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AbstractThis report is an e�ort to consolidate two di�erent avors of a surplus inven-tory matching problem encountered in the steel industry:� Surplus Un�nished Inventory Matching, and� Surplus Finished Inventory Matching.This report is compiled from two other reports that describe the heuristic solutionapproaches developed for a real world application of these problems [1, 2]. Thefocus here is to motivate these problems from an operations planning point ofview.The initial sections of this report provide an overview of the production plan-ning process in the steel industry and situate the surplus inventory problem withinthis context. Subsequently the report is split into distinct parts:Part I: Surplus Un�nished Inventory MatchingPart II: Surplus Finished Inventory MatchingThe problem formulations and solution approaches in these sections are based onthe following technical reports respectively.1. Kalagnanam,J.R., M. Dawande, M. Trumbo, H.S. Lee (1998) \The Surplus In-ventory Matching Problem", IBM Research Report 21071 (94285), IBM ResearchDivision, Yorktown Hts, NY.2. Salman, F.S., J.R. Kalagnanam, S. Murthy (1997) \Cooperative Strategies forSolving the Bicriteria Sparse Multiple Knapsack Problem", IBM Research Report21059 (94164), IBM Research Division, Yorktown Hts, NY.Key Words: Matching; surplus inventory; integer programming; sparse bicrite-ria multiple knapsack problem; multiple knapsack with colors; bipartite graphs.
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1 IntroductionWe introduce two problems that arise from operations planning applications in theprocess industry. These problems involves matching an order book against surplus in-ventory as a preprocessing step to production planning and were encountered in theoperation of a large steel plant. In this paper we describe these problems and theheuristic solutions that were developed to solve it. The problem formulations gener-alize beyond the steel application to other process industries such as paper and metalprocessing industries. The solutions described here have been deployed in a steel plantand are now used in daily mill operations. We also present a rigorous analysis compar-ing the performance of the heuristic solutions against optimal solutions using integerprogramming for small instances. However, the large instances could not be solved tooptimality.Operations planning in a process industry typically begins with a order book whichcontains a list of orders that need to be satis�ed. The initial two steps in an operationsplanning exercise involves (1) trying to satisfy orders from the order book using leftoverstock from the surplus inventory and (2) subsequently designing productions units formanufacture from the remaining orders. This process is presented schematically inFigure 1. In this paper, we discuss the �rst of the two steps from a optimizationperspective.An important characteristic of a process industry is that production is on a made-to-order basis. As a consequence, the surplus inventory is produced for one of the followingreasons:� Orders are cancelled after a set of items are produced to satisfy it,3
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AdditionalFigure 1: Conceptual ow of operations planning in the process industry� Items are below the quality level required for the orders that they were beingproduced for, and� Surplus items are requested during production or scheduling to satisfy restrictionson machines or operations.The production process in a steel plant is shown in Figure 2. As shown in the �gurea slab cast from the furnace is rolled through a hot and cold strip mill into a coilafter which it is �nished according to order speci�cations. However, a slab taggedas being a surplus item before the hot strip mill for any of the reasons mentionedabove is un�nished and is removed to inventory. Such un�nished inventory providesgreat exibility in terms of the number of di�erent orders types that can be potentially4



ful�lled from the same slab by di�erent processing routes through the �nishing mill.It is indeed this exibility that provides an opportunity for optimizing the applicationof the order book against the surplus inventory. Production units which are tagged assurplus after the �nishing mill for quality reasons are classi�ed as �nished inventoryand can only be applied against other orders for which the quality requirements can bemet.
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Figure 2: Schematic of a Steel MillThe problem of applying orders against an existing surplus inventory has a strong avorof a matching problem - we call this the Surplus Inventory Matching Problem.The goal of Inventory Matching is to maximize the total weight of the order bookthat is applied against the surplus inventory. An additional goal is to minimize theunused weight of those slabs that are matched against orders. Hence surplus inventorymatching problem is a bicriteria problem.Additionally there are two classes of constraints that need to be considered when match-ing orders against surplus inventory.� Assignment Restrictions: When matching an order against an inventory itemit is necessary to consider geometric and quality attributes which restrict the5



