;i‘ Constraints, 8, 9-39, 2003
' © 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Current Approaches for Solving
Over-Constrained Problems

PEDRO MESEGUER pedro@iiia.csic.es
HITA-CSIC Campus UAB, 08193 Bellaterra, Spain

NOUREDDINE BOUHMALA noureddine.bouhmala@hive.no
Vesfold University College, N-3103 Tgnsberg, Norway

TAOUFIK BOUZOUBAA tbo@treedalgo.co.ma
SGTM-TreeDAlgo 23 rue Massena, 20100 Casablanca, Maroc

MORTEN IRGENS morten.irgens @sintef.no
SINTEF Postboks 124 Blindern, N-0314 Oslo, Norway

MARTI SANCHEZ marti @iiia.csic.es
HIA-CSIC Campus UAB, 08193 Bellaterra, Spain

Abstract. We summarize existing approaches to model and solve overconstrained problems. These problems
are usually formulated as combinatorial optimization problems, and different specific and generic formalisms
are discussed, including the special case of multi-objective optimization. Regarding solving methods, both
systematic and local search approaches are considered. Finally we review a number of case studies on over-
constrained problems taken from the specialized literature.

Keywords: over-constrained CSPs, soft constraints, multi-objective optimization

1. Over-Constrained CSPs

A Constraint satisfaction problem (CSP for short) is defined by a triple (X,D,C)
where,

— X={X,,...,X,} is a set of variables.

— D={D,,...,D,} is a collection of finite domains, D; is the set of possible values
for X,

— C={C,,...,C,} is a set of constraints. A constraint C; on the ordered set of vari-
ables var(C;) specifies the relation rel(C;) of the allowed combinations of values for
the variables in var(C;); rel(C;) is a subset of the cartesian product of domains of
variables in var(C,).

A solution of the CSP is a complete assignment of values to variables which satisfies
every constraint. CSP solving is a NP-complete problem. A CSP can be seen as a deci-
sion problem, where the goal is to decide whether there exists a solution or not, by
constructing such solution. Typically, a CSP is solved by a tree search procedure with
backtracking. See [30, 52] for overviews of solving strategies.

10 MESEGUER ET AL.

While powerful, the CSP schema presents some limitations. In particular, all con-
straints are considered mandatory. In many real problems often appear constraints that
could be violated in solutions without causing such solutions to be unacceptable. If these
constraints are treated as mandatory, this often causes problems to be unsolvable. If
these constraints are ignored, solutions of bad quality are found. This is the motivation
to extend the CSP schema to include over-constrained problems. An over-constrained
CSP (OCSP for short) is a CSP for that any complete assignment violates some con-
straint. A solution of the OCSP is the complete assignment that best respects the set of
constraints. We differentiate among several constraint types. A constraint is crisp when it
is either completely satisfied or completely violated. A constraint is fuzzy when it allows
for intermediate satisfaction degrees. A constraint is hard when it should necessarily be
satisfied by any solution. A constraint is soft or relaxable when it can be violated by
some solution. In the CSP schema, all constraints are crisp and hard. In addition to these,
the OCSP schema includes fuzzy and soft constraints. Several models for OCSP have
been devised, each with different constraint representation and solution criterion. The
most often used models in the literature are detailed in the following.

Fuzzy (also called possibilistic). Constraints are represented by fuzzy relations. The
degree in which a tuple satisfies a fuzzy relation is given by a membership function on
the interval [0, 1], where 1 means complete satisfaction and O complete violation. The
aggregation of satisfaction degrees is made using the min operator. A solution is the
complete assignment with maximum satisfaction degree on the least satisfied constraint
[16, 19].

Lexicographical. The fuzzy model considers the degree of the least satisfied constraint
only, no matter the number of constraints achieving this or higher levels of satisfaction.
This approach selects, among equivalent solutions of the fuzzy model, the solution with
the highest number of constraints satisfied at the level equal to (or higher than) the degree
of the least satisfied constraint [16, 19].

Weighted. Each constraint is labelled with a weight or cost. The cost of a complete
assignment is the addition of costs of unsatisfied constraints. A solution is a complete
assignment with minimal cost. A popular version of this model is the Max-CSP problem,
where all constraints have the same weight [20].

Probabilistic. Each constraint is labelled with its probability of presence in the problem.
A solution is the assignment that maximizes the probability to be a solution of the actual
CSP [18].

Hierarchical. Constraints are divided in a hierarchy of levels, according to their rela-
tive importance. A complete assignment violates some constraints, causing some errors
(consider for instance arithmetic errors) among which a partial order exists. A solution is
the assignment that minimizes such errors, according to some selected comparator (local,
regional or global) [8, 64].

Two generic algebraic frameworks have been proposed, to encompass most of the
above models as particular cases. The Valued CSP model requires a valuation structure

CURRENT APPROACHES 11

(E,>, L, T,x), where E is the valuation set (the set of possible violation degrees for
each constraint) totally ordered by >, 1 and T are the minimum and maximum elements
of E in the total order, and * is the aggregation operation of valuations, closed on E [49].
The Semiring CSP model requires a c-semiring structure (A, +, x, 0, 1), where A is the
set of satisfaction degrees of a constraint tuple, + and x are the semiring operations,
and 0,1 are the minimum and maximum values of A with the partial order [6]. Both
models are closely related, being equivalent when the valuation set is totally ordered.
Otherwise, the semiring model is more general [7].

Solving a OCSP is an optimization task. This problem is NP-hard, being harder to
solve than classical CSP. If constraint violations can be aggregated into a sigle function,
OCSP solving is formulated as single-objective optimization task. Otherwise, it becomes
a multi-criteria optimization, for which specific strategies have been developed.

Considering OCSP solving methods, there are two main approaches. Systematic search
methods perform an ordered traversal of the state space, visiting every state which could
contain a solution. These methods are optimal and provide the best solution for the
problem. Local search methods perform search in some subspaces of whole state space,
looking for a good solution within some time limit. They are suboptimal, since they do
not guarantee to find the best solution.

This paper is organized as follows. In Section 2, we present specific and generic
models used to formulate an OCSP, including a multi-objective optimization formulation.
In Section 3, we describe different methods for OCSP solving. In Section 4, we discuss
some case studies of specific OCSP. Finally, in Section 5 we summarize the paper,
pointing out promising directions for further research.

2. OCSP Modelling and Formulation
2.1. Specific Models For OCSPs
2.1.1 Fuzzy Model

A fuzzy CSP [16, 19] is defined as a CSP where constraints are represented by fuzzy
relations. In this model constraint satisfaction becomes a matter of degree. The simplest
constraint types in the fuzzy model are detailed in the following.

Fuzzy Constraints. A fuzzy constraint C is represented by the fuzzy relation R, defined
by,

pe: 1 Di = [0,1]

x;evar(C)

where u is the membership function indicating to what extent a tuple v satisfies C,
— ug(v) =1 means v totally satisfies C,
— pg(v) =0 means v totally violates C,
— 0 < pgr(v) < 1 means that v partially satisfies C.

Obviously, crisp constraints are included in the model, involving values 0 and 1 only.

12 MESEGUER ET AL.

Prioritized Constraints. The priority degree pr(C) of a crisp constraint C indicates to
what extent it is required for C to be satisfied,

— pr(C) =1 means that C is hard (only assignments satisfying C could be part of a
solution)

— pr(C) =0 means that C can be ignored (any assignment satisfies C)

The priority of a constraint can also be interpreted as the extent to which the constraint

can be violated. Assuming that any tuple satisfies the prioritized constraint from at least

degree 1 —pr(C), a prioritized constraint can be represented by a fuzzy relation R,

— ug(v) =1, if v satisfies C

— pr(v) =1—=pr(C), if v does not satisfy C

If R and R’ are two fuzzy relations representing constraints C and C’, the following
operations hold.

Projection. The projection of a fuzzy relation R on a set of variables Y, var(C) 2 Y,
is a new fuzzy relation R'Y defined as follows,

Mgy (V) = sup, (ugp(w)) vel[][D,we [] DLw’=v

ieY ievar(C;)

Conjunctive Combination. The conjunctive combination of two fuzzy relations R and
R’ is a new fuzzy relation R® R’ defined as,

Prer (V) = min(up ("), (up (1)) ve [D;

ievar(C)Uvar(C’)

The consistency degree of an assignment is defined as the conjunctive combination of
all fuzzy relations corresponding to those constraints with all its variables instantiated.
A solution is a complete assignment with a maximal consistency degree, that is,

max, (min, (g, ") ve [] D,
i=1 n

A fuzzy CSP with p different levels of satisfaction is equivalent to p CSPs: for each
level a, there is one CSP with constraints {C{', ..., C*}, where C is the hard constraint
satisfied by the tuples satisfying C; with a degree higher or equal to «. From this view,
it is easy to see that local consistency concepts and algorithms can be adapted to fuzzy
CSPs. In particular, arc consistency for binary fuzzy CSPs is achieved when,

Ri C [Rij ®RJ»]¢{X"}

where R;, R; and R;; are the fuzzy relations modelling unary constraints and the binary
constraint between X; and X;.

