL agorithm (Algorithm [I) is
categorised as a ‘branch and search’ procedureH, which are typically represented as binary trees. At
the root of the tree is the CNF formula and each node represents the parent formula under a variable
assignment (this step is referred to as unit propagation). If any of the leaf nodesis an empty set then the
formulais satisfiable, otherwiseif the procedure generates an empty clause then the algorithm backtracks
and continues down a different route (referred to as the conflict and splitting rule). The DLL agorithm

searches the entire tree unless an empty set is generated at aleaf. Figure 2.4 represents a binary search

2Als0 known as branching, and branch and bound

2.5. SAT Algorithms 37

tree for Formula[2dl Notice that each path (from route to leaf) terminating with an empty set ({})
correspondsto one of the eight satisfying assignments to the formula shown in Table

If a clause has all but one of its literals evaluate to False then the remaining ‘free’ literal must
evaluate to True to satisfy the clause. These clauses are called unit clauses and the ‘free’ litera is
called the unit literal. The process of iteratively forcing unit literals to be assigned a value is called
Boolean Constraint Propagation (BCP). BCP and backtracking constitute the core operations of the

DLL agorithm.

Algorithm 1 DLL agorithm on a CNF formula F'.
DLL(F)
if £ isempty then
return SAT
elseif thereisan empty clausein F' then
return UNSAT
elseif thereisapureliteral in F' then
return DLL(F'(z))
elseif thereisaunit clause (z) in F then
return DLL(F(x))
else
select avariable y mentioned in F'
if DLL(F(y))=SAT then
return SAT
else
return DLL(F(—y))
end if
end if

The DLL procedure is a backtracking depth-first search through partial truth assignments aug-
mented by the unit clause and pure literal rules. The ‘select a variable y mentioned in
F” rule from Algorithm [0 may use sophisticated heuristics as described in the PhD thesis by |Zhangd
(2003), one of the developers of CHAFF, which is probably one of the most influential SAT-Solvers
developed in recent times (seeMoskewicz et al| (2001)).

Sincethe CNF format is very low-level, SAT-Solvers are not very structure-aware, but this can have
great advantages. SAT-Solvers are typically highly optimised to perform efficient deduction on CNF
Boolean formulae, which can be compactly stored in memory with very good cache behaviour. Highly
efficient deduction algorithms have been proposed to perform reasoning on clauses. Many branching
heuristics and conflict-driven learning techniques also rely on the fact that the formulais in CNF. By
combining these technigques, modern SAT-Solvers can routinely solve instances with hundreds of thou-

sands of variables (Bardeaux et al | (2006)).

2.5.6 Stochastic Search for SAT

The DP and DL L algorithms (and the majority of their variants) are complete; given enough time and

space they will always determine whether a CNF formula is satisfiable or not. Less so for SAT appli-

2.5. SAT Algorithms 38

cations than for CSP is the important trade-off between accuracy and speed. In Formal Verification for
example, it is critically important that SAT-Solvers produce the correct answer (usually) regardless of
the amount of time it takes, since the incorrect functioning of hardware could have devastating conse-
quences.

The GSAT agorithm, for instance, is stochastic (also known as local-search). As described in
Section[2.3.4, stochastic algorithms are based on mathematical optimisation techniques, and although
these classes of algorithms cannot prove a formula is unsatisfiable, given enough time they may find
a satisfying solution if there is one. Typically these algorithms are applied to problems where there is

likely to be a satisfying assignment, which | elaborate on morein later chapters.

256.1 GSAT

GSAT was proposed by |Selman et a| (1992) and implements a greedy algorithm that attempts to min-
imise an objective function. The GSAT algorithm (Algorithm [2) begins by choosing a random variable
assignment, if the instance is not satisfied under this assignment then the algorithm chooses a variable
with the maximum score and negates it (also called flipping). The score of a variable is the difference
between the current number of unsatisfied clauses and the number of unsatisfied clauses if the variable
were negated. If some variables have the same score then one is chosen at random. If no variables have
a positive score (or a maximum number of flips have been performed) then the algorithm will restart
by choosing another random variable assignment. This process continues until a predefined number of

restarts have been reached.

Algorithm 2 GSAT agorithm.

for i = 1 to MAXTRIESdo
T = arandomly generated assignment
for j = 1 to MAXFLIPSdo
if no unsatisfied clause exists then
return T'
ese
x = choose variablein T with max score
if scoreof x < 0 then
break
else
negate x
end if
end if
end for
end for
return UNKNOWN

2.56.2 WALKSAT

Another popular stochastic search agorithm, called WALKSAT, was proposed by IMcAllester et al.
(1997). Thisdiffersfrom GSAT mainly in the selection of the variables to be negated. The score given
to the variables in WALKSAT is the number of clauses that will change from satisfied to unsatisfied if

2.6. Chapter Summary and Discussion 39

that variable were to be flipped. If the instance is not satisfied then an unsatisfied clause is chosen at
random. If this clause contains a variable with a score zero (i.e. flipping it will not make any unsatisfied
clauses satisfied) then the variableswill be negated. If thisis not the case, then avariable from the clause
is chosen probabilistically based on its score. Thisis referred to as random walk and tends to introduce
sufficient ‘noise’ to allow the algorithm to escape local mini maH.

Aswith DLL, sophisticated enhancements have been made to these algorithms to guide the search
and provide ways to escape local-minima, many of which can be found in the PhD thesis by |Hoos
(1999) who provides an excellent investigation into stochastic local search algorithms. Though slightly
outdated |Gu et al! (1997) provides a comprehensive and thorough survey of the algorithmic ‘space’ of
the SAT problem.

2.6 Chapter Summary and Discussion

Inthis chapter | formally defined the CSP and SAT problems, as well as anumber of basic Graph Theory
concepts. | demonstrated how CSPs are represented graphically and introduced the main algorithmic
techniques from each field. Although representing CSPs as graphsis certainly not novel, the aim of this
chapter was to present the framework upon which | draw heavily in the remainder of thisthesis.

More specifically, in the next chapter | provide an extensive survey of SAT and CSP encodings.
Analysing the CSP micro-structure construction using this framework inspires a new type of CSP to
SAT encoding in Chapter [4] as well as providing a general framework to categorise these encodings. In
Chapter[§ | provide anew set of complexity analyses of these encodings with respect to Resolution and
Consistency agorithmic techniques. | use this graph-theoretic approach to demonstrate an equivalence

between Resolution and Consistency, which inspires the new concept of Extended-Consistency.

Sareas of the search-space that agorithms may ‘waste effort’ exploring.

Chapter 3

Literature Review

As mentioned in Chapter 1] the fields of Propositional Satisfiability and Constraint Satisfaction have
developed as two relatively independent threads of research, cross-fertilising occasionally. Only in the
past few years have we developed a more intimate understanding of the similarities and differences
between these two problem domains, providing us with the ability to capitalise on synergies between
these areas.

One method used to explore the relationship between these fields is to study the mappings between
the two core problem domains. [Rossi et al! (1990) published an excellent paper on the equivalence of
CSPs, though twenty years ago we were limited to only afew encodings. More specifically, [Rossi et al.
(1990) defined CSPs as being equivalent if they are “mutually reducable’, and used this definition to
prove formally that binary and non-binary CSPs are equivalent in this sense. They pointed out that such
aresult is useful because many efficient solution algorithms have been developed for binary CSPs, that
it is important to be able to transform a non-binary into a binary CSP, solve it, and finaly be able to
go from that to the solution of the original problem. In recent years a wide range of encodings have
appeared in the literature providing a more complete picture of this relationship.

The advantage to the SAT community of such mappings is that all algorithms and heuristics de-
veloped within this framework can be exploited, for instance, the structure of the SAT problem can be
further analysed via its binary CSP expression with constraint techniques. The CSP community can
in turn profit from the practical aspects of how to implement effective algorithmic techniques that can
dramatically speed-up the search procedure. From a pragmatic perspective, problems that are hard for
constraint-based algorithms can utilise the brute-force power of SAT-Solvers, whereas problems difficult
for SAT-Solvers might be trivially solvable using constraints techniques.

In the first part of this chapter | review the encoding literature. | provide a thorough survey of
CSP and SAT encodings and critically assess the major theoretical and empirical studies. This analysis
highlights anumber of gapsin the literature that this thesis addresses. The focus of the latter part of this

chapter shifts towards the proof-complexity of polynomial algorithms and problemsthat are considered

3.1. CSPto SAT Encodings 41

computationally hard.

3.1 CSPto SAT Encodings

Encoding a CSP to a SAT instance is the process of taking a CSP and trandating it to CNF. There are
three common encodings, called DIRECT, SUPPORT, and L OG. In this section | define these encodings
and review the major theoretical and empirical studies performed on themH. In the next chapter | show
how these encodings can be categorised, which inspires a new type of CSP to SAT trandation that |

demonstrate has some advantages over current encodings.

3.1.1 DIRECT Encoding

The DIRECT encoding, coined by Walsh (2000g), first appeared in the late 80’s in the seminal paper by
de Kleer (1989).

Definition 3.1.1 (DIRECT encoding). Givena CSP = (V, D, (). For this encoding each SAT variable
x" is defined as True iff the CSP variable z; (€ V) is assigned the domain value m (¢ D,,). The SAT

instanceis generated as a triple set of clauses {positive, negative, constmz’nt}H asfollows:

e postive: (zdVadV---val HA@vVal v va YA A @0 val o veva™

n—1
e negative: for all z; € V, (z¥ v) such that p,q € D,, andp < ¢ (also known as the pairwise

encoding)

e congtraint: every disallowed labelling in a constraint is encoded as a negated conjunction. For
example, n{z?, z{,«7, ...} isthe negated conjunction —(z? Az{ Azl A...), whichis (z2 Vv z] Vv

ZL V ...) indigunctive form.

Recall Example2.2.3
o V= {xg,1,22,23,24}
e D={D,,,Dys,,Dsy, Dy, Ds, }, uchthat D, = D, = D,, = Dy, = Dy, = {R, G, B}
® C = {Cup21sCapzssCar,asCar 5> Canwss Can s }, WhEre

- Cxoﬁm = {n{m?,xf‘},n{xﬁx?},n{x?,a:lB}}
- 610,14 = {n{x(l)avxf}vn{x(?vxf}vn{x(?axf}}
- thxQ = {n{xﬁvxg}vn{x?7x§}vn{x{3axQB}}

- C:Chxs = {n{mf,x?},n{x?,x?},n{xf,a:3B}}

1There are other ‘less established’ encodings that have not been mentioned. For instanceRoussel (2004) defines the PHNF
encoding where the binary constraints between complementary SAT literals are mapped to CSP variables. Another SAT to CSP
encoding (the CGNF encoding), described byParis et all (2006), aims to maintain the size and structure of the problem.

2positive, negative and constraint clauses are also referred to as at-least-one, at-most-one and conflict clauses respectively.

3.1. CSPto SAT Encodings 42
- C$27$3 = {n{m?,x?},n{xf,x?},n{xf, xSB}}
- 612,14 = {n{xgvxf}vn{xgvxf}vn{xfa (Ef}}

From this CSP the following SAT instance is constructed using the DIRECT encoding as the con-

junction of this set of clauses:

B

°
>
&
2
3
=
Cx
<
o
=
oy}
<
Sty
>
=
Q
<
8
Sw
>
0
=)
<
Kl
-
>
0
=)
<
S
=
>
o)
=Q
S]]
oy
>
0
X
<
8
DO
>

e congtraint: (zf v zl) A (2§ VEF) A (@8 VvEB) A (@E Vv EE)A (2§ vEG) A (8 v ER) A (z
z3) A (@7 vV aIg) A @f v ag) A@Ef v Ed) A @EF v as) A @f v ag) A @ v ad) A @g
z§) N (@7 VEF) A @5V 3T A @5V 3E) A (35 v 3)

Figurel3.1shows the micro-structure complement of thisinstance; where positive clauses map to the

component sets, negative clauses are represented by the edges between the nodes within the component

sets, and constraint clauses represent edges between the nodes in different component sets.

Figure 3.1: The DIRECT encoding of Example[Z23, represented as a G5 graph.

3.1.1.1 DiIRrecT Encoding Complexity
For simplicity, let us assume a CSP has n variables (each with a fixed domain size m) and ¢ explicit
nogoods (each with a fixed arity). The DIRECT encoding will generate a SAT instance with nm

variablesand n + n (') + ¢ clauses:
e 1 positive clauses of sizem
e n setsof (') negative binary clauses

e ¢ constraint clauses of sizer

3.1. CSPto SAT Encodings 43

It is not always feasible to encode CSP problems as SAT. Take for instance the implicit constraint
over varigblesa,b asa = b + 1. If each variable can take a value from the domain {1,2,...,10000},
thiswill generate over 100 million clauses using the DIRECT encoding; most of them negative clauses.

SAT instances necessarily encode nogoods explicitly, however, it is sometimes the case that implicit
constraints encode an exponential number of explicit nogoods, which makes encoding a CSP as SAT

impossible. Take for instance the implicit constraint:

" mod y = z

which encodes O(z™) explicit nogoods.

Propositional Formulae do not have quantifiers (such as vV and 3), however many problems are
most naturally expressed when using first-order logic that include quantification over elements within
the domain, such as

Vi, g,k (iV i) A (G VE)
This can be expressed implicitly in a CSP, however converting thisto SAT means expanding such quan-
tifiers with the result increase size exponential in the number of quantifiers. |Parkes (1999) was one of
the early pieces of research to demonstrate that it can be practical to extend SAT-Solvers and apply them
to Quantifies Boolean Formulae (QBF), which has become an increasing popular research areain recent
years.

In the next chapter | describe a new encoding that can have a much more compact SAT represen-
tation in some circumstances. Whilst this new encoding may not completely alleviate thisissue, it isan

aternative encoding that makesit possible to transform some CSP instances to SAT.

3.1.2 SuPPORT Encoding

The SuPPORT encoding was first defined by [Kasif (1990) then later by |Gent (2002), and only differs
fromthe DIRECT encoding by the definition of the constraint clauses. With this encoding each constraint
clause in the DIRECT encoding is replaced by two support clauses.

The SUPPORT encoding can be thought of as‘ preprocessed’ version of the DIRECT encodingin the
sense that each pair of support clauses are the resolvents of abinary constraint clause with two positive
clauses.

Recall the clauses generated by the DIRECT encoding of Example 2.2.3in Section[3.11 If wetake
the constraint clause (z{* v 1) and the two positive clauses (z& v 2§ v zF) and (zF v 2§ v 2P) as

an example, then two support clauses are aresult of resolving:

.13(})%\/.138;\/.135 a’:(}f\/a’:{?’

7R\ G B
1"V ay Vg

mf\/mf\/mlB .fgi\/.f{%

7R G B
Ty Va7 Vg

@

)

3.1. CSPto SAT Encodings 44

The support clauses implicitly encode the constraints in the DIRECT encoding. Figure [3.2 shows

how aconstraint clause is encoded using the two support clauses resolved in the example above.

R

x T
3 gk P 2

Figure 3.2: An example of how the support clausesimply the constraint clauses.

We can see in Figure[3.2 that by introducing these two constraints the edge {« &, 2%} (dotted line)
is prevented from forming a solution with any node from either one of the support sets. A satisfying
assignment must contain exactly one node from each set, however, since {z ¥, '} cannot form alocal
cligue with either of the support clause sets then the edge cannot form part of a global solution. | will
examine this inference method in more detail in Chapter There are two support clauses for every

constraint clause resulting from the DIRECT encoding.

3.1.2.1 SuPPORT Encoding Complexity
Again for simplicity, let us assume a CSP has n variables (each with a fixed domain size m) and ¢
explicit nogoods (each with afixed arity r). The SUPPORT encoding will generate a SAT instance with

nm variablesand n + n (}') + 2q¢ clauses:
e 1 positive clauses of sizem
e nsetsof (")) negative clauses of size 2

e 2¢ support clauses of sizem

Bessiere et all (2003) generalises the SUPPORT encoding, calling it the k-AC encoding. The k-AC
encoding differs from the SUPPORT encoding in two ways. It captures alarger family of consistencies,

and it works for any constraint arity.

3.1.3 LoaG Encoding

The L oG encoding, again coined by \Walsh (2000b), appearsin the literature under various names and is
applied to a variety of problems. Again, if we assume a CSP has n variables (each with a fixed domain
size m), the purpose of encoding a problem using this method is to reduce the number of propositional

variables from nm to nflog,(m)].

3.1. CSPto SAT Encodings 45

Definition 3.1.2 (LoG encodingH). Given our simplified CSP = (V, D, C), v unique variables are gen-
erated for each domain such that v = [log,(m)]. These v variables are binary encodings and are used
to identify the m*" domain value. For example, if variable z; has the domain D,,, = {R,G,B,Y},
then two SAT variables {v,,[0], vz, [1]} would be generated, where vJ indexes the ;' bit of the
binary encoding for the domain of z;. The set v encodes (in binary) each domain variable, i.e.
(02, [0] A Oz, [1]) = &fF, (02, [0] A v, [1]) = 2, (02, [0] A 0, [1]) = 2, @nd (v, [0] A vy, [1]) =)

The L oG encoding generates two sets of clauses:

e negative: for domains that have fewer than [log,(m)] elements we must disallow any redundant
binary choices. For example, let us assumethat «; hasthedomainD,,, = {R, G, B}. Wemust ar-
bitrarily disallow one of the redundant binary assignments, say ((v, [0], vz, [1]), \{(1, 1)}), which

in clausal formis (o, [0] V Uy, [1]).

e congtraint: every constraint clauseis simply the negated conjunction of therestricted sets of binary
variables. For example, the constraint ((zo, 1), \{(G, G)}) is the negated conjunction =(z§ A
x§), whichis (z§ v z§) in digunctive form. On the assumption that the variables {v ., [0], v, [1]}
encode the domain for z(, and {v,, [0], vy, [1]} encode the domain for =1, and G is assigned the

binary values (0, 1), then the resulting clause would be (v 4, [0] V Uy, [1] V ¥4, [0] V U, [1]).

Using the LoG encoding, the SAT instance of the GRAPH 3-COLOURABILITY Example (on
the assumption that the binary valuesmap to R = (0,0),G = (0,1) and B = (1,0)) can be found in
Appendix

Notice that in this instance the encoding generates non-binary constraints (4-tuples), which are
difficult to represent graphically without introducing hyperedges. In Chapter [41 categorise encodings by
their structure, so understanding how instances aretranslated isimportant. So although not astrict micro-
structure representation, Figure is a graphical representation of the above SAT instance. The 4-ary
constraints are represented as binary edges between component set nodes. Edges within the component
set nodes represent the negative clauses. For example, the edge {{v4,[0] = 0,v4,[1] = 0}, {v4[0] =
0, v, [1] = 0} } representsthe clause (v, [0] V vz [1] V vz, [0] V vz, [1]).

Many of the encodings described in this chapter have appeared relatively recently in the literature,
and variants are often published. For instance [Frisch & Peugniez (2001) describe a variant to the L oG
encoding (called the binary transformation) where the negative clauses are removed and redundant bi-
nary assignments are mapped to used binary assignments. As | will discuss later, there still remains a

great deal of analysisto be donein order to determine the relative merits of each encoding.

3] introduce some additional notation for this encoding and hope it does not cause confusion. Here, the index v[i] denotes the
it" bit. The Boolean assignments are associated to a variable with or without abar, i.e. v[i] means that this is assigned the value
True, otherwise av[i] means that it is assigned the value False.

3.2. Analysisof CSPto SAT Encodings 46

Figure 3.3: A graphical representation of the LoG encoding of Example [2.2.3 Binary edges between
component set nodes correspond to the 4-ary constraints, whereas edges within the component set nodes
correspond to the negative clauses.

3.1.3.1 Lo Encoding Complexity
On the assumption that a CSP has n variables (each with afixed domain size m) and ¢ explicit nogoods
(each with afixed arity r), the LoG encoding will generate a SAT instance with n[log,(m)] variables, ¢

constraint clauses of size r[log,(m)] and g(211°82("™)1 — n) negative clauses of size [log,(m)].

3.2 Analysisof CSP to SAT Encodings

In this section | introduce the major empirical and theoretical results published about CSP to SAT en-

codings.

3.2.1 Empirical Analysis

Representing problems as a CSP has an important advantage over SAT, which comes from its flexibility.
A range of constraints not easily represented in CNF are often trivially definable in the CSP framework,
such as the cumulativel and aIIdi:fE constraints (Bordeaux et al! (2006)). Indeed, the alldiff constraint
can make an exponential difference. Typicaly, search agorithmsthat do not use global information on a
group of disequalities will entirely explore the search tree to prove inconsistency. Hence, simple branch
and bound techniques are inadequate on problems such as the PIGEON-HOLE PROBLEM (defined in
Section[3.6.3) and take exponential-time. [Régin (1994) shows that it is sometimes possible to express
these types of global constraints using a conjunction of logical constraints, but it is generally more

efficient to make deductionsusing specialised CSP a gorithmig.

“4For example, stating that the length, S, of a TRAVELLING SALESPERSON PROBLEM (TSP) journey must be less than some
value z:

J
S:in:5<z.
i=0

SFor instance, the constraint ViVj > i. ; # ;.
6SeelBeldiceanu et all (2008) for an exhaustive catalogue of global constraints.

3.2. Andlysis of CSPto SAT Encodings 47

Instancesformulated as CNF very often do not directly expressthe problem, instead they are usually
translated from the CSP definition, losing much of the problem structure during the translation stage.
However, the main strength of formulating problemsin CNF isthat all effort can be focused on asingle
representation, resulting in highly optimised data-structures and efficient algorithms.

Although there are several ways to encode CSPs as SAT, there are few guidelines on how to choose
amongst them. As|Prestwich (2003) highlights, this aspect of problem modelling is currently more an
art than a science, yet the choice of encoding can be as important as the choice of search algorithm.
Prestwich provides an extensive empirical investigation into the performance of stochastic algorithmson
GRAPH COLOURABILITY problems encoded as SAT with the aim of providing some guidelines about
how to choose an encoding that might improve the likelihood of solubility. Prestwich confirmed that —
inthe case of MULTIVALUED vs. DIRECT — encodingswith more solutions are typically easier to solve

by local search.

Gent (2002) showed that a DL L -based algorithm performed better on the SUPPORT encoded ran-
domly generated hard problems than the DIRECT encoding. Similarly, Gent’s research showed that
WALKSAT performs an order of magnitude faster on these randomly generated instances using the
SuPPORT encoding than it did on the DIRECT encoding. However, Prestwich observed the opposite re-
sult, reporting that DIRECT encoded GRAPH COLOURABILITY problemswere often solved much faster
than when SuPPORT encoded. [Van Gelder (2008) provided an extensive empirical survey of the perfor-
mance of several SAT-Solverson DIRECT and L0OG encoded GRAPH COLOURABILITY problems. Van
Gelder’swork showed that in all cases but one, the DIRECT encoding was superior. Prestwich also found
similar results.

Ansotegui & Manye (2004) evaluated several SAT encodings generated for a number of combina-
toria problems (graph coloring, random binary CSPs, pigeon hole, and all interval series) using two
leading SAT-Solvers. Their results provide empirical evidence that encoding combinatorial problems

with different mappings can provide substantial performance improvementsfor complete SAT-Solvers.

However, as with much of the empirical research, al of these studies restrict themselves to either
one type of problem or one type of algorithm, or both. It will not be until much more empirical research
is performed on various encodings of a plethora of problems running a multitude of agorithms that we
will develop a better idea about which encoding is likely to be ‘best’, and even then, the answer might

still be unclear. Several SAT communities have appeared with the aim to stimulate research in this area.

3.21.1 SATLIB and SAT Competition

SATLIB (Hoos & Stiitzle (2000)) is an online resource for SAT-related research that was established in
June 1998. SATLIB’s core component is a benchmark suite of SAT instances. The aim of SATLIB isto

facilitate empirical research on SAT by providing a uniform test-bed for SAT-Solvers, along with freely

3.2. Analysisof CSPto SAT Encodings 48

available implementations of high-performing SAT algorithms. SATLIB offers four different types of

problems:
1. Randomly generated native SAT instances.
2. SAT-encoded, randomly generated problem instances from other domains.
3. Instances from direct applications of SAT.
4, SAT-encoded instances from other application domains.

For most of these problem types there are instances of different sizes. For randomly generated
instances, such as Random-3-SAT, SATLIB provides standardised test-sets sampled from the underlying
distributions. For the most part, SATLIB collects problem instances that are intrinsically hard or difficult
to solve for a broad range of algorithms and avoids instances which are known to be trivially solvable.
While ‘easy’ instances can sometimes be useful for illustrating or investigating properties of specific
agorithms (for example polynomially solvable instances which are hard for certain, otherwise high-
performing algorithms), they are not used as general benchmark problems since this can easily lead to
heavily biased evaluations and assessments of the usefulness of specific algorithms. Hence, SATLIB’s
benchmark collection is comprised mostly of instances that are known to be hard for a wide range of
SAT algorithms.

Generally, benchmark sets should contain alarge variety of different types of problem instances so
that they can be used as a basis for eval uating different types of algorithmsin an unbiased way. The most
obvious- but also the most important - function of abenchmark library isto facilitate the use of the same
set of problem instances across different studies and thus to enhance the comparability of the respective
results. Furthermore, different types of studieswill focus on problem instances with different properties,
and a benchmark set becomes more useful if it can support a broader range of studies.

Almost every year since 2002 there has been a SAT Competition. Organised by Daniel Le Berre
and Laurent Simon, the purpose of the competition is to identify new challenging benchmarks and to
promote new solvers for Propositional Satisfiability as well as to compare them with state-of-the-art
solvers. With thousands of instances this has now become the primary source of Industrial, Random
and Crafted benchmarks. The SAT Competition provides access to the results of the world's leading

SAT-Solvers on instances that range from having tens of clausesto several million.

3.2.2 Theoretical Analysis

To address many of the issues that the empirical studiesraise, a great deal of complementary theoretical
research has been carried out about the comparative algorithmic performances between the problem
domains (though more-so for SAT to CSP encodings than for CSP to SAT). Table [3.7] summarises the
theoretical analysis performed by [Walsh (2000b), |Gent (2002) and IBennaceur (2004) on CSP to SAT

3.2. Analysisof CSPto SAT Encodings 49

encodings, comparing DLL to MAC and FC. For notation, let us consider approach X vs. Y. X =Y
denotesthat X and Y haveequivalent behaviour,and X < Y denotesthat Y issuperior to X. We can see
for instance that enforcing arc-consistency on theoriginal problem does morework than unit propagation
on the DIRECT encoding. That is, if unit propagation identifies unsatisfiability then enforcing arc-
consistency on the DIRECT encoding also does, but there are problems which enforcing arc-consistency
will show areinsolublethat unit propagationwill not. With equivalent branching heuristics, DL L applied

to the DIRECT encoding explores the same size search tree as FC applied to the original problem.

Comparison DIRECT | SUPPORT | LOG
Unit-Propagation vs. arc-consistency < <
DLL vs. MAC < =

DLL vs. FC = <

Table 3.1: A comparison of algorithmic techniques on CSP to SAT encodings.

The notion of ‘work’ can be confusing. When discussing the ‘work’ done by branching or stochas-
tic algorithms this typically is a reference to the amount of the search-space that is explored by the
agorithm. When we say that FC does more work than DLL on a particular encoding we mean that
FC explores more of the search-space that DL L. When discussing ‘work’ in the context of comparing
local-consistency (or pruning) algorithms (such as Resolution and Consistency), we mean to say that
one agorithm prunes the search-space more (or less) than the other. In Chapter [| compare the ‘work’
achieved by the same local-consistency algorithm applied to different encodings of a problem. For in-
stance, applying a certain level of local-consistency on an encoded version of a problem may achieve a
higher (or lower) level of local-consistency than the same algorithm applied to the original problem.

Notice that the work of constraint-based techniques are, for the most part, superior to SAT-based
techniques on the CSP to SAT encodings. However, one of the main problems with this theoretical anal-
ysis is that modern-day SAT-Solvers are almost beyond comparison with the original DL L procedure,
meaning that these studies will tell us very little about the actual comparative performance of today’s

CSP and SAT algorithmg!.

3221 NG-RES

It seemsthatide Kleer (1989) was thefirst to show the link between the Resol ution and Consi stency proof-
systems, stating that nogood-Resolution (NG-REYS) is equivalent to establishing strong-k-consistency on
DIRECT encoded instances. |de Kleer (1989) described several inference rules (HO, H3 and H5 below)
that described the NG-RES procedure on the CSP instance represented as SAT using the DIRECT encod-

ing (C' isthe SAT instance clauses set):

“Unless the innovation trajectory of CSP and SAT algorithms are developing at the same rate, which, as far as this author is
aware, they are not.

3.2. Analysisof CSPto SAT Encodings 50

e HO: This rule removes subsumed clauses from C. If clause a € C is subsumed by some other

clauseb € C, then a isremoved from C.

e H3: Theunit resolution rule:

T
; VgV - ---Vx_q
oV --Vx_q

e H5: Themainrule

(.130\/.131 \/"'V.l?i_l)
(i’o\/Xo)
((Z’l V Xl)

(Ziz1 vV Xi1)
(XO\/Xl\/"'\/Xi—l)

where X ; are clauses and x; areliterals, for j < q.

The H5 rule can generate a large number of clauses, de Kleer points out a restriction that can address

this:
e H5-k: H5 restricted to only infer clauses below size k.

Let 7 = {HO,H3,H5}. de Kleer proposed the following algorithmic properties that hold for Di-
RECT SAT encodings of a CSP.

Proposition 3.2.1. Given any subset of inference rules from I, any order of application will lead to the

same resulting clause set as long as the clause set is closed under thoserules.