number of potential available matches.� Processing Constraints: While packing multiple orders on an inventory itemadditional processing constraints that restrict the set of feasible orders that canbe packed together need to be considered.The surplus inventory matching problem can be modeled as variations of the multipleknapsack problem. A bipartite graph is constructed with two sets of nodes, one for theorders and the other for the inventory items (such as slabs). Refer to Figure 3. Theedges in this graph represent the potential matches between orders and slabs. In thegeneral case when all matches can be applied against all inventory items the bipartitegraph is complete. However the assignment restrictions render many of the edges in thebigraph infeasible and this (often) results in a sparse bigraph. A model based on thisrepresentation is referred to as a sparse bicriteria multiple knapsack problem. We willshow that this model is useful for modeling the surplus inventory matching problemwhen we retrict ourselves to �nished inventory.
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Figure 3: The surplus inventory matching problemProcessing constraints restrict the set of orders that can be packed together. Ordershave associated with them a unique route required to �nish to speci�cation. If orders6



with di�erent routes are packed to the same inventory item then these orders needto be separated before the �nishing mill. This requires cutting operations which areexpensive and hence are restricted to no more than one cut per slab. This translates tohaving no more than two di�erent routes packed onto the same slab. From a modelingperspective it is convenient to represent each route with a unique color and associate aunique color with each order. Now we can describe the processing constraint as a colorconstraint which restrict the total number of colors per slab to be no more than two.Now the multiple knapsack problem can be extended to have color constraints so thatno more than two colors are packed to the same inventory item. This is referred to asthe multiple knapsack problem with color and this is used to model un�nished surplusinventory matching.As indicated above, two di�erent avors of the surplus inventory matching problemarise in the steel industry.� Matching an order book against the un�nished inventory is modeled using themultiple knapsack with color constraints. Orders are matched against un�nishedinventory and need to be �nished according to order speci�cations. Both assign-ment and processing constraints are considered.� Matching an order book against the �nished inventory can be modeled using thebicriteria sparse multiple knapsack problem. Since only �nished inventoy is beingused in the matching no further processing is necessary to �nish orders. Onlyassignment restrictions are considered for matching.The rest of the paper is organized as follows. Section 2 provides a detailed descriptionof the order book and the surplus inventory. Both the assignment and the processing7



constraints are discussed in detail. Subsequently the report is divided into two distinctparts. Part I deals with the un�nished inventory matching problem and Part II providesan overview of the �nished inventory problem.2 Characterization of the Surplus Inventory Match-ing ProblemWe introduced the surplus inventory problem in terms of an order book which contains alist of orders and their speci�cations. We also referred to surplus items in the inventory.In this section we provide a detailed description of the order book and the surplusinventory. The speci�cation of orders and the use of surplus inventory (or slabs) in theprocess industry has some unique attributes which are important in understanding theinteger formulations that arise while modeling these problems. Additionally we alsodiscuss the assignment and process constraints for matching.2.1 The Order Book and Surplus InventoryThe order book contains a list of orders from various customers. Each order has a targetweight (Ot) that needs to be delivered. However, there are allowances with respect tothis target weight which specify the minimum (Omin) and maximum weight (Omax)that are accepted at delivery. Over and above the total weight (per order) that needsto be delivered there are additional restrictions regarding the size and number of unitsinto which this order can be factorized at delivery. For example, with each order isassociated a range for the weight of the production units which are delivered. Let usassume that the minimum weight for the production unit is PUmin and the maximumis PUmax. Then for each order we need to deliver an integral number of production8



units (PUnumber) of size in the interval [PUmin, PUmax] so that the total order weightdelivered is in the range [Omin, Omax]. In order to ful�ll an order, we need to choose asize for the production unit (PUsize) and the number of production units (PUnumber) tobe produced such thatOmin � PUsize � PUnumber � Omax (1)PUmin � PUsize � PUmaxPUnumber 2 f0; 1; 2; :::gNotice that the PUnumber is a general integer variable. Additionally, the constraintrepresented by Equation 1 is a bilinear constraint.In addition to the weight requirements each order has three other classes of attributes:(1) The �rst set pertains to the quality requirements such as grade, surface and internalproperties of the material to be delivered. (2) The second set are physical attributes suchas the width and thickness of the product delivered. (3) The third set of attributes referto the �nishing process that needs to be applied to the production units. For example,car manufacturers often require the steel sheets to be galvanized.As discussed in the introduction, production in the process industry is usually on amade-to-order basis and inventory is produced due to manufacturing considerations.Associated with each item1 in the surplus inventory are three sets of attributes: (1)The �rst attribute pertains to quality requirements exactly as in the case of orders,(2) the second case pertains to the physical dimensions of the slab such as the width,1For simplicity, the surplus items in the inventory will be referred to as slabs in the rest of thepaper 9