CURRENT APPROACHES 13

2.1.2 Lexicographical Model

The fuzzy model causes a too coarse solution generation because it considers the least
satisfied constraint only. The lexicographical model [16, 19] is a refinement of this, dis-
criminating among assignments with the same value for their least satisfied constraint.
The consistenCy of a complete assignment v with respect to problem constraints is defined
by a vector of satisfaction degrees SD(v),

[SDW)]i = g, (w0 D)

SD(v) has r components, one for each constraint. Component k contains the satisfaction
degree of C, by the assignment v. Vectors with the same global satisfaction degree are
ranked by increasing lexicographical order. Given two assignments, v and w, such that
SD(v) = (v, vy, ..., v,) and SD(w) = (w;, w,, ... , w,), its lexicographical ordering is
defined as follows: (1) rearrange vectors in increasing order, say v; <v, <--- <,
and w; <w, <--- <w,, (2) perform a lexicographical comparison starting from the
leftmost component,

SD(v) > SD(w) iff Ik <r,Ym <k,v; =w; and v, > w,

The preferred solution is the complete assignment with a maximal vector of satisfaction
degrees.

2.1.3 Weighted Model

The weighted model considers crisp constraints. Each constraint C; is labelled with a
weight w;, which represents the cost (or penalty) that exists if C; is violated. We define
the cost of C; under the assignment v as,

— cost(C;(v)) =0, if C; is satisfied by v

— cost(C;(v)) = w,, if C, is violated by v

The cost of an assignment is the addition of costs of all constraints instantiated by that
assignment. The solution is the complete assignment with minimum cost, that is,

min, Y _ cost(C;(v)), ve [] D
i i=1,..n

A particular version of this model is the Max-CSP problem [20], where all constraints
have the same weight, and the solution is the assignment satisfying as many constraints
as possible.

2.1.4 Probabilistic Model

The probabilistic model [18] allows representing those situations where there is a partial
knowledge of the constraints that will be present. Each constraint C is labelled with a

14 MESEGUER ET AL.

probability of presence, p(C), assumed independent of the presence of other constraints.
In this context, we talk about the real problem, the problem that actually occurs where
a constraint either occurs or not, to differentiate from the model where constraints have
probabilities associated. The solution is the assignment with maximum probability to be
a solution of the real problem. The probability that an assignment v is solution is the
probability that all constraints violated by v are not present in the real problem. This is
product of all 1— p(C), for all C violated by v. Then, the solution of the probabilistic
model is the following maximization problem,

max, [[(1=p(C,)) ve [] D;. ¢, is violated by v

j=l,....n

2.1.5 Hierarchical Model

The hierarchical model (also called constraint hierarchies) has been proposed to describe
over-constrained systems with a hierarchy of constraint preferences [8, 64]. This model
considers crisp constraints only. A constraint hierarchy H is a finite collection of con-
straints labelled with a level of strength or preference. H, is the set of hard constraints. H,
is the set of constraints with the following preference level. In the same way, we define
H,, ..., H,, constraints associated with decreasing preference levels 2, ..., n, respec-
tively. A solution of a constraint hierarchy H is an assignment of values to variables in
H which satisfies all constraints in H,, and best satisfies the other constraints respecting
the hierarchy. We define the sets,

Sy, = {v|v satisfies all constraints in H}

Sy = {v|ve Sy, Yw e Sy, w is not better than v respecting H }

The set Sy, contains assignment satisfying hard constraints in H. The set Sy, called
the solution set for H, is a subset of Sy, containing all assignments which are not worse
than other assignments in S, . Given an assignment v and a constraint C, the error of v
in C is a positive real number indicating the magnitude of violation of C by v. When
C is totally satisfied, the error of v is zero. Different criteria for the predicate better in
the above definition of solution set are called comparators, based on assignment errors.
A comparator is an irreflexive and transitive relation over assignments of variables that
respects the hierarchy, i.e., if there is some assignment in Sy, that completely satisfies all
the constraints through level k, then all assignments in S, must satisfy all the constraints
through level k. Note that the comparator defines a partial order over assignments. Cur-
rently, there are three widely used groups of comparators,

— Locally-better. A locally-better comparator considers each constraint individually. An
assignment v is locally-better than another w if, for each of the constraints through
some level k — 1, the errors are equal for respective assignments, and at level k the
error is strictly less for at least one constraint and less than or equal to for all the rest.

CURRENT APPROACHES 15

— Regionally-better. A regionally-better comparator allows the comparison of assign-
ments which are incomparable by locally-better comparators. An assignment v is
regionally-better than another assignment w if, for each level till k — 1, the levels are
incomparable by a locally-better comparator, and at level k the error is strictly less
for at least one constraint and less than or equal to for all the rest.

— Globally-better. A globally-better comparator aggregates errors of individual con-
straints at each level. An assignment v is globally-better than another w if, the
combined errors are equal till some level kK — 1 for both assignments, and at level k
the combined error is strictly less for the valuation v. There is a number of reasonable
candidates for the combining function that combines error of individual constraints
at each level, namely weighted-sum, worst-case or least-squares methods.

2.2. Generic Models for OCSPs
2.2.1 Valued Constraint Satisfaction Problems

A valuation structure [49] is a quintuple (E, >, L, T, %), where E is the valuation set,
> 18 a total order on E, T and L are the maximum and minimum elements in E, and *
is a binary closed operation on E satisfying the following properties,

— Associative: (axb)xc=ax*(bx*c)
— Commutative: axb =bxa

— Monotonicity: a = b = (a*c > bx*c)
— Identity: ax 1L =a

— Absorbing element: ax T =T

where a, b, c € E. A valued CSP is defined by a classical CSP (X, D, C), a valuation
structure (E, >, L, T,), and an application ¢ : C + E. The valuation set E is used to
define a gradual notion of constraint violation and inconsistency. The elements of E can
be compared using the total order > and aggregated using the operator *. The maximum
element T is used to express complete inconsistency, while the minimum element L
expresses complete consistency. The valuation function ¢ associates with each constraint
a valuation which denotes its importance. The valuation of hard constraints equals T. If
v is an assignment of problem variables and C,,,(v) is the set of constraints unsatisfied

unsat

by v, the valuation of v is the aggregation of valuations of all constraints in C,,, (v),

= C
(V) CGC:M(U)d)()

The goal is to find an assignment with valuation lower than T and minimum. The
valuation of the problem is the valuation of such assignment. Specific models can be
defined by instantiating the valuation structure. This approach is denoted as VCSP, and
it includes the following specific models of OCSP.

16 MESEGUER ET AL.

Classical CSP Model. All constraints are hard, E = {true, false}, false > true, T =
false, L = true, * is logical and. The goal is to find an assignment satisfying all con-
straints.

Fuzzy Model. E=10,1],1>0, T =1, L =0, % is max. Constraint valuations are con-
sidered as constraint priorities. Valuations are aggregated according to the most important
violated constraint.

Lexicographical Model. E is a multiset of elements of [0, 1]. The operation * is simply
multiset union, extended to treat T as absorbing element. The empty multiset is the
identity L. The order > is the lexicographic total order induced by the standard order
on multisets and extended to give T its role of maximum element: let v and v’ be two
multisets and a and a’ be the largest elements in v and v, v > v’ iff either a > a’ or
(a=a and v—{a} > v'—{a’}). The recursion ends on @, the minimum multiset.

Weighted Model. E is N U {oco}. The operation * is +, T = oo, L = 0. The goal is to
find an assignment with minimum addition of weights. When all weights are equal to 1,
we get the Max-CSP problem.

Probabilistic Model. E =1[0,1], T =1, L =0. The valuation of a constraint is its
probability of existence. The operation is x*xy=1—(1—x)(1—y) (x and y are supposed
to be independent probabilities).

One of the mayor results of the VCSP framework relates the idempotency of the *
operator (* is idempotent iff axa = a,Va € E) and the applicability of classical local
consistency methods in CSP. In the VCSP framework, if the operator is idempotent,
classical local consistency concepts and algorithms can be easily adapted to deal with
a valuation structure. However, if the operator is not idempotent, adding induced con-
straints is not possible: this may modify the valuation of assignments, and the resulting
problem may not be equivalent to the original one. For classical and fuzzy CSP models,
their operators (and and max) are idempotent, so classical local consistency enforcing
algorithms can be defined. For the lexicographic or weighted models, their operators are
not idempotent so classical local consistency involving propagation cannot be used. In
this case, local consistency methods which do not involve propagation can be used (fully
or directed arc inconsistency counts, for instance [20, 60]).

2.2.2 Semiring-Based Constraint Satisfaction Problems

A c-semiring [6] is a tuple (A, +, x, 0, 1) with the following properties,

— Aisaset,0,1€A;

— +, called the additive operation, is closed in A, commutative, associative, 0 is the
identity, idempotent and 1 is its absorbing element;

— X, called the multiplicative operation, is a closed in A, associative, 1 is the identity,
0 is the absorbing element, and commutative;

— x distributes over +.

CURRENT APPROACHES 17

In this framework, a value of A is assigned to each tuple satisfying (partially) a constraint.
This value represents the tuple weight, cost or level of confidence. There is a partial order
among the elements of A: a < b iff a+ b = b. Intuitively, this means that b is better than
a. Element 1 is the maximum in the partial ordering, representing complete satisfaction,
and 0 is the minimum, representing complete violation (0 <g a <g 1,Va € A). The
addition operation is used to select the best solution among different assignments, while
the product is used to combine several constraints. It should be noted that a x b < a,
that is, combining more constraints leads to worse results. Problems are represented
as constraint systems. This approach is denoted as SCSP. This framework includes the
following specific models for OCSP.