Proposition 3.2.2. Any algorithm incorporating any subset of inference rules from I achieves node-

consistency aslong as the resulting clause set is closed under H3.

Proposition 3.2.3. Any algorithmincor porating any subset of inference rules from I achieves strong-%-

consistency as long as the resulting clause set is closed under H5-k.

If follows that any algorithm incorporating any subset of inference rules from I achieves node and
arc-consistency as long as the resulting clause set is closed under H3 and H5-2, and achieves node, arc
and path-consistency as long as the resulting clause set is closed under H3 and H5-3.

Interestingly, IMitchell (2002) proved that there is a super-polynomial separation between NG-RES
and constraint-Resolution (C-RES). C-RES is simply standard Resolution applied to a CSP that has
been transformed into CNF using the DIRECT encoding. Mitchell (2002) found that NG-RES takes
super-polynomial time to solve a variant of the PIGEON-HOLE PROBLEM (see Section [3.6.3), whereas
C-RES only takes quadratic-time. [Hwang (2004) added to the super-polynomial separation result further
by proving an exponential separation between the two proof methods.

3.2. Analysisof CSPto SAT Encodings 51

3.2.2.2 Phase Transition

Many NP-complete problems display a rapid transition in solubility as the constrainedness (IGent et al.
(1996)) of the problem increases (for randomly generated problem instances). Thistransition (referred to
as the phase transition) is associated with problemsthat are hard for backtracking proceduresto solve.
It tends to be easy to solve problems that are either under-constrained (have many solutions) or over-
constrained (have few or no solutions). The phase transition is the intermediate point where problems
are critically constrained, i.e. out of arandom sample of problems some will be soluble and some not,
and it is usually hard to find a solution or to prove that one exists (ICheeseman et al | (1991)).

Experiments performed by |Cook & Mitchell (1997) on random 3-SAT instances show that the prob-
ability of an instance being satisfiable shifts with the ratio of clauses-to-variables from being aimost 1
(with ratios much below 4) to being aimost O (at ratios much above 5), and that the range of ratios over
which this transition occurs becomes smaller as the number of variablesincreases.

A large amount of research has been carried out to examine the phase transition of CSP and SAT
problems; most notably by \ISmith (1993); |Smith et al | (1995); [Gent & Walsh (1995); IGent et al | (1996);
Smith & Dverl (1996); [Prosser (1996); IMitchell (1998); IMaclntyre et al. (1998); |Achlioptas et al. (2005)
for CSP, and Mitchell et al) (1992); Gent & Walsh (1994, 11996); (Cook & Mitchell (1997); I strate (2002)
for SAT. It is only within the past few years that attention has been paid to the phase transition of
encodings of SAT problems where only a specific number of literals must be satisfied (also known as
cardinality constraints) (see IBailleux & Boufkhad (2003) and |Sinz (ZOOEH), and even more recently
Marques-Silva& Lynce (2007) published results indicating that some algorithms perform significantly

better on SAT encodings involving these types of constraints.

3.2.2.3 The MULTIVALUED Encoding and Solution Density

As|Prestwich (2003) points out in his excellent survey of CSP to SAT encodings, it is often the case
that the negative clauses are omitted from the DIRECT encoding. Whilst omitting this set does not
effect the satisfiability of an instance, there is an important difference with this variant. Prestwich calls
the result the MULTIVALUED encoding, and mentions that MULTIVALUED encodings have a higher

solution-density than their counterparts containing negative clauses.

Definition 3.2.1 (Solution Density). The solution-density of a SAT instance is defined as the number of

solutions divided by 2™, where n is the number of SAT variables.

This definition can be generalised to any CSP, such that the number of full satisfying assignments
is divided by the total humber of possible full assignments. For the micro-structure complement the
solution-density equals the number of independent sets divided by the total number of possible indepen-

dent sets of sizen.

8Sinz also showed that instead of introducing the quadratic set of negative clauses, auxiliary variables can be introduced that
specify the same thing.

3.2. Analysisof CSPto SAT Encodings 52

Remark 3.2.1. The number of clauses generated by the DIRECT encoding is strictly greater than the

number of clauses generated by the MULTIVALUED encoding.

Table[3.2 shows a summary of the size-complexity of these encodings (including the MULTIVAL-
UED) based on a CSP with n variables of domain m, and ¢ r-ary constraints. The propositions column
indicates the number of propositions generated, whereas positive, negative and constraint describesthe

number of clauses of each type. The notation a : b denotesthat « clauses are generated of arity b.

encoding propositions | positive negative constraint
DIRECT nm n:m n(’y) 2 q:r
SUPPORT nm n:m n(’;) 02 2q:m
Loc n[logy(m)] 0 q(2"°520m)1 —n) 2 [logy(m)] | ¢ r[logy(m)]
MULTIVALUED nm n.:m 0 q:r

Table 3.2: The CSP to SAT encoding size-complexity.

Notice that the key difference between the DIRECT and MULTIVALUED encodings is that the SAT
instance resulting from the DIRECT contains negative clauses specifying that CSP variables cannot take
two contradictory domain values, whereasthisis not explicitly constrained by the M ULTIVALUED encod-
ing. MULTIVALUED encoded instance can have more solutions than DIRECT encoded instances. This
relates to research concerning the X SAT problem. The XSAT version (also known as exactly-1-SAT)
includes all negative clauses specifying that only one literal in each clause must be True. The 3-XSAT
problem (also known as 1-in-3-SAT) was originally shown to be NP-complete in the epic paper by
Schaefer (1978) and this problem has had relatively little attention si nceH. Recently, algorithmic upper-
boundsfor the 1-in-3-SAT problem have been defined by |Porschen et al. (2002), IMadsen & Rossmanith
(2004) and Kulikovi (2005). If we compare these recent algorithmic upper bounds for 3-X SAT with 3-
SAT, O(1.112™) versus O(1.38™) (Kulikov (2005) and IMitchell (2002) respectively), we can see that
3-XSAT appears to be easier to solve, though much more research remains to determine the effect of
including negative clauses.

A number of studies have been made to analyse the relationship between the solution-density and
solubility of a problem. |Clark et all (1996) found that the hardest problems have few solutions and
usually occur at the soluble phase. They showed that this finding was robust across problem class and
types of stochastic search procedure, though they determined that the number of solutions was not the
only factor influencing problem hardness.

Yokoa (1997) analysed theinstances of 3-SAT and 3-COLOURING problems. Yokoo showed that as

more constraints are added the number of solutions decreases and that the number of local-minimaalso

91ts phase transition has been analysed bylAchlioptas et all (2001)

3.3. SAT to CSP Encodings 53

decreases, and thus that the number of solution-reachable states increases. So, adding more constraints
(removing solutions) to take a problem beyond the phase transition removes local-minima and made it
easier to solve using stochastic algorithms. In Prestwich’'s experiments using stochastic algorithms on
the GRAPH COLOURABILITY problem, he showed that the MULTIVALUED encoding was uniformly
better than the DIRECT encoding, concurring with the results of |Selman et al| (1992). This suggests that
stochastic search performs better on instances with higher solution-density.

Given that solution-density is an important factor in problem solubility, in Chapter B | prove that
several SAT to CSP encodings can be differentiated by the proportion of solutionsin the resulting trans-
lation. This is significant because the estimated solution-density is one factor that can influence our

decision about which encoding might be better to use in a particular situation.

3.3 SAT to CSP Encodings

Encoding a SAT instance as a CSP is the process of taking a propositional Boolean formula and trans-
lating it into a CSP. Naturally, a SAT instance is a restricted type of CSP, with the variables constrained
to the Boolean domain, and a list of explicit constraints (clauses). There are five common encodings,
caled LITERAL, DUAL, NON-BINARY, PLACE and HIDDEN VARIABLE. In this section | define these
encodings and review the major theoretical and empirical studies performed on them. In Chapter [|
show how these encodings can be categorised, and in Chapter [§ demonstrate a number of waysin which
each encoding can be distinguished from each of the others.

Aswith the CSP to SAT encodings, | illustrate the SAT to CSP encodings using an example. Recall
Formulal2]]

(l’o\/xl\/fllg)/\({fo V xq \/(fg)/\(l’l \/if'g\/xg)/\(l'o\/{fl\/l'g)/\({fo \/(Z’Q\/{fg).

This 3CNF formula is a 3-SAT instance with four variables {x¢,z1, 22,25} and five clauses

{Cy, Cy,Cs,C5,Cy }, and it has eight satisfying assignments (shown in Table 3.3).

{wg, 21,25, 23} {wg, 21,25, a8} {ag, 21,28, 03} {ag, 21, 23,25}

Table 3.3: The eight assignmentsthat satisfy Formula2.1]

3.3.1 LITERAL Encoding

The LITERAL encoding is attributed to Bennaceur (1996) but could arguably be traced back to the early

seventies when Karp (1972) reduced 3-SAT to the CLIQUE PROBLEM.

Definition 3.3.1 (LITERAL encoding). Every clause C; is associated with a variable ¢; € V. The

3.3. SAT to CSP Encodings 54

domain of each variable is the set of literals in the corresponding clause. For example, given a clause
C; = (a Vv b), the CSP variable ¢; has the domain {1,0}. Binary constraints are posted between

variables that have complementary literals.
Hereisthe CSP result obtained when Formula[2.7]is encoded using the LITERAL encoding.
o V= {CO; C1,C2,C3, 04}

¢ D = {D¢y,De,,Dey; Dey, De, }, Where Dy = {xé,x%,x%},Dcl = {xg,x%,xg},DQ

1,0 ,.1 _ 1,0 .1 _ 0 ,0 ,0
{xlvaaxS}aDC:a - {$0,$1,$3},DC4 - {$Oax2ax3}'
b C = {CcmcucquczaCCo7C3aCCo7C47C017027C017C3a0617047C027037CC7C4a063704}1 Where

— Coper = {n{cl®, 30} m{ci? i)}
— Copren = (e, 3% 1}
— Copea = (e, 511}
— Copres = (e, 50} m{ci? i)}
— Copea = (", 50} {57)
— Copea = (e, 511}
= Copor = {nles® 551}
— Ceyon = {52, 50} {551}

— 1 0 1 0 0
Figurel3.4representsthe corresponding G graph. Noticethe solution-tupley{cy2, ¢;°, c5?, c5', c;° }

represented as a dotted 5-clique, which corresponds to the satisfying assignment {z $, 29, x3, z1}.

Figure 3.4: FormulaZ.llasa ég graph using the LITERAL encoding.

3.3. SAT to CSP Encodings 55

3.3.1.1 LITERAL Encoding Complexity

For simplicity let usassume a CNF formulahasn variablesand m clauses of cardinality k. The LITERAL

encoding of this k-SAT instance will generate a CSP with:
e m variables, each with adomain size k
e O(k?n?) binary constraints.

3.3.2 DuAL Encoding

Definition 3.3.2 (DUAL encoding). As described by M&lsh (2000b), with the DUAL encoding (Dechter
(19924)) each clause C; is associated with a variable ¢; € V. The domain of ¢; is the set of satisfying
assignmentsto the clause C;. For instanceif we had a clause C; = (a V b), then the domain of ¢; would
be {{a® t°}, {a',b°}, {a',b'}}. The set of constraints C are binary and are posted between the CSP

variables that have opposing proposition assignments.

Figure[3.5 representsthe (partial) 67? graph of FormulalZ.Zlwhen encoded as a CSP using the DUAL
encoding. Although not shown in the figure, note that there is an edge between each pair of nodesin

each of the sets Cy and C1,

C1 C2 C3

Figure 3.5: The (partial) G2 graph of FormulalZZl mapped to CSP using the DUAL encoding.

3.3.21 DuAL Encoding Complexity

Assuming a CNF formula has n variables and m clauses of cardinality &, the DuAL encoding of this

k-SAT instance will generate a CSP with:
e m variables
e eachwith adomainsized = 2 — 1, and

e O(d?n?) binary constraints.

3.3. SAT to CSP Encodings 56

Notice that the DUAL encoding typically produces larger CSP instances than the LI TERAL encod-
ing. Indeed, the DUAL encoding can be problematic since it requires an exponential number of CSP
domain values per SAT clause. For example, if the SAT instance we are trand ating has a clause with 20
literals, thiswill generate a CSP variable with domain size 220 (over 1 million values). To overcomethis
problem one can use De Morgan laws (see Table [6.2), and introduce new variables to reduce the size of
the original clause by splitting it into lots of smaller clauses. | use this technique in my empirical study
of the DUAL encoding in Chapter [6l For instance, given a clause of size 20, we can split this into 19
ternary clauses by introducing 17 new auxiliary variables.

Given that space is one resource that can limit the representation of a problem one might ask the
guestion “why not use the most compact encoding?’. The answer to this question is that identical algo-
rithmic processes can perform more work on some encodings than others. That is, whilst one encoding
might require more space than another, enforcing aparticular level of consistency might requirelesstime,
or DLL might explore more branches. This begs the question of “which encoding is best?’, about which
little is currently know. In Chapters[H and[6 | provide a theoretical and empirical study onthe LITERAL
and DUAL encodings that sheds light onto some of the answers to these questions. In particular, | show
that although the DuAL encoding reguires more space, enforcing local-consistency on DUAL encoded
problems achieves more than when the problems are encoded using the LITERAL encoding. Moreover,
I show that enforcing path-consistency on CSP encoded SAT instances using the DUAL encoding can
dramatically increase the solubility of many ‘hard’ unsatisfiable SAT benchmarks, in stark contrast to

nonethat are solved when represented LITERALLY.

3.3.3 NON-BINARY Encoding

The NON-BINARY encoding is the most compact and natural translation from SAT to CSP, itissimply a

(non-binary) description of a SAT instance as a CSP.

Definition 3.3.3 (NON-BINARY encoding). Every CNF propositional variable is associated with a
CSP variable z;, each with the domain {0,1}. The constraints are the partial assignments that

fail to satisfy each clause. For instance, a clause (zo V Z; V z2) would generate the constraint

((zo, 21, 22),\{(0,1,0)}).
The CSP result of Formulal2.Z] when encoded using the NON-BINARY encodingis:
o V= {xg,x1,22,23}
o D={D,,,Dy,,Dy,, Dy, }, WhereD,, = {0,1},i <n
® C = {Cuqu1,02>Capza.xss Cox1 .5 Cay o5 }» WhETE

- C$07$17$2 = {n{mg,x?,xg},n{xé,x?,x%}}

3.3. SAT to CSP Encodings 57
- Cmo,mg,mg = {77{37(1)7335733‘%}}
- 610,11,13 = {n{xgvx%vxg}}
- C.’E1,.’E2,$3 = {77{37(1)73?5733%}}

Figure[3.8 represents the corresponding 63‘21 3-hypergraph. Though it is difficult to represent, note

that each closed curve connects only three points, one for each constraint.

Figure 3.6; Formula2.J as a (5‘21 3-hypergraph using the NON-BINARY encoding. Variables are repre-
sented by the components sets, whereas the ternary clauses are represented as hyperedges that connect
three nodes (i.e. the unsatisfying assignments to each clause).

3.3.3.1 NON-BINARY Encoding Complexity

Again on the assumption that a CNF formula has n variables and m clauses of cardinality &, the NON-

BINARY encoding of this k-SAT instance will generate a CSP with:
e n variables
e each with adomain size 2, and
e m k-ary constraints.

3.3.4 PLACE Encoding

This encoding was defined independently by |Gent et al| (2003) and lJarvisalo & Niemela (2004) who

named it the EXTENDED LITERAL encoding and PLACE encoding respectively9.
Definition 3.3.4 (PLACE encoding). The PLACE encoding has two sets of variables that make up V:

1. every clause C; in the CNF formula is associated with a variable ¢;, and as with the LITERAL

encoding its domain is the set of literalsin its clause.

10AIthoughlJarvisalo & Niemela (2004) was published later thanGent et all (2003) | adopt the name PLACE, so as not to confuse
the the reader between the EXTENDED LITERAL encoding and Extended proof-systems.

3.3. SAT to CSP Encodings 58
2. like the NON-BINARY encoding, every propositional variable in the CNF formula is associated
with a variable z; with the domain {0, 1}.

Binary constraints are only posted between c; and ; variables that have complementary literals.

Figure[3.7 represents the micro-structure complement of Formula2.3] transformed to CSP using the

PLACE encoding. Note that this graphisa ég since the maximum cardinality of any set is 3.

Co C1 Co Cs3 Cy
1

1 1 0 0
X 1 0 x 0 1 x 1 1 x 1 0 x 0
x5 T x5 To QLT3 w G@ T3 Lo Sl T3 X G2 a3

0 1 0 1 0 1 0 1
X T i) X3

Figure 3.7: The G graph of Formula[2.]] transformed to a CSP using the PLACE encoding. The com-
ponent sets ¢ = {co,...,cqs} are the same as the LITERAL encoding, whereas the component sets
x = {xo,..., x5} are the same as the nodes in the NON-BINARY encoding. Binary edges are posted
between nodesin x and ¢ that contain complementary literal assignments.

3.34.1 PLACE Encoding Complexity

For ak-SAT instance with n variables and m clauses the PLACE encoding will generate a CSP with:
e n variableswith binary domains, plus
e m variableswith adomain cardinality of &
e O(kn) binary constraints.

In Chapter [4 (Figure[4.3) | demonstrate that PLACE encoding is simply a combination of the L1T-
ERAL and NON-BINARY encodings.
3.35 HIDDEN VARIABLE Encoding

Originally defined by |IDechter (1990), the HIDDEN VARIABLE encoding is a binary CSP similar to the
PLACE encoding described in Section[3.3.4

Definition 3.3.5 (HIDDEN VARIABLE encoding). As with the PLACE encoding, V is constructed from

two sets of variables:

1. every propositional variablein the CNF formula is associated with a variable z ; with the domain

{0,1}.

3.4. Analysisof SAT to CSP Encodings 59

2. likethe DUAL encoding, the set of satisfying assignmentsto each clause C; in the CNF formula is

the domain of each corresponding CSP ¢;.
Binary constraints are only posted between the complementary domain values of « ; and ¢;.

Toillustrate this, Figure[3.8 (partially) represents the micro-structure complement of encoding For-
mula2.3 as a CSP using the HIDDEN VARIABLE encoding. Noticing that, although not drawn, there is

an edge between each pair of nodes within the component sets C'y and Cy.

Co C1 C2 C3 Cy4

Figure 3.8: The G graph of Formula [2Z encoded using the HIDDEN VARIABLE encoding. The
components sets ¢ = {co, ..., cq} are the same as the DUAL encoding, whereas the component sets
x = {xo,...,x3} are the same as the nodes in the NON-BINARY encoding. Binary edges are posted
between nodes in x and ¢ that contain complementary literal assignments.

3.3.5.1 HIDDEN VARIABLE Encoding Complexity
For a k-SAT instance with n variables and m clauses the HIDDEN VARIABLE encoding will generate a

CSP with:
e n variableswith binary domains, plus
e m variableswith adomain cardinality of 2% — 1

e O(kn) binary constraints.

Inasimilar manner to that for the PLACE encoding, in Chapter 1 illustratethat HIDDEN VARIABLE

encoding is a combination of the DUAL and NON-BINARY encodings.

3.4 Analysisof SAT to CSP Encodings
Asin Section[3.2 here | present the various empirical and theoretical results of studies performed on SAT

to CSP encodings.
It is well-known that non-binary CSPs can be transformed into equivalent binary CSPs, and this

work has generated a great deal of knowledge about the theory and practice of solving CSPs. The main

3.4. Analysisof SAT to CSP Encodings 60

reason cited for translating non-binary into binary constraintsisthat moreisknown about how to solve bi-
nary CSPs; including better heuristics, known tractable cases and optimised a gorithms (IBordeaux et al |
(2006)). Another advantage of these encodings is that the structure of a SAT problem can be further
analysed viaiits binary CSP expression using constraint techniques. However it is still largely unknown
whether or not these techniques have any potential advantages, and surprising only very recently has
work been done to examine the effectiveness of these encodings.

MAC and FC have been widely studied. In particular |Grant & Smith (1995) published a rigorous
empirical study of the performance of M AC and FC algorithmsover abroad range of problem topologies
and sizes, which highlighted many of the relative virtues of these algorithms with respect to the problem
structur .

Table[3.4 summarises the CSP encoding complexity of ak-SAT instance with n propositional vari-
ables and m clauses. The variables column shows the number of CSP variables, and domain describes
the size of the variable domain. The number of constraints are shown in constraints, and the arity

denoted in arity. Thea : b notation in the domain column denotes a variables of domain size b.

encoding variables domain constraints | arity
LITERAL m k O(k*m?) 2
DuAaL m 2k —1 O(2Fm?) 2
NON-BINARY n 2 m k
PLACE n+m n:2,m:k O(kn) 2
HIDDEN VARIABLE || n+m | n:2,m:2F -1 O(kn) 2

Table 3.4: The SAT to CSP encoding size-complexity.

Jarvisalo & Niemela (2004) pointed out that the PLACE encoding is the only encoding that islinear
in all of these parameters; that this encoding is the first which is “propagation-optimal”. That is, propa-
gation using the standard search algorithm M AC in the CSP encoding performsthe same search as DL L
on the original SAT instance, and does so in the same worst-case time complexity. |Gent et all (2003)
pointed out that this theoretical equality is unlikely to lead to acceptable performance in practice, since
SAT-Solvers are highly-optimised algorithm. Gent also showed that it is possible for CSP search to
take exponentially longer than the SAT search when using the PLACE encoding. More specifically, if
MAC sets some of the extra CSP variables before all SAT variables, it is possible for DLL to search

exponentially fewer nodes. Representing CSPs as SAT may thus produce an exponential saving, though

1 Having implemented several variants of MAC for the empirical studiesin ChaptefBl for my purposes | found that the overhead
of queueing mechanisms could not compete with simply recursing through the data-structure.

12They suggested that “ we might compare the SAT-Solvers and CSP algorithms to a Formula-1 car and a family saloon. You
would not want to pick up the kids from school and drop by the supermarket on the way home in the [Formula-1] car. However,
the saloon car might benefit from Formula-1 technology. Constraint programming is general purpose, whereas the SAT-Solvers
are specialised pieces of code”

3.4. Analysisof SAT to CSP Encodings 61

itisstill unclear under what circumstancesit is advisable to convert one problem type to another.
Table[3.5 summarises the theoretical analysis performed by Walsh (2000h), \Gent et al! (2003) and
Jarvisalo & Niemela (2004) on CSP to SAT encodings, comparing DLL to MAC and FC, as well as
Min-Conflicts to the stochastic SAT search techniques WALKSAT and GSAT. Again, we consider
approaches X vs. Y and let X = Y denotethat X and Y have equivalent behaviour. X > Y denote

that X issuperiorto Y andlet X # Y meanthat X and Y areincomparablewith each other.

Comparison NON-BINARY LITERAL | DUAL | HIDDEN VARIABLE | PLACE

Unit-Propagation vs. < = < = =

arc-consistency

DLL vs. MAC > £ = =
DLL vs. FC = (nFCO0), < (NFC1) > > = =
GSAT vs. MC £ =4 #
WALKSAT vs. MC = < <

Table 3.5: A comparison of algorithmic techniques on SAT to CSP encodings.

Bacchus & van Beek (1998) showed that algorithms applied to problems represented using the
DuAL encoding can be more efficient by orders of magnitude than HIDDEN VARIABLE encoded prob-
lems when the number of constraints is low relative to the number of variables and the constraints are
restrictive. They suggested that although translating a non-binary CSP into SAT involves some overhead
the number of satisfying assignments to a problem is perhaps the most important factor in determining

the worth of a particular encoding.

3.4.1 DouBLE Encoding

Stergiou & Walsh (1999) showed how the HIDDEN VARIABLE encoding can be transformed into the
DuAL encoding, and introduced a new encoding that combined both the HIDDEN VARIABLE and DUAL
encodings. They called this the DouBLE encoding but it was not shown to have any advantages, pos-
sibly because the HIDDEN VARIABLE encoding aready contains the DUAL micro-structure and hence
it is superfluous to include it again. In fact, |Stergiou & Walsh (1999) published a very nice survey on
the performance of solving Golomb Ruler problems and Cross-Word Puzzle generation using a variety
of encodings including the DouBLE encoding. Interestingly, the results show that the time to generate
Cross-Words encoded by means of the DoOUBLE encoding appears to be approximately the sum of the
time taken for the HIDDEN VARIABLE and DUAL encodings. |Smith et all (2000) also produced a thor-
ough survey of various encodings of Golomb Ruler problems (including the DouBLE encoding), though

from their results | could identify no such linear correlation, only that the DouBLE encoding performed

13Bessiere et all (2002) describes n FFC'0 and n.F"C'1, which refer to certain types of generalisations of FC for non-binary CSPs.

3.5. Preprocessing 62

significantly worse than the HIDDEN VARIABLE and DUAL encodings aone. The DOUBLE encoding is

agood example that highlights the lack of aformal framework to develop and compare encodings.

3.5 Preprocessing

Preprocessing is arecent area of research that has formed around CNF-formulatransformation and sim-
plification. The aim of preprocessing aproblem isto reduce the search-space (not necessarily reduce the
problem size), allowing stochastic and branching algorithmsto find a solution more quickly. A smaller
problem implies that thereisless that the SAT-Solver needs to process, however, this does not necessar-
ily imply it is easier to solve. Indeed, some of the hardest problems are those that have no ‘ redundant’
information present in the problem.

In recent years aflurry of research has been published regarding the application and impact of pre-
processing SAT instances prior to the use of a SAT-Solver. This suggests that as the performance of SAT-
Solvers begins to plateau SAT researchers are exploring other methods to help improve performance.
Preprocessing a formula before solving is now known as an important step (ILvnce & Marques-Silve
(2001)), and many preprocessors have aready been proposed, several of which are described below.
One of the first and simplest preprocessing algorithm, called 3-RESOLUTION, performed 4-Resolution
— adding to the formulaall resolvent clauses of size lessthan or equal to 3 — until saturation, however,

this algorithmis often too slow and computationally expensive to be used in practice on large instances.

3501 SIMPLIFY-2

Brafman (2004) proposed 2-SIMPLIFY, aless computationally heavy preprocessor than applying 4-
Resol ution, which was devel oped to better managereal -world benchmarksthat often contain many binary
clauses. Roughly, the idea is thus to use those binary clauses to construct an implication graph, from
which unit clauses can be deduced by computing the transitive closure. Any unit clauses that have been

obtained are propagated and this processisiterated until an exit point is reached.

35.02 HYPRE

HYPRE, developed by Bacchus & Winter (2003), employs a form of binary reasoning called ‘hyper-
binary resolution’ in addition to the techniques found in 2-SIMPLIFY . ‘Hyper-binary resolution’ per-
forms aresol ution step involving more than two input clauses to generate binary clauses, using a method

that is similar to (but more restricted than) NG-RES.

3.5.0.3 NIVER

A wesker schema has been adopted by the N1VER procedure (ISubbarayan & Pradhan (2004)), which
stands for “Non-Increasing Variable Elimination Resolution”. This technique attempts to overcome the
size-explosion problem associated with variable elimination by only eliminating variables by resolution

if this computation does not increase the number of literals of the CNF formula

3.5. Preprocessing 63

3.5.04 SATELITE

SATELITE, by [Een & Biere (2005), is one of the most effective preprocessing techniques, so much so
that it is currently integrated in many state-of-the-art SAT-Solvers. SATELITE improveson NIVER by
combining binary clause resolution simplification with non-increasing variable-elimination, adding new
resolution rules for clause subsumption. Clause subsumption provesto be useful for simplifying clauses
resulting from variable elimination, enabling an efficient clause-variable simplification procedure which

can be repeated until no more reductions are possible.

35.05 ReVIVAL

Piette et al! (2008) points out that the main problem of these preprocessorsisthat it is difficult to measure
the relevance of each added or eliminated clause with respect to the resolution step. It is possible that a
preprocessor eliminates clauses but can derive a harder sub-formula. Similarly, adding new clauses may
increase the space complexity without reducing the search-space. |Piette et all (2008) proposes a new
preprocessing technique based on limited forms of resolution and conflict analysis, called REVIVAL.
REVIVAL uses clause redundancy checking to produce sub-clauses and to add new relevant clauses.

The aim isto substitute existing clauses by more constrained ones.

3.5.0.6 Preprocessor Results

Een & Biere (2005) published an excellent paper that definitively demonstrated that preprocessing
can not only significantly improve the solubility of industria instances, but that the time invested
by the preprocessor is also worthwhile. More specifically, |[Een & Biere (2005) extended implemen-
tation aspects of NIVER, and demonstrated its performance with three of the world's leading SAT-
Solvers (BERKMIN |Goldberg & Novikov (2002), MINISAT |Een & Sorensson (2003), and zCHAFF
Moskewicz et al. (2001)). Although the encoding and preprocessing of SAT problemsis cited as having
an important role, our understanding of how and when to use these techniquesis till very limited. This
is highlighted none more so than by the winners of thisyear’s (2008) SAT Race, Een and Sorensson, who
state that although the preprocessing of MINISAT 2.1 scales relatively well, there are till cases where
it takes too much time or memory, so as a simple safe-guard measure preprocessing is deactivated if the
problem has more than 4 million clauses.

Recently |Condrat & Kalla (2007) applied the Grobner basis engine (see IBuchberger & Winkler
(1998)) to many SATLIB benchmarks prior to using a state-of-the art SAT-Solver. On many instances
the benefits of applying these preprocessing techniques far outweighed the time spent during prepro-
cessing, but the processing varied greatly, with some problems benefiting from large numbers of clauses
processed, and others very few. Also the time saved during solving varied from only marginal improve-
ment to significant savings, however, in many cases the SAT-Solver could still find solutionsin lesstime.

