
The Steel Mill Slab Design Problem Revisited

P. Van Hentenryck1 and L. Michel2

1 Brown University, Box 1910, Providence, RI 02912
2 University of Connecticut, Storrs, CT 06269-2155

Abstract. Recently, Gargani and Refalo (G&R) presented an elegant
model for the Steel Mill Slab Design Problem (Problem 38 in the CSP
LIB). Contrary to earlier approaches, their model does not use 0/1 vari-
ables but exploits the traditional expressiveness of constraint program-
ming. G&R indicated that static symmetry-breaking constraints pro-
posed earlier are not effective on this model, as these interact with their
heuristic. Instead they use large neighborhood search to obtain solutions
quickly. This paper shows that a simple search procedure breaking sym-
metries dynamically leads to a constraint program solving the problem
in a few seconds, while maintaining the completeness of the approach
and removing the need for large neighborhood search.

1 Introduction

The steel mill slab design problem (problem 38 in the CSP Library) has attracted
significant interest in the community. The problem consists of packing a set of
orders into slabs, minimizing the total capacity of the slabs needed while satisfy-
ing the capacity and order compatibility constraints on the slabs. The CSPLIB
proposes an instance with 111 orders which could not be solved to optimality
by constraint-programming approaches until last year. Earlier work included the
presentation of different models in [1], the study of symmetry breaking in [2], the
hybridization of constraint and mathematical programming in [4] which solves
a sub-instance of the CSP Lib problem with 30 orders in about 1000s, and the
local search solver WSAT(OIP) for pseudo boolean variables [7] which solves the
decision problem with 111 orders in about 2000s.

Last year, Gargani and Refalo [3] reconsidered the problem using a constraint-
programming approach. They stated that “the models used for [earlier] con-
straint programming approaches to this problem were basically linear models over
binary variables. While such models are suited for integer programming solvers
that can tighten the formulation by cutting-plane generation, these models are
notoriously not well suited to a constraint programming approach because of the
limited domain reductions they produce.” They introduced a natural constraint-
programming model using logical and global constraints exploiting the structure
of the problem. By designing a specific strategy for variable and value selection
and combining the heuristic with a large-neighborhood search, they showed how
to solve the largest instance with 111 orders in just 3s using the Ilog constraint-
programming solver.

L. Perron and M. Trick (Eds.): CPAIOR 2008, LNCS 5015, pp. 377–381, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

378 P. Van Hentenryck and L. Michel

Gargani and Refalo also studied how to add (static) constraints in order to
prevent the search strategy from producing symmetrical solutions. Their experi-
mental results show that these constraints are useful for small instances but nega-
tively impact performance on larger instances. They argued that “the symmetry-
breaking constraints prevent our strategy from finding good solutions causing the
loss in performance” and explained the interference between the search heuris-
tics and the symmetric-breaking constraints. As a result, they stated: “For these
reasons, we have not used symmetry breaking constraints in our constraint pro-
gramming solution, and we have dramatically improved the convergence of the
search by using a local search approach.”

This paper shows that their constraint-programming model with a simple,
dynamic symmetry-breaking scheme leads to a constraint program solving the
problem in a few seconds, while maintaining the completeness of the approach
and removing the need for large neighborhood search.

2 The Steel Mill Slab Design Problem

The problem consists in producing n orders using a set of slabs. Each order o
has a color co and a weight wo representing the slab capacity it takes. Each
slab has a capacity that must be chosen from the increasing set of capacities
{u1, u2, ..., uk}. A solution is an assignment of orders to slabs such that

1. the total weights of the orders in a slab must not exceed the slab capacity;
2. the orders in a slab can be of two different colors only.

The objective is to minimize the sum of the weights of the slabs used in the
solution or, equivalently, the sum of losses (unused capacity) in the slabs used
in the solution.

3 The Constraint Program

Figure 1 depicts the constraint program for solving the steel mill slab problem in
Comet. Lines 1–16 are essentially the model of Gargani and Refalo, while lines
18–24 are the new search procedure including the dynamic symmetry breaking.

The ingenuity in their model is in the expression of the objective function.
Indeed, the model uses two sets of decision variables: variable x[o] specifies
the slab assigned to order o, while variable l[s] represents the load of slab s.
Once the load of a slab is known, it is easy to compute its loss: simply take the
smallest capacity supporting the load. Line 6 computes an array of losses for
each possible capacity, while the objective function in line 12 uses the element
constraint to compute the loss of each slab. Note that a slab with no order incurs
no loss. Gargani and Refalo use a global packing constraint [5] for computing
the weight: this constraint is semantically equivalent to

forall(s in Slabs)
cp.post(sum(o in Orders) weight[o] * (x[o] == s) == l[s]);

The Steel Mill Slab Design Problem Revisited 379

1 int capacities[Caps] = ...;
2 int weight[Orders] = ...;
3 int color[Orders] =...;
4 set{int} colorOrders[c in Colors] = filter(o in Orders) (color[o] == c);
5 int maxCap = max(i in Caps) capacities[i];
6 int loss[c in 0..maxCap] = min(i in Caps: capacities[i] >= c) capacities[i] − c;
7

8 Solver<CP> cp();
9 var<CP>{int} x[Orders](cp,Slabs);

10 var<CP>{int} l[Slabs](cp,0..maxCap);
11

12 minimize<cp> sum(s in Slabs) loss[l[s]]
13 subject to {
14 cp.post(packing(x,weight,l));
15 forall(s in Slabs)
16 cp.post(sum(c in Colors) (or(o in colorOrders[c]) (x[o] == s)) <= 2);
17 } using {
18 forall(o in Orders) by (x[o].getSize(),−weight[o]) {
19 int ms = max(0,maxBound(x));
20 tryall<cp>(s in Slabs: s <= ms + 1)
21 cp.label(x[o],s);
22 onFailure
23 cp.diff(x[o],s);
24 }
25 }

Fig. 1. The Constraint-Programming Model in COMET

and the experimental results will discuss its importance. The second set of con-
straints are meta-constraints specifying that the orders can be of at most two
different colors.