Classical CSP Model. Two levels of satisfaction, 1 or true (allowed tuples) and O or
false (not allowed tuples). The additive operation is logical or, while the multiplicative
operation is logical and. The c-semiring is ({0, 1}, or, and, 0, 1).

Fuzzy Model. The set A is the real interval [0, 1], with the usual meaning (0 com-
plete violation, 1 complete satisfaction). The order is the natural order on reals. The
additive operation is max, while the multiplicative operation is min. The c-semiring is
({0, 1}, max, min, 0, 1).

Lexicographical Model. As in the VCSP case, the lexicographical model can
be included in the semiring approach. The resulting c-semiring is ({(/, k)|l, k €
[0, 1]}, max, min, (0, 0), (1,1)), where the first element of a value is used to reason
as in the fuzzy model, and the second is used to discriminate among equivalent fuzzy
solutions. Operations max and min are defined appropriately (see [6] for further details).

Weighted Model. Each constraint tuple has an associated cost. The goal is to find the
assignment that minimizes the total cost. A suitable c-semiring is (R~, max, +, —o0, 0),
where costs are represented as negative real numbers, and the ordering is the usual order
on reals.

Probabilistic Model. In the probabilistic model, a probability of presence is attached to
each constraint. This probability is attached to each tuple in the following form. If a tuple
t satisfies constraint C, pr(t) is 1; otherwise, pr(t) is 1 —pr(C) (a similar transformation
was made in the fuzzy model with prioritized constraints). With this interpretation, the
c-semiring is ([0, 1], max, x, 0, 1), with the usual order on reals.

Informally, significant results of the SCSP framework are the following,

— Local and global consistency: the best level of consistency of a subproblem is higher
than the best level of consistency of the whole problem.

— Equivalence: after applying local consistency to a problem, it is equivalent to the
original problem if x is idempotent.

— Termination: a local consistency procedure terminates in a finite number of steps, if
the values of A used in the problem constraints form a finite set /, and operations +
and x are closed in /.

— Order independence: two different applications of local consistency procedures to
the same problem produce equal results if x is idempotent.

18 MESEGUER ET AL.

These results on local consistency are in agreement with VCSP result: only if the oper-
ator combining constraint valuations is idempotent, classical local consistency methods
make sense for OCSP. Only the classical CSP and the fuzzy models present idempotent
operators, and therefore, classical local consistency methods can be applied on them. For
the other models, local consistency can be enforced by methods not involving constraint
propagation.

Comparing SCSP and VCSP [6], if the valuation set is totally ordered both approaches
are equivalent (with the same expressive power), and differences on modelling can be
solved by a syntactical transformation. If the valuation set is partially ordered, the SCSP
approach is the only applicable, being more general than VCSP. Considering a partial
order on valuations is not a purely academic feature: this capacity seems to be very
adequate for multi-objective optimization.

2.3. Multi-Objective Optimization

In most of the specific OCSP models and the VCSP generic model, it is assumed that
there exists a total order in the valuation set. Given two assignments, they are always
comparable. However, this is not always the case for real-life problems: when constraints
are of very different nature, violations of different constraints cannot be easily aggregated.
In this case, an OCSP problem can be formulated as a multi-objective optimization
problem, as opposite to single-objective optimization where a single scalar function has
to be optimized.

A multi-objective optimization problem is defined by a pair (S, F), where S is a
finite set of feasible states and F denotes the vector [fi, ..., f,] of k cost functions to
be minimized simultaneously. Each scalar function f; maps the state of feasible states
S in the set of reals R. Given a state s, F(s) denotes the vector [f,(s),..., fi(s)] =
[z), ..., 2] =2z We will call this vector the objective point. The set of objective points
is called the objective space Z. An objective point is said to be attainable if there exists
a state s in S so that F(s) = z. An ideal point in the objective state is a point where each
objective function is minimized independently of the others,

zx = [min(f,), ... ,min(f,)] over all s € S

Ideal points are however usually not attainable. Without a total ordering in Z, given
two feasible alternatives s and s’, there may be no answer as to whether F(s) is greater
to, less than or equal to F(s’). This is sometimes emphasized by quoting the word
‘Minimize’.

Given two feasible states s, s" € S, we say that s dominates s’ if and only if for all f;
of F, fi(s) < f;(s') and there exists at least one f; such that f;(s) < f;(s"). A feasible
state s is said to be efficient, also called Pareto optimal, non-inferior, non-dominated or
Pareto-admissible, if and only if there does not exist a state s' € S which dominates s.
This definition requires that the objective functions are monotone [45]. Efficiency is
the multi-objective extension of optimality. Given a problem P, E(P) denotes the set of

CURRENT APPROACHES 19

efficient states; they are the “best” states for the multi-objective optimization problem.
In practice, the set E(P) is approximated, and the user selects one of these states as
problem solution.

Multi-objective optimization problems are typically NP-hard. Determining whether an
attainable point is dominated or non-dominated is an NP-complete task even for prob-
lems where the corresponding single-objective optimization is not. For instance, both
the shortest path problem and the minimal spanning tree problem are NP-complete in
their corresponding multi-objective formulations, even for only two objectives. How-
ever, increasing complexity through adding objective dimensions is especially troubling
when even the one-dimensional case is NP-hard, as it is often true for combinatorial
optimization problems.

3. Solving Methods for OCSPs
3.1. Systematic Search Methods
3.1.1 Branch and Bound

All specific OCSP models can be solved by methods based on depth-first branch and
bound, an optimization procedure for finite combinatorial optimization. In the following,
we provide a detailed explanation of these methods specialized for the binary Max-CSP
problem, an instance of the weighted model where all constraints are binary and all
constraints have the same weight. A solution of the Max-CSP problem is an assignment
satisfying as many constraints as possible. Many of the strategies developed below can
be adapted to other models.

Depth-first branch and bound (BnB) performs a depth-first traversal on the search
tree defined by the problem, where internal nodes represent incomplete assignments
and leaf nodes stand for complete ones. Assigned variables are called past (P), while
unassigned variables are called future (F). The distance of a node is the number of
constraints violated by its assignment. At each node, BnB computes the upper bound
(UB) as the distance of the best solution found so far, and the lower bound (LB) as an
underestimation of the distance of any leaf node descendant from the current one. When
UB < LB, we know that the current best solution cannot be improved below the current
node. In that case, the algorithm prunes all its successors and performs backtracking.

The efficiency of BnB-based algorithms largely depends on the quality of the lower
bound, which should be both as large and as cheap to compute as possible. At the current
node, the simplest lower bound is the number of inconsistencies among past variables,

LB(P) = distance(P)

The BnB algorithm with this lower bound appears in Figure 1. Procedure BB receives the
following arguments: P is the set of past variables, F is the set of future variables, and
FD is the collection of future domains. First, it checks if a leaf node has been reached

20 MESEGUER ET AL.

procedure BB(P, F, FD)

1 if (F =) then

2 BestS < assignment(P);

3 UB <« distance(Best S);

4 else

5 X, < select-variable(F);
6 while FD, # @ do

7 a < select-value(FD,);
8 if (LB(P, X;, a) < UB) then BB(PU{X,, a}, F —{X,}, FD —{FD,})
9 FD, < FD, —{a};
endprocedure

function LB(P, F, X;, a, FD)
10 return distance(PU{X,, a});

Figure 1. Depth-first branch and bound algorithm.

(line 1). If so, it updates the best solution BestS (line 2) and the upper bound UB (line 3).
Otherwise, it selects X; as the current variable (line 5) and performs a loop checking
every value of X; (lines 6 to 9). If the lower bound computed with value a of X; (line
10) reaches the upper bound, this branch is pruned. Otherwise, search continues along
this branch (recursive call of line 8). It is assumed the existence of a function distance,
which takes a set of assigned variables and returns the number of constraints among
variables in the set unsatisfied by their current assignment.

3.1.2 Partial Forward Checking

The partial forward checking (PFC) algorithm combines the branch and bound schema
enhanced with lookahead [20] (in that paper this algorithm was called P-EFC3). It is a
direct descendent of the popular forward checking algorithm [23]. PFC keeps for all fea-
sible values of future variables the number of inconsistencies with previous assignments.
The inconsistency count associated with value a of variable X, ic,,, is the number of
inconsistencies that value a of X; has with the assignments of past variables. The sum
> jermin,(icy,) is a lower bound of the number of inconsistencies that will necessar-
ily occur between variables of P and F if the current partial assignment is extended
into a total one. This term can be added to the distance of past variables to compute
the lower bound of the current partial assignment, because both terms record different
inconsistencies. The new lower bound is,

LB(P, F) = distance(P)+) min,(ic;,)
JeF
In addition, a value b of a future variable X; can be pruned if the lower bound, where

the minimum contribution of X; is substituted by icj,, is not lower than the upper bound.
The PFC algorithm appears in Figure 2.