thickness and the weight of the slab, and �nally (3) associated which each item is a tagthat indicates whether it is an un�nished or �nished inventory item.2.2 Constraints for the Matching ProblemThe surplus inventory matching problem requires that we maximize the total weightof applied orders while minimizing the unused portion of the applied slabs, subject tocertain constraints that arise out of manufacturing considerations. In this subsectionwe explicate these constraints.For a given order book, we �rst assign for each order a set applicable slabs from thesurplus inventory. In the general case when we have no restrictions, all slabs can beapplied against any order. Let us represent this assignment using nodes for ordersand slabs, and arcs to indicate orders and slabs which can be applied against eachother. This leads to an undirected2 bipartite graph from orders to slabs (in the surplusinventory) which is complete since all orders and slabs are applicable against eachother. Furthermore, if we decompose each order into constituent production units,then we can replace each order node by a corresponding set of production units (byassuming an appropriate size for the production unit). Each production unit wouldhave the same set of arcs as the parent order. The complete bipartite graph can nowbe solved as a multiple knapsack problem to maximize the total applied order weight.Each arc represents a potential decision variable which determines the correspondingslab (knapsack) into which the production unit is to be packed. Note however, themultiple knapsack solution does not minimize the unused portions of the applied slabs.In addition this formulation has assumed the size of the production unit rather than2The graph is undirected because a slab j, applicable to order i implies that order i is applicableagainst slab j. 10



optimizing for this. However, it is useful to carry around a bipartite graph representation(shown in Figure 3) of the problem since it provides a useful structure for describingsome of the manufacturing constraints.2.2.1 Assignment ConstraintsTwo sets of constraints arise as a set of assignment restrictions in terms of the applicableslabs for each order. These assignment restrictions are based on quality and physicaldimension considerations.1. The �rst restriction is that for a given order only slabs which are of the samequality or higher quality can be applied. If we were to list the orders and slabs interms of non-decreasing value of quality, then the quality restriction would leadto a staircase structure. Consider the zero/one row for each order: the qualityof slabs improves as we move from left to right. Therefore once we �nd a slab ofgood enough quality, all subsequent slabs are applicable to this order. Thereforequality restrictions might actually reduce the total number of applicable slabs forany order.2. The second set of restrictions arise from considerations of width and thickness ofthe orders and the slabs. Usually, the thickness and width of a slab can be alteredusing rolling, however there is a corresponding range which identi�es the limitsbased on machining or rolling considerations. For example, a slab of width Sw andthickness St can be rolled to a slab of width in the range [Sminw , Smaxw ] and thicknessin the range [Smint , Smaxt ]. As long as the order width and thickness requirementsfall into this range, the order can be applied against the slab. These considerationfurther restrict the number of slabs that can be assigned against an order. Notice11



that this additional restriction does not a�ect the staircase structure but onlymakes it sparse.After incorporating these two restrictions, the order applicability matrix becomes quitesparse, usually about 5% of the entries are non-zero. As a result these restrictions leadto a more generalized version of the multiple knapsack problem where the assignmentrestrictions can be speci�ed as a bipartite graph. The conventional multiple knapsackis an instance of this general problem with a complete bipartite graph. The problemthat we have outlined so far with the two restrictions above presents another instancewith a sparse staircase structure.2.2.2 Color Constraints for PackingThe �nal set of constraints pertain to packing multiple orders on a slab. The assignmentrestrictions specify a list of orders that can be applied against any slab in the surplusinventory. However, not all orders assignable to a slab can be packed together on theslab. Such packing constraints emerge out of process considerations in the hot and coldmill and the �nishing line in the case of a steel mill. Consider a schematic diagram ofthe route of a slab through a steel mill (Figure 2). A slab is sent through a hot strip milland a cold mill (if required) and subsequently to the �nishing line. After the hot/coldmill the slab is in form of a sheet or a coil. Before the coils are sent to the �nishingline, they are cut according to di�erent order speci�cations. Since orders with di�erentrequirements for the �nishing line are cut from the slab before processing it is possibleto pack such orders on the same slab. However, cutting coils is time consuming andcumbersome and most important, the cutting machine is often the bottleneck in theprocess ow. Hence often strong constraints are posed in terms of the number of cuts12