Condrat & Kalla (2007) also combined the Grobner basis engine with SATELITE but the results were

3.5. Preprocessing 64

mixed.

However, it appears that combining several preprocessors often produces even better improve-
ments. Indeed, a combination of SATELITE and REVIVAL produced good results in SAT-Race 2008.
Anbulagan & Slaney. (2006) proposed a multiple preprocessing technique (using the preprocessors de-
scribed above) to boost the performance of systematic SAT-Solvers, and argued that applying multiple
preprocessors prior to the systematic search process can improve overall performance because each pre-
processor takes different strategy to simplify clause sets. One finding of |Anbulagan & Slaney. (2006)
was that the use of multiple preprocessors one after the other can be much more effective than using any
one of them alone, but that the order in which they are applied is significant. Their empirical study of
the effects of several recently proposed SAT preprocessors prior to applying a two leading SAT-Solvers
highlighted several outcomes:

1. SAT-Solvers benefit greatly from preprocessing. Improvements of four orders of magnitude in

runtimes are not uncommon.

2. It is unlikely to equip a SAT-Solver with just one preprocessor of the kind considered. Very

different preprocessing techniques are appropriate to different problem classes.

3. Therearefrequently benefits to be gained from running two or more preprocessorsin series on the

same problem instance.

4, SAT-Solvers can also benefit greatly from resolution between longer clauses, as in the 3-

RESOLUTION preprocessor, but the effects are far from uniform.

Relatively little study has been carried out on enforcing a local-level of consistency prior to ap-
plying complete or stochastic algorithms such as DLL and GSAT, owing to the likely reason that
making a problem more than strong-3-consistent can be very computationally expensive. However,
Kask & Dechter (1995) published a paper that focused on the problem of how enforcing a slight vari-
ant of path-consistency improves the performance of GSAT. In particular, they investigated the effect
of this preprocessing step on two different classes of problems; random uniform problems that do not
have any structure, and random structured problems. Though this study was performed on random prob-
lem types, they found that the effect of local consistency is sharply different on these two classes of
problems. When problems do not have any specia structure, enforcing local-consistency does not have
a significant effect on the performance of GSAT. However, on certain classes of structured problems,
local-consistency can significantly improve the performance of GSAT. Their experiments showed that
enforcing local-consistency can make these problems almost trivial for GSAT, and that the overhead as-
sociated with this preprocessing is much less than the computation needed to solve the problem without

it. [Kask & Dechter (1995) do not state what encoding of SAT to CSP was used to allow |ocal -consistency

3.6. Proof Complexity 65

to be enforced, but from my theoretical and empirical analysis (see Chapters B and[6) it appears that the
choice of encoding can dramatically effect the performance of the preprocessor.

The motivation for applying the preprocessing algorithms is to reduce (or even totally eliminate)
the number of backtracks required to identify the solution. It is now well acknowledged that the perfor-
mances of SAT-Solversis usualy greatly improved by preprocessing, up to the point where SATELITE
is now often used by SAT competitors. Preprocessing approaches have traditionally concentrated on
reducing the overhead, and techniques such as HY PRe, NIVER, REVIVAL and SATELITE reduce this
overhead through resol ution-based preprocessing. Whilst some empirical studies have been undertaken
to determine the effect of enforcing alocal-level of consistency prior to applying a backtrack or stochas-
tic algorithm, little theoretical analysis has been performed. |de Kleer (1989) shows the equivalence for
Consistency and Resolution algorithmson DIRECT encodings of CSPs and in Chapter [51 provide acom-
prehensive study of the equival ence between these two algorithms on each of the SAT to CSP encodings.
| demonstrate these results empirically in Chapter [@ where | also show that enforcing a low-level of

local-consistency on DUAL encoded SAT instances can solve many ‘hard’ SAT instances.

3.6 Proof Complexity

Resolution is the most studied propositional proof-system owing to its simplicity and relation to auto-
mated theorem proving algorithms used in industry. Whereas Resolution is a proof-system for SAT,
Consistency is a proof-system for CSP. Although thisis well-known (implicitly) in the Constraint Satis-
faction community it is only in the past few yearsthat it has been explicitly stated. Asfar as| am aware
thiswasfirst ‘completely’ defined by |Atserias et a. (2004), in their paper titled * Constraint Propagation
as a Proof System’, who argued the importance of ‘mapping’ the proof-system space. |Atserias et al!
(2004) pointed out that “ viewing constraint propagation as a proof system lifts proof complexity from
propositional logic to all constraint-satisfaction problems’, and suggested that this could lead to CSP-
Solvers that deal directly with the CSP instances, avoiding the need to translate to CNF and applying
a SAT-Solver. In this ‘spirit’, in Section | extend the proof-system of Consistency inspired by the
synergies with Resolution techniques described throughout this thesis.

The complexity of a Resolution proof is the number of clauses generated during the course of the
proof (also known as the proof length and size). This ‘resource’ (size) has been related to the maximum
width of the proof (see|Clegg et all (1996); Beame & Pitassi (1996)) where the width of a problem is

simply any clause with the maximum number of literals generated by the proof (IGalil (1977)).

Definition 3.6.1 (Proof width). Thewidth of a clauseisthe number of literals appearinginit. Thewidth
of a set of clausesis the maximal width of a clause in the set. The width needed for the Resolution of an

unsatisfiable CNF formula is the minimal width needed over its Resolution refutations.

3.6. Proof Complexity 66

3.6.1 TheWidth-Size Relation

This relation is extremely important for proving size lower bounds, since thanks to it, it is sufficient
to prove width lower bound. Since the SATISFIABILITY PROBLEM is an NP-complete problem, if
Resolution could always give proofs that are bounded polynomially in length (oc width), then co-NP
would equal NP. Two decades after [Robinson (1965) defined Resolution, |Haken (1985) proved the first
exponential bounds for Resolution in his seminal thesis on the PIGEON-HOLE PROBLEM.

Haken was followed shortly by IUrquhart (1987) who proved exponential Resolution bounds for
Tseitin Graphs. [Ben-Sasson (2001) developed a general strategy for proving width based on Haken's
original proof method. |Ben-Sasson & Wigderson (1999) used this ‘ simplified” method to reaffirm proof
lower-bounds for the PIGEON-HOLE PROBLEM, Tsetin Graphs and Random CNFs, as well as new

lower bounds for two variants of the PIGEON-HOLE PROBLEM. The basic relation between the com-

plexity measure of resolution size and width is:

Theorem 3.6.1 (width-Sze relation, Ben-Sasson & Wigderson (1999)). For an unsatisfiable formula F
in CNF with n variables, if F' has a Resolution refutation of size S, then it has a refutation of maximal

width, W (F), of O(+/n log S(F)). If F hasa maximal width W (F), thenitssize, S(F) isexp(™),

Ben-Sasson & Wigderson (1999) describe an immediate consequence of this width-size relation

which is aprocedure for refuting unsatisfiable formulae, described by Algorithm

Algorithm 3 k-RESwidth agorithm.

Given F
for k =1to W (F) do

if -RES(F) F L then

return L

end if
end for
return T

It is easy to see that this algorithm runsin time n "W (F) where n is the number of variablesin
formula F' (with maximal width W (F")). This algorithm was originaly investigated by |Galil (1977).
However, Ben-Sasson & Wigderson (1999) proved that this dynamic algorithm never performs much
worse than the standard DP procedure (described in Section [2.5.4) and provided a family of formulae

for which Algorithm [3 performs exponentially faster than DP.
3.6.2 Local and Global Consistency
Though theimportance of width did not appear in the SAT literature until the early nineties, it was already

becoming established in the Constraint Satisfaction community over ten years earlier in the seminal

paper by [Freuder (1982). This research not only introduced the importance of the width-size relation,

14gpace is another important ‘resource’ that was recently introduced byEsteban & Torén (2001) and [Ben-Sassor) (2001). The
space of a Resolution refutation is the number of clauses that have to be kept in memory simultaneously to infer a contradiction.
SeelAtserias & Dalmau (2003) and Toran (2004) for an excellent introduction to this research.

3.6. Proof Complexity 67

but also described a procedure to solve CSPs similar to Algorithm [3 again highlighting how little the
SAT and CSP communities have communicated over the years. Later, IDechter (1992b) provided another
extremely important width-size relation for CSPs, proving that a strong-(d(r — 1) 4+ 1)-consistent CSP
(with domain cardinality d and maximal arity r) is globally consistent. It is well-known that problems
with a guaranteed fixed width (not a function of n) can be solved in polynomial-time. For instance,

2-SAT has afixed width of size 2, i.e. it isimpossible to infer clauses with more than two literals.

Theorem 3.6.2 (strong-(d(r — 1) + 1)-consistency ensures global consistency, IDechter (1992b)). Any
d-valued r-ary constraint network that is strong-(d(r — 1) + 1)-consistent is globally consistent. In

particular, any d-valued binary constraint network that is strong-(d-+1)-consistent is globally consistent.

van Beek & Dechter (1997) extended this work by identifying two new complementary properties

on the restrictiveness of the constraintsin anetwork called constraint tightness and constraint |ooseness.

Definition 3.6.2 (m-tight). A constraint relation R of arity & is called m-tight if for any variable z ;
constrained by R and any instantiation a of the remaining & variables constrained by R either there are
at most m extensions of a to x; that satisfy R or there are exactly | D;| such extensions, where D, isthe

domain of z;.

Definition 3.6.3 (m-loose). A constraint relation R of arity & is called m-loose if for any variable z ;
constrained by R and any instantiation a of the remaining & variables constrained by R there are at

least m extensions of a to x; that satisfy R.

Their results can be viewed as an improvement on Dechter’s theorem, in the sense that the tightness
of the constraints specify alevel of strong-consistency that is less than or equal to the level of strong-
consistency required by Dechter’stheorem. They showed that these measures can be used to estimate the
level of local-consistency needed to ensure global consistency. In addition, they presented a sufficient
condition based on constraint tightness and the level of local-consistency that guarantees that a solution

can be found in a backtrack-free manner.

Theorem 3.6.3 (van Beek & Dechter (1994)). If a binary constraint network, R, is m-tight and if the

network is strong-(m + 2)-consistent, then the network is globally consistent.

Therelationto CSP isthat » (maximal arity) is analogousto clause width, so in general CSPs with
O(n) arity have exponential lower-bounds refutational complexity for strong-consistency. One example

widely studied in the Resolution proof complexity field isthe PIGEON-HOLE PROBLEM (PHP).

3.6.3 Pigeon-Hole Problem
Definition 3.6.4 (Pigeon-Hole Problem). The PIGEON-HOLE PROBLEM, with p pigeons and i holes,
states that there is no one-one mapping fromp to 4 when p > h. Thisisalso referred to as PH P’

A CSP formulation of PH P} isatriple (V, D, C), where

3.6. Proof Complexity 68
e Visafinite set of pigeons {z¢, z1 ... xp—1}
e Disathedomainisholes{yo,y1...yn-1}
e (C istheset of constraints stating that only one pigeon can bein a hole:
—alt Faf for0<i<j<p0<k<h

As we have seen, this can be formulated as a CNF formulaon p x h variables z;,, 0 < i < p,
0 < k < h, where z}, means that pigeon i isin hole k. The typical way of encoding PHP into CNF is
by the MULTIVALUED encoding described in Section

positive : /\ \/ Tik (3.1

0<i<p0<k<h

constraint : /\ /\ Zik V Tk (3.2
0<i<j<p0<k<h

When there are more pigeons than holes the problem is unsatisfiable. Consider PH P**1. This
instanceis unsatisfiable with O(n?) variablesand O(n?) clauses, where each positive clause has awidth
of size n. With adomain cardinality » and binary constraints, according to [Dechter (1992b), PH P!
requires strong-(n(2 — 1) + 1)-consistency (strong-(n + 1)-consistency), which is the maximum level
of consistency possible for this problem. Deduction techniques used in constraint-solvers are not very
effective when the difference constraints are considered independently of each other and a classical
search algorithm (Resolution) which does not use global information will explore the entire search tree
of size (n — 1)! to prove inconsistency. Search-based solvers have intrinsic limitations, and global
constraints have been a means, in the Constraint Satisfaction field, to overcome them. For instance
alldiff constraints (mentioned in the Introduction) can be propagated very efficiently using graph-based
agorithmsto solve PHP.

The difficulty of PHP for Resolution should not be underestimated. For instance, it may sound
easier to determine unsatisfiability if the number of pigeons was much greater than the number of holes,

but it isjust as hard. Proving exponential bounds for the PHP is still an active area of research.
Theorem 3.6.4 (Haken (1985)). S(PHP!*!) = 29,

Buss & Turan (1988) generalised Haken'slower-bound where the number of pigeonsis much larger

than the number of holes.
Theorem 3.6.5 (Buss & Turan (1988)). S(PHPP) = 2%t
Razborov (2001) improved on the findings of |Raz (2001) showing that when p > h:

Theorem 3.6.6 (Razborovl (2001)). S(PH PP) = 22",

3.6. Proof Complexity 69

3.6.4 Extended Proof-Systems

Resolution is the most theoretically studied propositional proof-systems and though one of the simplest,
it proved extremely challenging to determine its first exponential complexity bounds. Given that the
DLL agorithm produces a search space that is tree-like a great deal of research has been carried out on
the complexity of tree-like Resol utio (also called General Resolution in which identical clauses can
be derived more than once).

However, there are proof-systems that produce polynomial proofsfor PHP, namely Frege-systems

and Extended-Resol ution (Cook (1976)).

Definition 3.6.5 (Frege proof-system). A Frege system F' consists of a language, a finite number of
axiom schemes and inference rules, which are sound and complete. For instance, a particular language
may contain the constants {0, 1}, connectives {—, A, V} and some atoms {a, b, ... }. An axiomis any
substitution instance of an axiom scheme. For example, F' often has several axiom schemesand only one

inferencerule (e.g. the modus ponens).

Analysis of Frege proof-system is beyond the scope of this thesis, but for the interested reader
the literature of IBuss (1987), Ajtal (1994) and [Bonet et al. (1994) is highly recommended. Extended-
Resolution (aless restricted version of Resolution) is one of the most powerful proof-systems available
(equa to Extended-Freg) which allows the introduction of auxiliary variables to maintain a con-
stant arity (clause width). Remarkably, no known problems exist that demand exponential Extended-
Resolution (or Extended-Frege) proofs.

It has been shown that the Frege proof-system is strictly more powerful than Resolution proofs,
and that Extended-Resolution has the same power as Extended-Frege (one of the most powerful proof
systems at our disposal) (Krajicek & Pudlak (1989)). In fact, there are no proof-systems known to be
stronger than these extended proof-systems, and there are no known classes of problem that demand
exponential size proofs for them. However, the fact that a proof-system is strong does not mean that it
workswell in practice. Very little is known about how to implement Extended-Resolution for the simple
reason that virtually nothing is known about how to select new variables so as to shorten proof length.

Although auxiliary variables have been used in the Constraint Satisfaction community for some
time, their applicationis still very much an art. For instance |Smith et all (2000) performed an extensive
study of the use of auxiliary variables and implied constraints in modelling a class of non-binary CSPs
called problems of distance. Their experiments show that the introduction of auxiliary variables and

implied constraints significantly reduced the size of the search-space.

B Analysis of restricted versions of Resolution are beyond the scope of this thesis, but the interested reader may want to start
with|Mitchell (2003) and|Ben-Sasson & Wigderson (1999).

16Extended-Frege isasimply a Frege proof-system extended in the same way that Resol ution is extended to Extended-Resol ution
with the Extension Rule.

3.7. Chapter Summary and Discussion 70

Only in recent years have papers begun to emerge in which these extended techniques have been
applied to SAT, namely ISinz & Biere (2006) and Jussila et al| (2006). This work evaluates a practical
method to obtain Extended-Resolution proofs for conjoining Binary Decision Diagrams (BDDs) in
SAT solving. Their results enable the use of BDDs for these purposes instead (or in combination with)

aready established methods based on DL L with clause learning.

3.7 Chapter Summary and Discussion

In this chapter | provided an extensive survey of the main SAT and CSP encodings, as well as a de-
tailed review of the major theoretical and empirical investigations performed on them. Thisinvestigation

highlights severa questions and areas of research that this thesis addresses:

e Some encodings that have been published that are useful, whilst others are not. |s there a com-
mon framework to allow researchers from both the SAT and CSP communities to assess existing

encodings and to develop and assess new encodings?

e |t has been shown that solution-density can effect the performance of stochastic and branching al-

gorithms. Isthere a distinction between the various encodings according to their solution-density?

e A large amount of theoretical research has been published comparing the performance of SAT and
CSP-based stochastic and branching a gorithmic techniques on various encodings. |s there away
to compare the relative theoretical performance of preprocessing (local-consistency) techniques

used in these two fields?

e Severa empirical results have been published demonstrating the performance of stochastic and
branching algorithmic techniques on various encodings, yet relatively little on the effect of apply-
ing incremental levels of local-consistency. Do local-consistency algorithms perform better with

some encodings than others?

e Wdth isin important characteristic that correlates with the complexity of problems. Some theo-
retical and empirical work has been published that looks at ‘width management’ techniques, such
as Extended-Resol ution and Extended-Frege proof-systems. Can the Consistency proof-system be
extended in a way that might facilitate synergies between these lines of research, and provide a

complete landscape of these three proof-systems?

3.7.1 Theoretical Studies Summary

I have highlighted several situations where research from the SAT and CSP communities has been re-

peated by the other. Theaim of Chapter [4isto provide aframework within which current and future SAT

17Briefly, a Binary Decision Diagram is a data structure that is used to represent aBoolean function as arooted, directed, acyclic
graph, which consists of decision nodes and two terminal nodes called O-termina and 1-terminal. Each decision nodeislabelled by
aBoolean variable and has two child nodes called low child and high child. The edge from anode to alow (high) child represents
an assignment of the variable to 0 (1).

3.7. Chapter Summary and Discussion 71

and CSP encodings can be developed. This framework results in a new type of CSP to SAT encoding

that | show can have advantages over previous encodings.

There has been a large amount of theoretical analysis comparing stochastic and branching SAT
and CSP agorithmic techniques. However, very little research has been done comparing the effect
of enforcing local-consistency algorithms for each approach, probably because these techniques have
previously been considered incomparable. Thisis true when comparing Resolution and Consistency on
many types of encodings, but with the introduction of NG-RES atheoretical comparisonisnow possible,
and in Chapter[§1 provide a comparative study between Resolution and Consistency on each of the SAT
to CSP encodings. The main result of my theoretical analysis is that enforcing local-consistency on
DuAL encoded problems does more work than on LITERAL encoded instances. Although this might not
be totally surprising (since DUAL encoded problems are typically larger than those that are LITERAL
encoded) the empirical results on each of these encodingsin Chapter [6lare surprising.

In addition, some empirical work on comparing algorithmic performance on instances with differ-
ent solution-density has been performed, and it has been shown that this measure can be used to choose
between stochastic and branching algorithms. In Chapter [§ | demonstrate a new way of characterising
SAT to CSP encodings based on the solution-density. In particular, | show that DUAL encoded instances
can have a lower proportion of solutions than the LITERAL encoded instances, for example. Since it
has been shown that solution-density is an important factor in determining the solubility of an instance,
my work provides a guide to assist in choosing one encoding over another. Also in Chapter B 1 use the
graph-theoretic framework to reconfirm and strengthen the equivalence between the Resolution-based
and Consistency-based proof methods, and introducing the concept of Extended-Consistency, thus pro-

viding a complete picture of the Frege, SAT and CSP proof-systems.

3.7.2 Empirical Studies Summary

Two key problematic aspects of previous empirical studies of SAT and CSP encodings often arise that
call into question the wider implications of the results. First, typically one type of problemis used as a
benchmark to compare encodings. Second, either stochastic or backtracking algorithms are applied to
the encoded problems. Clearly both of these choices may bias the results, since an encoding/algorithm
may ‘favour’ a particular problem. Although each author may proclaim the benefits of their encoding, a
rigorous empirical and theoretical investigation remains to be performed to definitively determine their
advantages and disadvantages. However, to perform such a comprehensive and rigorous survey of these
encodingsis a mammoth task.

Whilst much current research focuses on how SAT techniques can be utilised by the Constraint
Satisfaction community, this thesis addresses the opposite, asking what CSP techniques can aid SAT.
In particular | show in Chapter [@that converting SAT instances to CSP and applying local-consistency

3.7. Chapter Summary and Discussion 72

can solve many ‘hard” SAT instances and even compete with state-of-the-art SAT-Solvers. Currently
there are two families of algorithm adopted by the SAT community, stochastic and branching. Branching
algorithms can prove both satisfiability and unsatisfiability, whereas stochastic algorithms can only prove
theformer. Sophisticated |ocal-consistency algorithms might be aviable approach to redressthis balance,
unable to determine whether an instance is satisfiable but capable of proving unsatisfiability.

Although the general consensus is that bridging the two fields of Propositiona Satisfiability and
Constraint Satisfaction is mutually beneficial, only a handful of researchers have crossed the chasm. As
the performance of SAT-Solversbeginsto plateau, the necessity to ook towards other fields for improved
solutions has become more important. |IBennaceur (2004) suggests that comparative analysis between the

methods of these two frameworks might lead to the conception of hybrid methods for the SAT problem.

Chapter 4

Categorising Encodings

As discussed in the previous chapter, problems encoded using the DouBLE encoding (Section [3.4.7)
unnecessarily repeats aspects of its own data-structure. This instance highlights one reason why it is
important to categorise the encoding landscape. In this chapter | demonstrate how all of the SAT to
CSP encodings (and vice-versa) can be categorised as one of three types of mappings (DOMAIN, CON-
STRAINT and COMBINED). Categorising the encodingsin this general way isuseful becauseit highlights
gapsthat can be filled by several new CSP and SAT encodings, one of which (the INVERSE encoding) |

formally define and demonstrate its rel ative advantages over some of the other encodings.

4.1 Mapping Categories
Analysis of the CSP and SAT encodings highlight three categories of CSP mappingsthat | call:
1. DOMAIN
2. CONSTRAINT
3. COMBINED
These categories are inspired by observing how the CSP micro-structure is constructed and expressed.

4.1.1 DOMAIN Mapping
DOMAIN mappings map the variable domains of a CSP to the variables of the resulting CSP. The con-
straints of the original CSP map to constraints in the resulting CSP. Recall the definition of the SAT to

CSP NON-BINARY encoding:

Definition 4.1.1 (NON-BINARY encoding). Every CNF propositional variableis associated with a CSP
variable x ;, each with the domain {0, 1}. The constraints are the partial assignments that fail to satisfy

each clause.
The CSP resulting from the NON-BINARY encoding of Formula[2.1l on page58lis:

o V= {xg,21,22,23}

4.1. Mapping Categories 74
e D= {Dm07Dx1aDm2aD$3}a whereD,, = {0, 1},i <n
e C= {Cmo,ﬂﬂlyrzvCmo,rzyﬂﬂzvCmo,mlyﬂﬂzvcm,mz,m}' where

= Cagaraz = {n{ag, 2%, 28}, n{xg, 29, 23}}
= Capwayes = {n{26, 23, 25}}
= Cuoaras = {n{aG, 21, 25}}
= Caywaes = {n{2, 23, 28}}

Figure[4.T] (from Section[3.3.3) represents the micro-structure complement of this CSP. We can see
clearly that thisis a DOMAIN mapping since the component sets (new variable domains) map to each
variable in V), the nodes to D, and the 3-hypercliques (the new constraints) to the nogoods defined by
C. That is, the SAT variables map to CSP variables, and the clauses to the CSP nogoods (defined by the

constraints).

Figure 4.1: Formula2.l as a (5‘21 3-hypergraph using the NON-BINARY encoding. Variables are repre-
sented at the component sets, whereas the ternary clauses are represented as hyperedges that connect
three nodes (i.e. the unsatisfiable assignments to each clause).

None of the other SAT to CSP encodings described in Chapter [3fit into the DOMAIN category. This
isin contrast to the CSP to SAT encodings. Recall the definitions of the CSP to SAT DIRECT, SUPPORT
and LoG encodings described in Section [31 It is clear that the variable domains of the CSP map to
new SAT variables (and positive clauses), with the CSP nogoods mapping to SAT clauses. Although
thisis less obviousin the case of the LoG encoding we can see that the SAT variables result from the
logarithmic encoding of the CSP variable domains, with the SAT clauses constructed from the nogoods
defined by the CSP constraints.

By observing how the CSP instances encoded to SAT we can see that all of the CSP to SAT encod-
ings described in Chapter [3 encode the CSP variable domainsto SAT variables, and CSP nogoodsto SAT

4.1. Mapping Categories 75

clauses (i.e. they are all DoOMAIN mappings). Thisis summarised in Table[4.1l Notice that there are no

CONSTRAINT or COMBINED CSP to SAT encodings.

DOMAIN CONSTRAINT | COMBINED

DIRECT
SUPPORT
LoG

MULTIVALUED

Table 4.1: Categorising the CSP to SAT encodings.

However, the most common SAT to CSP encodings (DUAL and LITERAL) map the SAT clausesto
CSP variables, with the SAT variables encoded as CSP constraints. Thistype of transformation | call the

CONSTRAINT mapping.

4.1.2 CONSTRAINT Mapping

The CONSTRAINT mapping is quite different from the DomMAIN mapping. Encodings that fall into the
CONSTRAINT category are constructed in such a way that the resulting CSP variable domains map to
some representation of the satisfying tuples of the original constraints, and the resulting constraints are
enforced by the variable domainsin the original CSP. Given a CSP P we construct anew CSP P’ using

some encoding, the distinction between the DOMAIN and CONSTRAINT mappingsis as follows:
e DOMAIN Mapping:

— P variables+— P’ variables.

— P constraints — P’ constraints.
e CONSTRAINT Mapping:

— P constraints— P’ variables.

— P variables— P’ constraints.

Figure[4.2 (from Section[3.3.) below represents the CSP micro-structure complement of the L1T-
ERAL encoding of Formula2Z.dl Notice that the nodes in the component sets (the new CSP variable
domains) are constructed from the SAT clauses. The edges enforce that two variables cannot take differ-
ent values. The LITERAL encoding can therefore be categorised as a CONSTRAINT mapping.

Similarly, recall the definition of the DUAL encoding in Section

Definition 4.1.2 (DUAL encoding). With the DuAL encoding each clause C; is associated with a vari-
ablec; € V. Thedomain of ¢; isthe set of satisfying assignmentsto the clause C;. The set of constraints

C are binary and are posted between the CSP variables that have opposing proposition assignments.

4.1. Mapping Categories 76

Figure 4.2: FormulaZdlas a 3 graph using the LITERAL encoding.

The DUAL encoding takes the partial satisfying assignments to a clause and represents each clause
as a new CSP variable with its domain as those partial assignments satisfying it. The CSP binary con-
straints enforce that no original propositional variable can take different domain values. Loosely, the
DuAL encoding maps satisfying solutions of SAT clauses to CSP variables, with the SAT domains en-

force the CSP constraints Therefore we can see that it fits into the CONSTRAINT mapping category.

4.1.3 COMBINED Mapping

Encodings that fall into the CoOMBINED mapping category simply take the variables resulting from the
DomAIN and CONSTRAINT mappings, and constructs the constraints in such away that these variables
cannot take conflicting domain values that would violate the variablesin the original CSP.

Both the PLACE and HIDDEN VARIABLE encodings are instances of the COMBINED mapping.
Take the PLACE encoding of Formula 2.1] (Section [3.3.4) as an example, Figure illustrates how
this encoding produces the two component set sets (i.e. the variables from the LITERAL and NON-
BINARY encodings) and that the edges between the nodes ensure that the original variable domains are
not violated. Notice that these edges infer the constraints (the dotted binary and ternary edges) that
are explicitly stated in the two resulting CSPs that it is constructed from. In this case, the nodes and
implied edges encode the combined micro-structure complements of the LITERAL and NON-BINARY
encodings. Take the dotted edge between the nodes { 035 , cjg } in Figure[43for instance. Owing to some
of the constraints this edge cannot form an independent set with the nodesin the component set - . Since
the dotted edge cannot form alocal independent set, it cannot be part of a global independent set, so an
edge can be safely added to the graph. Similarly, the dotted ternary independent set between the nodes
{23, 29, 29} cannot be extended to an independent set (of size 4) with any node in the component set ¢ o,
so a 3-clique can also be safely added to the graph. In the next chapter | demonstrate that thisinference
method is equivalent to Consistency and Resolution proof techniquesin the SAT and CSP fields.

4.2. INVERSE Encoding 77

Figure 4.3: Illustrating that the PLACE encoding isacombined LITERAL and NON-BINARY encoding.

Similarly, it is easy to seethat the HIDDEN VARIABLE encoding is a combination of both the DuAL
and NON-BINARY encodingsin exactly the same way that the PLACE encoding is a combination of the
LITERAL and NON-BINARY encodings. Table [4.2 shows the SAT to CSP encodings described in this

Chapter[3 categorised as DOMAIN, CONSTRAINT, COMBINED mappings.

DOMAIN CONSTRAINT COMBINED
NON-BINARY LITERAL PLACE
DUAL HIDDEN VARIABLE

Table 4.2: Categorising the SAT to CSP encodings.

4.2 INVERSE Encoding

In this section | introduce a new type of encoding that | call the INVERSE encoding inspired by the three
categories of mappingsidentified in this chapter. The CSP to SAT encodings described thus far fall into
the DoMAIN family, since with all these encodings the CSP variable domains map to SAT variables and
the constraints map to constraint clauses. Encodings that fall into the CONSTRAINT category have the
opposite mapping such that CSP constraints map to SAT variables and the CSP variable domains map to

the constraint clauses. COMBINED mappings are a combination between DOMAIN and CONSTRAINT

mappings.