CURRENT APPROACHES 21

procedure PCF(P, F, FD)

1 if (F =) then

2 BestS < assignment(P);

3 UB <« distance(BestS);

4 else

5 X, < select-variable(F);

6 while FD, # @ do

7 a < select-value(FD,);

8 if (LB(P, X,, a, FD) < UB) then

9 NewFD <« look —ahead(P, F, X;, a, FD, UB);

10 if (not empty-domain and LB(P, F, X;, a, NewFD) < UB) then
11 PEC(PU{X;, a}, F —{X,}, NewFD);

12 FD; < FD,;—{a};

endprocedure

function look-ahead(P, F, X;, a, FD, UB)

13 forall j € F —{X,} do

14 forall b € FD; do

15 if (LB,,(P, F, X;, a, FD) > UB) then FD; <- FD, — {b}

16 elseif (inconsistent(X;, a, X;, b)) then

17 icy < icp+1;

18 if (LB;,(P,F, X;,a, FD) > UB) then FD; <~ FD, —{b};
19 return FD;

function LB(P, F, X;, a, FD)
20 Newd < distance(P) +ic;,;

a’

21 return Newd + 3 ;cp ;,min,ic,;

function LBj,,(P, F,X;,a,FD)
22 Newd < distance(P) +ic;,;
23 return Newd +icj, + D per, ki, j MIN iCre

Figure 2. Partial forward checking algorithm.

The main procedure presents three new lines with respect to the BB algorithm of
Figure 1, lines 9, 10 and 11. The look-ahead function updates future domains (line 9).
If no empty domains have been found and the new lower bound (possibly updated by the
look-ahead function) does not reach the upper bound (line 10), search continues along
this branch (recursive call of line 11). The look-ahead function considers all feasible
future values (double loop in lines 13 and 14), checking if they can be pruned before
(line 15) or after (line 18) updating their inconsistency counts (line 17). It returns the
new set of future domains. Functions LB and LB, compute, respectively, the lower bound
at the current node and the lower bound for a future variable X; taking value b.

22 MESEGUER ET AL.

Directed Arc-Inconsistency Counts. While distance of P records inconsistencies among
past variables, and inconsistency counts record inconsistencies between past and future
variables, directed arc-inconsistency courts record inconsistencies among future vari-
ables. Given that each term records violations of different constraints, they can be added
(with some care) to form a new lower bound. Different versions of DAC have produced
three different lower bounds for the PFC algorithm. In the following we present these
versions in chronological order.

Static DAC. Given a static variable ordering, the DAC associated to value a of variable
X;, dac;,, is the number of variables which are arc-inconsistent with value a for X; and
appear after X; in the ordering [60]. A variable is arc inconsistent with value a for X;
if all its values are incompatible with a. The counter dac,,, is a lower bound of the
number of inconsistencies that X; will have with variables after X; in the ordering if
a is assigned to X;. It is worth noting that each arc inconsistency is recorded in one
DAC only, because they are directed. The sum ;. min,(dac,) is a lower bound of the
number of inconsistencies that will necessarily occur among variables of F if the current
partial assignment is extended into a total one. This term can be added to the distance
of past variables plus the sum of ICs, to compute the lower bound of the current partial

assignment, because they record different inconsistencies. The new lower bound is [60],

LB(P, F) = distance(P)+ Y _min,(ic;,) + Y_ min,(dac)

JjeF JjeF
which can be substituted advantageously by [33],

LB(P, F) = distance(P)+ Y _ min,(ic;, +dac)
jeF

since ic;, +dac,, is the minimum number of inconsistencies that will necessarily occur
among pairs of non past variables if value a is assigned to X,. With this lower bound,
the PFC algorithm remains the same (now it is called PFC-DAC), changing the functions
computing the lower bound, which are detailed in Figure 3. Notice that in function LB,
the dac,,, is not added to the result because these inconsistencies have been recorded
as ICs on future variables by the function look-ahead. Using static DAC, PFC must
follow for variable instantiation the same ordering used in DAC computation. DACs are
computed in a preprocessing step, before PFC starts.

function LB(P, F, X;, a, FD)
20 Newd < distance(P)+ic;,;
21 return Newd +dac,, + 3 e i min,(icj, +dac,);

function LBj,,(P, F,X;,a, FD)
22 Newd <« distance(P)+ic;,;
23 return Newd +icj, +dac;, + 3 ycp i jmin (ic +dacy,);

Figure 3. Lower bound functions for static DAC.

CURRENT APPROACHES 23

Inferred and Cascaded DAC. 1If values a, b with minimum DAC of two constrained
variables X; and X;, X; after X; in the static ordering, are incompatible and dac,, does
not include an inconsistency from C;;, dac;, can be incremented in 1. In the best case
values a, b will be selected for their variables, and they are incompatible. Otherwise,
other values with higer DAC contribution will be selected. In both cases, the increment
of dac,, is justified. This approach is called inferred DAC [61]. If inferred DAC are used
as before, we talk about cascaded DAC, which have to be computed with care, recording
the contribution of each constraint to avoid adding twice the same inconsistency. When
using cascaded DAC in lower bound computation, only contributions of variables not
connected with the current one can be added (otherwise, duplications may occur). The
author suggests to compute two lower bounds, one from static DAC and other from
cascaded DAC, using the largest for pruning purposes.

Reversible DAC. A new approach uses reversible DAC, relaxing the condition of a
static variable ordering. Its only requirement is that constraints among future variables
must be directed: if C; is a constraint between future variables, it is given a direction,
for instance from j to i. Arc-inconsistencies of C;; are recorded in the DAC of X;, In this
way, the same inconsistency cannot be recorded in the DAC of two different variables.
Directed constraints among future variables induce a directed constraint graph G”, where
Nodes(G") = F and Edges(G") = {(j,)|C;; between future variables, direction of C;
from j to i}. Given a directed constraint graph G, the graph-based DAC of value a
of variable X, dac,,(G"), is the number of predecesors of X, in G’ which are arc-
inconsistent with value a for X;. The minimum number of inconsistencies recorded in
variable X;, MNI(X, GF), is as follows,

MNI(X;, G") = min,(ic;, + dac;,(G"))
and the graph-based lower bound (based on G¥) is,

LB(P,F,G") =distance(P) +Y_ MNI(X;, G")

JjeF

With graph-based DAC any dynamic variable ordering can be used. This approach is
complemented with the dynamic selection of G”. Given that any G is suitable for DAC
computation, a local optimization process looks for a good G* with respect to current IC
values at each node. Since the only possible change in G* is reversing the orientation of
its edges (by reversing the direction of its constraints), this approach is called reversible
DAC. These features are included in the PFC-MRDAC algorithm [35], where in addition,
DAC are updated during search considering future value pruning.

The algorithm implementing these features appears in Figure 4 and it is relatively com-
plex for a detailed description. The differences with PFC (Figure 2) start at line 10. If the
current branch is not pruned, a better directed graph G is searched by a greedy optimiza-
tion method (line 11), and the test for pruning the current branch is repeated (line 12).
If the search continues, future values are tested for pruning by function delete (line 13),
where G is specialized for each future value to maximize value removal. If no future
domain becomes empty, DAC are maintained with respect to previous value removal
in function prop-del, which again test future domains (line 15). If no empty domain is
found, search continues along the current branch with the recursive call (line 17).

24 MESEGUER ET AL.

procedure PFC-MRDAC (P, F, FD, GF)

1 if(F = @) then

2 BestS < assignment(P);

3 UB <« distance(BestS);

4 else

5 X, < select-variable(F);

6 while FD, # @ do

7 a < select-value(FD,);

8 if(LB(P, F, X;,a,FD, G') < UB) then

9 NewFD < look-ahead(P, F, X;,a, FD, UB, G');
10 if(not empry-domain)

11 NewFD < greedy-opt (G7,F, NewFD);

12 if(LB(P, F, X;, a, NewFD, NewG") < UB) then
13 NewFD < delete(F, NewFD, NewG");

14 if(not empty-domain)

15 NewFD <« prop-del(F, NewFD);

16 if(not empry-domain)

17 PFC-MRDAC(PU{X,, a}, F — {X;}, NewFD, NewG")
18 FD; < FD;—{a};

endprocedure

Figure 4. PFC with maintaining reversible DAC.

Partition-Based LB. So far, the lower bound has recorded contributions of individual
future variables. This approach [33] considers the partition %(F) = {F,} of the set F,
and the lower bound is computed as the aggregation of contributions from each element
of the partition. The minimum number of inconsistencies provided by a subset F, =
{X,... ,X[,} is,

MNI(F,,G") = min, > licj, +dacjbj(GF)] +cost' ((X;, b,), ..., (X,,b,))

i
JEF,

where value b; corresponds to variable X ;. The expression cost'((X;, b;),...,(X,,b,))

accounts for the number of constraints among variables in F, which are violated by the

values {b;, ..., b,} and this violation is not recorded as directed arc inconsistency. The

new lower bound, called partition-based because it depends on the selected partition, is

defined as,

LB(P,?(F), G") =distance(P)+ Y MNI(F,, G")

F,e®(F)

A central aspect of this approach is finding easily good partitions. For efficiency rea-
sons, authors restrict the search to partitions with subsets of up two elements, which are
computed following a greedy approach. If merging two future variables into a partition
element increases their contribution in 1 (the respective minima of IC +DAC are incom-
patible, but this inconsistency is not recorded in any DAC), they are merged. In this way,

CURRENT APPROACHES 25

the partition is computed, and the associated lower bound is obtained. It is easy to prove
that the partition-based lower bound is always higher than or equal to the reversible DAC
lower bound.