per slab that are allowed based on the current state of the cutting machine.The simplest representation of this constraint is to specify limit on the number of cutsor the number of di�erent order types (i.e. orders that need to be separated before the�nishing line). In order to represent this constraint more formally we introduce a colorattribute for each order which describes the set of �nishing operations that are required.Orders which require the same set of �nishing operations are considered to be of thesame type (and hence the same color) and they do not need to be separated beforethe �nishing line. Orders that require di�erent operations in the �nishing line are ofdi�erent type (and hence of di�erent color) have to be separated before the �nishingline. Associating a color with each order based on the �nishing operations, we canspecify a constraint in terms of a limit on the number of di�erent colored orders thatare allowed on the same slab. We refer to these process based constraints as the colorconstraints.Adding the color constraints and decomposing the orders into their constituent produc-tion units provides an interesting variation to the multiple knapsack problem (shown inFigure 3). Notice however that this is still an incomplete version of the surplus inven-tory application problem where we have assumed a production unit size to decomposethe order into production units.
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Part IThe Un�nished Surplus InventoryMatching Problem



3 The Un�nished Surplus InventoryMatching Prob-lemWe �rst formulate the un�nished surplus inventory matching problem. We then providea simpli�ed formulation which removes the non-linearities in the orginal model. A multi-assignment based heuristic is then discussed briey. Computational results from solvinga set of real instances to optimality and comparisons with the heuristic are provided.4 Problem Formulation (P �)Problem ConstraintsPi2Nj sijzij �Wj lj 1 � j �M (2)Pc2Cj ycj � 2 1 � j �Mzij � OimaxPU imin yc(i)j 1 � i � N; 1 � j �MPU imin � sij � PU imax 1 � i � N; 1 � j �Mycj 2 f0; 1g 8c 2 Cj; 1 � j �Mlj 2 f0; 1g 1 � j �Mzij 2 Z1 1 � j �MProblem Objectives� Maximize applied weight. NXi=i Xj2Ni sijzij15



N = Total number of orders.M = Total number of slabs.Ni = Set of slabs incident to order i.Nj = Set of orders incident to slab j.sij = Production unit size of order i obtained from slab j.zij = Number of production units for order i from slab j.Cj = Set of colors incident on slab j.ycj = 1 if an order(s) of color c obtains material from slab j; 0 otherwise.Wj = Weight of slab j.PUmin; PUmax = Minimum and maximum production unit sizes, respectively, for order i.Oimin; Oimax = Minimum and maximum order weight, respectively, for order i.lj = 1 if slab j is used to supply some order(s); 0 otherwise.Table 1: List of notations� Minimize surplus weight: A surplus is accounted for slab j only if we use the slab.MXj=1(Wjlj � Xi2Nj sijzij)If slab j is used, the �rst set of constraints indicate that the total production materialfrom slab j cannot exceed the weight of slab j. The second set of constraints bounds thenumber of distinct colors on slab j. The third and the fourth set of constraints set thebounds for the number of production units and the production unit size, respectively,for order i from slab j. Note that the expression for the total applied weight for order i,Pj2Ni sijzij is nonlinear. As such the total applied weight,PNi=iPj2Ni sijzij, which is one ofthe objectives for the problem, and the constraint set (2) are nonlinear. Thus, the aboveformulation is a nonlinear integer program. In the absence of e�cient, general purposesolution algorithms for this class of problems, we attempt to remove the nonlinearityin the above formulation by assuming that for a given order, the production unit sizeis constant. 16



4.1 Simpli�ed Problem Formulation (P )In the original formulation, the production unit size for order i was allowed to varybetween PU imin and PU imax. To get a linear formulation, we assume that the pro-duction unit size for a given order is constant. For a simpli�ed formulation, we splitthe max order weight, Oimax, into several production units of equal size, Oi, wherePU imin � Oi � PU imax. For example, consider an order i with Oimax = 30 tons,PU imin = 4 tons and PU imax = 6 tons. We split order i into six production unitseach having weight 5 tons. Thus, instead of one node (in Figure 2) corresponding toorder i, we now have 5 identical nodes. Figure 3 illustrates this splitting. From an
Order Weight = 5 tons (for all six orders)

Max Order Weight = 30 tons

PU size   <= 64  <=Figure 4: Splitting of an order to simplify the problemoptimization point of view, note that such a splitting prevents us from exploiting thefact that the production unit size of a given order can be any value between PU iminand PU imax. However, such a simpli�cation results in an integer linear program forwhich several well-known solution methods exist. Note that if Oimax can be split intoan integer number of production unit sizes between PU imin and PU imax then such asplitting is always possible. If Oimax is in the \block-out" region (i.e. it cannot besplit into an integer number of production unit sizes between PU imin and PU imax), wefollow a conservative strategy to make b OimaxPU imax c production units each of size PU imax.17