Definition 4.2.1 (INVERSE encoding). The INVERSE encoding maps CSP satisfying assignmentsto SAT

variables, and constrains these variables using the CSP domains:

4.2. INVERSE Encoding 78

e positive: a positive clause C; is generated for each constraint, C;, in C. The literals of C;
each map to a unique tuple satisfying C; (i.e. there is a bijection between the satisfying-tuples
and literals). For instance if ¢; and ¢;, are adjacent nodes in a GRAPH 3-COLOURABILITY
PROBLEM (i.e. a constraint C.,.,) then the set of satisfying tuples for (c;,c;) would be
(AR, e b (e, el et} AeS B Y A{eP eft by {ef f 1}, each mapping toaliteral

inC; (lcj_%ckc \Y lcj_%ckB \Y lcfckR \Y lcfckB \Y lcf‘ck’? \Y lcfcg).

e constraint: constraint clauses are specified by the domains of the CSP variables, they contain two
literals that have been mapped to the same variables but assigned different domain values. Using
the GRAPH 3-COLOURABILITY for example, if positive clause C,, containsthe literal lcfcg and
Cy containsthe literal [cFeB then the constraint clause (Zcfcg Y icgcg) would be generated. Intu-
itively, the constraint clauses specify that two literals cannot assign two different domain valuesto

the same variable.

e negative: negative clauses may be included to constrain the positive clauses to only have one

satisfying assignment. That is, for each positive clause C';

A Vi
SCC; \jeS
[S|=2

4.2.0.1 INVERSE Encoding Complexity

On the assumption that a CSP has n variables (each with a fixed domain size m) and ¢ constraints (with
arity), the INVERSE encoding will generate a SAT instance with O(gm ") variablesand ¢ + O(¢*m")

clauses:
e ¢ positive clauses of size O(m")
e O(¢?>m™) binary constraint clauses

Recall Examplel2.2.3 which has 5 variables (each with ternary domains) and 6 binary constraints. There
are6 (0(3%)) partial satisfying assignmentsto each of the 6 constraints. This generates 6 positive clauses
of size 6. The maximum number of unique binary clauses over these 36 literalsis 6 2 + 33. Appendix
shows the SAT encoding of Example using the INVERSE encoding (excluding the negative
clauses), and Figure[4.4] represents its (partiadl) G$ graph (note that this is the micro-structure, not the
complement).

Table[4.3 shows a summary of the complexity of the INVERSE encoding with respect to the others.
These encodings are based on a CSP with n variables with domain size m, and ¢ r-ary constraints. The

notation a : b denotesthat a clauses are generated of arity b.

4.2. INVERSE Encoding 79
C lepeg bepen C
coc1 Lep e Lpes CoC4
legen leger
legeg legep
lefieg Lefres
lefreg Lefie
Ccl C2 Ccl C3 C(;Q C3 C(;Q Cq

Figure 4.4: The (partiad) G¢ graph of Example mapped to SAT using the INVERSE encoding.
Notice that the partial satisfying assignments to a constraint map to component sets, and binary edges
connect nodes that represent variables that do not violate the variable domain assignments.

encoding propositions | positive negative constraint
DIRECT nm n:m n(y) 12 q:r
SUPPORT nm n:m n(’y) 2 2q:m
Loe n[log, (m)] 0 | g2 —n): [logy(m)] | ¢ r[log,(m)]
MULTIVALUED nm n.:m 0 q:r
INVERSE O(gm") q:0(m") 0 O(¢?>m") : 2

Table 4.3: The CSP to SAT encoding complexity, including the INVERSE encoding.

As highlighted in Section [3.1.7] it is not always feasible to encode CSP problems into SAT using

the DIRECT encoding. Take a simple example CSP.

Example4.2.1. GivenaCSP = (V, D, (), such that
o V:{a,b,c}
e D:D, =Dy, =D, =1{1,2,...,1024}
e C:b=2%c=(b-1)%a= e
Trandated to SAT using the DIRECT encoding, this examplewill generate:
e 3 positive clauses of arity 1024
e over 3 million binary constraint clauses

e over 1.5 million binary negative clauses

The INVERSE encoding is much more compact, generating only:

4.3. Chapter Summary and Discussion 80

e 3 positive clauses:

— 1of arity 10 (C,)
— 1of arity 6 (C.c)

— 1of arity 32 (Ch,c)
e |ess than 600 binary constraint clauses
e approximately 550 binary negative clauses

The INVERSE encoding is preferable when the number of partial satisfying assignments to the con-
straint is small, since each partia satisfying assignment gets mapped to a SAT variable. If, on the other
hand, a problem has constraints that have many partial satisfying assignments, then careful consideration

should be taken to decide which encoding is best to use.

4.3 Chapter Summary and Discussion

After defining three types of mapping categories, | demonstrate that the encodings described in the
previous chapter can be categorised as either a DOMAIN, CONSTRAINT or COMBINED mapping. As a
result of this categorisation a new encoding from CSP to SAT, the INVERSE encoding, isdefined and it is
shown to have some benefits over other encodings with respect to the compactness of the representation.
| use a simple example to demonstrate that the INVERSE encoding is preferable when the number of
partia satisfying assignments to the constraints are small. With a simple calculation researchers might
find that they can now practically represent some CSP problems as SAT using the INVERSE encoding
that were previously impractical.

The INVERSE encoding resulting from this categorisation demonstrates another benefit of examin-
ing the relationship between SAT and CSP research. With the introduction of thisnew encodingit is now
possible to define ComBINED mappings for CSP to SAT encodings and explore the benefits that these
new encodings may bring. For instance, the same way that the PLACE encoding is the combination of
the LITERAL and NON-BINARY encodingsanew encoding for CSP to SAT can be formed by combining
the DIRECT and INVERSE encodings. | summarise these in Table [4.4, however, since the focus of this
thesisis on SAT to CSP encodings, exploring the relative benefits of these new encodingsis left as an

open challenge.

4.3. Chapter Summary and Discussion

DOMAIN | CONSTRAINT COMBINED

DIRECT INVERSE INVERSE + DIRECT

SUPPORT INVERSE + SUPPORT
LoG INVERSE + LOG

Table 4.4: Categorising the CSP to SAT encodings.

81

Chapter 5

Characterising SAT to CSP Encodings

Though the fields of Constraint Satisfaction and Propositional Satisfiability have developed relatively
independently, | have shown that working with the micro-structure can help us understand the similarities
and differences between the two disciplines. In Chapter [4 the focus was on the expressive power of
SAT and CSPs, in this chapter | provide a theoretical analysis comparing the work that polynomial-
time techniques achieve on problems encoded as SAT and CSP, where ‘work’ is defined as the level of
consistency that these polynomial-time techniques achieve on CSP and SAT instances.

As discussed in Chapter [3 the solution-density is one measure that can sometimes be used to de-
termine performance of stochastic and branching algorithms on problem instances. In particular, it has
been shown that stochastic agorithms can perform better on problems with a higher solution-density.
In the first part of this chapter | separate SAT to CSP encodings according to their solution-density and
prove that some encodings will result in CSPs with more solutions than others. Thisis important, as it
may help guide which encoding should be used in a particular situation (i.e. problem type and available
algorithm).

The second part of this chapter addresses the gap in the theoretical research that compares the
performance of Resolution and Consistency based techniques on the various encodings. For instance, |
show that although there is a space overhead associated with DUAL encoded problemsin comparison to
using the LITERAL encoding, enforcing local -consistency on the resulting CSP does much morework. |
aso prove that enforcing path-consistency on LITERAL encoded 3-SAT instances does zero work if each
clause has distinct literals, which explains the empirical results presented in the next chapter.

Finaly, | investigate the proof-systems in both the SAT and CSP research areas, and show that the
graph-theoretic approach is a useful framework to explore the similarities and differences between these
techniques. In particular, | demonstrate that (strong-)Consistency and Resolution are exactly the same
technique; in graph-theoretic terms both infer implicit nogoods by taking a clique and showing that it
cannot extend to a larger clique and hence cannot be part of a global clique. Inspired by the work of

Tseitin, Baker and Mitchell | define Extended-Consistency (the generalisation of Extended-Resolution)

5.1. Solution Separation of SAT to CSP Encodings 83

which allows synergies between these two extended proof-systems to be explored. Using an example |
demonstrate a simple automated method for introducing auxiliary variables with the aim of promoting

the development of algorithms that might exploit the potential of these powerful proof-systems.

5.1 Solution Separation of SAT to CSP Encodings

In this section | provide a characterisation of SAT to CSP encodings according to their solution-density.
By analysing the resulting micro-structure | show that CSP encoded SAT problems result in different

solution-densities.

5.1.1 LITERAL Encoded Solutions

When encoding SAT problems to CSP using the LITERAL encoding, it isimportant to notice that there
is a surjective and non-injective mapping from the n-cliques in the G} graph to the solution-tuples
satisfying the original SAT instance. To phrase it another way, there may be more n-cliques in the
resulting CSP micro-structure than satisfying assignments to the original SAT instance. That is, the
CSP resulting from the LITERAL encoding of a SAT instance can include more sol ution-tuples than the
number of satisfying assignments.

Recall the CSP micro-structure complement of the LITERAL encoding of Formula [2.1]in Section
[3.31 (shown in Figure[5.1). Notice for instance that a (dotted) 5-clique, 7{035, c‘fg, c’;g, cgé, cfg} can
be formed in Figure[5.1] stating that {z}, zJ} satisfies Formulal2. regardless of the assignments to the
remaining literals (this can be verified by looking at Table 3.3).

Figure5.1: The ég LITERAL encoded FormulaZd] highlighting the v{={, 23} solution.

Remark 5.1.1. The CSP resulting from the LITERAL encoding of a satisfiable SAT instance ¥ may

contain more (but no less) solution-tuples than the number of assignments satisfying W.

In terms of the micro-structure,

5.1. Solution Separation of SAT to CSP Encodings 84

Remark 5.1.2. the G} graph resulting fromthe LITERAL encoding of a satisfiable SAT instance ¥ may

contain more (but no less) n-cliques than the number of assignments satisfying .

Remark 5.1.3. The size of the search-space of a LITERAL encoded k-SAT instance ¥ is k™, where m

is the number of clausesin .

5.1.2 DuAL Encoded Solutions

In contrast to the LITERAL encoding, given a SAT instance ¥, the DUAL encoding producesa G | graph
where there is a bijection between the n-cliques and satisfying assignmentsto ¥. This means that the
G graph contains exactly the same number of n-cliques as there are satisfying solutionsto ¥. Asfar as

| am aware this distinction has not been made previously.

Theorem 5.1.4. Let ¥ be a 3-SAT formula and let (G7, (S; : ¢ < n)) betheinstance of G7, which is
the micro-structure of the CSP obtained from ¥ using the DUAL encoding (where S'; is an independent
set of nodes of G7). Thereis a bijection from the set of valuations satisfying ¥ to the set of n-cliques of
Go.
Proof. Let v be any valuation to the propositions occurring in a 3-SAT formula ¥ = /\ C;. For each
i < n let v; bethe partia valuation obtained by restricting v to the propositionsin C';. -

The required bijectionis

0:v—{(,v):i<n}

Notethat if v setisfies ¥ (i.e. v(¥) = T) then v satisfies each of then clauses of ¥, hencetherestriction
v, satisfies the 7'th clause, so (i,v;) € S;. Also, for any i, j < n, the partial valuations v,, v; cannot
contradict each other, since they are restrictions of the same valuation v. Hence, if v satisfies U then
{(i,v;) : i < n}isann-cliqueof G?, so 6 is well-defined. To see that 6 isinjective, let v # w betwo
valuationson the propositionsoccurringin W. Sincev # w theremust bei < n suchthat v; # w;, hence
O(v) # 6(w). To seethat 6 is surjective, let X be any n-clique of the graph G%. X contains exactly one
node from each independent set S;, so let (4, w;) € X (eachi < n) wherew; € S;. Since X isaclique,
none of the w;’s contradict each other, hence w = |J{w; : i < n} isawell-defined valuation satisfying

¥, and w mapsto X, as required. O

Remark 5.1.5. The size of the search-space of a DUAL encoded k-SAT instance W is (2%~1)™, where

m isthe number of clausesin .

For DUAL encoded problems | show that there is a bijection between the CSP solutions and sat-
isfying assignments to the original SAT instance. This is significant because it highlights a way to

differentiate between the ‘ nature’ of these encodings. Also, since the solution-density of these encodings

5.1. Solution Separation of SAT to CSP Encodings 85

may differ previous literature suggests that satisfiable LITERAL encoded problems could be easier to
solve by means of applying a stochastic algorithm than other encodings.

If we take Formula[2.]] as an example. Table[3.3 (Chapter [3) lists the eight satisfying assignments
to FormulaZ1l The CSP resulting from the DUAL encoding contains exactly eight full satisfying as-
signments (eight n-cliques in the CSP micro-structure), whereas the CSP generated by the LITERAL
encoding contains 48 full satisfying assessments. The difference between the two encodings is even
more compel ling when one compares the solution-densities. The original SAT instance has 2 4 (16) pos-
sible full assignments, of which 50% (8) are satisfiable. Noticethat thereare 7° possible full assignments

in the DUAL encoding, whereas there are only 35 when LITERAL encoded. The DUAL encoded version

. 4
8 with the LITERAL encoding having a solution-density of —8.
16, 807 243

5.1.3 NON-BINARY Encoded Solutions

thus has a solution-density of

Similarly for the NON-BINARY encoding, the G% also contains the same number of n—cliqUQJ asthere

are satisfying solutionsto a SAT instance translated to CSP using the NON-BINARY encoding.

Theorem 5.1.6. Let U bea 3-SAT formulaand let (G%, (S; : ¢ < n)) betheinstance of GI', whichisthe
micro-structure of the CSP obtained from ¥ by the NON-BINARY encoding (where S; is an independent
set of nodes of G). Thereis a bijection from the set of valuations satisfying ¥ to the set of n-cliques of

G2

Proof. Since each n-cliquemustinclude one nodefromeach set S';, and each S; representsaproposition,
then every n-clique must map to a valuation that includes all propositions (i.e. there are no possible

partial valuationsto the propositions asin the case of the LITERAL encoding). O

Remark 5.1.7. The size of the search-space of a NON-BINARY encoded k-SAT instance ¥ is2™, where

n isthe number of propositionsin .

514 PLACE and HIDDEN VARIABLE Encoded Solutions

In Chapter [| showed that the PLACE and HIDDEN VARIABLE encodings are combinations of NON-
BINARY + LITERAL, and NON-BINARY + DUAL respectively. Given this, determining the mapping
between SAT satisfying assignments and CSP sol ution-tuplesfor these encodingsis straightforward. For
instance, the number of solution-tuples resulting from the trandlation of SAT to CSP using the PLACE
encoding is the maximum number of solution-tuplesin either the NON-BINARY or LITERAL encoding.
This means that the number of solution-tuples in CSP resulting from the PLACE encoding is equal to
the number of solution-tuplesresulting from the LITERAL encoding, sincethe LITERAL encoding has at
least as many solution-tuples as the CSP generated using the NON-BINARY encoding. As aresult, we

can make the following remark:

IThough in this case the n-cliques are made up of hyperedges rather than edges.

5.1. Solution Separation of SAT to CSP Encodings 86

Remark 5.1.8. The PLACE encoding of a SAT instance ¥ produces a CSP with the same number of
solution-tuples as the CSP resulting from the LITERAL encoding of W. This CSP encoding can produce

more (but no less) solution-tuples than the number of satisfying solutionsto the original SAT instance.

Similarly the CSP resulting from the HIDDEN VARIABLE encoding has the same number of
solution-tuples as the maximum number of solution-tuplesresulting from using either the NON-BINARY
or DuAL encoding. | have proven that there is a bijection between the CSP solution-tuples and SAT
satisfying assignments for both the NON-BINARY and DUAL encodings. This means that the SAT and

resulting CSP instance both have the same number of solutions.

Remark 5.1.9. The HIDDEN VARIABLE encoding of a SAT instance ¥ produces a CSP with the same
number of solution-tuples asthe CSP resulting from the NON-BINARY and DUAL encodingsof W. This

encoding produces a CSP with the same number of solutions asthe original SAT instance.

It is easy to see that enforcing path-consistency on PLACE and HIDDEN VARIABLE encoded prob-
lems generate the nogoods that are aready explicit in their constituent parts. For example, a PLACE
encoded instance contains the same nodes from both the NON-BINARY and LITERAL encodings. Re-
call Figure[5.2 below from the previous chapter. Notice the binary constraints are posted between the
two groups of component set (c and x), but not within each of the two sets. The dotted edges between ¢
nodeswill only befound by enforcing path-consistency, whereas only 4-consistency will find the ternary

(dotted) hyperedges between the = nodes.

Co T o0
s -

Figure 5.2: Illustrating that the PLACE encoding is a combined LITERAL and NON-BINARY encoding.

Given this, athough Jarvisalo & Niemela (2004) points out that the PLACE encoding is the only

one that generates a linear number of clauses, this does come at a cost. This encoding requires en-

5.2. Local-Consistency Analysis of SAT to CSP Encodings 87

forcing a level of local-consistency for it to explicitly represent the same constraints as the LITERAL
and NON-BINARY encodings. The nogoods in Figure (dotted lines) are not explicitly added un-
til strong-4-consistency is applied to the CSP. In addition, although enforcing strong-k-consistency on
PLACE encoded ‘strict’ k-SAT instances will find the same constraints explicitly represented in the cor-
responding LITERAL encoding, it does zero extrawork than when simply encoding the instance into its

two constituent parts (i.e. aLITERAL and NON-BINARY encoding).

5.2 Local-Consistency Analysisof SAT to CSP Encodings

In Chapter [3 | argued that although a large amount of theoretical analysis comparing stochastic and
branching SAT and CSP algorithmic techniques has been carried out very little research has been done
comparing local-consistency algorithms for each framework. As the performance of SAT-Solvers be-
gins to plateau the SAT community are looking for aternative methods to improve the performance of
their algorithms, and in recent years a flurry of work has looked at the use of ‘practical’ preprocessing.
Enforcing local-levels of consistency is one form of preprocessing, and in this section | provide a com-
prehensivetheoretical comparison of the work Resolution and Consistency do on the various SAT to CSP

encodings.

5.2.1 Resolution = Consistency

In this section | show that it is possible to compare strong-consistency with nogood-Resolution for these

encodings, but first it is necessary to define several extensionsto the NG-RES proof-system.

Definition 5.2.1 (k-NG-RES). Given that the domain of avariablez is{0,1,...,d — 1}, the k-nogood

Resolution Rule allows oneto infer nogoods of arity less than k:

n{{z°} U Xo}
n{{z'} U Xy}

n{{z""} U X4}
N:n{XOUX1U---UXd_l},Where\N| <k

where X; isapartial assignment (for i < d), andn{{z°}UXo},n{{z'JUX1}, ..., p{{z? 1 }UX4_1}

are nogoods.

Itiswell known that the various CSP techniques | have discussed are essentially constructing resolu-
tion proofs (Baker (1995)). Thisis easy to see using graphs as an intermediary framework and observing
the behaviour of the respective a gorithmic techniques. In graph-theoretic terms both the Resol ution and
Consistency algorithms state the same thing, namely, given a G} graph if a k-clique cannot extend to
a (k + 1)-clique, then this k-clique cannot be part of an n-clique. These two concepts can be seen in

Figuresb.3and

5.2. Local-Consistency Analysis of SAT to CSP Encodings 88

Figure uses the GRAPH COLOURABILITY Example [2.2.3 and shows how a 3-ary nogood,
{xf, 2§, 2P, can be added to the graph (using astrong-4-consi stency al gorithm) because this set cannot

extend to any domain value (node) in x ;.

Figure 5.3: Consistency as a clique proof-system. Enforcing 4-consistency would uncover the nogood
n{xf, 28, 2§} since it cannot to extend to any domain value in variable 2 ;. Enforcing 4-NG-RES

achieves the same result.

Figure 5.4: Resolution as a clique proof-system. Enforcing 5-consistency would uncover the nogood
n{z}, 29,2}, 1} since it cannot to extend to any domain value in variable z . Enforcing 5-NG-RES

achieves the same result.

Similarly, Figurel5.4shows a hypothetical situation wheretwo ternary constraints, ((z ¢, z3, z4), \{(0,1,1)})
and ((zo, 1, z2), \{(1,1,0)}), (derived from the clauses (z¢ V Z3 V Z4) and (Zo V Z1 V x2)) imply that
theset {z1, 29, 23, x1} cannot extend to any domain nodein z ¢, so the corresponding 4-ary nogood can
be safely added to the graph:
n{@f, 23, vi}

n{zg, @1, 29}

iy, 23, w5, i}

5.2. Local-Consistency Analysis of SAT to CSP Encodings 89

Thisis exactly the same as resolving on x over thetwo clauses (zo V Z3 V Z4) and (Zg V 1 V x2)

asfollows:

xo VT3V Iy To VI Vae
T3V xyeVILVae

5.2.2 Local-Consistency on the NON-BINARY Encoding

Hooker (2007) showed that k-resolution is equivalent to strong-k-consistency; where k-resolution is a

version of the Resolution proof method restricting all resolvent clausesto lessthan size k.

Theorem 5.2.1 (Hooker (2007), Theorem 3.22). Enforcing k-Resolution on a SAT instance ¥ is equiva-
lent to enforcing strong-k-consistency on the CSP resulting fromthe NON-BINARY encoding of ¥. More

precisely, the diagram shown in Table[5.1lis a commuting diagram.

For instance, enforcing strong-3-consistency on NON-BINARY encoded SAT instances achieves

3-Resolution on the original instance.

k-SAT," — NON-BINARY — CSP}
v P
l !
k-Resolution strong-k-consistency
| 1
o’ — NON-BINARY — P’

Table 5.1: The algorithmic equivalence of Resolution and Consistency on NON-BINARY encodings.

5.2.3 Local-Consistency on the LITERAL Encoding
deKleer (1989) originally defined the set of CNF-based inference rules (described in Section 3.2.2.7)
that do the same work as strong-k-consistency on DIRECT encoded CSP instances:

((Eo\/l’l \/"'\/1'1;1)
({fo\/Xo)
(i‘l V Xl)

(Ziz1 V Xi21)
(Xo\/Xl\/"'\/Xi,ﬂ

where X ; are clauses and «; areliterals, for j < 1.

de Kleer's inference rules describe a Resol ution procedure - that is equivalent to enforcing Consis-
tency - of a CSP that has been encoded to CNF using the DIRECT encoding. Without wishing to cause
confusion | will refer to de Kleer's inference rules as NG-RES so as to be able to distinguish between
the application of Resolution and Consistency-based techniques on their respective problem domains. In

summary,

5.2. Local-Consistency Analysis of SAT to CSP Encodings 90

e NG-RES s aResolution-based procedure applied to SAT instances.

e strong-consistency is a Consistency-based procedure applied to CSP instances.

Remark 5.2.2 (de Kleer (1989)). Enforcing strong-k-consistency ona CSP @ is equivalent to enforcing
k-NG-RES on the SAT instance resulting from the DIRECT encoding of ®. More precisely, the diagram

shown in Table[5.2is a commuting diagram.

CSP — DIRECT — SAT
d L4
! !
strong-k-consistency k-NG-RES
! !
@’ — DIRECT — v’

Table 5.2: The algorithmic equivalence of Resolution and Consistency on DIRECT encodings.

Similarly for the LITERAL encoding of a SAT instance, enforcing strong-.-consistency on the re-
sulting CSP performs exactly the same procedure as k-NG-RES (see Table[5.3). When applying strong-
k-consistency, a partial assignment (of arity (k — 1) or less) becomes a nogood if it cannot extend to
at least one partial satisfying assignment that includes each other variable. Recall that the LITERAL
encoding derives each CSP variable from each SAT clause. With k-NG-RES, clauses are resolved if a
set of literals cannot extend to at least one other literal in each clause. Since both of these methods have
the same variables and domains, and both ‘ exhaust the domain’ to resolve conflicts, they both do exactly
the same amount of work. This can be verified easily by observing the behaviour of two agorithmic

procedures on the resulting micro-structure.

Theorem 5.2.3. Enforcing k-NG-RES on a SAT instance ¥ is equivalent to enforcing strong-%-
consistency on the CSP resulting from the LITERAL encoding of ¥. More precisely, the diagram shown

in Table[5.3is a commuting diagram.

j-SATY — LITERAL — cspm
v d
! !
k-NG-RES strong-k-consistency
! !
v’ — LITERAL — ¢’

Table 5.3: The algorithmic equivalence of Resolution and Consistency on LITERAL encodings.

5.2. Local-Consistency Analysis of SAT to CSP Encodings 91

For instance, enforcing strong-3-consistency on LITERAL encoded SAT instances achieves 3-NG-
RES on the original instance.
A very important practical result of this theorem is that enforcing strong-%-consistency achieves

nothing on k-SAT instances with clauses containing distinct literals.

Theorem 5.2.4. Given any k-SAT instance encoded to a CSP using the LITERAL encoding, enforcing

strong-k-consistency has no effect when the k-SAT instances have clauses containing distinct literals.

Proof. Proof by contradiction. Let us assume that some nogood, IV, of arity k£ — 1 has been discovered
by enforcing strong-k-consistency. This means that the partial assignment N cannot form a partial
satisfying assignment with some variable, I, that has adomain of size k. I has been derived from some
clause of size k, and by definition each literal was distinct. However, since the size of N islessthan £,
some element of N must be inconsistent with two values of 7. Given that, in the LITERAL encoding,
binary constraints are posted between variables that have complementary assignments, this means that 7

must contain literals that are not distinct. Hence, we have a contradiction. O

For example, enforcing strong-3-consistency on a LITERAL encoded 3-SAT instance (with each
clause having three distinct literals) will prune zero edges from the corresponding micro-structure.

Figure5.5is the CSP micro-structure complement of the LITERAL encoding of 3-SAT Formula[Z.1l
Notice that if we enforce strong-3-consistency on this instance that every binary independent set can
form an independent set with at least one node from each other component set. For a binary nogood
(edge) to be derived it must not extend to a solution to any node in at least one component set, but this
would only be possible if a component set did not have three distinct literals. For example, the dotted
edge {C, 0 Cc3 (1)} can extend (dashed lines) to only one node in the component set C'; (C g), since the

arity of the component set is greater than the arity of the nogood we are trying to derive.

Figure 5.5: lllustrating that enforcing strong-3-consistency on LITERAL encoded 3-SAT instances (that
have distinct literals) does zero work.

5.2. Local-Consistency Analysis of SAT to CSP Encodings 92

Notice also that the relative work done by the Resolution and Consistency techniques on instances
encoded using the NON-BINARY and LITERAL encodings appear to be identical. However, there are
cases in which more nogoods are found in instances using the NON-BINARY encoding than using the
L1TERAL when applying strong-k-consistency techniques. For instance, giventwo clauses (z ¢V x1 Vx2)
and (Zg V x1 V x2), strong-3-consistency applied to the NON-BINARY encoding would resolve:

n{zg, 27, 25}
n{zg, 29, 25}
n{af, 29}

Whereasin the LITERAL encoded instance the pair {z 9, 9} can form a partial satisfying solution with
the 2 and x} variablesin the two component sets derived from the two clauses. Another practical con-
sequence of this result is that (in this instance) enforcing a local-level of consistency on NON-BINARY

encoded SAT instances does more work than when they are encoded using the LITERAL encoding.

5.2.4 Local-Consistency on the DuAL Encoding
Definition 5.2.2 (i, j)-NG-RES). GivenaCSP = (V, D, C). The (i, j)-nogood Resolution Rule allows
oneto infer nogoods of arity 7 or less. Given a partial assignment A, |A| < i, if for all partial satisfying

assignments B, |B| < j AU B isaconflict, then we can deduce that A isa nogood, 1(A).

That is, if some partial assignment I (of size i and less) cannot extend to a partial satisfying assign-

ment J (of arity j and less), then I is anogood.

Theorem 5.2.5. Enforcing (j(k — 1),)-NG-RES on a j-SAT instance ¥ is equivalent to enforcing
strong-.-consistency on the CSP resulting from the DUAL encoding of ¥. More precisely, the diagram

shown in Table[5.4is a commuting diagram.

Proof. For any j-SAT instance, CSP variable domainsrepresent partial satisfying assignmentsto j literals
when DUAL encoded. This means that any set of (k — 1) CSP variables encodes at most j(k — 1) SAT
literals. When enforcing strong-k-consistency, if apartial satisfying variableassignment of size (k—1) (a
partial satisfying assignment to j (k— 1) SAT literals) cannot extendto ak " partial satisfying assignment
(apartia satisfying assignment to j SAT literals) in each domain then it becomesanogood. By definition,

thisis exactly the same procedureas (j(k — 1), 7)-NG-RES. O

For instance, enforcing strong-3-consistency on DUAL encoded 3-SAT instances achieves (3(3 —
1), 3)-NG-RES on the original instance, i.e. (6, 3)-NG-RES. Notice that enforcing alocal-level of con-
sistency on DUAL encoded k-SAT instances does more work than it does on either the NON-BINARY

and L1TERAL encoded instances (3-Resolution and 3-NG-RES respectively).