Arc-Inconsistency Counts. The arc-inconsistency count (AC) associated to value a of
variable X;, ac,,, is the number of future variables which are arc-inconsistent with value
a for X; [20]. A variable is arc inconsistent with value a for X; if all its values are
incompatible with a. Using AC instead of DAC for lower bound computation may cause
to count twice an inconsistency (suppose that C;; forbids all value pairs between X;
and X;). A way to overcome this fact is to weight AC contributions with 1/2, in such a
way that the contribution of an inconsistency cannot be counted twice. The lower bound

proposed is [2],

LB(P, F) = distance(P)+ miny,(ic;, +1/2ac,)
JjeF
This approach can be generalized to consider any weights such that w;; +w;; = 1, where
w;; is the weight that multiplies AC contributions of C; in variable X;. Weights can also
change dynamically during search. Determining how weights evolve is an open question
of this method.

Russian Doll Search. The idea of Russian Doll Search (RDS) [58], is to replace one
search by n successive searches on nested subproblems. Given a static variable ordering,
the first subproblem involves the last variable only, the ith subproblem involves all the
variables from the n —i+ 1 to the last, and the nth subproblem involves all variables.
Each subproblem is optimally solved using a PFC algorithm, following an increasing
variable order: the first variable has the lowest number in the static ordering, and the last
is always the n variable. The central point of this technique is that, when solving the
whole problem, subproblem solutions obtained before can be used in the lower bound in
the following form,

LB(P, F) =distance(P) +) min,(ic;,) + distance(Bestsolution(F))

JjeF

Let us suppose that we are solving the whole problem and P involves the first n —i
variables. The set F' involves from n — i+ 1 to n variables; that is, F' is composed by
the variables of the ith subproblem. Then, the distance of the best solution found in that
problem can be safely added to the contribution of P plus ICs to form the lower bound.
This strategy is also used when solving the subproblem sequence. Solving subproblem i
involves reusing all solutions from previously solved subproblems.

3.1.3 Systematic Search Heuristics

As in CSP solving, heuristics for variable and value ordering are used. Regarding static
variable ordering, required by PFC-DAC or RDS algorithms, the following heuristics
have been reported.

26 MESEGUER ET AL.

Decreasing Backward Degree (BD) [62]. It considers first variables most constrained
with past variables. It is expected that these variables will have high IC in their values, so
after variable assignment the current distance is likely to increase. Its main disadvantage
is the lack of information at the first levels of the tree.

Decreasing Forward Degree (FD) [33]. 1Tt considers first variables most constrained
with future variables. This heuristic tries to increase the propagation of IC towards future
variables, increasing the IC contribution to the lower bound.

Decreasing Degree (DG) [62]. It can be seen as a combination of the two previous,
BD and FD. At first levels of the tree FD dominates, while at deep levels BD dominates.

Decreasing AC Mean (AC) [62]. It consider first variables with high AC. Variables with
high AC will probably have also high DAC, so it tries to increase the DAC contribution
to the lower bound.

These heuristics and their combinations have been tested for PFC-DAC algorithms
[33]. Their conclusion on random problems is that the combination FD/BD (FD as first
criterion, breaking ties with BD) is the most effective combination and, in addition, it is
quite chip to compute. For the RDS algorithm, variable orderings with limited bandwith
seem to be more adequate.

Regarding dynamic variable ordering, required by PFC, PFC-RDAC or PFC-PRDAC
algorithms, the classical heuristic of minimum domain (DOM) is preferred, selecting
first the variable with the minimum number of values in its domain. Regarding PFC
[61], provided a set of experiments on problems with low connectivity, concluding that
combinations BD/AC and BD/DOM/AC were good choices. Considering PFC-RDAC
and PRDAC, both use DOM divided by FD, a popular combination in classical CSPs.

Regarding heuristics for dynamic value selection, in BnB-based algorithms most
promising values (violating less constraints) are selected first. The goal it to decrease
the upper bound, which will improve search efficiency. Therefore, in all described
algorithms values are ordered by either (i) increasing IC, (ii) increasing IC + DAC, or
(iii) increasing IC + AC. No comparative studies among the three criteria have been
reported.

3.2. Local Search Methods

Greedy local search algorithms have been successfully applied to different classes of
OCSP, mainly due to their efficiency. Local search algorithms start from an initial con-
figuration and move from the current configuration to neighborhood configurations until
a good solution is reached. These algorithms can produce suboptimal solutions, since
there is no guarantee for finding the optimal one.

3.2.1 Min-Conflicts

Min-Conflicts [39, 40] have been widely used to solve OCSP. Several versions of the
Min-Conflicts procedures have been developed in recent years. They all differ from the

CURRENT APPROACHES 27

basic ones in that they incorporate clever search techniques [61, 63]. The Min-Conflicts
algorithm chooses randomly any conflicting variable, i.e., the variable that is involved
in any unsatisfied constraint, and then picks a value which minimizes the number of
violated constraints.

Because the pure Min-Conflicts algorithm is unable to move beyond a local-minimum,
the Min-Conflicts algorithm has been combined with the random-walk strategy. For a
given conflicting variable, the random-walk strategy picks randomly a value with a prob-
ability p, and then applies the Min-Conflicts algorithm with a probability 1 — p. The value
of the parameter p has a big influence on the performance of the algorithm. Another ver-
sion of the Min-Conflicts algorithm called the Steepest-Descent-Random-Walk has been
proposed. This version explores the whole neighborhood of the current configuration and
selects the best neighbour according to the evaluation value.

One factor that limits the efficiency of local search algorithms is the size of the
neighborhood. If there are many neighbors to consider, then the search will be very
costly. To cope with this problem, Fast Local Search (FLS) has been introduced [53].
The main goal is, guided by heuristics, to ignore neighbours that are unlikely to lead
to fruitful hill-climbs in order to improve the efficiency of a search. Each neighborhood
move is associated with an activation bit. Only those neighbors whose bits are switched
on will be considered in a hill-climbing step. All activation bits are switched on at the
beginning. If a move has been examined in a hill-climbing step without leading to a
better candidate solution, then its activation bit will be switched Off.

A connectionist approach called GENET [15] has been proposed for solving CSP. In
this approach, the problem is represented by a network with inhibitory links. GENET
solves CSP by hill-climbing using a variation of the Min-Conflicts heuristic. GENET uses
a constraint weighting scheme to escape from local minima. When GENET encounters
a local minimum, the weights of all the constraints which are violated in the minimum
are increased. This increases the cost of violating constraints which are violated in the
minimum, thus increasing the value of the cost function in the minimum and enabling
the network to escape to other states. The idea of incrementing the weight of violated
constraints at a local minima is also present in the breakout method [41].

3.2.2 Genetic Algorithms

Genetic Algorithms (GA) [22] have been shown quite successful in a wide range of
applications. GA borrow their ideas from evolution [24]. The idea is to maintain a pop-
ulation of candidate solutions. The candidate solutions are given individual chances to
produce offspring depending on their fitness. Fitness is measured by the objective func-
tion in optimization. GA have been applied to constraint satisfaction [12, 17, 46]. The
use of GA in constrained optimization problems raises several issues to which a consid-
erable amount of research has been devoted in the last years. One of the most important
issues is how to incorporate constraints into the fitness function in order to guide the
search properly. To incorporate constraints, one approach focussed on the use of penalty
functions [43]. Several researchers have attempted to derive good techniques to build

28 MESEGUER ET AL.

penalty functions. The work reported in [25] proposed a technique in which the user
defines several levels of violations, and a penalty coefficient is chosen for each in such
a way that the penalty coefficient increases as one reaches higher level of violations.

3.2.3 Simulated Annealing

Simulated annealing (SA) [28] is another stochastic search technique that has proved
to be very effective for large scale optimization problems. In the SA technique, the
temperature that is a variable is started at a high value and gradually reduces during
the search. At high temperatures, moves are accepted in a random fashion regardless
of whether they are uphill or down. As the temperature is lowered, the probability of
accepting downhill moves rises and the probability of accepting uphill moves drops. A
variant of SA [38] has been applied to CSPs that proved to be better than standard SA.
This approach relies on dividing the search space into disjoints subspaces which are
then processed by a localized SA strategy. Different temperatures and annealing speeds
can be maintained in the different subspaces depending upon certain evaluation criteria.
Another approach [59] combines SA with the theory of Lagrange multipliers, providing
good results in discrete and continuous problems.

3.2.4 Local Search Preprocess for Systematic Search

To increase branch and bound efficiency, the lower bound should increase as fast as
possible during search. In the same way, the upper bound should decrease as fast as
possible, to enable the pruning condition, LB < UB. In systematic search, most efforts
have been devoted to get large lower bounds, taking as starting upper bound the leftmost
leave in the search tree. However, some local search can be done to get a better starting
upper bound. In this sense [61], reported some experiments using three local search
techniques to find an upper bound: (i) min-conflicts [40] with a random walk component,
(ii) the breakout procedure [41], and (iii) weak commitment search [65]. They were used
as any time procedures, getting in the first seconds of execution, a quite significant
improvement in the upper bound. In the same line, the decrement of the initial upper
bound by mean field annealing [10] causes visible improvements in branch and bound
efficiency.