Problem ConstraintsPi2Nj Oixij �Wj lj 1 � j �MPj2Ni xij � 1 1 � i � NPc2Cj ycj � 2 1 � j �Mxij � yc(i)j 1 � i � N; 1 � j �Mxij 2 f0; 1g 1 � i � N; 1 � j �Mycj 2 f0; 1g 8c 2 Cj; 1 � j �MProblem ObjectivesN = Total number of orders.M = Total number of slabs.Ni = Set of slabs incident to order i.Nj = Set of orders incident to slab j.xij = 1 if PU i is assigned to some slab; 0 otherwise.Cj = Set of colors incident on slab j.ycj = 1 if an order(s) of color c obtains material from slab j; 0 otherwise.Oi = Weight of order i.Wj = Weight of slab j.lj = 1 if slab j is used to supply some order(s); 0 otherwise.Table 2: List of notations� Maximize applied weight. NXi=i Xj2NiOixij� Minimize surplus weight: A surplus is accounted for slab j only if we use the slab.MXj=1(Wjlj � Xi2NjOixij)4.2 Problem ComplexityLemma 4.1 The Un�nished Surplus Inventory Matching Problem, P , is NP-Complete.18



Proof: If there are no assignment restrictions (i.e. an order can be assigned to anyslab), no color restrictions (i.e. all orders have the same color) and a single objec-tive, namely, to maximize the applied order weight; the un�nished surplus inventorymatching problem specializes to the multiple knapsack problem [7] which is known tobe NP-Complete [5]. 25 A Multi-Assignment Based HeuristicOne of the key considerations for developing a solution for this inventory applicationproblem was the requirement that the run time for generating the solution be less thana couple of minutes. Therefore the design of heuristic was motivated by the desire fornear-optimal solutions that can be generated within a couple minutes. We will show inthe following sections that large instances of the inventory matching problem are hardto solve optimally using integer programming techniques and these techniques do notreturn solutions even after a few hours. For real applications such brittle behavior isunacceptable and it more important to provide near a optimal solution quickly ratherthan fail completely. It is with this motivation that we have developed a fast heuristicalgorithm based on building blocks from network ow algorithms.Note: Unfortunately, due to con�dentiality restrictions, we cannot provide a detaileddescription of the heuristic we used for solving the problem. However, below we describe,in brief, the main idea behind the heuristic.The fast algorithm described in this section is a heuristic search algorithm. The searchis conducted in a space of matches (or edges of the bipartite graph). The algorithm19



generates feasible solutions rapidly by assigning multiple edges in each iteration. Thesefeasible solutions are subsequently re�ned by undoing multiple poor matches to jumpto nodes on the search tree which represent partial solutions. These partial solutionsthen become the root node for the subsequent search. Since both the forward stepand backtracking step are fast and create multiple assignments and unassignments thisalgorithm returns near-optimal feasible solutions quickly.We instantiate several matches at once and thereby diving down the search tree alonga particular branch. We identify several matches at once using the assignment problemwhich provides a lower bound for the solution. Moreover a single application of theweighted bipartite matching algorithm (assignment problem) provides only a partialsolution (i.e. we are only halfway down the search tree) and we need to apply thisiteratively until we generate a complete solution. After each application of the assign-ment problem we use a constraint checker to prune out the inapplicable matches in thebipartite graph. Once a complete solution is generated, it is evaluated for multiple ob-jectives such as applied quantity and partial surplus using a multi-key �lter and basedon this evaluation a subset of the matches are marked as undesirable. The search thenbackjumps to a point in the search tree where the state of the solution is such thatthe undesirable matches have not been applied. This entire process of diving down thesearch tree and then backjumping to di�erent point (and maybe branch) of the searchconstitutes one iteration in the search and is illustrated in Figure 5. This search iscontinued until several non-dominating solutions are found or the algorithm times out.The multi-assignment backjumping algorithm consists of three main steps:Diving: Create a feasible solution by applying Iterative Bipartite Matching on a giveninitial solution. If feasible solution is near-optimal, store solution in a non domi-20
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solutionFigure 5: Schematic of the multi-assignment based backjumping algorithmnated set,Multi-Key Filter: Use a multi-key sort to identify undesirable matches in a givenfeasible solution,BackJumping: Remove undesirable matches from the feasible solution to create apartial solution, and backjump to the position of the partial solution in the searchtree. Go back to the �rst step.6 Computational ResultsIn this section we compare the performance of the heuristic, briey discussed in theprevious section, against optimal solutions generated using integer programming. Thiscomparison is performed on a set of real instances encountered in the steel plant. Notethat for large instances integer programming techniques could not solve the problemto optimality in well over six hours. However, the smaller instances that were solved21