5.25 Local-Consistency on the PLACE and HIDDEN VARIABLE Encodings

Using the framework defined in Chapter [4it is easy to extend these theoretical resultsto the PLACE and

HIDDEN VARIABLE encodings. | showed in Chapter [that these two encodings were constructed by

5.2. Local-Consistency Analysis of SAT to CSP Encodings 93

j-SAT — DbuaL — CSPy}
L4 P
! !
(j(k—1),7)-NG-RES strong-%-consi stency
! !
v’ — DuAaL — P’

Table 5.4: The agorithmic equivalence of Resolution and Consistency on DUAL encodings.

combining NON-BINARY + LITERAL and NON-BINARY + DUAL, respectively. Let us label the CSP

variables resulting from the PLACE and HIDDEN VARIABLE encodingsin the following way:
e PLACE: PLACENon-Binary + PLACEL 1eral
e HIDDEN VARIABLE: HIDDEN VARIABLENon-Binary + HIDDEN VARIABLEpya.

As aresult we can prove the following theorems:

Theorem 5.2.6. Enforcing strong-k-consistency on PLACE encoded SAT instances achieves k-NG-RES
on the SAT literals represented by the PLACE| 1era. Variables and k-NG-RES on the PLACENon-Binary

variables.

Proof. Theorem[5.2.7] and Theorem states that enforcing strong-k-consistency on NON-BINARY
and LITERAL encoded SAT instances (respectively) achieves k-NG-RES on each instance. Since PLACE
encoded SAT instances are constructed by adding constraints between NON-BINARY and LITERAL en-
coding variables (defined by PLACE Non-Binary @8N0 PLACEL rerac) that have contradictory assignments,
then enforcing strong-%-consistency on these instances achieves k-NG-RES on PLACE non-Binary @0d

PLACELlTERAL . |:|

Theorem 5.2.7. Enforcing strong-k-consistency on HIDDEN VARIABLE encoded j-SAT instances
achieves (j(k — 1), 7)-NG-RES on the SAT literals represented by the HIDDEN VARIABLEpya. Vari-

ablesand £k-NG-RES on the HIDDEN VARIABLENon-Binary VAriables.

Proof. Theorem states that enforcing strong-4-consistency on NON-BINARY encoded SAT in-
stances achieves k-NG-RES. Theorem states that enforcing strong-4-consistency on DUAL en-
coded SAT instances achieves (j(k — 1),7)-NG-RES. Since HIDDEN VARIABLE encoded SAT in-
stances are constructed by adding constraints between NON-BINARY and DUAL encoding vari-
ables (defined by HIDDEN VARIABLENon-Binary @Nd HIDDEN VARIABLEpya) that have contradic-
tory assignments, then enforcing strong-%-consistency on these instances achieves k-NG-RES on

HIDDEN VARIABLENon-Binary @Nd (j(k — 1), 7)-NG-RES on HIDDEN VARIABLEpya. - O

5.3. Extended-Consistency 94

5.3 Extended-Consistency

In the same way that |IBaker (1995) generalises the Resolution Rule for CSP (which [Mitchell (2003) calls
NG-RES, described in Section here | generalise the Extended-Resolution Extension Rule for any
CSP with afinite size domain. | call this Extended-Consistency.

As discussed in Chapter [3, the Consistency proof-system was only recently explicitly defined by
Atserias et all (2004) who argued importance of ‘mapping’ the proof-system space. In this section, |
demonstrate the value of using a graph-theoretic approach and use it to extend the Consistency proof-
system. Inspired by the relationship between the Resolution and Consistency algorithmic techniques
described throughout this chapter, the aim of introducing Extended-Consistency is to provide a general
platformto allow the CSP and SAT communitiesto share knowledge about these extended proof-systems
and to begin to exploit synergies that might be mutually beneficial to each field.

Recall that given that the domain of avariablez is {0, 1, ..., (d — 1)}, the nogood Resolution Rule

allows one to infer nogoods by resolving on z:

n{{z°} U Xo}
n{{z'} U Xy}

n{{z* "} U X4 1}
U{XO UX1 U--- UXd_l}

where X; isapartia assignment (for i < d), and n{{z°}UXo},n{{z'}UX1},....,n{{z? 1} UX, 1}
d—1

arenogoods. Thismay result in theinference of anogood with arity Z | X;|. Sometimesisit undesirable
1=0

to generate constraints with large arity, so by introducing new variables one can ensure a problem’s arity

never exceeds either |(d — 1)| or max (] X;| + 1), whichever is larger.

Definition 5.3.1 (Extended-Consistency). Given a CSP = (V, D, () (for simplicity assume that each
variable has the same domain cardinality d, apart from the new variables, which are Boolean), and a set
of nogoodsn{{z°} U Xo}, n{{z'}UXi},...,n{{z? 1} U X4_1}, whereavariable z hasthe domain

{0,1,...,(d —1)}. We add a new Boolean variablev; to V (not previously in V) for each X; such that
V; > Xz

That is, for each y? € X; the following set of constraints are added to C:

d—1

U (wi), \M(0,5)3)

J=0,57#b

whereb isthe domain assignment to variable y;. Also, for each X; weadd ({v;, V(X;))\ {(1, D(X;))}),

where V' (X;) isthelist of variables of X; and D(X;) isthelist of domain assignments that map to those

5.3. Extended-Consistency 95

variables. Once the set of new variables have been included the last constraint that remains to be added

toCis((vi,va,...,va), \{(L,1,...,1)}).
Thisisbest illustrated by use of an example.
Example 5.3.1. Supposewe havethe CSP = (V, D, C):
o V: {xg,x1,22,23,%4,T5,T6}
e D:D,, =D,, =D, =Dy, =D, =D,, =D, ={0,1,2}
o C:

- <<$Q,J)5,J)5>,\{<0,2,0>}>
- <<$Q,J)3,J)4>,\{<1,1,2>}>
- <<1‘0,{E1,{E2>,\{<2,2,0>}>

The micro-structure complement for this CSP is shown in Figure which has seven vari-
ables (with domains {0, 1,2}) and three ternary constraints. In this example the three constraints
{{mo, x5, 6), \{(0,2,0)}), ({zo, w3, x4), \{(1,1,2)}) and ({xo, z1,), \{(2,2,0)}) imply that the set
of nodes {z2,29,z%, 23,22 29} cannot extend to any domain value in =, generating the nogood
{2, 20, x1, 23, 22, 29} (represented as new dotted 6-ary hyperedge):

n{zg, 23, 25}
n{xg, w3, 3}

n{zg, 21, 25}

2,0 .1 .2 .2 .0
77{$5,$6,l‘3,l‘4,$1,$2}

D,, =0,1,2

Let us assume that it is undesirable to generate constraints with arity larger than three. We can
introduce three new Boolean variables {v, v1, v2 } such that
vo < {3, 75}
v < {3, 23}
vy < {af,25}.

Take vy « {x2, 28}, for instance, the following constraints are required to represent this formula (this

isillustrated in Figure[5.7], where the dashed tri-clique is a hyperedge).

({vo, 6), \{(0, 1)})
({vo, z6), \{(0,2)})
{{vo, 25),\{(0,0)})
{(vo, 5), \{(0, 1)})

<<v07$57$6>a \{<17 2, 0>}>

The desired outcomeis that when {x2, 20} is assigned, then we have v, otherwise v}. Noticein Figure
E7that vg can only form aclique with {z%, 23}, whereas all other combinations of x5 and z:¢ can only

extend to vg.

5.3. Extended-Consistency 96

Figure 5.6: Example[5.3.11 CSP micro-structure complement.

We do the same for v; and v,, finaly adding the constraint ((vo, v1,v2), \{(0,0,0)}) (implying
n{z?, 23, 23,23, 23, 23}) asillustrated in Figure 5.8
Figure[5.9lis the final result of encoding this 6-ary nogood, by including three auxiliary Boolean

variables, twelve binary constraints and four ternary constraints, resulting in the new CSP:
o V: {J)Q, Z1,x2,x3,T4,Ts5, L6, V0, V1, UQ}
e D:

— Dyy =Dyy =Dyy =Dyy =Dy, =Dy, =Dy ={0,1,2}

— Dy, = Dy, =D, ={0,1}

= (o, 25, 26), \{{0,2,0)})
= ((wo, 23, 24), \{(1, 1,2)})
= (o, 1, 22), \{(2,2,0)})
= ((vo, 26), \{(0,)})

5.3. Extended-Consistency

2 2
Ty \ / x3
1 1
Ty T3
0 0
x4 3

Figure 5.7: Example[5.3.11 CSP micro-structure complement with added variable v.

= ((vo, 26), \{(0,2)})
= ((vo, #5), \{(0,0)})
= ((vo, 25),\{(0, 1) })
— ((vo, x5, 6), \{(1,2,0)})
= (1, 24), \{(0,) })
= (v, 24), \{(0,0)})
= ((v1,23),\{(0,0)})
= ((v1,23),\{(0,2)})
= (o, 23, 24), \{(1, 1,2)})
= ((v2,21), \{(0,0)})
= ((v2,21),\{(0, 1)})
= ((v2,22),\{(0, 1)})
= ((v2,22), \{(0,2)})

97

5.3. Extended-Consistency 98

Figure 5.8: Example[5.3.7] CSP micro-structure complement with added variables v, v; and vs.

- <<'U27$17$2>a \{<17 2, 0>}>
- <<U07U1a U2>a \{<07 0, O>}>

It could be argued that the fact that no hard problems are known for extended proof-systemsis not
so astonishing, since very little is known about how to use auxiliary variables effectively. However, it is
only in the past five yearsthat researchers have begun to understand how to guide basic Resol ution effec-
tively, asevident by the remarkable performance of some of the most recent SAT-Solvers. By introducing
Extended-Consistency it might be possible for the SAT community to benefit from the wealth of theo-
retical results from CSP research, including the idea of symmetry (ICrawford et al. (1996)), m-tightness
(van Beek & Dechter (1994)), etc. Similarly, the Constraints community may be able employ the effi-
cient implementation of Extended-Resolution techniques of SAT research to improve the effectiveness
of CSP algorithms.

MINION, developed by |Gent et all (2006), is an excellent example of the CSP community adopt-
ing techniques from SAT research to improved the practical performance of CSP solving. MINION isa
fast and scalable CSP-Solver that has been optimised for solving large and hard problems. Severa of

MINIONS design decisions are modelled on those of zCHAFF, including the use of very small data struc-

5.4. Chapter Summary and Discussion 99

Figure 5.9: Combining Figures[5.6land[5.8 together.

tures, making memory usage very small and greatly increasing speed on modern computer architectures.
MINION has been shown to perform between one and two orders of magnitude faster than state-of-the-art

CSP-Solvers.

54 Chapter Summary and Discussion

In this chapter | provethat transforming SAT instances into CSP using the LITERAL encoding produces
problems that typically have more solutions than those produced by using the DuAL and NON-BINARY
encodings. Thisis summarised in Table 5.5 for notation, we consider X vs. Y. X = Y denotes that
X and Y have equal number of solutions, and X > Y denotesthat X has at least the same number of
solutiontuplesas Y. | mentioned in Chapter [Slthat stochastic algorithms can perform better on problems
with a higher solution-density, so these theoretical results might be practically useful in helping guide
which encoding should be chosen for a particular problem instance, as this choice could mean that the
problem could be solved more easily by using one encoding than another.

Having characterised the encodings according to their solution-density, the second part of this chap-

ter addresses the gap in theoretical research identified in Chapter [3 | compared the performance of Res-

5.4. Chapter Summary and Discussion 100

NON-BINARY | LITERAL | DUAL | HIDDEN VARIABLE | PLACE

CSPvs. SAT = > = - >

Table 5.5: Comparing the number of solution of SAT to CSP encodings.

olution and Consistency based techniques on the various encodings. Thisis summarised in Table (5.6,
where the row values indicate the level of NG-RES when applied to a CSP encoded SAT instance. |
show that although there is a space overhead associated with DUAL encoded problemsin comparison to
using the LITERAL encoding, enforcing local-consistency on the resulting CSP does much more work. |
aso prove that enforcing strong-k-consistency on LITERAL encoded 3-SAT instances does zero work if

each clause has distinct literals, which explains the empirical results presented in the next chapter.

NON-BINARY | LITERAL DUAL HIDDEN VARIABLE PLACE
NG-RES || k(-Resolution) k (J(k=1),9) k (NON-BINARY) k (NON-BINARY)
k (LITERAL) (j(k—1),5) (DuAL)

Table 5.6: The level of NG-RES when enforcing strong-k-consistency on j-SAT to CSP encodings.
Notice that we have to make a distinction between the amount of local-consistency achieved on two
constituent component setsin the CoOMBINED encodings.

Thisanalysis highlights several important questions. Since HIDDEN VARIABLE and PLACE encod-
ingsare combinationsof DUAL, LITERAL and NON-BINARY encodings, what advantagesdo they bring?
This | leave as an open question, but my theoretical analysis predicts that enforcing local-consistency
on HIDDEN VARIABLE and PLACE encodings should never outperform at least one of the ‘ constituent’
encodings from which they are constructed. Indeed, the extra space cost associated with the HIDDEN
VARIABLE and PLACE encodings may even hinder agorithmic performance.

Since the DUAL encoding produces relatively large data-structures compared to the LITERAL en-
coding, it might be the case that enforcing path-consistency on DUAL encoded instances is currently
too expensive. In the next chapter | provide empirical results of applying path-consistency to unsatisfi-
able SAT instances with up to 10,000 clauses. However [Kask & Dechter (1995) showed that enforcing
partial—path—consistencyH can perform almost as well as full path-consistency, especially for problems
with tight constraints. Hence, enforcing partial-path-consistency on DUAL encoded problems may ad-
dress this complexity issue by significantly pruning the search-space for complete algorithms without
the space/time overhead of full path-consistency.

| propose a simple heuristic for choosing encodings and algorithms for instances that have been

predictedi and be satisfiable or not:

2A dlight variant of path-consistency where path-consistency is performed on the sub-problem induced by a chosen subset of
the variables that have the highest degree and are tightly grouped together.
3In Section[Z2.111 discuss the idea of using feature analysis to correlate between instances and the performance of SAT-Solvers.

5.4. Chapter Summary and Discussion 101

1. Predicted satisfiable instances: choosethe LITERAL encoding and use a stochastic algorithm.
2. Predicted unsatisfiable instances: choose the DUAL encoding and run a branching algorithm.

In Case 1. it isill-advised to enforce local-consistency, since my theoretical (and empirical) results sug-
gest that it might not have any tangible pruning effect. However, it is strongly advised to enforce local-
consistency in Case 2, since this might significantly (or entirely) prune the search-space in polynomial-
time. In the next chapter | demonstrate the practical benefit of cross-fertilising techniques between the
SAT and CSP research. | show that representing SAT instances as a particular type of CSP and enforcing
alow-level of consistency can solve many SAT benchmarks.

Finally, I introduce the concept of Extended-Consistency. This extends the work of Tseitin, Baker
and Mitchell, and provides a platform to communicate the wealth of theoretical results that have been
discovered about the power of extended proof-systems in each of these two domains. Whilst the notion
of Extended-Consistencyis not amajor contribution to the field per-se, this does highlight another benefit
of bridging the fields. By introducing the concept of Extended-Consistency | provide a more complete
picture of the SAT and CSP proof-systems. Relatively little practical work has been done on extended
proof-systems. SAT and CSP agorithms that employ additiona variables tend to apply them in an
‘ad-hoc’ manner. Extended-Consistency describes a technique to automate this process, and may allow

synergies between these two extended proof-systemsto be cultivated and explored.

Chapter 6

Empirical Analysis of SAT to CSP Encodings

Strictly speaking, the title of this thesis should be “ The Path to Unsatisfaction”, since the focus of this
research is on how effective polynomial agorithms (encoding plus local-consistency enforcement) are
at determining unsatisfiability. Moe specificaly, this thesis is not concerned with the effectiveness of
SAT-Sovlers prior to enforcing local-consistency. One of the main results of the previous chapter is that
enforcing local-consistency on DUAL encoded problems does more work than on LITERAL encoded in-
stances. Although this might not betotally surprising (since DUAL encoded problemsaretypically larger
than LITERAL encoded) the empirical results on each of these encodings in this chapter are surprising.
Not only do the empirical results strongly support the theoretical results in the previous chapter, but we
find that enforcing a low-level of local consistency can solve what are regarded as ‘hard’ unsatisfiable
SAT instance and can even compete with state-of-the-art SAT-Solvers.

Stochastic and branching algorithms are two families of algorithm adopted by the SAT community;
branching algorithms can prove both satisfiability and unsﬁtisfiabilityu, whereas stochastic algorithms
can only prove satisfiability. In Chapter [3 | suggested that local-consistency algorithms might be a
viable approach to redress this balance. In this chapter | address the two experimental issues raised in
Chapter [3 and provide empirical evidence to support the theoretical results presented in the previous
chapter.

More specifically, | apply a well-known Consistency-based procedure (Algorithm [4) proposed by
Freuder (1982) to many ‘hard’ unsatisfiable SAT instances encoded using the DUAL and LITERAL en-
codings. This algorithm incrementally enforces strong-1-, 2-, 3- ... n-consistency until the problemis
solved.

Ten years ago, enforcing path-consistency (i.e. strong-3-consistency in binary constraint networks)
was extremely difficult owing to the availability of computer resources. Nowadays it is possible to
enforcethislevel of consistency on problem instances that have over 15,000 clauses. The number of bits

used to represent the DUAL encoding data-structure of ak-SAT is 2% x (€), whichis O(c?), where ¢ is

1Though it iswell known that branching algorithms perform better on satisfiable instances than on unsatisfiable ones.

103

Algorithm 4 Incremental k-CON algorithm.

GivenaCSP F
for k =1tondo

if -CON(F) + L then

return L

end if
end for
return T

the number of clauses.

The procedure used to enforce path-consistency is described by Algorithm [5 and has a worst time
complexity of O(c*), where ¢ is the number of clauses. Notice that although this procedure is more
expensive than some of the path-consistency proceduresit is extremely simple and does not use any of
the heuristics or queuing mechanisms described in the more recent Consistency algorithms (see [Tsang
(1993)). Onereason for thisisthat since the SAT instancesarein 3CNF | can utilise bitwise calculations
of blocks of bytes; each representing the seven edges that can connect each node to each other variable.
Recursing over each variable and determining whether abit (an edge {4, j }) shouldbe 0 or 1 is calculated

by simply intersecting three bytes and checking whether the result is non-zero:
if((ivNju)Nv) =0:{i,j} — 0;{i,j} =1

where i, and j,, represent the edges in node-set v to which the nodes i and j are connected. For 3-SAT
instances i,, j, and v are al bytasg This process is repeated until no more changes are made to the

data-structure, i.e. that no more edges are pruned.

Table6. T representsthe memory (in GigaBytes) required to run these experimentsto enforce strong-
k-consistency on DUAL encoded 3-SAT instances with a varying number of clauses. The values for the
number of clauses in the table have not been chosen arbitrarily, they correspond to the level of local-
consistency requiring 1GB of memory (along the diagonal from right to left). For instance, row 3: given
36 clauses, enforcing strong-6-consistency requires approximately 1GB of memory. All experiments
presenting in the chapter were performed on a DELL PRECISION 470 DUAL CORE ZEON 5.6GHZ

with 3GB RAM and the units of time are seconds.

These experiments originally focused on applying the incremental local-consistency algorithm on
randomly generated SAT instances and SATLIB benchmarks (see Section [.2.1.7). The aim was to com-
pare the effect of enforcing local-consistency on problems encoded using both the LITERAL and DUAL
encodings. Recall that both of these encodings are classed as CONSTRAINT mappings. Although the

LITERAL encoding creates graph instances with k2 x (<) nodes - compared to 2+” x (&) for the DUAL

2The simplicity of this algorithm is one of its main strengths. Indeed it may be possible to implement in hardware and utilise
parallel bit processing, which may also improve its performance.

104

enforcing the level of strong-£-consistency

clauses 3 4 5 6 7 8

15 74E-07 22E-05 47E-04 7.2E-03 8.4E-02 7.6E-01
21 15E-06 6.5E-05 21E-03 49E-02 9.1E-01 1.4E+01
36 44E-06 35E-04 20E-02 9.1E-01 3.3E+01 9.8E+02
92 29E-05 6.2E-03 9.6E-01 1.2E+02 1.2E+04 1.0E+06
497 8.6E-04 10E+00 8.6E+02 5.9E+05 34E+08 1.7E+11
16903 10E+00 39E+04 39E+04 28E+13 5.4E+17 9.2E+21

Table 6.1: Memory (GB) required to enforce strong-k-consistency on DUAL encoded SAT problems.

Algorithm 5 strong-3-CON algorithm.
Given a DUAL encoded CSP constraint graph F'
while changed(F") do
for each edge {4, j} do
for each set of nodes represented by variable v do
if visempty then
return UNSAT
end if
if (i,j) cannot form atriangle with adomain valuein v then
remove (i,j)
end if
end for
end for
end while
return UNKNOWN

graph - the edgedensit;H of the DUAL graph can be much less than that of the LITERAL graph (for
satisfiable instances; unsatisfiable instance have no solutions in either graph). In Chapter [4 | proved
that enforcing strong-k-consistency does at least as much work on DUAL encoded instances as it does
when using the LITERAL encoding. In addition, | proved that enforcing strong-.-consistency on k-SAT
instances (encoded using the LITERAL encoding) does zero work when the literals in each clause are
distinct. It should be noted that several of the SATLIB benchmark families arein ‘strict’” 3CNF format
(UUF, AIM and DUBOIS), to it is expected that enforcing path-consistency on these LITERAL encoded
instances will have no effect. However, several benchmark families are constructed from industrial prob-
lems, and have binary and even unary clauses. In these cases enforcing path-consistency on LITERAL

encoded instances will have some effect.

6.0.1 DIMACSCNF Format

There exists awidely used format for SAT instances. the cnf format from the Second DIMACS Bench-
mark Challenge. The DIMACS (1993) cnf format (described in detail in Appendix [A.) is currently

accepted by almost all of the best-performing SAT-Solvers and tools. It is simple to parse and generate,

3the number of binary edges over the number of possible binary edges.

105

reasonably concise and flexible, portable across different platforms, and human-readable. Therefore, all
benchmark instances in this thesis are in this format.

To utilise the bitwise cal culations of my strong-3-consistency algorithm it is necessary only to work
with 3-SAT instances. Since the DIMACS CNF format does not strictly enforce 3CNF, | converted
the cnf files into 3CNF using De Morgan’s Laws. These instances have been converted to 3-SAT, so
in many cases the numbers of propositions and clauses are larger than they were in the original. The

conversion rules for clauses with n literals are shown in Table[6.2

#lits || original new
one (x1) (x1 Va1 V)
two (131 \/.132) (J)l V xo \/J)Q)
four (1‘1 V X2 \/J)g\/.l?4) (J)l V X2 Vyl)/\ (_yl V x3 \/J)4)
five (1 VaaVasVagVas) (x1 Va2 Vy1) A=y Vas Vy2) A(—y2 VgV as)
> 6 (x1VazaV- - VapaVa,) | (@ Ve Vy) A(=y1 V-V an_1VI,)
Table 6.2: Rulesto convert ageneral CNF formulainto 3CNF.
6.0.2 UUF

Uniform Random-3-SAT is a family of SAT problems obtained by randomly generating 3CNF formu-
lae then determining their satisfiability by using a complete SAT-Solver. These were generated in the

following way:

e For an instance with n variables and ¢ clauses, each of the c clauses is constructed from 3 literals,
which are randomly drawn from the 2n possible literals such that each possible literal is selected

with the same probability.

e Clauses are not accepted for the construction of the problem instance if they contain multiple

copies of the same literal or if they are tautological (i.e. they contain a variable and its negation).

Uniform Random-3-SAT is the union of these distributions over al »n and c.

These instances are sampled from the ‘hard’ region of the phase transition, the complete set is
shown in Table[6.3 Empirical analysis, by [Yokog (1997) and ICrawford & Auton (1996), shows that
problem instances from the phase transition region of uniform Random-3-SAT tend to be particularly
hard for both tree-based and stochastic SAT-Solvers.

Table[6.4] shows the results of applying path-consistency to many DuAL encoded UUF instances.
Note that instances were solved from the uuf50-218, uuf 75-325 and uuf 100-430 groups. All 1000 uuf50-
218 instances were solved by enforcing path-consi stency, aswell as 55 from the 100 uuf 75-325 instances.

The remaining 45 uuf75-325 instances were solved using strong-4-consistency (shown in Table [6.5), but

106

test-set instances | clause-len | vars | clauses
uuf50-218 1000 3 50 218
uuf75-325 100 3 75 325
uuf100-430 1000 3 100 430
uuf125-538 100 3 125 538
uuf150-645 100 3 150 645
uuf175-753 100 3 175 753
uuf200-860 100 3 200 860
uuf225-960 100 3 225 960
uuf250-1065 100 3 250 1065

Table 6.3: Uniform Random-3-SAT unsatisfiable instances.

unfortunately uuf100-430 were too large to enforce this level of consistency. When the instances are
encoded using the LI TERAL encoding the path-consistency algorithm failed to have any effect, whichis

not surprising given Theorem and that these are ‘strict’” 3CNF instances.

benchmark set | inst’s | ran | solves | props | clauses | avg. time(s)
uuf50-218 1000 | 1000 | 1000 50 218 116
uuf75-325 100 100 55 75 325 25.05
uuf100-430 1000 | 1000 4 100 430 120.45
uuf125-538 100 | 100 0 125 538 378.34
uuf150-645 100 100 0 150 645 783.98
uuf175-753 100 100 0 175 753 1034.45

Table 6.4: Enforcing path-consistency on DUAL encoded UUF benchmarks. Timeisin seconds.

benchmark set inst’s | ran | solves | props | clauses | avg. time

uuf75-325 (unsolved) | 45 45 45 75 325 4766.51

Table 6.5: Enforcing 4-consistency on unsolved DUAL encoded UUF benchmarks.

6.0.3 DUBOIS

The DUBOIS instances are considered the easiest unsatisfiable SATLIB family. However, LITERAL
encoded instances from this family cannot be solved using path-consistency, though they can all easily
be solved when represented using the DuaAL encoding (as shown in Table [6.6).

Out of the 23 SAT-Solvers submitted to SAT-Competition 2003 this algorithm would have ranked

in the top 10 on this benchmark set, with twelve SAT-Solversfailing to solve every instance.

benchmark set | inst’s | ran | solves | props | clauses | avg. time
dubois20 1 1 1 60 160 0.24
dubois21 1 1 1 63 168 0.27
dubois22 1 1 1 66 176 0.31
dubois23 1 1 1 69 184 0.34
dubois24 1 1 1 72 192 0.39
dubois25 1 1 1 75 200 0.44
dubois26 1 1 1 78 208 0.49
dubois27 1 1 1 8l 216 0.56
dubois28 1 1 1 84 224 0.61
dubois29 1 1 1 87 232 0.67
dubois30 1 1 1 90 240 0.75
duboiss0 1 1 1 150 400 3.75
dubois100 1 1 1 300 800 30.2

Table 6.6: Enforcing path-consistency on DUAL encoded DUBOIS benchmarks.

6.04 AIM

107

The AIM instances are all generated with a particular Random-3-SAT instance generator described by

Asahiro et al! (1993). It should be noted that all of these instances can be solved with polynomial pre-

processing, therefore, they cannot be considered as intrinsically hard. However, some stochastic search

algorithms, such as WALK SAT and GSAT variants, show avery poor performance on the instances with

low clause/variableratio; in particular for ratios of 1.6 and 2.0.

All instances are easily solvable by path-consistency when transformed to a CSP using the DUAL

encoding (see Table[6.7), yet when they are LITERAL encoded path-consistency fails to solve a single

instance.
benchmark set | inst’s | ran | solves | props | clauses | avg. time
am-50-1.6-no 4 4 4 50 80 0.032
aim-50-2_0-no 4 4 4 50 100 0.062
aim-100-1.6-no 4 4 4 100 160 0.27
aim-100-2.0-no 4 4 4 100 200 0.40
aim-200-1.6-no 4 4 4 200 320 1.85
aim-200-2_0-no 4 4 4 200 400 3.00

Table 6.7: Enforcing path-consistency on DUAL encoded AIM benchmarks.
6.0.5 JNH

JNH instance are generated randomly in the following way:

benchmark set | inst’s | ran | solves | props | clauses | avg. time
jnh10 1 1 1 1796 2546 108.02
jnh1l 1 1 1 1749 2499 305.20
jnh13 1 1 1 1763 2513 126.41
jnh14 1 1 1 1780 2530 142.94
jnh15 1 1 1 1759 2509 168.14
jnh16 1 1 0 1777 2527 10,436.73
jnh18 1 1 1 1794 2544 662.94
jnh19 1 1 1 1759 2509 239.71
jnh2 1 1 1 1819 2569 83.19
jnh20 1 1 1 1786 2536 159.87
jnh202 1 1 1 1733 2433 115.57
jnh203 1 1 1 1683 2383 314.92
jnh206 1 1 1 1678 2378 446.45
jnh208 1 1 1 1686 | 2386 308.70
jnh211 1 1 1 1672 2372 102.17
jnh214 1 1 1 1667 2367 271.44
jnh215 1 1 1 1665 2365 187.97
jnh216 1 1 1 1669 2369 307.02
jnh219 1 1 1 1665 | 2365 480.90
jnh3 1 1 1 1797 2547 436.97
jnh302 1 1 1 1924 2724 82.09
jnh303 1 1 1 1859 2659 322.20
jnh304 1 1 1 1887 2687 118.10
jnh305 1 1 1 1895 | 2695 130.85
jnh306 1 1 1 1887 2687 1,702.63
jnh307 1 1 1 1854 2654 72.80
jnh308 1 1 1 1877 2677 27341
jnh309 1 1 1 1892 2692 124.30
jnh310 1 1 1 1854 | 2654 57.36
jnh4 1 1 1 1770 2520 178.89
jnh5 1 1 1 1797 2547 166.14
jnh6 1 1 1 1770 2520 462.83
jnh8 1 1 1 1780 2530 113.17
jnh9 1 1 1 1766 2516 117.78

Table 6.8: Enforcing path-consistency on DuAL encoded JINH benchmarks.