3.3. Approximation Methods

Systematic search methods compute the optimal solution, but they are often too expensive
when solving real problems. Local search methods compute suboptimal solutions, but
they cannot determine how far they are from the optimal one. Approximation methods
provide an alternative approach. Instead of looking for one solution, they look for an
interval [lower bound, upper bound] enclosing the optimal solution. If the lower bound
equals the upper bound, the optimum has been found. Otherwise, the distance between

CURRENT APPROACHES 29

the upper and lower bounds can be used to assess the quality of the current solution.
With this information, the user may decide when to stop the search, taking a suboptimal
solution of reasonable quality.

Approximation methods combine previous solving approaches. Solution candidates
producing the upper bound can be easily computed by local search methods. Systematic
search strategies can be adapted for anytime lower bound computation. Three different
methods for anytime lower bounds are presented in [11].

Problem Simplification. ~ A lower bound is computed by solving completely a simplified
problem. The optimum of the simplified problem either is a lower bound or allows such
a bound to be computed. In [21], a simplification is produced by modifying the violation
function.

Objective Simplification. A lower bound is computed by aiming at a simpler objective,
like local consistency. For example, the sum of DAC at the root of the tree search [35], is
a problem lower bound. More generally, the set of constraints which have to be removed
to achieve any kind of classical local consistency property in the problem, can be used
to compute a problem lower bound.

Search Simplification. The idea is performing a limited tree search and exploiting sub-
problem lower bounds in order to produce a problem lower bound. A number of algo-
rithms have been explored in [11]. The combination iterative deepening + russian doll
search produces the best results in both random and real benchmarks. It follows the
Russian Doll approach, substituting one search by n nested searches of subproblems.
However, each subproblem is not solved to optimality but a subproblem lower bound is
computed using an iterative deepening algorithm. Interestingly, at the jth subproblem,
the contribution of lookahead can be safely added with the lower bound of the j+ 1th
subproblem, to compute a lower bound for the jth subproblem. The last subproblem is
the whole problem, and then the problem lower bound is computed.

Following a different approach, an approximation of the optimal solution of a Weighted
CSP is given in [36]. The method is inspired in randomized algorithms and semidefinite
program relaxation. The approximation has polynomial time complexity and its cost (in
terms of the added weight of unsatisfied constraints) is assured to be between the optimal
and a worst case bound computable also in polynomial time. Experimental results show
that the algorithm performs well on random instances.

3.4. Multi-Objective Optimization

In the following, we outline some methods to solve OCSPs when formulated as multi-
objective optimization problems. For more details, the reader is addressed to specific
bibliography [45]. The goal in multi-objective optimization is to construct the Pareto
set E(P). Assuming that all the states in E(P) are of equal value, any can be taken as
the problem solution. A good approach would be to generate a representative sampling
of E(P), on which a decision support system could make a final choice. If this is too
costly, the sampling is approximated.

30 MESEGUER ET AL.

3.4.1 Parametric Scalarization

An approach to multi-objective optimization, F = (f, ..., f;), is to specify a weight
vector, w = (w,, ... , w), such that w; > 0 and }_ w, = 1. Each w; gives a weight to each
objective function f;, representing our preferences among objectives. Given a suitable
weight vector and an scalarizing function g: R* R, the multi-objective optimization
problem ‘Minimize’ F(s) over all s € S is replaced by the following single-objective
optimization problem,

Minimize g(F(s),w) over all s € S

Numerous researchers have discovered a connection between Pareto optimality and
weights. Given suitable conditions on the objective functions and the state space we
have that Pareto optimal points correspond to solutions of the optimization problem over
the scalarizing function. Points on the Pareto frontier can be generated by solving the
problem P, for different weight vectors w, i.e. minimizing the aggregation function for
different weight settings. Common functions are the following.

The Weighted Sum. The weighted sum is probably the most common scalarizing func-
tion. Sometimes it makes use of a fixed reference point z’, for instance an ideal point z*,

gw)=) wz or g(z,w)= wiz—z)
The Chebychev function. g(z,w) = max,{w;(z;, — z})}
The 1,-norm function. Given p > 1, g(z,w) = (- w;(z; — Z)P)r

Other Scalarizing Functions. g(z,w) = (1—a)g.(z,w)+ a/kg,(z,w) where g, is the
Chebychev function, and g, is the weighted sum.

We can now formulate a series single-objective optimization problems by varying these
parameters, and solve them using traditional single-objective optimization methods. This
will give us points on the Pareto set.

3.4.2 Local Search

As in the single-optimization case, local search is usually divided among a neighbour-
hood function that generates successors from the current state, a selection function that
determines which state will be selected as the next one, and meta-strategies to escape
from local minima. These issues, hard enough in the single-objective case, become more
difficult in multi-objective optimization.

Selection among neighbours becomes more complicated because they may be non-
comparable. Objective functions are usually scalarized, following the approaches men-
tioned in Section 3.4.1. When searching in the multi-objective case, we may find many
states which are neither worse nor better than the “best” found so far; there is no domi-
nance among them. A cache or archive is a way of collecting and handling non-dominant

CURRENT APPROACHES 31

best states. This cache will contain, at any time, a subset of the best approximation found
to the Pareto set. The criterion to include a new state in the cache is as follows. If the new
state dominates any state in the cache, the dominated states are removed from the cache
and the new state is added. If the new state is dominated by any other state of the cache,
it is not added. If there is no dominance relation between the new state and any state of
the cache, the new state is added to the cache. It belongs to the approximation of the
Pareto set.

Regarding SA procedures, the probability function is determined by using a probability
scalarizing approach, where acceptance probabilities for each objective are aggregated. If
P, 1s the acceptance probability for the kth objective function, the aggregated acceptance
probability p is a function g(p,, ..., p,). A complete multi-objective Simulated Anneal-
ing algorithm (popularly called MOSA) was developed in [54]. The MOSA algorithm
has been improved and tested in [55]. The paper illustrates the different options in the
implementation of MOSA, and some typical behaviours of MOSA are explained by the
possible complexity jump from solving uni-objective to multi-objective problems. The
Mosa algorithm has been advocated for interactive use in an industrial setting [56].

Regarding GA procedures, those states non-dominated by other states in the population
are selected to move the population toward the Pareto set. These states are then assigned
the highest rank and eliminated from further contention. Another set of Pareto non-
dominated states are determined from the remaining population and are assigned the next
high rank. This process continues until the population is suitably ranked. Finally, the rank
of an individual determines its fitness value. Remarkable here is the fact that fitness is
related to the whole population, while with aggregation techniques an individual’s raw fit-
ness value is calculated independently of other individuals. Some popular algorithms are:
Pareto ranking-based Genetic Algorithm (MOGA) [4], Non-dominated Sorting Genetic
Algorithm (NSGA) [51], and Niched Pareto Genetic Algorithm (NPGA) [26].

4. Case Studies
4.1. Earth Observation Satellite Management

The problem consists of planning a daily management of a satellite to take a set of images
from at least one of three instruments. The problem includes unary soft constraints,
plus binary, ternary an one n-ary hard constraints [5, 37]. Problem instances can be
downloaded from ftp://ftp.cert.fr/pub/lemaitre/LVCSP/Pbs/SPOTS5.tgz.

Problem Formulation
Variables. A variable is associated with each image. A positive integer weights each
variable.

Domain. It is formed by the possible assignment of the different instruments to take the
image: three possible values for a mono image and only one value for a stereo image.

32 MESEGUER ET AL.

Constraints. A set of hard binary constraints expresses the non overlapping and mini-
mum transition time constraints. A set of hard binary or ternary constraints expresses the
limitation of the instantaneous data flow through the satellite telemetry. An n-ary hard
constraint involving all the variables expresses the limitation of the on-board recording
capacity.

Optimization Criteria. The weight of a partial assignment is defined as the sum of the
weights of the assigned variables. A partial assignment is said feasible if and only if
it satisfies all the hard constraints (with the n-ary constraint restricted to the assigned
variables). The problem consists in finding a partial feasible assignment whose weight is
maximum.

Solving Methods and Results

Systematic methods are able to optimally solve problem instances without any n-ary
recording capacity constraint. However, they fail to do so when this type of constraint is
included. All the proven optimal results have been obtained either using an ILP problem
formalization and the CPLEX commercial software, or by using a Valued CSP formal-
ization and Russian Doll Search. The original article of RDS [58] implemented in LISP
reports very good results compared to Depth First Branch and Bound with backward
and forward checking on several instances, and notices the negative influence of increas-
ing graph bandwith to the cpu solving time. The ILOG Solver has been experimented
on smaller instances, and a comparison report exists [37]. All the approximating results
have been obtained with Tabu Search algorithms. In an operational context, an hour is
currently considered as a maximum time to decide which images will be taken the next
day and how to take them. Although this constraint cannot be considered as hard in
the context of this benchmark, a program taking more than one day would not be very
useful.

4.2. Timetabling

This case study presents a possible over-constrained problem plus a multi-objective opti-
mization problem [48]. It includes constraints with high arity. The aim is to assign
teachers to classes in a period of time in order to accomplish the requirement matrix and
the teacher, and class availability matrices.

Problem Formulation

— ¢,...,C, be m classes,
— ty,...,1t, be n teachers,

— 1,..., p be p periods,

CURRENT APPROACHES 33

— R requirements matrix: r; is the number of lectures given by teacher #; to class

mxn

c;,
— T, 1y is 1 if teacher ; is available at period k, otherwise it is 0,
— G,y ¢y 18 1if class ¢; is available at period k, otherwise it is 0.