to optimality indicate that the heuristic solution provides results within 3% of theoptimal. The runtime of the heuristic for all the instances was within a few seconds.A detailed comparison of the results and the runtimes for the heuristic and the integerprogramming is shown in Tables 3-6.6.1 Test ProblemsIn this section, we report our experience with solving problem P on two real worldproblem instances, g1 and g2. These problem instances are based on data from theoperations of a large steel plant. As explained above, we �rst decompose the inputgraph connected components. Problem g1 has 38 connected components while prob-lem g2 has 29 connected components. The characteristics of these components areProblem Number of Number of Number of Number of Edgename orders slabs colors edges density1 7217 50 1436 36381 10%2 1524 24 347 9578 26%3 6 12 2 34 47%4 413 13 74 1209 22%5 81 9 24 590 80%6 200 15 30 383 12%7 4 3 1 12 100%8 10 2 4 15 75%9 5 4 2 19 95%10 55 6 19 162 49%11 50 12 16 168 28%12 3 6 1 18 100%13 51 3 5 153 100%14 199 11 59 753 34%15 50 7 10 80 22%16 46 59 20 1111 40%17 39 3 23 57 48%18 1 2 1 2 100%19 365 18 110 1097 16%20 197 2 127 299 75%Table 3: Problem Characteristics: Problem g122



shown in Tables 3 and 4 respectively. In Tables 3 and 4, the second, third and fourthcolumns indicate the number of orders, number of slabs and number of distinct col-ors, respectively, for these connected components. The edge density, calculated asNumber of edgesNumber of Slabs � Number of Orders is given in column 6.Problem Number of Number of Number of Number of Edgename orders slabs colors edges density1 5119 20 552 14750 14%2 638 35 88 3208 13%3 19 4 6 43 56%4 2 3 1 6 100%5 60 7 12 163 38%6 407 4 24 1097 67%7 11 1 2 11 100%8 111 6 21 445 66%9 17 1 15 17 100%10 44 1 15 44 100%11 4 1 1 4 100%12 183 8 33 396 27%13 49 10 10 161 32%14 39 4 6 73 46%15 3 4 1 12 100%16 12 1 2 12 100%17 23 4 5 81 88%18 6 1 2 6 100%Table 4: Problem Characteristics: Problem g26.2 Decomposing the problemsIf the input graph (Figure 1) has several connected components, solving problem P forthe whole graph (instead of solving each connected component separately) can becomecomputationally expensive for methods which use the linear programming relaxationof P since, in general, the dual linear program becomes highly degenerate. Hence,we consider each connected component separately. We use a simple depth-�rst search[6] procedure to �nd these connected components. If a connected component has a23



balanced sparse cut (A cut C of G is a set of edges which when removed decomposesthe graph into two or more connected components. A sparse cut is a cut with a smallnumber of edges. A balanced sparse cut is a sparse cut which decomposes the graph intotwo components of roughly the same size), then it is possible to further reduce the sizeof the problems to be considered by branching on the edges of the cut. Unfortunately,for our problems, the balanced cuts were of about size 100 which was not small enoughto exploit divide and conquer strategies.6.3 Computational ExperienceSince the problem we consider is a bi-criteria problem, in general, no single objectivefunction models the optimization of both the criteria exactly. Here, we consider a wellknown variation where a \budget" constraint on the partial surplus is added and thenthe applied weight is maximized. For getting a value for this budget, we use the multi-assignment based heuristic given in the previous section. The results for this heuristicare given in Tables 5 and 6. We use the partial surplus value returned by the heuristic(say, ps�) to add the constraint Partial Surplus � ps� to the problem formulation inSection 3.2 and then maximize the applied weight. The results of solving this variationto optimality (using CPLEX 5.0) are also presented in Tables 5 and 6. We also usethese results to compare the performance of the heuristic. The idea is to bound thepartial surplus by the same value as that returned by the heuristic and then comparethe applied weights for the optimum and heuristic solutions. For Tables 5 and 6, thetime refers to seconds on an IBM RS/6000 workstation with 64 MB of memory.For problem g1, CPLEX was unable to solve 4 components to optimality while forproblem g2, 10 components could not be solved to optimality. For such components, we24