108

109

e For aninstance with n variables and ¢ clauses, each of the ¢ clauses is constructed by including a

variable with afixed probability p, and then negating the variable with probability 0.5.

e Empty clauses and unit clauses are rejected in the generation process.

Empirical evidence provided by Mitchell & L evesgue (1996) indicate that instances generated by this
model tend to be much easier to solve than the Uniform Random-3-SAT (UUF) instances described
earlier.

There are 34 unsatisfiable INH benchmarks, 33 of which can be solved using path-consistency on
the DUAL encoding, and none using path-consistency on the LITERAL encoding (as shownin Table [6.8).
The 34th unsolvable instance (jnh16) is too large to enforce 4-consistency, and it is unknown as to why
this particular instance was not solved. It is also unknown as to why instance jnh306 took significantly
longer to solve than the other instances, though, compared to the others, it took several more iterations

through the data-structure before the a gorithm was able to determine unsatisfiable

6.0.6 BF and SSA

benchmark set | inst’s | ran | solves | props | clauses | avg. time
Ssa0432-003 1 1 1 504 1096 21.32
Ssa2670-130 1 1 1 1583 3545 1309.45
ssa2670-141 1 1 1 1129 2458 503.51
Ssa6288-047 1 0 0 10410 | 34238 -

Table 6.9: Enforcing path-consistency on DUAL encoded SSA benchmarks.

The BF and SSA instances are selected formulae from those generated by a circuit-fault-analysis
test-pattern generation program called Nemesis. These formulae are in CNF and contain clauses of
lengths 1-6, with more than half the clauses of size 2. The instances are of rather large size (most of
them have more than 1000 variables), though some of the instances contain unit clauses and hence can
be simplified by unit propagation. According to the benchmark description, of the unsatisfiableinstances
only instances ssa2670-130 and ssa2670-141 may be considered hard. However, when encoded using
the DUAL encoding all instances can be solved by enforcing path-consistency. The results are shown
in Tables[6.9 and Unfortunately, ssa6288-047 was too large to enforce path-consistency, since the
DuAL encoding would require approximately 600M B of RAM to represent the data-structure.

6.0.7 PRET

The PRET instances are an encoding of GRAPH-2-COLOURABILITY, aong with a parity constraint to
force unsatisfiability. According to SATLIB, these instances are considered amongst the hardest unsat-
isfiable benchmarks. In fact, as shown in Table[6.11] solving these instances required enforcing strong-

5-consistency using the DUAL encoding. Thirteen of the 23 SAT-Solvers submitted to SAT-Competition

110

benchmark set | inst’s | ran | solves | props | clauses | avg. time
bf0432-007 1 1 1 1417 4045 2675.78
bf1355-075 1 1 1 2706 7304 4949.39
bf1355-638 1 1 1 2701 7292 3908.81
bf2670-001 1 1 1 1625 3666 550.36

Table 6.10: Enforcing path-consistency on DUAL encoded BF benchmarks.

benchmark set | inst’'s | ran | solves | props | clauses
pret60_25 1 1 1 60 160
pret60.40 1 1 1 60 160
pret60_60 1 1 1 60 160
pret60_75 1 1 1 60 160
pret150_25 1 1 1 150 400
pret150_40 1 1 1 150 400
pret150_60 1 1 1 150 400
pret150_75 1 1 1 150 400

Table 6.11: Enforcing strong-5-consistency on DUAL encoded PRET benchmarks.

2003 failed to solve every PRET benchmark, meaning that they reached the time-out limit enforced by

the competition.

6.0.8 Pigeon Hole

As discussed in Chapter [3] the PIGEON-HOLE PROBLEM is probably one of the most important and
well-studied class of problems. It asks whether it is possible to place n + 1 pigeons in n holes without
two pigeons being in the same hole.

The SAT encoding of this problem (also referred to as PHOLE) is very straightforward and although
there are various different mappings, these instance were constructed from the original CSP definition to

SAT using the DIRECT encoding in the following way:
o For each pigeon p we have avariable ,;, meaning that pigeon p is placed in hole k.
e n + 1 clauses say that a pigeon has to be placed in some hole.
e For each hole a set of clauses ensure that only one single pigeon is placed into that hole.

There are five instances available, which encode the PIGEON-HOLE PROBLEM for six to ten holes (and
therefore seven to eleven pigeons); details on the instances are given in Table
Haken (1985) proved thefirst exponential bounds for Resolution, showing that a Resolution refuta-

tion would require an exponential number of clausesto be generated to solve this problem. To solvethese

6.1. SAT Competition Benchmarks 111

instance | holes | vars | clauses | satisfiable?
hole6 6 42 133 no
hole7 7 56 204 no
hole3 8 72 297 no
hole9 9 90 415 no
holel0 10 110 561 no

Table 6.12: The Pigeon-Hole instances.

instance would require strong-p-consistency, where p is the number of pigeons, and it is not surprising

that path-consistency failed to solve a single instance.

6.1 SAT Competition Benchmarks

Given the unexpected success of enforcing such alow-level of consistency on DUAL encoded SATLIB
problems| sought harder benchmarksto which to apply this algorithm. The obvious placeto find difficult
SAT instancesisfromthe SAT Competition. Although the mgjority of these benchmarksare from Formal
Verification applications and tend to be very large, some were small enough to represent using the my
DUAL encoding data-structure. Since the space complexity is O(n ?), instances with aboven = 10,000
clauses require over 700MBytes of RAM. Many of these benchmarks are therefore untestable on a stan-
dard computer. For larger benchmarks | recommend that sparse-matrix techniques are used to represent
the data-structure, which may help address this space-complexity issue. Since these are competition
benchmarks, relatively little information is given about their construction. Tables show how
enforcing path-consistency performs on the following SAT-Competition benchmark families encoded

using the DUAL encoding.
e BMC1, Table[6.13

GRAPHCOLORSS3, Table[6.14

BARREL, Table[6.19

e CMPADD, Table[6.18

DINPHIL, Table6.17

e LONGMULT, Table[e.18

The success of enforcing alocal-level of consistency on DUAL encoded unsatisfiable SAT instances
is very interesting. By comparing these results with the SAT-Solvers submitted to the SAT Competition

2003, we seethat this basic constraints-inspired polynomial-timeal gorithm can compete favourably with

6.1. SAT Competition Benchmarks

benchmark set inst’s | ran | solves | props | clauses | avg. time | k-con
goldberg/bmc1/23.shuffled 1 1 1 217 493 1.50 3
goldberg/bmc1/4.shuffled 1 1 1 217 493 153 3
goldberg/bmc1/42.shuffled 1 1 1 417 943 9.69 3
goldberg/bmc1/61.shuffled 1 1 1 417 943 9.81 3

112

Table 6.13: Enforcing path-consistency on BMC1 SAT Competition benchmarks.

benchmark set inst’s | ran | solves | props | clauses | avg. time | k-con
graphcolors3/3col20 | 20 20 20 190 326 0.38 3
graphcolors3/3col40 | 20 20 20 380 646 4.87 3
graphcolors3/3col60 | 20 20 20 570 966 35.6 3

Table 6.14: Enforcing path-consistency on GRAPHCOL ORS3 SAT Competition benchmarks.

benchmark set | inst’s | ran | solves | props | clauses | avg. time | k-con
barrel2 1 1 1 58 167 0.11 3
barrel3 1 1 1 307 974 20.49 3
barrel4 1 1 1 654 2111 172.313 3
barrel5 1 1 1 1703 5679 3364.344 3
barrel6 1 1 1 2806 9431 | 14977.031 3
barrel 7 1 0 0 4303 | 14545 - -
barrel8 1 0 0 6254 | 21231 - -

Table 6.15: Enforcing path-consistency on BARREL SAT Competition benchmarks.

benchmark set inst’'s | ran | solves | props | clauses | avg. time | k-con
biere/cmpadd/ca002.shuffled 1 1 1 26 70 0.00 3
biere/cmpadd/ca004.shuffled 1 1 1 60 168 0.06 3
biere/cmpadd/ca008.shuffled 1 1 1 130 370 1.23 3
biere/cmpadd/ca016.shuffled 1 1 1 272 780 15.77 3
biere/cmpadd/ca032.shuffled 1 1 1 558 1606 195.83 3
biere/cmpadd/ca064.shuffled 1 1 1 1132 | 3264 | 1936.453 3

Table 6.16: Enforcing path-consistency on CMPADD SAT Competition benchmarks.

highly optimised and efficient DL L -based SAT-Solvers. Moreover, these empirical results suggest that

many of the SATLIB and Competition benchmark families are tractable, that is, they can be solved by

enforcing a constant level of local-consistency.

A list of unsatisfiable benchmark families that enforcing path-consistency fails to solve are shown

in Teblee 19

6.1. SAT Competition Benchmarks 113
benchmark set inst’s | ran | solves | props | clauses | avg. time | k-con
biere/dinphil/dp02u01.shuffled 1 1 1 213 376 0.28 3
biere/dinphil/dp03u02.shuffled 1 1 1 478 1007 10.16 3
biere/dinphil/dp04u03.shuffled 1 1 1 1018 | 2412 345.076 3
biere/dinphil/dp05u04.shuffled 1 1 1 1573 3904 1485.036 3

Table 6.17: Enforcing path-consistency on DINPHIL SAT Competition benchmarks.

benchmark set | inst’s | ran | solves | props | clauses | avg. time | k-con
longmultO 1 1 1 558 1327 8.94 3
longmultl 1 1 1 1035 2579 249.938 3
longmult2 1 1 1 1535 3896 1082.625 3
longmult3 1 1 0 2051 5263 | 7122.125 3
longmult4 1 0 0 2587 6690 - -
longmult5 1 0 0 3143 8177 - -
longmult6 1 0 0 3719 | 9724 - -
longmult7 1 0 0 4315 | 11331 - -
longmult8 1 0 0 4931 | 12998 - -
longmult9 1 0 0 5567 | 14725 - -
longmult10 1 0 0 6223 | 16512 - -
longmult1l 1 0 0 6899 | 18359 - -
longmult12 1 0 0 7595 | 20266 - -
longmult13 1 0 0 8311 | 22233 - -
longmult14 1 0 0 9047 | 24260 - -

Table 6.18: Enforcing path-consistency on LONGMULT SAT Competition benchmarks.

benchmark set inst's | ran | solves
crafted/jarvisal 005/mod2-rand3bi p-unsat/ 15 15 0
crafted/jarvisalo05/mod2c-rand3bip-unsat/ | 15 15 0
crafted/jarvisal 005/mod2c-3cage-unsat/ 6 6 0
crafted/jarvisal 005/mod2-3cage-unsat/ 24 24 0
crafted/sabharwal 05/counting/f php/unsat/ 28 28 0
crafted/sabharwal 05/counting/php/unsat/ 28 28 0

Table 6.19: SATLIB Benchmark families path-consistency fails to solve.

The MOD2 benchmark families, created by IHaanpaa et al) (2005), are very small but hard instances

based on linear equations modulo 2, where the underlying structureis derived from 3-regular graphs:

e mod2-rand3bip-unsat: Unsatisfiable instances with the number of variables v = 90, 105, 120, 135,

6.2. Chapter Summary and Discussion 114

150. For each v there are 15 instances. The underlying graphs are random 3-regular bipartite

graphs.

e mod2c-rand3bip-unsat: As mod2-rand3bip-unsat but with “simple camouflage” applied on the

instances.

e mod2-3cage-unsat: The underlying graphs are (3, g)-cages with girth g € {9,10,11,12}. 18 (3,
9)-cages, 3 (3, 10)-cages, 1 (3, 11)-cages, and 1 (3, 12)-cage exist.

e mod2c-3cage-unsat: Asmod2-3cage-unsat but with “simple camouflage” applied on theinstances.

6.1.1 Competition Comparison

I have shown that enforcing such a low-level of consistency can determine the unsatisfiability of many
DuAL encoded SAT instances. It appears from a general comparison with the 23 SAT-Solvers submitted
to SAT Competition 2003 that this polynomial-timealgorithm is competitive on many of the unsatisfiable
DuAL encoded benchmarks. Table[6.20 provides an overview of how enforcing path-consistency in this
way comparesto SAT-Solvers on many SATLIB and SAT Competition 2003 instances. The left column
lists the SAT-Solver, with each row describing how many instances of the benchmark families were
solved which are listed at the top. The tested row shows the number of instance that were tested in my
experiments and the path-consistency row shows the number of those instances that path-consistency
solv

Comparing the execution time of this polynomial-time algorithm with the competition SAT-Solvers
is not interesting since they have ran in different architectures and my code was not designed to test such
large instances. However, out of the 276 benchmark-algorithm combinations this simple polynomial-
time algorithm outperformed 70 cases and was as successful as 96 cases; a total of 166 out of 276.

Notice that zZCHAFF solved every instance correctly.

6.2 Chapter Summary and Discussion

This investigation began by comparing the performance of enforcing a local-level of consistency on
LITERAL and DUAL encoded SAT instances. | found that enforcing path-consistency on the LITERAL
encoding does not solve any of the SAT benchmarks. Thisisin stark contrast to problems encoded using
the DUAL encoding, which took these experiments into a new direction by showing that enforcing such
alow-level of consistency can not only effectively prune the problem, but also solve a surprising number
of what are considered ‘hard’ SAT benchmarks.

We know from the theoretical results presented in Chapter B that:

“Note that al of the PRET instances required strong-5-consistency to determine unsatisfiability, and that they were small
enough to enforce this level of consistency.

6.2. Chapter Summary and Discussion

518 8le| |2l [2]%]|8
family EIElElE8|s 2|2 25|52 g
#instances 8(8|8(8|4|13|5 (344|164 |4 |4
tested 8(8|8|6|4(13|5|34|4|4]4]3
path-consistency || 8 | 8 | 8 | 6 |4 |13 | 0 | 33 4 |4 1|3
asat 8/ 0|8|7|1]9|5|34|15|0]|4 |1
calcres 410(8|3(2|13{]1,0|4 /|04 4
csat 8/8|8|5|2|0|5|34|16|0 /|0 |4
dr 0/|0|5|1|0(13|]1|0)|2 /|44, 2
egsatz 8|88 |8|4 |13 5|34 |16|4 |4 |4
heerhugo 8/8|(8|7|4|13(3 |34 |7 |4 |44
modoc 8|18 |8|7(4|7|5|3|4 |04 |4
modoc-2.0 8(8|8|7|4|5|4(34|5 |04 |4
nsat 8|/ 8|80 |3|13/ 4|34 |16|4 |4 |2
ntab 5/0|5|511|8]0|34|6 |04/ 2
ntab back 5(0|5|5(3| 7|0 (347 |0]|4]3
ntab back?2 5|/3|5|5]3|7|0|34|7]|0]|4]3
posit 8(0|8|3|2|8|5|34|15|01]4]3
relsat 8(8|8|5(4|13|5(34|9 |44 |4
relsat-200 8188 |7|4|13|5 |34 |16|4 |4 |4
sat-grasp 8/8|8|4|4|13(4|34|9 |4 |4 |4
sato 8188|7413 5|34|15|4 |4 |4
sato-3.2.1 8,8 |8 |7 |4 |13|5 |34 16|4 |4 |4
satz 8|88 |6|4|11|5(34|12|0 |4 |4
satz-213 8188|7419 |5|34|16|0 |4 |4
satz-215 8/8|8|8|4]9|5|34|16|0|4 |4
zchaff 8(8|8|8|4|13|5 (34164 |4 |4
zres 4108|133 |13/{3|0|4)|4)|4)3

115

Table 6.20: The number of DUAL encoded SATLIB benchmarks solved by enforcing a local-level of
consistency compared to the number solved by competition entrants.

1. Enforcing strong-k-consistency on LITERAL encoded ‘strict’ k-SAT instances has no pruning ef-

fect.

2. Enforcing strong-k-consistency on DUAL encoded j-SAT instances is equivalent to performing

(j(k —1),)-NG-RES.

Giventhis, it is not surprising that the empirical tests demonstrated that enforcing path-consistency

6.2. Chapter Summary and Discussion 116

on LITERAL encoded 3-SAT instances had very little impact on pruning the search-space and failed to
solve a single instance. In fact, it was observed that in some cases a little pruning did take place on
LITERAL encoded instances, but (as predicted) only when the level of consistency being enforced was
greater than the number of literals in some of the clauses.

Recall from Chapters[Z2land[3that there are two families of algorithm used, stochastic and branching.
Branching a gorithms can prove both satisfiability and unsatisfiability (though proving unsatisfiability is
typically more difficuItH), whereas stochastic algorithms can only prove satisfiability. Although local-
consistency agorithms are unable to determine whether an instance is satisfiable, they are able to prove
unsatisfiability. The development of sophisticated local-consistency algorithms might thus be a viable
approach to redress the * algorithmic’ bias.

The empirical results presented in this chapter strengthen the theoretical results that enforcing a
local-level of consistency on unsatisfiable DUAL encoded problems does more work when LITERAL
encoded. In Chapter [3]1 mentioned that IPrestwich (2003) had established a correl ation between solution-
density and problem solubility. Since these experiments are primarily concerned with the effect of local-
consistency algorithms on CSP encoded unsatisfiable SAT instances, the solution-density is the same
(zero) in every case. Therefore, solution-density cannot be a factor in understanding what conditions
are necessary for local-consistency to determine unsatisfiability. As with previous research | could find
no definable characteristic that distinguished unsatisfiable instances that were solvable versus ones that
were not. The question of whether we can characterise instances (and families) that are ‘ polynomialy
solvable’ is open. Such analysis is left as future work, but a specific pointer to future work would be
to look for the characteristics of the solved benchmark families that made them * polynomially solvable’
and extrapolate (hopefully new) generic features that we can use to test for tractability.

As described in Section in recent years there has been a large amount of research devoted to
analysing the effect of preprocessing SAT instances prior to applying a branching or stochastic algo-
rithms. Whilst these resol ution-based preprocessors have been proven (on average) to improve problem
solubility, it is till unclear as to what type of preprocessing should be applied, when it should be ap-
plied and to what part of the problem. Preprocessors such as HY PRE and SATELITE are now routinely
employed by modern SAT-Solvers, however most research is still unconcerned with how the problemis
encoded. Themain result of thisthesisisthe remarkable success of enforcingalocal-level of consistency
on DUAL encoded unsatisfiable SAT instances. What is also important to highlight is that although this
technigque managed totally to prune the search-space of instances from a variety of problem domains, it

isnot yet aviable practica technique for two reasons.

1. DUAL encoded instances typically require much more memory than LITERAL or NON-BINARY

encoded instances.

SVerbal communication with members of Princeton’s SAT Research Group.

6.2. Chapter Summary and Discussion 117

2. It is dtill computationally expensive and time consuming to enforce larger levels of local-

consistency.

In Chapter [4 | discuss how we might overcome some of these issues. The purpose of this chap-
ter, however, is not to present a comprehensive solution, but to show the potential that lies in encoding
instances differently. One stand-out result of preprocessing research is that despite the preprocessing
overhead and number of additional constraints and variables produced, in many cases the SAT-Solver
could still find solutions in less time. Such results are encouraging, | propose that developing refined
versions of this method is a sensible approach for researchers wishing to explore practical preprocess-
ing techniques. A natural extension of this research is to explore practical implementations of these
techniques as well as to explore effect that the resulting encoded/preprocessed instances have on the

effectiveness of SAT-Solvers on both unsatisfiable and satisfiable instances.

Chapter 7

Discussion, Exploitation and Future Work

In thisthesis | show how we might use Graph Theory as a framework to bridge SAT and CSP research.
| hinted at the benefits of this approach by demonstrating that even the most basic of polynomia-time
Consistency algorithmson DUAL encoded instances can be used to solve avariety of problemsthat might
be encountered in practice. | suggested that using more sophisticated constraint-based algorithms and
techniques than the ones used in my experiments could highlight tractable SAT benchmark families and
problems, yielding many of the practical benefits described throughout this thesis. Whilst research into
the structure of these problems has started to established itself in recent years relatively little research
has begun to exploit these findings either to gain a deeper understanding of the complexity of problems,
or to develop better performing algorithms and tools to solve them. Future research will aim to utilise
these findingsin order to devel op new techniquesto solve alarger set of problems.

This work relates to a much wider programme which aims to contribute to bridging the fields of
Constraint Satisfaction and Propositional Satisfiability. More specifically, the work inthisthesis explores
the structural relationship between CSP and SAT problems and their algorithmic methods by viewing
them in a graph-theoretic framework. Using this framework we are able to identify synergies between
these two research domains. Ten years ago |Selman et al| (1997) proposed “Ten Challenges in Proposi-
tional Reasoning and Search”. Although many of these challenges have been met, severa till remain

open. Thisresearch addresses three in particular:
1. CHALLENGE 1: Provethat a hard 700 variable random 3-SAT instanceis unsatisfiable.

2. CHALLENGE 3: Demonstrate that a propositional proof-system more powerful than Resolution
can be made practical for satisfiability testing.

3. CHALLENGE 8: Characterise the computational properties of different encodings of a real-

world problem domain, and/or give general principles that hold over a range of domains.

In each section below | summarise this research and propose how it relates to Selman’s ‘challenges'. |

discuss how the findings of this research could be used to address several prominent issues with modern

7.1. Theoretical Studies 119

SAT-Solvers and have wider implicationsin the field.

7.1 Theoretical Studies

7.1.1 Categorising Encodings

After introducing the necessary background in Chapter [2, in Chapter 3| provided a detailed survey of
CSP and SAT encodings, a gorithmic techniques and proof-systems. After providing adetailed example-
led survey of SAT and CSP encodings, in Chapter [41 show how all of the encodings can be categorised
asone of three types of mapping. | introduce the new INVERSE encoding (Section [4.2), the only member
of the CONSTRAINT mapping group, and in this chapter | also defined the DoMAIN and COMBINED
mappings. The CSP to SAT encodings described in Chapter [3 are categorised and shown in Table [Z.1l
By using an example, | demonstrate that the INvERSE encoding is preferable when the number of partial
satisfying solutions to the constraints is small, since each partial satisfying solution gets mapped to a
SAT variable. In fact, given certain kinds of constraints the I NVERSE encodings can be several orders of
magnitude smaller than DIRECT encodings. Thus, careful consideration should be taken when deciding
which encoding is best to use, and using the result of simple calculation (the encoding space complexity)
researchers might find that they can now practically represent problems in CNF that were previously
incredibly difficult.

The new INVERSE encoding (defined in Chapter [4) is the only member of the CONSTRAINT cate-
gory. As mentioned, with the introduction of the INVERSE encoding it is now possible to define Com-
BINED mappings for CSP to SAT encodings (listed in Table [Z.1) and explore the potential benefits that
these new encodings may bring. Analysis of these new encodings | leave as open questions. | aim
to cultivate this important link between SAT and CSP further and perform a comprehensive study on
how expressing a wide variety of real problems - using various encodings - affects the performance of

polynomial-time algorithms as well as state-of-the-art SAT-Solvers.

DOMAIN CONSTRAINT COMBINED
DIRECT INVERSE INVERSE + DIRECT
SUPPORT INVERSE + SUPPORT
LoG INVERSE + LOG
MULTIVALUED INVERSE + MULTIVALUED

Table 7.1: Categorising the CSP to SAT encodings.

Similarly, Table[Z.2 shows the SAT to CSP encodings described in Chapter [3 categorised as Do-
MAIN, CONSTRAINT, and COMBINED mappings.

Recently | have been developing the notion of HYBRID mappings, which are constructed using a

7.1. Theoretical Studies 120

DOMAIN CONSTRAINT COMBINED
NON-BINARY LITERAL PLACE
DUAL HIDDEN VARIABLE

Table 7.2: Categorising the SAT to CSP encodings.

mixture of DOMAIN and CONSTRAINT mappings. In this case one can choose how individual constraints
are encoded. For example, it might be more compact to encode Alldiff constraints using the DOMAIN
mapping, yet encode not-equals constraints using CONSTRAINT mappings. A hybrid approach might
yield encodings that are more compact and might potentially improve the effectiveness of preprocessing
and search-based algorithms. However, this is still in the concept stage and a great deal of work is

required to determine whether there are any tangible benefits to using this approach.

7.1.2 Characterising Encodings

In Chapter § | prove that these encodings can be characterised in accordance with the number of solu-
tions they encapsulate, that the different SAT to CSP encodings can produce micro-structures that have
different levels of solution-density. | provethat transforming SAT instancesinto CSP using the LITERAL
encoding produces problems that can have a higher proportion of solutions than the DuAL and NON-
BINARY encodings, for instance. These results are summarised in Table This theoretical insight
might be practically useful in helping guide which encoding should be chosen for a particular problem
instance, as the literature shows that solution-density can affect the solubility of a problem, particularly

for stochastic algorithms.

NON-BINARY | LITERAL | DUAL | HIDDEN VARIABLE | PLACE

CSPvs. SAT = > = = >

Table 7.3: Comparing the number of solution of SAT to CSP encodings. If weconsider X vs. Y. X =Y
denotes that X and Y have an equal amount of solutions, and X > Y denotesthat X has at least the
same number of solution tuplesasY'.

CHALLENGE 8: Characterise the computationa properties of different encodings of a
real-world problem domain, and/or give general principles that hold over a range of do-

mains.

Thework presented in Chapter [5 directly addresses this challenge. Having characterised the encod-
ings according to their solution-density, the second part of this chapter addresses the gap in theoretical
research identified in Chapter [3 |1 compare the performance of Resolution and Consistency based tech-

niques on the various encodings (summarised in Table[7.4) and show that enforcing local-consistency on

7.2. Empirical Studies 121

the resulting CSP does varying amounts of work on different encodi ngsu. Notice that enforcing the same
level of local-consistency on DUAL encoded problems does more work than on LITERAL and NON-
BINARY encoded instances. Since DUAL encoded problems can be significantly larger than LITERAL or
NON-BINARY instances it is |eft as an open question as to whether the extra ‘work’ achieved is worth
the space overhead. However, the empirical results in Chapter [6 suggest that thisis certainly worth it, at
least with respect to the types of problemsin used in these experiments.

| also prove that enforcing strong-%-consistency on LITERAL encoded k-SAT instances does zero
work if each clause has distinct literals and | suggest that these theoretical results might be practically
useful in helping guide which encoding should be chosen for a particular problem instance. The empiri-

cal resultsin Chapter [@ demonstrate that thisis most likely true.

NON-BINARY | LITERAL DUAL HIDDEN VARIABLE PLACE
NG-RES || k(-Resolution) k (j(k=1),9) k (NON-BINARY) k (NON-BINARY)
k (L1TERAL) (j(k—=1),4) (DuAL)

Table 7.4: The level of NG-RES when enforcing strong-%-consistency on SAT to CSP encodings. The
row valuesindicate the level of NG-RES when applied to a CSP encoded SAT instance.

7.2 Empirical Studies

| attempt to addresstwo issuesraised in theliteraturereview that may bias empirical studies of encodings,
and identify aset of teststhat have not beeninvestigated previoudly. More specifically, | apply arelatively
basic polynomial-time constraint-based technique to an extensive suite of SAT benchmarks represented
as a CSP using the DuAL and LITERAL encodings. Table provides a summary of the results of
applying path-consistency to DUAL encoded SATLIB benchmarks discussed in Chapter

Given the theoretical resultsin Chapter [§ it is not surprising that the empirical results demonstrate
that enforcing path-consistency on LITERAL encoded 3-SAT instances had very little impact; failing to
solve asingleinstance. However, the success of enforcing alocal-level of consistency on DUAL encoded
unsatisfiable SAT instancesis very interesting. By comparing these results with the SAT-Solvers submit-
ted to the SAT Competition 2003, we see that this basic constraints-inspired polynomial-time a gorithm
can compete favourably with highly optimised and efficient DL L -based SAT-Solvers on unsatisfiable
instances. As discussed, branching algorithms can prove both satisfiability and unsatisfiability, whereas
stochastic algorithms can only prove satisfiability. Proving unsatisfiability has been shown to be more
difficult for branching algorithms, so the resultsin this thesis encourage the devel opment of sophisticated

local-consistency agorithms which might be a viable approach to redress this balance. | conjecture that

1Remember that the notion of ‘work’ refers to the relative level of consistency achieved on the encoded problem instance
(compared to the original) when enforcing a certain level of local-consistency.