Variables. Find x;; =1 if class ¢; and teacher ¢; meet at period k, x;; = 0 otherwise
(i=1l.m;j=1.nk=1.p).

Constraints

1. x;; iseither O or 1 (i =1..m; j = l..n; k = 1..p).

2. Yy x;u(i=1.m; j=1..n) is the right number of lectures to each class.

3. 2 Xy <ty (i = 1.m; k = 1..p) each teacher is involved in at most 1 lecture for
each period.

4. 30 x < cj(j=1..n; k= 1..p) each class is involved in at most 1 lecture for each
period.

Preassignments can be added x;; > p;; where p;; = 0 if there is no preassignment and
P = 1 when a lecture of teacher ¢; to class c; is preassigned to period k.

Optimization Problem. To convert this into a optimization problem the following objec-
tive function has been proposed,

m n

»
miny Y Y dig X

i=1 j=1k=1

where a large d,; is assigned to periods k in which a lecture of teacher ¢; to a class c;
is less desirable.
This problem has also a multicriteria version, considering the following aspects,

— The didactic cost: spreading the lectures over the whole week.
— The organizational cost: having a teacher available for temporary teaching.

— The personal cost: a specific day-off for each teacher.

Solving Methods and Results

The problem is NP-complete. Without considering availability matrices, the problem
is polynomial time solvable. Reductions to graph coloring [42] have proven results on
the existence of solution. Local search techniques have been applied for large amount
of data like: tabu search [3, 14, 47], simulated annealing [1], genetic algorithms [13].
Logic programming approaches [27] have shown advantatges on the expressivness of
constraints. A constraint relaxation problem solver COASTOOL [66] has also been used,
casting the problem as a Partial CSP.

34 MESEGUER ET AL.

4.3. The Radio Link Frequency Assignment Problems

The problem consists in assigning frequencies to a set of radio links defined between
pairs of sites in order to avoid interferences. Each radio link is represented by a variable
whose domain is the set of all frequences that are available for this link. All the con-
straints are binary, non linear, and have finite domains. All problem instances have been
built from a unique real instance with 916 links and 5744 constraints, and include both
feasible (a solution exists satisfing all the constraints) and unfeasible (a solution exists
satisfing all hard constraints and minimizing the cost of violating some of the soft con-
straints) [9]. Instances can be downloaded from: ftp:/ftp.cert.fr/pub/lemaitre/FullRLFAP.
tgz, and from http://www-bia.inra.fr/T/schiex/Doc/CELARE.html.

Problem Formulation

Variables. The links i € X.
Domains. The finite set of frequencies available for each link D,.
Constraints.

1. For each link i € X a frequency f; has to be chosen from a finite set D, : f; € D,.
2. Two links can define a duplex link |f; — f;| = d;;; d stands for distance.

ij
3. Some links may already have a pre-assigned frequency f; = p,. There is a mobility
cost for violating this soft constraint specified by m,.

4. Two links may interfere together |f; — f;| > d,;. There is a interference cost for
violating this soft constraint specified by c;.

Constraints (1) and (2) are hard, while (3) and (4) are soft. Several problems can be
defined:

Feasibility. Find an assignment of frequencies to each link such that all constraints
are satisfied. NP-complete since by constraints (1) and (4) it is possible to express the
k-coloring problem.

Minimum Span. Minimize the largest frequency used in the assignment; it can be
reduced to a short sequence of Feasibility problems using dichotomic search, and can
simply be cast as Possibilistic/Fuzzy CSP by adding soft unary constraints on the domain
values minmax; f;.

Minimum Cardinality. Minimize the number of different frequencies used in the assign-
ment; more difficult than the min-span min |U, f;|.

Maximum Feasibility. If all the constraints cannot be satisfied simultaneously, find the
assignment that minimizes the sum of all the violation cost. It can be cast as Partial CSP

min(3_ c; violation(|f; — f;| > d;;) + 3" my; violation(f; = p;)).

CURRENT APPROACHES 35

Solving Methods and Results

Approximation techniques are applied to the large data sets to find good solutions with-
out giving an optimality proof. The classical methods have been applied: local search
including tabu search, simulated annealing, genetic algorithms, potential reduction. Some
aproximations of local search techniques are very close to the optimum. For the cal-
culation of lower bounds on the minimum number of used frequencies the following
techniques are applied:

— Branch and cut: it can be applied in case that a linear programming (LP) formulation
is used as a model. Then a branch and bound algorithm is applied that at every node
of the search tree attempts to strengthen the LP bound of a LP relaxation version of
the problem.

— Constraint satisfaction: several specialized branch-and-bound algorithms have been
applied. And lately algorithms for overconstrained instances proving optimality have
been provided.

— Graph coloring techniques: Chromatic number approximations on some modified
version of the constraint graph gives good lower bound on the minimum number of
used frequencies [31].

Several systematic methods have been applied to prove optimality. In [21] RDS was
used to solve one of the hardest FAP instances in 32 days with a Spare 5 workstation.
Five subinstances of this total instance were extracted, and the total accumulated cost
of the subinstances was proven equal to best upperbound found at that moment for the
global instance, so it was directly proven optimal. In [11] combinations of RDS with
some iterative deeping techniques are shown to be very effective in the calculation of
anytime lower bounds.

Four subinstances are solved using directed arc-inconsistency techniques in [34]. The
CPU time given correspond to the time to prove optimality, that means the DAC algo-
rithm is initialized with the optimal cost as upperbound. Recently in [29] the whole
instance 6 is solved to optimality in no more than 3 hours using graph decomposition
techniques combined with a dynamic programing algorithm.

5. Summary and Perspectives

In this paper we have given a short overview of the existing methods for modelling and
solving OCSPs. The different models for OCSP formulation have been summarized, with
special attention to the generic models on which several interesting properties on local
consistency have been proved. Regarding solving methods, both systematic and local
search families have been reviewed, devoting special attention to specific techniques to
deal with over-constrained problems. Since some OCSP can be seen as multi-objective
optimization problems, some notions on this topic have been presented. Finally, we have
described three case studies to illustrate the usage of all previous techniques in real world
problems.

36 MESEGUER ET AL.

This field is currently in full development. The last years have lead to important devel-
opments in OCSP solving algorithms, and new advances can be expected in the next
years. Among the promising directions for further research, we mention the improve-
ment of lower bounds used in BnB-based algorithms, and the exploitation of the con-
straint graph topology to speed up search. A good example of the first direction is very
interesting work on arc consistency for soft constraints [50], where arc consistency is
successfully redefined in the soft constraint context. This may cause better lower bounds
to appear, as well as new redefinitions of other local consistency concepts. In the second
direction, the work on variable elimination [32] has been shown very effective when
applied to OCSP. Finally, we mention the reformulation of soft constraints as a single
hard global constraint [44], to facilitate its inclusion into existing constraint program-
ming frameworks. These positive results indicate that the solving capacity of existing
technology will be substantially enhanced in the near future.

Acknowledgments

This work was carried out inside the ECSPLAIN project (IST-99-11969). Authors thank
the other members of the project for their support, as well as project reviewers for
their constructive criticisms. This work was supported by the IST Programme of the
Commission of the European Union through the ECSPLAIN project (IST-1999-11969).

References

1. Abramson, D. A. (1991). Constructing school timetables using simulated annealing: Sequential and parallel
algorithms. Management Science, 37(1): 98-113.

2. Affane, M.-S., & Bennaceu, H. (1998). A weight are consistency technique for Max-CSP. In Proc. of
ECAI-98, pages 209-213.

3. Alvarez-Valdes, R., Martin, G., & Tamarit, J. M. (1996). Constructing good solutions for the Spanish
school timetabling problem. Journal of the Operational Research Society, 1203-1215.

4. Belegundu, A. D., Murthy, D. V., Salagame, & Constant, E. W. (1994). Multi-objective optimization
of laminated ceramic composites using genetic algorithms. In Fifth AIAA/USAF/NASA Symposium on
Multidisciplinary Analysis and Optimization, Paper 84-4363-CP, pages 1015-1022.

5. Bensana, E., Lemaitre, M., & Verfaillie, G. (1999). Earth observation satellite management. Constraints,
4(3): 293-299.

6. Bistarelli, S., Montanari, U., & Rossi, F. (1995). Constraint solving over semirings. In Proc. IJCAI-95,
pages 624-630.

7. Bistarelli, S., Montanari, U., Rossi, F, Schiex, T., Verfaille, G., & Fargier, H. (1999). Semiring-based
CSPs and valued CSPs: Frameworks, properties and comparison. Constraints, 4: 199-240.

8. Borning, A., Freeman-Benson, B., & Wilson, M. (1992). Constraint hierarchies. Lisp and Symbolic Com-
putation, 5: 223-270.

9. Cabon, B., De Givry, S., Lobjois, L., Schiex, T., & Warners, J. (1999). Radio link frequency assignment.
Constraints, 4(1): 79-89.

CURRENT APPROACHES 37

10.

11.

12.

13.

14.

15.

16.

19.

20.
21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.
33.

Cabon, B., Verfaillie, G., Martinez, D., & Bourret, P. (1996). Using mean field methods for boosting
backtrack search in constraint satisfaction problems. In Proc. of ECAI-96, pages 165-169.