compare the heuristic with the best integer feasible solution found within a time limitof 3 hours. Note that since these components could not be solved to optimality, thesolution obtained by the heuristic might be better than the best integer feasible solutionfound. For example, components 16 and 19 of problem g1. The heuristic requires 2seconds for all the components of problem g2 and 3 seconds for all the components ofproblem g1. The average relative error in the applied weight, where the relative error foreach component is calculated as optimum value - heuristic solutionoptimum value �100, is 2.49% and3.05% for problems g1 and g2 respectively. Since there is a large disparity between thesizes of the di�erent components, a more reasonable measure is the weighted relativeProblem Heuristic Solution Optimal Solut ionname Appl. Wt. Part. Surplus Time Appl. Wt. Part. Surplus Time1 408.79 10.69 *** *** 10800.00�2 601.00 247.00 612.75 216.69 10800.00�3 104.78 44.321 105.63 43.47 0.654 2.80 24.58 2.80 24.58 0.015 97.29 73.90 101.03 70.17 1.346 53.00 2.95 54.90 1.48 10800.00�7 12.00 0.97 12.00 0.97 0.058 118.26 3.60 Total 119.75 3.04 10800.00�9 20.00 1.00 Time 21.00 1.00 1.0510 18.00 1.37 = 2 Sec. 19.37 0.00 0.0111 10.00 1.96 10.00 1.96 0.0112 151.91 14.94 157.78 9.08 10.0613 79.80 21.48 80.06 18.58 1.5714 79.23 6.79 80.21 5.80 0.9215 26.00 13.47 26.00 13.47 0.0116 11.59 2.23 13.79 0.03 0.0417 71.00 9.73 76.69 4.03 3.2318 15.00 1.25 15.00 0.35 0.03Table 5: Comparing the heuristic and optimal solution: Problem g2* Time limit (10800 Seconds) exceeded.*** No feasible solution found within the time limit.error. Here, we weight the relative error for each component by the number of edges inthat component. The average weighted relative error in the applied weight, where the25



weighted relative error for each component is calculated asnumber of edges � optimum value - heuristic solutionoptimum value � 100is 2.89% and 2.33% for problems g1 and g2 respectively.Problem Heuristic Solution Optimal Solutionname Appl. Wt. Part. Surplus Time Appl. Wt. Part. Surplus Time1 1035.96 72.58 *** *** 10800.00�2 627.38 11.78 *** *** 10800.00�3 13.99 16.54 14.25 5.79 0.034 299.53 20.53 301.62 19.06 10800.00�5 162.72 15.16 174.93 2.95 10800.00�6 266.81 61.26 271.11 57.98 10800.00�7 17.50 15.54 Total 17.50 5.93 0.028 34.86 8.95 Time 35.37 2.16 0.899 23.95 83.93 = 3 Sec. 25.54 82.34 0.0210 124.04 9.28 127.97 5.35 10800.00�11 173.43 31.28 175.00 30.13 0.8512 27.00 8.06 28.00 7.56 0.0513 32.00 8.80 32.04 8.76 0.4814 262.00 6.01 264.33 4.18 10800.00�15 128.31 20.07 132.40 17.24 7090.4716 473.39 165.66 443.40 148.37 10800.00�17 65.20 32.14 67.00 0.96 3.8818 40.00 0.56 40.00 0.56 73.5619 417.18 28.27 410.04 27.02 10800.00�20 39.44 3.76 42.60 0.76 5.65Table 6: Comparing the heuristic and optimal solution: Problem g1* Time limit (10800 Seconds) exceeded.*** No feasible solution found within the time limit.
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Part IIThe Finished Surplus InventoryMatching Problem



