

Modelling a Steel Mill Slab Design Problem

Ian Miguel Alan M Frisch

Slab Design

- The mill can make σ different slab sizes.
- Given *d* input orders each sepcifying:
 - A *colour* (route through the mill).
 - A weight.
- Pack orders onto slabs such that the total slab capacity is minimised, subject to:
 - Capacity constraints.
 - Colour constraints.

Slab Design Constraints

• Capacity Constraints:

- Total weight of orders assigned to each slab cannot exceed the slab's capacity.
- Colour Constraints:
 - Each slab can contain at most *p* of *k* total colours.
 - Reason: expensive to cut slabs up to send them to different parts of the mill.

What's Interesting about this Problem?

- Many problems exhibit flexibility in portions of their structure.
- Example: the number required of a certain type of variable.
- Flexibility must be resolved during the solution process.
- Slab design is a representative example of this type of problem:
 - Number of slabs is unknown.

What's Interesting about this Problem?

- Symmetry.
 - Some instance-based.
- Channelling.
 - Between matrices of decision variables.
- Implied Constraints.
 - Some of which follow from the symmetry-breaking.

An Example

- Slab Sizes: $\{1, 3, 4\}$ ($\sigma = 3$)
- Orders: $\{o_a, ..., o_i\}$ as shown below (d = 9)
- Colours: {red, green, blue, orange, brown} (k = 5)

• *p* = 2

A Solution

• Use 6 Slabs:

This is an optimal solution as it produces no wastage.

How Many Slabs?

- Number of slabs is not fixed.
 - If there are *d* orders, then an optimal solution uses no more than *d* slabs.
- An array, *S*, of slab variables: *s*[1], ..., *s*[*d*]
 - Domains size σ.
- Objective

minimise
$$\sum_{i} s[i] = optVar$$

- Some slab variables may be *redundant*:
 - 0 is added to the domain of each *s*[*i*].
 - If slab *i* is not necessary to solve the problem, s[i] = 0.

The Order Matrix: O

O[i,j] = 1 iff order *i* is placed on slab *j*.

Capacity constraints:

$$\forall j : \sum_{i} weight(o_i) \times O[i, j] \leq s[j]$$

 $\forall i : \sum_{j} O[i, j] = 1$ Every order goes on exactly 1 slab

(Note: is row *j* column *i* of the matrix).

The Colour Matrix: C

	Red	Green	Blue	Orange
<i>s</i> ₁	0	0	1	1
<i>s</i> ₂	0	1	0	0
S ₃	1	0	0	0
S ₄	0	0	0	0

Colour constraints $\forall j \sum_{i} C[i, j] \le p$

- Channelling: for all i, j $O[i, j] = 1 \rightarrow C[colour(i), j] = 1$
- Why \rightarrow and not \leftrightarrow ?

							F	Cx	an						
2 0 \	a		3 0 _b		1 0 _c		1 0 _d		1 O _e	1	f	1 o _g		2 O _h	1 o _i
	0 _a	0 _b	0 _c	0 _d	o _e /	$o_{\rm f}$	0g	0 _h	0 _i		Red	Green	Blue	Orange	Brown
<i>s</i> ₁	1									<i>s</i> ₁	1				
<i>s</i> ₂				1						<i>s</i> ₂			•1		
• • •										•••					

0	0 _a	0 _b	0 _c	0 _d	0 _e	0 _f	0g	0 _h	0 _i	С	Red	Green	Blue	Orange	Brown
<i>s</i> ₁	0	0	0	0	0	0	1	1	1	<i>s</i> ₁	0	0	0	1	1
<i>s</i> ₂	1	0	1	0	0	0	0	0	0	<i>s</i> ₂	1	1	0	0	0
<i>S</i> ₃	0	1	0	0	0	0	0	0	0	<i>S</i> ₃	0	1	0	0	0
<i>S</i> ₄	0	0	0	1	1	1	0	0	0	<i>S</i> ₄	0	0	1	1	0
•••	0	0	0	0	0	0	0	0	0	• • •	0	0	0	0	0

9 Dec 2005

Symmetry

- Slabs are indistinguishable.
- So model suffers from symmetry:
 - Counteract with binary symmetry-breaking constraints: $s[1] \ge s[2], s[2] \ge s[3], ...$

Symmetry

- Slab variables assigned the same size are indistinguishable.
- Break this symmetry with the constraint: If s[i]and s[i+1] have the same assignment, then row *i* of the order matrix must be lexicographically less than or equal to row and i+1. E.g. $1001 \ge 0110$.

$$s[i] = s[i+1] \rightarrow O[_,i] \ge lex O[_,i+1]$$

Instance Symmetry

- Orders with same weight, colour are symmetrical.
- Order symmetrical columns lexicographically.
- For all *i*, *j* such that i < j and orders *i* and *j* have the same weight and colour, add the constraint $O[i, _] \ge lex O[i+1, _]$
- Could restrict this to a "sequence" of constraints.

• Combined weight of input orders is a lower bound on optimisation variable:

$$\sum_{i} weight(o_i) \leq optVar$$

- How does this help?
 - If find a solution of this quality, can stop immediately.

• Lower bound on number of slabs required: $\sum_{i} weight(o_i)$ minslabs = $-\frac{i}{i}$

largest slab size

- With symmetry-breaking constraints, implies unary constraints on slab variables:
 - Have: $s[1] \ge s[2], s[2] \ge s[3], \dots$
 - Know that we need at least *minslabs* slabs.
 - So first minslabs slab variables are non-zero.
- Notice that the implied constraint follows from the symmetry-breaking constraint (among others).

- $AssWt_i$ is the weight of orders assigned to slab *i*.
 - Prune domains by reasoning about reachable values.
 - Also gives a maximum assigned weight.
 - So, revise lower bound on number of slabs required:

$$\frac{\sum_{i} weight(o_i)}{\text{maxAssWt}}$$

- Incorporate both size and colour information.
- More powerful if done during search (future work).

- $Waste_i = s[i] AssWt_i$
 - Unused portion of a slab.
- Upper bound on total waste:
 - Assume each order is assigned to an individual slab, with smallest size able to hold it.
 - Sum waste in each case: leads to upper bound for optimisation variable.
 - Upper bound on $Waste_i$ is the worst of these cases.

References

- Modelling a Steel Mill Slab Design Problem, A. M. Frisch, I. Miguel, T. Walsh. *Proceedings of the IJCAI Workshop on Modelling and Solving Problems with Constraints*, pp. 39-45, 2001.
- Symmetry and Implied Constraints in the Steel Mill Slab Design Problem. A. M. Frisch, I. Miguel, T. Walsh. *Proceedings of the CP Workshop on Modelling and Problem Formulation*, pp. 8-15, 2001.
- www.csplib.org (Problem 38).