Cabon, B., Givry, S., & Verfaillie, G. (1998). Anytime lower bounds for constraint violation minimization
problems. In Proc. of CP-98, pages 117-131.

Chu, P., & Beasley, J. E. (1997). Genetic algorithms for the generalized assignment problem. Computers
and Operations Research, 24: 17-23.

Colorni, A., Dorigo, & Maniezzo (1992). A genetic algorithm, to solve the timetable problem. Technical
Report 90.060, Politecnico di Milano, Italy.

Costa, D. (1994). A tabu search algorithm for computing an operational timetable. European Journal of
Operational Research, 76: 98-110.

Davenport, A., Tsang, E., Wang, C., & Zhu, K. (1994). GENET: A connectionist architecture for solving

constraint satisfaction problems by iterative improvement. In Proc. of AAAI-94, pages 325-330.

Dubois, D., Fargier, H., & Prade, H. (1996). Possibility theory in constraint satisfaction problems: Handling
priority, preference and uncertainty. Applied Intelligence, 6: 287-309.

. Eiben, A. E., Raua, P.-E., & Ruttkay, Zs. (1994). Solving constraint satisfaction problem using genetic

algorithms. In Proc. Ist IEEE Conference on Evolutionary Computing, pages 543-547.

. Fargier, H., & Lang, J. (1993). Uncertainty in constraint satisfaction problems: A probabilistic approach.

In Proc. ECSQARU-93, In Vol. 747 of LNCS, pages 97-104.

Fargier, H. (1994). Problemes de satisfaction de constraintes flexibles: Application a I’ordonnancement de
production. Ph.D. Thesis, Univ. Paul Sabatier, Toulouse, France.

Freuder, E., & Wallace, R. (1992). Partial constraint satisfaction. Artificial Intelligence, 58: 21-71.

Givry, S., Verfaillie, G., & Schiex, T. (1997). Bounding the optimum of constraint optimization problems.
In Proc. of CP-97, pages 405-419.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addition-
Wesley Publishing Co., Reading, MA.

Haralick, R. M., & Elliot, G. L. (1980). Increasing tree search efficiency for constraint satisfaction prob-
lems. Artificial Intelligence, 14: 263-313.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems, 2nd ed. MIT Press.

Homaifar, A., Lai, S. H. Y., & Qi, X. (1994). Constrained optimization via genetic algorithms. Simulation,
62(4): 242-254.

Horn, J., & Nafpliotis, N. (1993). Multi-objective optimization using the niched pareto genetic algorithm.
Technical Report Illi GAI Report 93005, University of Illinois at Urbana Champaign.

Kang, L., & White, G. M. (1992). A logic approach to the resolution of constraints in timetabling.
European Journal of Operational Research, 61: 306-317.

Kirkpatrick, S., Gelat, C., & Vicci, M. (1983). Optimization by simulated annealing. Science, 220(4598):
671-680.

Koster, A. M., Hoesel, C. P,, & Kolen, A. W. Optimal solutions for a frequency assignment problem via
tree-decomposition. In Vol. 1665 of LNCS, pages 338-349.

Kumar, V. (1992). Algorithms for constraint satisfaction problems: A survey. AI Magazine, Spring 1992,
pages 32-44.

Lanfear, T. A. (1989). Graph theory and radio link frequency assignment problems. Technical Report,
NATO, Allied Radio Frequency.

Larrosa, J. (2000). Boosting search with variable elimination. In Proc. CP-00, pages 291-305.

Larrosa, J., & Meseguer, P. (1996). Exploiting the use of DAC in Max-CSP. In Proc. of CP-96, pages
308-322.

38

34.
35.
36.

37.

38.
39.
40.
41.
42.
43.
44.

45.
46.

47.

48.
49.

50.
SIL.

52.
53.

54.

55.

56.

MESEGUER ET AL.

Larrosa, J., & Meseguer, P. (1999). Partition-based lower bound for max-CSP. In Proc. of CP-99, pages
303-315.

Larrosa, J., Meseguer, P., & Schiex, T. (1999). Maintaining reversible DAC for max-CSP. Artificial Intel-
ligence, 107(1): 149-163.
Lau, H. C. (1996). A new approach for weighted constraint satisfaction: Theoretical and computational

results. In Proc. of CP-96, pages 323-337.

Lemaitre, M., & Verfaillie, G. (1997). Daily management of an earth observation satellite: comparairon of
ILOG solver with dedicated algorithms for Valued CSP. In Proc. of the Third ILOG International Users
Meeting. Paris, France.

Li, Y. H. (1997). Directed annealing search in constraint satisfaction and optimization. Ph.D. Thesis,
Imperial College of Science, Department of Computing.

Minton, S., Johnson, M., Philips, A., & Laird, P. (1990). Solving large-scale constraint satisfaction and
scheduling problems using a heuristic repair method. In Proc. of AAAI-90, pages 17-24.

Minton, S., Johnson, M., Philips, A., & Laird, P. (1992). Minimizing conflicts: A heuristic repair method
for constraint satisfaction and scheduling problems. Artificial Intelligence, 58: 161-205.

Morris, P. (1993). The breakout method for escaping from local minima. In Proc. of AAAI-93, pages
40-45.

Neufeld, G. A., & Tartar, J. (1974). Graph coloring conditions for the existence of solutions to the timetable
problem. Communications of the ACM, 17(8): 450-453.

Parmee, 1. (1989). The integration of evolutionary and adaptive computing technologies with prod-
uct/system design and realization. Springer-Verlag, Plymouth, UK.

Régin, J. C., Petit, T., Bessiére, C., & Puget, J. F,, (2000). An original constraint based approach for
solving over constrained problems. In Proc. CP-00, pages 543-548.

Rosenthal, R. (1985). Principles of multiobjective optimization. Decision Sciences, 16: 133-152.
Ruttkay, Z., Eiben, A. E., & Raue, P. E. (1995). Improving the performance of GAs on a GA-hard CSP.
In Proceedings, CP95 Workshop on Studying and Solving Really Hard Problems, pages 157-171.
Schaerf, A. (1996). Tabu search techniques for large high-school timetabling problems. In Proc. of ECAI-
96, pages 634—639.

Schaerf, A. (1996). A survey of automated timetabling. Artificial Intelligence Review, 13: 87-127.
Schiex, T., Verfaille, G., & Fargier, H. (1995). Valued constraint satisfaction problems: Hard and easy
problems. In Proc. 1JCAI-95, pages 631-637.

Schiex, T. (2000). Arc consistency for soft constraints. In Proc. CP-2000, pages 411-424.

Srinivas, N., & Deb, K. (1993). Multi-objective optimization using nondominated sorting in genetic algo-
rithms, Technical Report, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur.
Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press.

Tsang, E., Wang, C., Davenport, A., Voudouris, C., & Lau, T. (1999). A family of stochastic methods for

constraint satisfaction and optimization. In The First International Conference on the Practical Application
of Constraint Technologies and Logic Programming, London.

Ulungu, E. L., Teghem, J., & Fortemps, P. H. (1997). Heuristics for multi-objective combinatorial opti-
mization by simulated annealing. In Gu, J., Chen, G., Wei, Q., & Wang, S. (eds.), Multicriteria Analysis,
pages 269-278. Springer-Verlag, Berlin.

Ulungu, E. L., Teghem, J., Fortemps, P. H., & Tuyttens, D. (1999). MOSA method: A tool for solving
multi-objective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis, 8(4):
221-236.

Ulungu, E. L., Teghem, J., & Ost, C. (1998). Interactive simulate annealing in a multi-objective framework:
Application to an industrial problem. J. Oper. Res. Soc., 49: 1044-1050.

CURRENT APPROACHES 39

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Verfaille, G., & Schiex, T. (1994). Solution reuse in dynamic constraint satisfaction problems. In Proc. of
AAAI-94, pages 307-312.

Verfaillie, G., Lemaitre, M., & Schiex, T. (1996). Russian doll search for solving constraint satisfaction
problems. In Proc. of AAAI-96, pages 181-187.

Wah, B., & Wang, T. (1999). Simulated annealing with asymptotic convergence for nonlinear constrained
global optimization. In Proc. of CP-99, pages 461-475.

Wallace, R. (1995). Directed arc consistency preprocessing. In Meyer, M. (ed.), Selected Papers from the
ECAI-94 Workshop on Constraint Processing, Vol. 923 of LNCS, pages 121-137.

Wallace, R. (1996). Enhancements of branch and bound methods for the maximal constraint satisfaction
problem. In Proc. of AAAI-96, pages 188—-195.

Wallace, R., & Freuder, E. C. (1993). Conjunctive width heuristics for maximal constraint satisfaction. In
Proc. of AAAI-93, pages 762-768.

Wallace R., & Freuder, E. C. (1995). Heuristics methods for over-constrained constraint satisfaction prob-
lems. In Over-Constrained Systems, Vol. 1106 of LNCS. (Also Workshop in CP-95.)

Wilson, M., & Borning, A. (1993). Hierarchical constraint logic programming. Journal of Logic Program-
ming, 16: 227-318.

Yokoo, M. (1994). Weak-commitment search for solving constraint satisfaction problems. In Proc. of
AAAI-94, pages 313-318.

Yoshikawa, M., Kaneko, K., Yamanouchi, T., & Watanabe M. (1996). A constraint-based high school
scheduling system. [EEE Expert, 11(1): 63-72.