7.2. Empirical Studies 122

benchmark set inst’'s | ran | solves props clauses avg. time (s)
dubois(20-30) 11 11 11 60-90 160-240 0.24-0.75
duboiss0 1 1 1 150 400 3.75
dubois100 1 1 1 300 800 30.2
aim-50-1_6-no 4 4 4 50 80 0.032
aim-50-2.0-no 4 4 4 50 100 0.062
aim-100-1_6-no 4 4 4 100 160 0.27
aim-100-2_0-no 4 4 4 100 200 0.40
aim-200-1_6-no 4 4 4 200 320 185
aim-200-2_0-no 4 4 4 200 400 3.00
uuf50-218 1000 | 1000 | 1000 50 218 1.16
uuf75-325 100 100 55 75 325 25.05
uuf100-430 1000 | 1000 4 100 430 120.45
bf0432-007 1 1 1 1417 4045 2675.78
bf1355-075 1 1 1 2706 7304 4949.39
bf1355-638 1 1 1 2701 7292 3908.81
bf2670-001 1 1 1 1625 3666 550.36
ssa0432-003 1 1 1 504 1096 21.32
ssa2670-130 1 1 1 1583 3545 1309.45
Ssa2670-141 1 1 1 1129 2458 503.51
goldberg/bmcl 4 & 23 2 2 2 217 493 15
goldberg/bmcl1 42 & 61 2 2 2 417 943 9.7
graphcol ors3/3col 20 20 20 20 190 326 0.38
graphcolors3/3col40 20 20 20 380 646 4.87
graphcol ors3/3col 60 20 20 20 570 966 35.6
barrel-(2-9) 8 6 6 58-2806 167-9431 | 0.11-14977.031
biere/cmpadd 6 6 6 26-1132 70-3264 | 0.01-1936.453
biere/dinphil 4 4 4 213-1573 | 376-3904 | 0.28-1485.036
jnh 38 38 34 1665-2119 | 2365-2919 254.70
longmult(0-15) 16 4 3 558-2051 | 1327-5263 | 8.94-7122.125

Table 7.5: Summary of the unsatisfiable benchmark instances solved by enforcing path-consistency on
DuUAL encoded SAT instances. The notations X — Y represents the spread of times that correspond to
the spread of benchmarksin each family. A more detailed set of results are shown in Chapter

enforcing higher levels of consistency may even outperform state-of-the-art SAT-Solversin determining

the unsatisfiability of many instances.

7.2. Empirical Studies 123

CHALLENGE 1: Provethat ahard 700 variable random 3-SAT instance is unsatisfiable.

Although modern SAT-Solvers have solved 700 variable instance£, random problems are still no-
toriously difficult for search-based and stochastic algorithms. One aim of this (and related) research is
to design hybrid agorithms - exploiting the strengths of each field - yielding benefits that are mutually
advantageous not only to the CSP and SAT communities, but also to the wider scientific community and
to industry.

An obvious line of research is to compare the performance of stochastic and branching algorithms
on DUAL encoded problemsthat have been made locally consistent (or partially consistent). The empir-
ical results in Chapter [6 and the results described by |Prestwich (2003) and [Een & Biere (2005) suggest
that practical techniques to prune search-spaces will most likely result in problems that are easier for
search-based algorithms to solve.

Another future direction of this research is to utilise the wealth of theoretical work in the CSP
community, and use it to test SAT instances for tractability. Tractability testing can help researchers
decide when to use polynomial-time or search-based algorithms (lJJeavons et al. (1996)).

Inspired by Prestwich’s research, | currently have severa ideas to explore in the future that could
help aleviate in particular some bottlenecks in the DLL algorithm (the core of most modern SAT-

Solvers), two of which are:
1. Thetime spent performing unit propagation.
2. Thetime spent exploring dead-end branches.

| intend to tackle the former by introducing an exactly-1-SAT pruning concept inspired by the difference
between the DIRECT and MULTIVALUED CSP to SAT encodings. | aso intend to improve the branching
rulein DLL to exploreonly local areas of the search-tree with the aim to prevent the algorithm from ex-
ploring dead-end branches thereby potentially reducing unnecessary backtracking and greatly increasing

performance.

7.21 Feature Analysis

Recently, the idea of dynamically applying heuristics according to some ‘fithess measure’ has been
proven to be successful by |Shacham & Yorav (2006) who propose the notion of Adaptive Solving, in
which a SAT-Solver monitors the effectiveness of the search ‘on-the-fly’. Using a Performance Metric
to score the search progress one or more heuristics are turned on or off dynamically. The goal isto usea
specific heuristic or strategy when it is advantageous, and to turn it off when it is not. |Shacham & Yorav
(2006) suggest several possible metrics and compare their effectiveness, showing that their adaptive

solver achieves significant speedups on alarge set of examples.

2\/erbal communication with lan Gent, St Andrews Constraints Research Group.

7.3. Extended Proof-Systems and Symmetry 124

The notion of using ‘ problem features' to guide algorithm search (or choice) has been shown to be
very successful by SATzILLA2007. SATzILLA incorporates so-called empirical hardness models that
calculate features of the problem instance and use these to choose amongst a portfolio of SAT-Solvers.
Nudelman et al. (2004) describe 91 SAT instance features, of which SATzILLA2007 uses around 70. It
iswidely known that thereis no dominant SAT-Solver and that different solvers perform better or worse
according to the ‘type’ of the problem instance. SATzILLA2007, described by [Xu et all (2007), isa
‘meta-algorithm’ that decidesto apply one of aportfolio of state-of-the-art SAT-Solvers on aper-instance
basis. Using empirical hardness modelsto choose among its constituent solvers, SATzILLA2007 signif-
icantly outperformsits constituent algorithms on every data set; winning three gold medals, one silver,
and one bronzein 2007's SAT Competition.

We can extend this paradigm to the choice of encodings and (multiple) preprocessors. For example,
in Chapter B 1 propose a smple heuristic for choosing encodings and algorithms for instances that have
been predicted to be satisfiable or not. If aninstanceislikely to be satisfiable, then it might be appropriate
to choose the LITERAL encoding and use a stochastic algorithm. Whereas if an instance is likely to
be unsatisfiable, then choosing the DuAL encoding and running a branching a gorithm might be more
successful. In the former exampleit isill-advised to enforce local-consistency, since it might not have
any tangible pruning effect. However, it might be strongly advised to enforce local-consistency in the
latter example, since this might entirely prune the search-space.

Given the success of these types of dynamic algorithms described above, | suspect that the research
in these areas will become extremely important over the next few years. At present these features are SAT
orientated, utilising none of the wealth of theoretical knowledge from the Constraints Satisfaction field
devoted to understanding the tractability of these problems. If the performance of SAT-Solvers continues
to plateau, the SAT community may turn to Constraint Satisfaction and Graph Theory research to provide
aricher set of problem-features that these empirical hardness models can exploit. These methods may
aleviate the plateau in the short to medium term, but it will take new paradigm shifts to make larger
leaps in algorithmic performance. This supports the importance of providing a common framework to
bridge the research between thesefields. Moreover, | intend to investigatethe ‘ meta-algorithm’ paradigm

further and explore other fields in search of *better’ features.

7.3 Extended Proof-Systemsand Symmetry

In Chapter [31 survey the pertinent theoretical work that is related to both Resolution and Consistency
research. | argue that although extended proof-systems are the most powerful at our disposal (and that
no known hard problems exist for them) little is known about how to use auxiliary variables effectively.
Indeed, this area of research has not progressed greatly over the past ten years. [Kullmann (1999) made

some advances in proving lower-bounds for restricted versions of Extended-Resolution. Kullmann's

7.3. Extended Proof-Systems and Symmetry 125

research may have ahugeimpact in the future, since the proof of exponential boundswould likely result
in a paradigm shift in the way that complexity bounds are proved, as |Haken (1985) results did when

proving thefirst exponential boundsfor standard Resolution.

7.3.1 Symmetry

Symmetries in the search-space can be broken by adding appropriate symmetry-breaking predicates to
a SAT instance. These predicates prune the search-space by acting as afilter that confines the search to
non-symmetric regions of the space without affecting the satisfiability of the instance. |Crawford et &l
(1996) attempted to utilise these techniques to break symmetry in some CSPs. This work showed how
symmetries can be utilised by adding additional constraintsto search problems, thereby ensuring that the
SAT-Solver never visits two pointsin the search-space that are equivalent under some symmetry of the
problem. The complexity resultsin this study suggested that generating symmetry-breaking predicates
is exponential in the general case. Crawford’'s empirical results were not compelling, but suggested that
partial symmetry breaking - that can be done in polynomial-time - might address this issue. Aswith any
form of preprocessing, for symmetry-breaking to be effective in practice, the computational overhead
of generating and manipulating the predicates must be significantly less than the run-time savings they
yield due to search-space pruning. Recently |Aloul et al| (2006) showed that formulae can be simplified

using symmetry-breaking techniques that lead to run-time reductions on many benchmarks.

7.3.2 Extended Proof-Systems

Notable research has been developed around symmetry during the past 20 years, and despite extended
proof-systems appearing in the literature 40 years ago, very little practical and theoretical advances have
been made. There is a close relationship between extended proof-systems and symmetry; both add

predicates with the aim to improve the solubility (or tractability) of a problem.

CHALLENGE 3: Demonstrate that a propositional proof-system more powerful than Res-
olution can be made practical for satisfiability testing.

Although | have provided no major contribution to the area of extended proof-systemsin thisthesis,
| imagine that this topic will become more important over the next decade. | argue that although almost
nothing is known about how to ‘intelligently’ use auxiliary variables, in Section | have described
a simple way to automate this process. As with recent advances in branching heuristics and use of
symmetry-breaking clauses, | predict that the use of auxiliary variableswill providethe next great leaps
in algorithmic performance.

The aim of introducing Extended-Consistency was to provide a general platform to allow the Con-
straint Satisfaction and SAT communities to share knowledge about these extended proof-systems and
to begin to exploit synergies that are mutually beneficia to each field. This extends the work of Tseitin,

7.4. Exploitation 126

Baker and Mitchell, and provides a platform to communicate the wealth of theoretical results that have

been previously discovered about the power of extended proof-systems.

By demonstrating how this graph-theoretic framework can help unify the findings in these various
lines of work, | hope to utilise techniques from Graph Theory (and the wider Theoretical Computer
Science community) that can be exploited and that are mutually beneficial. For instance, [Yang (2005)
published a Graph Theory paper describing an agorithm for ‘ Finding k-cliques on a k-partite Graphs'.
These techniques (as with constraint-based techniques) are largely ignored by the SAT community. |

intend to further the research into extended proof-systemsin two ways:

1. To utilise the wealth of theoretical knowledge from the CSP community to develop Extended
SAT agorithms that more effectively employ auxiliary variables, yet attempting to maintain the

performance benefits of modern SAT-Solvers.

2. To look for (in)tractable cases for Extended-Consistency and Extended-Resolution and identify

worse-case complexity bounds for these types of proof-systems.

Sincethere are no known hard problemsfor extended proof-systems, this research may prove useful
in answering a question raised by |Rossi et all (1990), which is “Can you reduce in polynomia-time a
SAT problem to a polynomial bounded graph that contains the same amount of information?’. In fact, |
envisage that some of the most important theoretical discoveries yet to be made in Complexity Theory

will centre around extended proof-systems.

From a practical perspective, it is well-known that many modern SAT-Solvers suffer from wide
clauses (Van Gelder (2006)), so by introducing auxiliary variables we can implement techniques to
maintain a constant arity (width), employ symmetry-breaking, and develop this research to exploit
the potential of these powerful proof-systems. We are still quite far from understanding the reason-
ing power of even the most simple Resolution algorithms with many of the basic questions still open
(Ben-Sasson & Wigderson (1999)). The main aim of this thesis (and the subsequent research | propose)
is to attempt to cultivate cross-fertilisation between the CSP and SAT research, providing the oppor-
tunity to gain deeper insights into Theoretical Computer Science by bridging the fields of Constraint
Satisfaction and Propositional Satisfiability.

7.4 Exploitation

In this section | provide an overview of the use of SAT agorithmsin EDA and highlight many of the
prominent issues facing the industry. | discuss the direct benefits that improvementsis SAT technology

may have on the Formal Verification aspect of the EDA industry and beyond.

7.4. Exploitation 127

7.4.1 Electronic Design Automation

Electronic Design Automation (EDA) is the umbrella term for the category of tools used for designing
and producing electronic systems ranging from Printed Circuit Boards (PCBs) to Integrated Circuits
(also referred to as IC, microchips, silicon chips, or chips). Formal Verification is the process of testing
chip designs for correctness using exhaustive and complex mathematical algorithms. It is estimated that
around two thirds of IC projectsfail to complete on schedule. Asthe design complexity of chips rapidly
increases, it is becoming more and more difficult to test for errors with ‘functional failure' cited as the

number one cause by awide margins.

7.4.1.1 Chip Verification

There are two mechanisms to test a chip design for correctness, 1. Simulation-based Verification 2.
Formal-based Verification. The consensusisthat Simulation and Formal Verification are complementary
and that together they have the potential of giving the highest verification coverage in the fastest ti meH.

In 2003, a typical 90nm design project cost about $25million to undertake and approximately half
of the costs of any design project are on verificationH. About 70% of new designs come back with
errors when fabricated and tested. This is not because of problems with yield or timing, but because
of functiona problems that were missed during design verificationH. On average 50% of the entire
design effort is currently focused on verification and as the design of chips become more complex this
increasing verification bottleneck is lengthening the design cycle, delaying time-to-market and reducing
profits. Consequently, chip manufacturers - faced with increasingly costly designs and delays, potential
recall of faulty chips and huge reputational risks - are applying pressure to EDA tool vendorsto deliver
more effective and robust verification solutions. Thisis just one issue adding the “ design catastrophe’
facing chip designers and threatening the accepted prediction of Moore's Law (IMann (2000)).

As design complexity has increased the tools that design engineers have at their disposal have be-
come insufficient. Desperate to provide sufficient verification services, but limited by the capabilities of
the verification algorithms, EDA suppliers are struggling to meet current needs and expected demandsl.
Traditional simulation-based verification techniques are being pushed past their limits in an effort to
produce functionally correct new designs. It is not uncommon for IC design teams to write hundreds or
thousands of tests in addition to many months of pseudo-random simulationsin an effort to test all chip
functionality and hit all the ‘ corner cases' (difficult cases) of the design.

Ultimately, trying to verify large designs by simulation alone is alosing battle. The size and com-

plexity of chips are growing much faster than devel opment teams can generate tests and servers can run

3Mentor Graphics: European ESL Survey 2005.

4Formal Verification Usagewith FPGAs-http: //latticeblogs.typepad.com/frontier/2006/08/formal verifica.html
SNowadays atypical 65nm design project costs $60, with around 70% of the cost on verification.

8Fragmentation of the IC Verification Process -http: //www.edat . com/NEA21 . htm

"FPGA Explosion Will Test EDA - http://www.elecdesign.com/Articles/Index.cfm?ArticleID=15910&bypass=1

http://latticeblogs.typepad.com/frontier/2006/08/formal_verifica.html
http://www.edat.com/NEA21.htm
http://www.elecdesign.com/Articles/Index.cfm?ArticleID=15910&bypass=1

7.4. Exploitation 128

them. A fundamentally different approach is needed in order to address this dilemma. The only viable
aternative to simulation is Formal Verification - the use of mathematical analysis to prove properties
about a design or, when proofs cannot be found, to generate diagnostic data to show how the design is
inconsistent with the properties. Formal Verification has been around for decades in academia, used in
afew large companiesfor nearly aslong, and been available in commercial EDA products for about ten
years]. While large companies like IBM, Intel and Motorola have routinely hosted Formal Verification
experts since the early ‘90s (Guptaet a. (2003)) the algorithmsto support this type of analysis were not

sufficient to use as a routine part of the design process.

7.4.1.2 Adopting SAT-Solvers

Verification methods based on SAT-Solvers have recently emerged as a promising solution (|Prasad et al.
(2005)). For thisreason SAT has been extensively studied in theory for the past 50 years and in practice
for the past 15 years. Hundreds of academic and industrial researchers are actively working on SAT
algorithms, and thousands of articles have been published to date. Dramatic improvementsin SAT-solver
technology over the past decade have led to the devel opment of several powerful SAT-Solvers.

As aresult the use of Formal Verification has increased significantly over the last few years and it
is now estimated that about 15% of the bugsin chip designs can only be found using Formal Verification
and up to 40% of the logic in atypical design project can be tested using Formal Verification analysis
subject to careful planning (Ludden et al | (2002)). Thisisin marked contrast with the situation a decade
and a half ago, when the fact that “ every problemin NP can be reduced to SATin polynomial-time” was
widely regarded as being of only theoretical interest. Conventional wisdom was that a general purpose
algorithm could not be expected to perform well on real-world search or decision problems.

So, once a hit of a novelty, SAT-Solving is now a commercially valuable and competitive activ-
ity, with widespread interest in academia and increasingly attracting the attention of a growing base in
industry. SAT-based verification is now been applied to software as well as hardware (Jackson et al
(2000)), with the SAT-Solver's major advantage over simulation-based techniques attributed to their ca-
pacity either to assert that a property holds, or to compute a sequence that violates the property. Indeed,
Formal Verification often uncoversbugs and corner casesthat are very unlikely to be discovered by sim-
ulation alone. Formal Verification can also be initiated earlier in the design cycle and therefore improves
time-to-market over the conventional verification by simulation. This meansthat Formal Verification can
improve the design processin two ways, reduce the time to tape out (time-to-market), and reducing risk
through better verification coverage.

However, the transfer of Formal Verification technology is a time consuming and costly business.

This means that although the returns in investing in learning about and using formal methods in the

SFPGA Explosion Will Test EDA-http://www.elecdesign.com/Articles/Index.cfm?ArticleID=15910&bypass=1

http://www.elecdesign.com/Articles/Index.cfm?ArticleID=15910&bypass=1

7.4. Exploitation 129

long term may be large, the effects and benefits are less obvious than some of the other more popular
techniques that come and go with fashion (Bowen & Hincheyl (1997)).

Degspite this, even marginal improvementsin SAT algorithms can help IC design engineers to test
their designs more quickly, allowing IC manufacturers to significantly reduce time-to-market, decrease
the risk of faulty chips and thereby increase profits. As | have discussed throughout this thesis, although
it is well-know that the encoding can have a significant impact on the solubility of a problem the SAT
community typically adopt only one. Moreover, | have shown that coupling the encoding with an efficient
preprocessor, it is possible to solve many of the problems thought to be “hard’ for traditional SAT-
Solvers.

Many ‘natural’ CSPs can be encoded into SAT. This property makes the value of improving SAT-
Solvers extend beyond the area of EDA and Verification, offering the possibility to benefit other in-
dustries by incorporating a whole range of ‘hard’ natural problems, such as timetabling or scheduling.
Developing theoretical knowledge should be complemented by practical application. With some re-
search, too much emphasis is paid to either one or the other, which is why | attempt to find a balance

between both in this thesis.

Appendix A

Benchmark File For mat

A.1 DIMACSCNF Format

To represent an instance of CNF problems, DIMACS (1993) has suggested afile format that containsall
of the information needed to define a satisfiability problem. Thisfile will be an ASCII file consisting of
atwo major sections: the preamble and the clauses.

The Preamble. The preamble contains information about the instance. This information is con-
tained in lines. Each line begins with a single character (followed by a space) that determines the type

of line. Thetype of lines are as follows:

e Comments. Comment lines give human-readable information about the file and are ignored by
programs. Comment lines appear at the beginning of the preamble. Each comment line begins

with alower-case character c.
c This is an example of a comment line.

e Problem line. Thereis one problem line per input file. The problem line must appear before any

node or arc descriptor lines. For cnf instances, the problem line has the following format.
p FORMAT VARIABLES CLAUSES

The lower-case character p signifies that this is the problem line. The FORMAT field allows pro-
grams to determine the format that will be expected, and should contain the word ‘cnf’. The
VARIABLES field contains an integer value specifying n, the number of variablesin the instance.
The CLAUSES field contains an integer value specifying m, the number of clausesin theinstance.

Thisline must occur as the last line of the preamble.

The Clauses. The clauses appear immediately after the problem line. The variables are assumed to
be numbered from 1 up to n. It is not necessary that every variable appear in an instance. Each clause

will be represented by a sequence of numbers, each separated by either a space, a tab, or a new line

A.1. DIMACS CNF Format 131

character. The non-negated version of avariable is represented by i; the negated version is represented
by —i.

Each clauseisterminated by the value 0. Unlike many formats that represent the end of a clause by
anew-line character, this format allows clauses to be on multiple lines.

Example. Using the example

(1 Va3V ITg) A(xg) A (22 V T3) (A2)
apossible input file would be

c Example CNF format file

C

and the input file for formulal2. could be

Q

3SAT Equation example

c Daniel J Hulme

p cnf 4 4
1230
-1 2 -3 0
1 -240

-2 -3 -4 0

CNF format fileswill generally havea . cnf extension.

Appendix B

SAT Encodings

B.1 L oG Encoding of Example2.2.3

If we use the LoG encoding, the SAT instance of the GRAPH 3-COLOURABILITY Example[2.2.3 (on the

assumption that the binary valuesmapto R = (0,0),G = (0,1) and B = (1,0)) is:
o negative: (v 1]V, [1)A(Vz, [1]V 0z, [1]) A (O, [L]V 00y [1]) A (Vg [1]V 0 [1]) A (D, [1] V0, [1])

e constraint: (vg, [0]V vz, [1]V e, [0]VUg, [1]) A (Ve [0]V Uz [1]V Uy [0] VU, [1]) A (Ve [0] VUi, [1] V
Wz (0] V 0y [1]) A (02 [0] V 0 [1]V 02 [0] V 02, [1]) A (v, [0] V 02, [1] V 0, [0] V 0, [1]) A (02, [0] V
Vgy [1]V 025 [0] V 05 [1]) A (Vg [0] V Uy [1] V 02, [0] V 2, [1]) A (025 [0] V 0 [1] V 025 [0] V 0 [1]) A
(V2 [0] V 0y [1] V 02, [0] V vz, [1]) A (Ve [0] V sy [1] V 02, [0] V 0y [1]) A (Vg [0] V D [1] V v, [0] V
Oy [1]) A (Vg [0] V s [1] V025 [0] V Ty [1]) A (02 [0] V D [1] V 0255 [0] V Ty [1]) A (0 [0] V s [1] V
Vs [0]V Uy [1]) A (02, [0] V Ty [1] V 025 [0] V Ty [1]) A (0, [0] V Ty [1] V 025 [0] VD [1]) A (02, [0] V
Uz, [1]V 02, [0] V O, [1]) A (0 [0] V Dy [1] V 02 [0] V 0 [1]) A (02, [0] V 0, [1] V 03, [0] V 0, [1]) A
(Vo [0] V B [1] V 0, [0] V Tz [1]) A (T [0] V Vi [1] V Ty [0] V 0y [1]) A (B [0] V 0 [1] V 1y [0] V
Vs [1]) A (T [0V Vg [1] V Ty [0V 0y [1]) A (B [0] V Vg [1] V T [0]V 0y [1]) A (B, [0] V0, [1] V
B2, [0]V Vg, [1]) A (i, [0] V Vg, [1]V By [0] V 0y [1]) A (T, [0] V 0y [1]V Ty [0] V 0, [1]) A (0, [0] V

Uy [1] V 0 [0] V 035 [1]) A (02, [0] V 05, [1] V 0, [0] V 03 [1]) A (D [0] V 02 [1] V 0, [0] V 0z, [1])

B.2 INVERSE Encoding of Example2.2.3

The CNF formula (excluding negative clauses) resulting from the INVERSE encoding of Example [2.2.3
is the conjunction of:

e positive: (lcé%clc \/lcéacjle \/lcg;c{? \/lcg;cf \/lcgc{? \/lcéaclc)/\ (lcéch; \/lcgcf \/lcchf \/ZCOGCE \/lcéacg V

lepea) Nlereg Vierep Vg Ve n Vs Vs g) Nlereg Vieres VG en Ve s Vs cr V

lep G)Aep e Viepep Vg m Vg 5 Vs Vs &)Nep o Viepep Vg m Vg 5 Vlep 2 Vs)

B.2. INVERSE Encoding of Example[ZZ.3 133

(lepes Vieper) Nlepeo Viger) Nleree Vo en) Nleres Viesen) ANleres Vigen) A(leres V
leper) Alegen Vieneg) Nleeen Viepg) ANlegen Vieneg) Alegep Viepog) ANleper Vieres) A
(epen Viegep) Nlepeg Vienes) ANlepeg Vieg o) Nlereg Vieaer) Alereg Vieser) Alerep V
leger) Alerep Vieper) Nleger Vieneg) ANleoer Viepeg) Alegep Viereg) Nlegen Viepeg) A
(epen Vienes) ANleper Vieges) ANlepeg Vieres) ANIepeg Vieaes) Alereg Vieger) Alereg V
leper) Alerep Vieger) ANlenes Viepen) Aleger Vieneg) Alegen Viepeg) ANlegen Viereg) A
(legen Viepeg) Nleper Vieres) A(lepen Vo) ANlepeg Vieres) AN(lepeg Vieoes) Alepeo V
leger) Nlepes Vs o) ANlepes Vg en) Alepes Viepep) ANleger Viepeg) ANleger Vs g) N
(leger Vieneg) Nlogen Vipeg) Nlepen Viepes) Nlepen Vg o) ANlep o Vienes) ANlopes V
legen) Nlepee Vg er) ANlepea Vs er) Alepes Vigen) ANlenes Vs o) Alegern Vg eg) N
(leger ViIepeo) Nlogen Vipes) Nleg o Vies o) Alepen Vieges) ANlepen Vigen) ANlop s V
lesien) Nl ee Vg o) ANlepeg Viegen) ANleneg Ve en) ANlepes Vieger) Alepes Vs en) A
(lLeger Vieneo) ANlogen Vo) Nlegen Vlepea) ANlegen Viep o) ANlepen Vs) ANlepen V
legen) NIepog Viepes) ANlepeg Vigen) ANlenes Vieger) Alereg Vs o) A (lopep Vg on) N
(lenep Viepep) Nlegen Vieneg) Nlegen Viep) ANlegep Vierog) ANlogep Vi g) ANl en V
lenep) Nlepep Vieger) ANlepeg Vierep) A (Icpeg Vleaep)

Bibliography

Achlioptas, D., Chtcherba, A., Istrate, G., & Moore, C. (2001). The phase transition in 1-in-k SAT and
NAE 3-SAT. In Proceedings of the twelfth annual ACM-SAM symposium on Discrete algorithms,
(pp. 721-722). Society for Industrial and Applied Mathematics Philadelphia, PA, USA.

Achlioptas, D., Naor, A., & Peres, Y. (2005). Rigorous|ocation of phase transitionsin hard optimization
problems. Nature, 435, 759-764.

Adleman, L., & Manders, K. (1977). Reducibility, randomness, and intractibility (Abstract). In STOC
"77: Proceedings of the ninth annual ACM symposium on Theory of computing, (pp. 151-163). New
York, NY, USA: ACM Press.

Ajtai, M. (1994). The complexity of the Pigeonhole Principle. Combinatorica, 14(4), 417-433.

Aloul, F, Sakalah, K., & Markov, I. (2006). Efficient Symmetry Breaking for Boolean Satisfiability.
|EEE TRANSACTIONS ON COMPUTERS, 55, 549-558.

Anbulagan, & Slaney., J. (2006). Multiple preprocessing for systematic sat solvers. In IWIL-6, 2006.
Workshop in conjunction with LPAR-2006.

Ansotegui, C., & Manya, F. (2004). Mapping problems with finite-domain variables into problems with
boolean variables. SAT 2004.

Asahiro, Y., Iwama, K., & Miyano, E. (1993). Random generation of test instances with controlled
attributes. Second DIMACS Challenge Workshop.

Atserias, A., & Damau, V. (2003). A combinatorial characterization of resolution width. Computational

Complexity, 2003. Proceedings. 18th IEEE Annual Conference on, (pp. 239-247).

Atserias, A., Kolaitis, P, & Vardi, M. (2004). Constraint Propagation as a Proof System. In 10th

Int.Conf. on Principles and Practice of Constraint Programing, LN in Computer Science, vol. 3258,

(pp. 77-91). Springer.

Bacchus, F., & Grove, A. (1995). On the Forward Checking Algorithm. Principles and Practice of
Constraint Programming, (pp. 292-309).

BIBLIOGRAPHY 135

Bacchus, F., & van Beek, P. (1998). On the conversion between non-binary and binary constraint satisfac-
tion problems. Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98) and
of the 10th Conference on Innovative Applications of Artificial Intelligence (1AAI-98), (pp. 311-318).

Bacchus, F., & Winter, J. (2003). Effective preprocessing with hyper-resolution and equality reduction.
InIn SAT, (pp. 341-355).

Bachmair, L., & Ganzinger, H. (2001). Resolution theorem proving. Handbook of Automated Reasoning,

1, 19-99.

Bailleux, O., & Boufkhad, Y. (2003). Efficient CNF encoding of boolean cardinality constraints. Prin-

ciples and Practice of Constraint Programming - 9th International Conference, CP.

Baker, A. (1995). Intelligent Backtracking on Constraint Satisfaction Problems: Experimental and

Theoretical Results. Ph.D. thesis, University of Oregon.

Beame, P, & Pitassi, T. (1996). Simplified and improved resolution lower bounds. 37th Annual Sympo-

sium on Foundations of Computer Science, 274282.

Beldiceanu, N., Carlsson, M., & Rampon, J. (2005). Global Constraint Catalog. Technical Report
T2005-06, Snvedish Ingtitute of Computer Science, Kista..

Ben-Sasson, E. (2001). Expansion in Proof Complexity. Ph.D. thesis, Hebrew University.

Ben-Sasson, E., & Wigderson, A. (1999). Short proofs are narrowresol ution made simple. Proceedings
of the thirty-first annual ACM symposium on Theory of computing, (pp. 517-526).

Bennaceur, H. (1996). The satisfiability problem regarded as a constraint satisfaction problem. Proc.
ECAI, 96, 155-159.

Bennaceur, H. (2004). A Comparison between SAT and CSP Techniques. Constraints, 9(2), 123-138.

Bessiere, C., & Cordier, M.-O. (1994). Arc-Consistency and Arc-Consitency Again. In M. Meyer (Ed.)
Proceedings ECAI’ 94 Workshop on Constraint Processing. Amsterdam.

URL citeseer.ist.psu.edu/bessiere94arcconsistency.html

Bessiére, C., Freuder, E., & Regin, J. (1999). Using constraint metaknowledgeto reduce arc consistency
computation. Artificial Intelligence, 107(1), 125-148.