The search procedure in lines 18–24 is the main novelty here. It iterates on the
orders, selecting first the orders with the smallest domains (first-fail principle)
and breaking ties by choosing orders with the largest weight (line 18). The
search procedure then considers the slabs to assign to the selected order: it only
considers slabs in which some orders have been placed as well as one additional
empty slab. Line 19 computes the already used slabs (i.e., 1..ms), while line 20
is a nondeterministic instruction trying to assign the slabs to variable x[o].

Observe that the entire model is 25 lines of Comet, does not include large
neighborhood search, and is guaranteed to be complete, since two empty slabs
are equivalent for allocating an order. These value symmetries were studied the-
oretically in [6] and have been used in several constraint programs for graph
coloring, scene allocation, deployment of serializable services to name only a
few. Note also that there are other symmetries that could be broken: two slabs
with the same capacities and the same colors are also symmetric, but it was not
necessary to break these symmetries to achieve good performance.

380 P. Van Hentenryck and L. Michel

0

2.5

5.0

7.5

10.0

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 10
1

10
3

10
5

10
7

10
9

11
1

Performance of Constraint Programming on the Steel Mill Slab Design Problem
C

P
U

 T
im

e
s
 i
n

 S
e
c
o

n
d

s

Sizes

Fig. 2. Performance of the Comet Program on the Steel Mill Slab Design Problem

4 Experimental Results

Figure 2 depicts the experimental results on a 2.16 GHz Intel processor running
Mac OS X 10.5.1. As can be seen, the Comet program solves all instances within
less than 8 seconds, indicating that this problem has become extremely easy for
constraint programming.

Readers may wonder how much of the efficiency is due to the global constraint
for packing. To determine its contribution, it was replaced by the constraints

forall(s in Slabs)
cp.post(sum(o in Orders) weight[o] * (x[o] == s) == l[s]);

cp.post(sum(o in Orders) weight[o] == sum(s in Slabs) l[s]);

0

2.5

5.0

7.5

10.0

51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 10
1

10
3

10
5

10
7

10
9

11
1

Performance of Constraint Programming on the Steel Mill Slab Design Problem

C
P

U
 T

im
e
s
 i
n

 S
e
c
o

n
d

s

Sizes

Fig. 3. Performance of the Comet Program with no Global Constraint

The Steel Mill Slab Design Problem Revisited 381

The first set of constraints was discussed earlier and captures the semantics
of the global constraint, while the last constraint is semantically redundant and
expresses that the total weight of the orders is equal to the total load of the slabs.
Figure 3 depicts the experimental results. They indicate that all the instances are
now solved within 10 seconds, showing that the global constraint is not strictly
necessary here. Observe also the similar shape of the computation results.

5 Conclusion

In recent work, Gargani and Refalo (G&R) presented an elegant model for the
Steel Mill Slab Design Problem (Problem 38 in the CSP LIB). Contrary to earlier
approaches, their model does not use 0/1 variables but exploits the traditional
expressiveness of constraint programming. G&R indicated that static symmetry-
breaking constraints proposed earlier are not effective on this model, as these
interact with their heuristic. Instead they use large neighborhood search to ob-
tain solutions quickly. This paper showed that an simple search procedure using
the first-fail principle and dynamic symmetry breaking leads to a constraint pro-
gram solving the problem in a few seconds, while maintaining the completeness
of the approach and removing the need for large neighborhood search.

It is interesting to observe that the steel mill slab design problem is now solved
efficiently using technology and concepts which were all available in 1991.

Acknowledgments. This research is partially supported by NSF awards DMI-
0600384 and ONR Award N000140610607.

References

1. Frisch, A., Miguel, I., Walsh, T.: Modelling a steel mill slab design problem. In:
Proceedings of the IJCAI 2001 Workshop on Modelling and Solving Problems with
Constraints (2001)

2. Frisch, A., Miguel, I., Walsh, T.: Symmetry and implied constraints in the steel
mill slab design problem. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92.
Springer, Heidelberg (2001)

3. Gargani, A., Refalo, P.: An efficient model and strategy for the steel mill slab design
problem. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, Springer, Heidelberg
(2007)

4. Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Hybrid modelling for robust solving.
Annals of Operations Research 130(1–4), 19–39 (2004)

5. Shaw, P.: A Constraint for Bin-Packing. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 648–662. Springer, Heidelberg (2004)

6. Van Hentenryck, P., Flener, P., Pearson, J., Ågren, M.: Tractable symmetry breaking
for csps with interchangeable values. In: International Joint Conference on Artificial
Intelligence (IJCAI 2003) (2003)

7. Walser, J.: Solving linear pseudo-boolean constraints with local search. In: Proceed-
ings of the Eleventh Conference on Artificial Intelligence, pp. 269–274 (1997)

	The Steel Mill Slab Design Problem Revisited
	Introduction
	The Steel Mill Slab Design Problem
	The Constraint Program
	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