Bessiere, C., Hebrard, E., & Walsh, T. (2003). Local Consistenciesin SAT. Proc. SAT-2003.

Bessiere, C., Meseguer, P, Freuder, E., & Larrosa, J. (2002). On forward checking for non-binary
constraint satisfaction. Artificial Intelligence, 141, 205224.

citeseer.ist.psu.edu/bessiere94arcconsistency.html

BIBLIOGRAPHY 136

Bonet, M., Buss, S, & Pitassi, T. (1994). Are there hard examples for Frege systems. Feasible Mathe-
matics |1, (pp. 30-56).

Bordeaux, L., Hamadi, Y., & Zhang, L. (2006). Propositional Satisfiability and Constraint Programming:
A comparative survey. ACM Computing Surveys (CSUR), 38(4).

Bowen, J.,, & Hinchey, M. (1997). The Use of Industrial-Strength Forma Methods. Proc. COMP-
SAC97: 21st IEEE Annal International Computer Software and Application Conference, WWashington
DC, USA, (pp. 332-337).

Brafman, R. (2004). A Simplifier for Propositional Formulas With Many Binary Clauses. |EEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), 52-59.

Brailsford, S., Potts, C., & Smith, B. (1999). Constraint satisfaction problems: Algorithms and applica-
tions. European Journal of Operational Research, 119(3), 557-581.

Broadfoot, G., & Broadfoot, P. (2003). Academia and industry meet: some experiences of formal

methodsin practice. Software Engineering Conference, 2003. Tenth Asia-Pacific, (pp. 49-58).
Buchberger, B., & Winkler, F. (1998). Gr dbner Bases and Applications. Cambridge University Press.

Buss, S. (1987). Polynomia Size Proofs of the Propositional Pigeonhole Principle. The Journal of
Symbolic Logic, 52(4), 916-927.

Buss, S., & Turan, G. (1988). Resolution Proofs of Generalized Pigeonhole Principles. TCS, 62(3),
311-317.

Cheeseman, P, Kanefsky, B., & Taylor, W. (1991). Where the really hard problems are. Proceedings of
the 12th |JCAI, (pp. 331-337).

Clark, D., Frank, J., Gent, |., MacIntyre, E., Tomov, N., & Walsh, T. (1996). Local search and the number
of solutions. Proc. 2nd Int. Conf. on the Principles and Practices of Constraint Programming, (pp.

119-133).

Clegg, M., Edmonds, J., & Impagliazzo, R. (1996). Using the Groebner basis algorithm to find proofs of
unsatisfiability. Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
(pp. 174-183).

Cohen, D., Jeavons, P, Jonsson, P, & Koubarakis, M. (2000). Building tractable disunctive constraints.
Journal of the ACM (JACM), 47(5), 826-853.

Condrat, C., & Kalla, P. (2007). A Grobner Basis Approach to CNF-Formulae Preprocessing. In Tools
and Algorithms for the Construction and Analysis of Systems 13th International Conference, TACAS

BIBLIOGRAPHY 137

2007, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2007, Braga, Portugal, March 24-April 1, 2007: Proceedings. Springer.

Cook, S. (1976). A short proof of the pigeon hole principle using extended resolution. ACM SIGACT
News, 8(4), 28-32.

Cook, S. (2003). Theimportance of the P versus NP question. J. ACM, 50(1), 27-29.

URL citeseer.ist.psu.edu/634970.html

Cook, S., & Mitchell, D. (1997). Finding hard instances of the satisfiability problem: A survey. Satisfi-

ability Problem: Theory and Applications, 35, 1-18.

Cook, S., & Reckhow, R. (1979). The Relative Efficiency of Propositional Proof Systems. The Journal
of Symbolic Logic, 44(1), 36-50.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In STOC ' 71: Proceedings of the
third annual ACM symposium on Theory of computing, (pp. 151-158). New York, NY, USA: ACM

Press.

Cook, S. A. (2000). The P Versus NP Problem. Computer Science Department, University of Toronto.
Available at http://www.cs.toronto.edu/sacook/homepage/PvsNPps.

URL citeseer.ist.psu.edu/302888.html

Cooper, M. C., Cohen, D. A., & Jeavons, P. (1994). Characterising Tractable Constraints. Artificial
Intelligence, 65(2), 347-361.

URL |citeseer.ist.psu.edu/cooper94characterising.html

Crawford, J., & Auton, L. (1996). Experimental results on the crossover point in random 3-SAT. Artifi-
cial Intelligence, 81(1-2), 31-57.

Crawford, J.,, Ginsberg, M., Luks, E., & Roy, A. (1996). Symmetry-breaking predicatesfor search prob-
lems. Proceedings of the Fifth International Conference on Principles of Knowledge Representation

and Reasoning.

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem-proving. Communi-

cations of the ACM, 5(7), 394-397.

Davis, M., & Putnam, H. (1960). A Computing Procedure for Quantification Theory. Journal of the
ACM (JACM), 7(3), 201-215.

deKleer, J. (1989). A comparison of ATMS and CSP techniques. Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence, (pp. 290-296).

citeseer.ist.psu.edu/634970.html
citeseer.ist.psu.edu/302888.html
citeseer.ist.psu.edu/cooper94characterising.html

BIBLIOGRAPHY 138

Dechter, R. (1990). On the Expressiveness of Networks with Hidden Variables. In Eighth national

conference on Artificial intelligence, (pp. 556-562).

Dechter, R. (19924). Constraint Networks. Information and Computer Science, University of California,

Irvine.

Dechter, R. (1992b). From Local to Global Consistency. Artificial Intelligence, 55(1), 87—108.

URL citeseer.ist.psu.edu/dechter92from.html
DIMACS (1993). Satisfiability Suggested Format.

Do, M., & Kambhampati, S. (2001). Planning as constraint satisfaction: Solving the planning graph by
compiling it into CSP. Artificial Intelligence, 132(2), 151-182.

Een, N., & Biere, A. (2005). Effective preprocessing in SAT through variable and clause elimination.
SAT 2005: international conference on theory and applications of satisfiability testing, 3569, 61—75.

Een, N., & Sorensson, N. (2003). MiniSat: A SAT solver with conflict clause minimization. Proc. SAT,
5.

Esteban, J., & Toran, J. (2001). Space Bounds for Resolution. Information and Computation, 171(1),

84-97.

Fortnow, L., & Homer, S. (2002). A Short History of Computational Complexity. Bull. Eur. Assoc.
Theor. Comput. Sci, 80, 95-133.

URL |citeseer.ist.psu.edu/fortnow02short.html
Freuder, E. (1978). Synthesizing constraint expressions. Communications of the ACM, 21(11), 958-966.

Freuder, E. (1982). A Sufficient Condition for Backtrack-Free Search. Journal of the ACM (JACM),
29(1), 24-32.

Frisch, A., & Peugniez, T. (2001). Solving non-boolean satisfiability problems with stochastic local
search. Proc. 1JCAI, 1, 282—288.

Gdlil, Z. (1977). On Resolution with Clauses of Bounded Size. S AM Journal on Computing, 6, 444.

Garey, M. R., & Johnson, D. S. (1990). Computers and Intractability; A Guide to the Theory of NP-
Completeness. New York, NY, USA: W. H. Freeman & Co.

Gasarch, W. (2002). Guest column: The P=? NP poll. SSGACT NEWS, 33(2), 34-47.

Gaschnig, J. (1974). A constraint satisfaction method for inference making. In Proceedings of the
Twelfth Annual Allerton Conference on Circuit Systems Theory, (pp. 866-874).

citeseer.ist.psu.edu/dechter92from.html
citeseer.ist.psu.edu/fortnow02short.html

BIBLIOGRAPHY 139

Gent, |. (2002). Arc consistency in SAT. Fifteenth European Conference on Artificial Intelligence, (pp.
121-125).

Gent, I., Jefferson, C., & Miguel, I. (2006). Minion: A Fast Scalable Constraint Solver. FRONTIERSIN
ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 141, 98.

Gent, |., MacIntyre, E., Prosser, P, & Walsh, T. (1996). The constrainedness of search. Proceedings of
AAAI-96, 1, 246-252,

Gent, |., Prosser, P, & Walsh, T. (2003). The extended literal encoding of SAT into CSP. Tech. rep., Tech-
nical Report APES-73-2003, APES Research Group, November 2003. Available from http://www.

dcs. stand. ac. uk/apes/apesreports. html.

Gent, ., & Walsh, T. (1996). The Satisfiability Constraint Gap. Artificial Intelligence, 81(1), 59-80.

Gent, |. P, & Walsh, T. (1994). The sat phase transition. In Proceedings of 11th ECAI, (pp. 105-109).
John Wiley & Sons.

Gent, I. P, & Walsh, T. (1995). Phase transitions from real computational problems. In In Proceedings
of the 8th International Symposium on Artificial Intelligence, (pp. 356-364).

Goldberg, E., & Novikov, Y. (2002). BerkMin: A fast and robust SAT-solver. Design, Automation and
Test in Europe Conference and Exhibition, 2002. Proceedings, (pp. 142—149).

Grant, S., & Smith, B. (1995). The Phase Transition Behaviour of Maintaining Arc Consistency. Uni-

versity of Leeds, School of Computer Studies.

Green, M. (2005). New Methods for the Tractability of Constraint Satisfaction Problems. Ph.D. thesis,
University of London, Department of Computer Science, Royal Holloway, Egham, Surrey, UK.

URLhttp://www.cs.rhul.ac.uk/home/green/publications/thesis/MJGreen PhDThesis.ps

Gu, J., Purdom, P, Franco, J., & Wah, B. (1997). Algorithms for the Satisfiability (SAT) Problem: a
Survey. Discrete Mathematics and Theoretical Computer Science: Satisfiability, (pp. 378-383).

URL citeseer.ist.psu.edu/56722.html

Gupta, R., et a. (2003). Panel: Formal Verification: Provelt or Pitch It. Design Automation Conference,

June.

Haanpaa, H., Jarvisalo, M., Kaski, P, & Niemela, 1. (2005). SAT Benchmarks based on 3-Regular
Graphs. In SAT Competition 2005.

Haken, A. (1985). The Intractability of Resolution. TCS, 39, 297-308.

http://www.cs.rhul.ac.uk/home/green/publications/thesis/MJGreen_PhDThesis.ps
citeseer.ist.psu.edu/56722.html

BIBLIOGRAPHY 140

Haralick, R., & Elliott, G. (1980). Increasing Tree Search Efficiency for Constraint Satisfaction Prob-
lems. Artificial Intelligence, 14(3), 263-313.

Hartmanis, J., & Stearns, R. (1965). On the Computational Complexity of Algorithms. Transactions of

the American Mathematical Society, 117, 285-306.
Hooker, J. (2007). Integrated Methods for Optimization. Springer.
Hoos, H. (1999). Stochastic Local Search-Methods, Models, Applications. 10S Press.

Hoos, H. H., & Stitzle, T. (2000). SATLIB: An Online Resource for Research on SAT. In SAT 2000,
(pp. 283-292). 10S Press.

URL citeseer.ist.psu.edu/hoos00satlib.html

Hulme, D. J., Hirsch, R., Buxton, B., & Lotto, R. (2007). A new reduction from 3sat to n-partite graphs.
In FOCI'07: |IEEE Symposium on Foundations of Computational Intelligence, IEEE Symposium on

Computational Intelligence. Honolulu, Hawaii, USA: |EEE Computer Society.

Hwang, C. (2004). A Theoretical Comparison of Resolution Proof Systems for CSP Algorithms. Ph.D.
thesis, SSIMON FRASER UNIVERSITY.

Istrate, G. (2002). Phase Transitionsand all that. Arxiv preprint ¢s.CC/0211012.

Jackson, D., Schechter, I., & Shlyakhter, I. (2000). Alcoa: the Alloy constraint analyzer. Software
Engineering, 2000. Proceedings of the 2000 I nter national Conference on, (pp. 730—-733).

Jarvisalo, M., & Niemela, |. (2004). A Compact Reformulation of Propositional Satisfiability as Binary
Constraint Satisfaction. Modelling and Reformulating Constraint Satisfaction Problems, (pp. 111—
124).

Jeavons, P, Cohen, D., & Cooper, M. C. (1998). Constraints, consistency and closure. Artif. Intell.,
101(1-2), 251-265.

Jeavons, P, Cohen, D., & Gyssens, M. (1997). Closure properties of constraints. Journal of the ACM,
44(4), 527-548.

URL citeseer.ist.psu.edu/jeavons97closure.html

Jeavons, P, & Cooper, M. C. (1995). Tractable Constraints on Ordered Domains. Artificial Intelligence,
79(2), 327-339.

URL citeseer.ist.psu.edu/jeavons95tractable.html

Jeavons, P. G., Cohen, D. A., & Gyssens, M. (1996). A Test for Tractability. In Proceedings 2nd
International Conference on Constraint Programming—CP’ 96 (Boston, August 1996), vol. 1118, (pp.

citeseer.ist.psu.edu/hoos00satlib.html
citeseer.ist.psu.edu/jeavons97closure.html
citeseer.ist.psu.edu/jeavons95tractable.html

BIBLIOGRAPHY 141

267-281). Springer-Verlag.

URL citeseer.ist.psu.edu/jeavons96test.html

Jegou, P. (1993). Decomposition of domains based on the micro-structure of finite constraint satisfaction
problems. Proceedings of the 11th (US) National Conference on Artificial Intelligence (AAAI-93),
(pp. 731-736).

Jussila, T., Sinz, C., & Biere, A. (2006). Extended resolution proofs for symbolic SAT solving with
quantification. 9th Intl. Conf. on Theory and Applications of Satisfiability Testing, 4121, 54—60.

Karp, R. (1972). Reducibility among combinatoria problems. Complexity of Computer Computations,
43, 85-103.

Kasif, S. (1990). On the parallel complexity of discrete relaxation in constraint satisfaction networks.
Artificial Intelligence, 45(3), 275-286.

Kask, K., & Dechter, R. (1995). GSAT and local consistency. Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, (pp. 616-622).

Krajicek, J., & Pudlak, P. (1989). Propositional Proof Systems, the Consistency of First Order Theories
and the Complexity of Computations. The Journal of Symbolic Logic, 54(3), 1063-1079.

Kulikov, A. (2005). An upper bound O (2 0.16254 n) for exact 3-satisfiability: a simpler proof. Journal
of Mathematical Sciences, 126(3), 1195-1199.

Kullmann, O. (1999). On a generalization of extended resolution. Discrete Applied Mathematics, 96,
149-176.

Kullmann, O. (2004). Upper and Lower Bounds on the Complexity of Generalised Resolution and Gen-
eralised Constraint Satisfaction Problems. Annals of Mathematics and Artificial Intelligence, 40(3),
303-352.

Lecoutre, C., Boussemart, F., & Hemery, F. (2003). Exploiting multidirectionality in coarse-grained arc

consistency algorithms. Proceedings of CP03, (pp. 480-494).

Ludden, J., Roesner, W., Heiling, G., Reysa, J., Jackson, J., Chu, B., Behm, M., Baumgartner, J., Pe-
terson, R., Abdulhafiz, J., et a. (2002). Functional verification of the POWER 4 microprocessor and
POWER 4 multiprocessor systems. |BM Journal of Research and Development, 46(1), 53—-76.

Lynce, I., & Marques-Silva, J. (2001). Theinteraction between simplification and search in propositional
satisfiability. In CP2001 Workshop on Modelling and Problem Formulation (Formul01).

citeseer.ist.psu.edu/jeavons96test.html

BIBLIOGRAPHY 142

MaclIntyre, E., Prosser, P, Smith, B., & Walsh, T. (1998). Random constraint satisfaction: theory meets
practice. Proceedings of CP-98, Pisa, Italy, 19, 325-339.

Mackworth, A. (1975). Consistency in Networks of Relations. Tech. rep., University of British Columbia

Vancouver, BC, Canada, Canada.

Mackworth, A., & Freuder, E. (1985). The complexity of some polynomial network consistency ago-

rithms for constraint satisfaction problems. Artificial Intelligence, 25(1), 65—74.

Madsen, B., & Rossmanith, P. (2004). Maximum exact satisfiability: NP-completeness proofs and exact
algorithms. Tech. rep., BRICS.

Mann, C. (2000). The End of Moores Law. Technology Reviev—MITs Magazine of Innovation,

May/June.

Marques-Silva, J., & Lynce, |. (2007). Towards Robust CNF Encodings of Cardinality Constraints. In

International Conference on Principles and Practice of Constraint Programming, vol. 4741, (p. 483).

Springer.

McAllester, D., Selman, B., & Kautz, H. (1997). Evidencefor invariantsin local search. Proceedings of
AAAI, 97, 321-326.

Mitchell, D. (1998). Hard problems for CSP algorithms. Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence, (pp. 398—-405).

Mitchell, D. (2002). The Resolution Complexity of Constraint Satisfaction. Ph.D. thesis, University of

Toronto.

Mitchell, D. (2003). Resolution and constraint satisfaction. CP, 2833/2003, 555-569.

Mitchell, D., & Levesque, H. (1996). Some pitfalls for experimenters with random SAT. Artificial
Intelligence, 81(1-2), 111-125.

Mitchell, D. G., Selman, B., & Levesque, H. J. (1992). Hard and Easy Distributions for SAT Problems.
In P. Rosenbloom, & P. Szolovits (Eds.) Proceedings of the Tenth National Conference on Artificial
Intelligence, (pp. 459-465). Menlo Park, California: AAAI Press.

URL citeseer.ist.psu.edu/mitchell92hard.html

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: engineering an efficient

SAT solver. Proceedings of the 38th conference on Design automation, (pp. 530-535).

citeseer.ist.psu.edu/mitchell92hard.html

BIBLIOGRAPHY 143

Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., & Shoham, Y. (2004). Understanding Random
SAT: Beyond the Clauses-to-Variables Ratio. Principles and Practice of Constraint Programming—
CP 2004: 10th International Conference, CP 2004, Toronto, Canada, September 27-October 1, 2004:
Proceedings.

Paris, L., Benhamou, B., & Siegel, P. (2006). A Boolean Encoding Including SAT and n-ary CSPs.
Artificial Intelligence: Methodology, Systems, and Applications, 4183, 33-44.

Parkes, A. (1999). Lifted Search Engines for Satisfiability. Ph.D. thesis, University of Oregon Eugene,
OR, USA.

Piette, C., Hamadi, Y., & Sais, L. (2008). Vivifying propositional clausal formulae. Tech. rep., MSR-
TR-(to appear) Microsoft Research (april 2008).

Porschen, S., Randerath, B., & Speckenmeyer, E. (2002). X3SAT is Decidable in Time O (2 n=5).
In Proceedings of the Fifth International Symposium on the Theory and Applications of Satisfiability
Testing (SAT 2002), (pp. 231-235).

Prasad, M., Biere, A., & Gupta, A. (2005). A survey of recent advancesin SAT-based formal verification.
International Journal on Software Tools for Technology Transfer (STTT), 7(2), 156-173.

Prestwich, S. (2003). Local search on sat-encoded csps. Proceedings of the Sixth International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT-03).

Prosser, P. (1996). Empirical study of phase transitions in binary constraint satisfaction problems. Arti-
ficial Intelligence, 81(1), 81-109.

Raz, R. (2001). Resolution lower boundsfor the weak pigeonholeprinciple. Journal of the ACM (JACM),
51(2), 115-138.

Razborov, A. A. (2001). Improved Resolution Lower Bounds for the Weak Pigeonhole Principle. Elec-
tronic Colloguium on Computational Complexity (ECCC), 8(55).

URL citeseer.ist.psu.edu/article/razborovO0limproved.html

Régin, J. (1994). A filtering algorithm for constraints of difference in CSPs. Proceedings of the twelfth

national conference on Artificial intelligence (vol. 1) table of contents, (pp. 362—-367).

Rish, I., & Dechter, R. (2000). Resolution versus Search: Two Strategiesfor SAT. Journal of Automated
Reasoning, 24(1/2), 225-275.

URL citeseer.ist.psu.edu/article/rishOOresolution.html

Robinson, J. (1965). A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM
(JACM), 12(1), 23-41.

citeseer.ist.psu.edu/article/razborov01improved.html
citeseer.ist.psu.edu/article/rish00resolution.html

BIBLIOGRAPHY 144

Rossi, F., Petrie, C., & Dhar, V. (1990). On the Equivalence of Constraint Satisfaction Problems. In
L. C. Aidllo (Ed.) ECAI'90: Proceedings of the 9th European Conference on Artificial Intelligence,
(pp. 550-556). Stockholm: Pitman.

URL citeseer.ist.psu.edu/rossi90equivalence.html
Rossi, F., Van Beek, P, & Walsh, T. (2006). Handbook of Constraint Programming. Elsevier Science.

Roussel, O. (2004). Another SAT to CSP Conversion. Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’ 04)-Volume 00, (pp. 558-565).

Schaefer, T. J. (1978). The complexity of satisfiability problems. In STOC’ 78: Proceedings of the tenth
annual ACM symposium on Theory of computing, (pp. 216-226). New York, NY, USA: ACM Press.

Schaerf, A. (1999). A Survey of Automated Timetabling. Artificial Intelligence Review, 13(2), 87-127.

Selman, B., Kautz, H., & McAllester, D. (1997). Ten challengesin propositional reasoning and search.
Proc. IJCAI, 97, 5054.

Selman, B., Levesque, H. J.,, & Mitchell, D. (1992). A New Method for Solving Hard Satisfiability
Problems. In P. Rosenbloom, & P. Szolovits (Eds.) Proceedings of the Tenth National Conference on
Artificial Intelligence, (pp. 440-446). Menlo Park, California: AAAI Press.

URL |citeseer.ist.psu.edu/selman92new.html

Shacham, O., & Yorav, K. (2006). Adaptive Application of SAT Solving Techniques. Electronic Notes
in Theoretical Computer Science, 144(1), 35-50.

Sinz, C. (2005). Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. Proceedings of

the 11th International Conference on Principles and Practice of Constraint Programming, CP, 2005.

Sinz, C., & Biere, A. (2006). Extended resolution proofs for conjoining BDDs. First International

Computer Science Symposiumin Russia, (pp. 600-611).

Sipser, M. (1992). The history and status of the P versus NP question. In Proceedings of the 24th ACM
Symposiumon Theory of Computing, (pp. 603—-618).

URL |citeseer.ist.psu.edu/sipser92history.html

Smith, B. (1993). The Phase Transition in Constraint Satisfaction Problems: A Closer Look at the Mushy

Region. University of Leeds, School of Computer Studies.

Smith, B., & Dyer, M. (1996). Locating the phase transition in binary constraint satisfaction problems.
Artificial Intelligence, 81(1), 155-181.

citeseer.ist.psu.edu/rossi90equivalence.html
citeseer.ist.psu.edu/selman92new.html
citeseer.ist.psu.edu/sipser92history.html

BIBLIOGRAPHY 145

Smith, B., Grant, S., of Leeds, U., & of Computer Studies, S. (1995). Where the Exceptionally Hard

Problems are. University of Leeds, School of Computer Studies.

Smith, B., Stergiou, K., & Walsh, T. (2000). Using auxiliary variables and implied constraints to model

non-binary problems. Proceedings of the 16th National Conference on Al, (pp. 182-187).

Stergiou, K., & Walsh, T. (1999). Encodings of non-binary constraint satisfaction problems. Proceedings
of AAAI-99, (pp. 163-168).

Subbarayan, S., & Pradhan, D. (2004). NiVER: Non increasing variable elimination resolution for
preprocessing SAT instances. Proc. 7th International Conference on Theory and Applications of

Satisfiability Testing (SAT).
Toran, J. (2004). Space and width in propositional resolution. Bulletin of the European Association for

Theoretical Computer Science, 83, 86-104.

Trakhtenbrot, B. A. (1984). A survey of Russian approaches to perebor (brute-force search) algorithms.
Annals of the History of Computing, 6(4), 384—400. Partial English trandlation of L. Levin, Universal
Search Problems, 9(3), pp. 265266, (1973).

URL http://dlib.computer.org/an/books/an1984/pdf/a4384 .pdf

Tsang, E. (1993). Foundations of Constraint Satisfaction. London: Academic Press.

URL http://cswww.essex.ac.uk/CSP/papers/Tsang-Fcs1993.pdf/

Tseitin, G. (1968). On the complexity of derivation in propositional calculus. Sudies in Constructive

Mathematics and Mathematical Logic, 2, 115-125.
Urquhart, A. (1987). Hard examples for resolution. Journal of the ACM (JACM), 34(1), 209-219.

Urquhart, A. (1995). The Complexity of Propositional Proofs. The Bulletin of Symbolic Logic, 1(4),
425-467.

van Beek, P, & Dechter, R. (1994). Constraint Tightness Versus Global Consistency. Information and

Computer Science, University of California, Irvine.

van Beek, P, & Dechter, R. (1997). Constraint tightness and |ooseness versus local and global consis-

tency. Journal of the ACM (JACM), 44(4), 549-566.

Van Gelder, A. (2006). Preliminary Report on Input Cover Number as a Metric for Propositional Reso-
lution Proofs. Theory and applications of satisfiability testing, 4121, 48-53.

Van Gelder, A. (2008). Another look at graph coloring via propositional satisfiability. Discrete Applied
Mathematics, 156(2), 230-243.

http://dlib.computer.org/an/books/an1984/pdf/a4384.pdf
http://cswww.essex.ac.uk/CSP/papers/Tsang-Fcs1993.pdf/

BIBLIOGRAPHY 146

Wallace, M. (1996). Practical applications of constraint programming. Constraints, 1(1), 139-168.

Walsh, T. (2000a). Reformulating propositional satisfiability as constraint satisfaction. Symposium on
Abstraction, Reformulation and Approximation (SARA), 1864/2000, 233-246.

Walsh, T. (2000b). SAT v CSP. Proceedings CP, 2000, 441-456.

Waeltz, D. (1975). Understanding line drawings of scenes with shadows. In P. H. Winston (Ed.) The
Psychol ogy of Computer Vision. New York: McGraw-Hill.

URL citeseer.ist.psu.edu/waltz75understanding.html

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2007). SATzilla-07: The Design and Analysis of an

Algorithm Portfolio for SAT. Solver description, SAT competition.
Yang, J. (2005). Finding k-cligues on a k-partite Graph. Ph.D. thesis, National Dong Hwa University.

Yokoo, M. (1997). Why adding more constraints makes a problem easier for hill-climbing agorithms:

Analyzing landscapes of CSPs. Lecture notes in computer science, (pp. 356-370).

Zhang, L. (2003). Searching for Truth: Techniques for Satisfiability of Boolean Formulas. Ph.D. thesis,

Princeton University.

citeseer.ist.psu.edu/waltz75understanding.html

	Introduction and Motivation
	¶ vs NP Problem
	Constraint Satisfaction
	Formal Verification

	Propositional Satisfiability
	Motivation and Thesis Contribution
	Theoretical Results
	Empirical Results
	Publications

	Thesis Organisation

	Definitions and Background
	¶ and NP
	Polynomial Reduction
	NP and co-NP

	Constraint Satisfaction
	Implicit and Explicit CSP Representations
	Graphs

	CSP Algorithms
	Consistency
	Maintaining Arc-Consistency
	Forward Checking
	Stochastic Search for CSP

	Boolean Satisfiability
	SAT Algorithms
	Resolution
	Extended-Resolution
	NG-RES Proof-System
	Davis-Putnam Procedure
	Davis-Logemann-Loveland Procedure
	Stochastic Search for SAT

	Chapter Summary and Discussion

	Literature Review
	CSP to SAT Encodings
	Direct Encoding
	Support Encoding
	Log Encoding

	Analysis of CSP to SAT Encodings
	Empirical Analysis
	Theoretical Analysis

	SAT to CSP Encodings
	Literal Encoding
	Dual Encoding
	Non-Binary Encoding
	Place Encoding
	Hidden Variable Encoding

	Analysis of SAT to CSP Encodings
	Double Encoding

	Preprocessing
	Proof Complexity
	The Width-Size Relation
	Local and Global Consistency
	Pigeon-Hole Problem
	Extended Proof-Systems

	Chapter Summary and Discussion
	Theoretical Studies Summary
	Empirical Studies Summary

	Categorising Encodings
	Mapping Categories
	Domain Mapping
	Constraint Mapping
	Combined Mapping

	Inverse Encoding
	Chapter Summary and Discussion

	Characterising SAT to CSP Encodings
	Solution Separation of SAT to CSP Encodings
	Literal Encoded Solutions
	Dual Encoded Solutions
	Non-Binary Encoded Solutions
	Place and Hidden Variable Encoded Solutions

	Local-Consistency Analysis of SAT to CSP Encodings
	Resolution Consistency
	Local-Consistency on the Non-Binary Encoding
	Local-Consistency on the Literal Encoding
	Local-Consistency on the Dual Encoding
	Local-Consistency on the Place and Hidden Variable Encodings

	Extended-Consistency
	Chapter Summary and Discussion

	Empirical Analysis of SAT to CSP Encodings
	DIMACS CNF Format
	UUF
	DUBOIS
	AIM
	JNH
	BF and SSA
	PRET
	Pigeon Hole

	SAT Competition Benchmarks
	Competition Comparison

	Chapter Summary and Discussion

	Discussion, Exploitation and Future Work
	Theoretical Studies
	Categorising Encodings
	Characterising Encodings

	Empirical Studies
	Feature Analysis

	Extended Proof-Systems and Symmetry
	Symmetry
	Extended Proof-Systems

	Exploitation
	Electronic Design Automation

	Benchmark File Format
	DIMACS CNF Format

	SAT Encodings
	Log Encoding of Example 2.2.3
	Inverse Encoding of Example 2.2.3

	Bibliography