7 The Finished Surplus Inventory Matching Prob-lemIn this part we model the �nished surplus inventory matching problem as a bicriteriasparse multiple knapsack problem. An integer programming formulation of this modelis provided and computational experiments on a set of hard real world instances areconducted. We also present some classes of general heuristics for multiple knapsackproblems that were used to solve the bicriteria problem.7.1 The Bicriteria Sparse Multiple Knapsack ProblemWe are given a set of items N = f1; : : : ; ng and a set of knapsacks M = f1; : : : ;mg.Each item j 2 N has a weight wj and each knapsack i 2 M has a capacity ci associatedwith it. All wj and ci are positive real numbers. In addition, for each item j 2 N aset Aj � M of knapsacks that can hold item j is speci�ed. Although Aj's su�ce torepresent the assignment restrictions, for convenience we also specify for each knapsacki 2 M , the set Bi � N of items that can be assigned to the knapsack.The goal is to �nd an assignment of items to the knapsacks. That is, for each knapsacki 2M , we need to choose a subset Si of items in N to be assigned to knapsack i, suchthat:(1) All Si's are disjoint. (Each item is assigned to at most one knapsack.)(2) Each Si is a subset of Bi, for i = 1; : : : ;m. (Assignment restrictions are satis�ed.)(3) Pj2Si wj � ci, for i = 1; : : : ;m. (Total weight of items assigned to a knapsack doesnot exceed the capacity of the knapsack.)28



(4) Pi2M Pj2Si wj is maximized. (Total weight of items assigned is maximized.)(5) Pi2I(ci� Pj2Siwj) is minimized, where I �M denotes the set of indices of non emptySi. (Total waste due to the unused portion of each utilized knapsack is minimized.)We refer to this problem as the bicriteria sparse multiple knapsack problem (BSMK).Without loss of generality we assume that wj � ci, 8j 2 Bi, otherwise j can be removedfrom Bi. The problem becomes trivial if all Aj's are disjoint, or if Pj2Bi wj � ci; 8i 2M . In the case that all Bi's are disjoint, the problem decomposes into m single 0-1knapsack problems. Thus, we exclude these cases from consideration.Note that the assignment restrictions can also be represented by a bipartite graph,where the two disjoint node sets of the graph correspond to the sets N and M . LetG = (V;E) be the corresponding bipartite graph with V = N [M . Then, there existan edge (i; j) 2 E between nodes i and j if and only if j 2 Bi. With this representationthe sparsity of the problem refers to the edge sparsity of the bipartite graph G. Thebicriteria problem is more relevant for sparser problems because for more constrainedproblems, a solution with maximum assigned weight does not necessarily have smallwaste.7.2 Problem FormulationIn this section we provide two formulations for the �nished inventory matching problem.First we formulate the problem for a single objective of maximizing total assigned weight- we refer to this as the sparse multiple knapsack problem (SMK). Later we extend thisformulation to incorporate the second objective of minimizing waste called the bicriteriasparse multiple knapsack problem (BSMK).29



The IP formulation of SMK is as follows.max Pi2M Pj2Biwj xijst Pj2Biwj xij � ci; i 2MPi2Aj xij � 1; j 2 Nxij 2 f0; 1g; i 2 Aj; j 2 Nwhere the 0-1 variable xij denotes whether item j is assigned to knapsack i. The LPrelaxation corresponds to relaxing integrality of these variables.In the second problem considered, the objective function is the sum of the two objectives,that is we maximize assigned weight minus waste. We call this problem BSMK as itcombines multiple knapsack and bin packing aspects. The IP formulation is as follows.max Pi2M Pj2Biwj xij � ( Pi2M ci zi � Pi2M Pj2Biwj xij)st Pj2Biwj xij � ci zi; i 2MPi2Aj xij � 1; j 2 Nxij 2 f0; 1g; i 2 Aj; j 2 Nzi 2 f0; 1g; i 2Mwhere we introduce the 0-1 variable zi to denote whether any item is assigned to knap-sack i. The objective function equals 2 Pi2M Pj2Bi wj xij � Pi2M ci zi, and the LPrelaxation corresponds to relaxing the integrality of all variables. The LP relaxationof both SMK and BSMK problems have the same optimal value because an optimalsolution to the LP relaxation of BSMK will have zero waste. Hence, we refer to therelaxation of both problems by \the LP relaxation".30



7.3 Problem ComplexityThe SMK problen can be modeled as a generalized assignment problem (GAP) withmissing edges weighted with zero pro�t. It is well known that GAP is NP-complete [2].8 Heuristics for the Multiple Knapsack ProblemWith the aim of generating non-dominated solutions for BSMK, we have developed acollection of constructor and improver heuristics. Most of these heuristics are simplegreedy heuristics which are adapted from the heuristics in the literature used for multipleknapsack and variable-size bin packing problems. In addition, we have a few randomizedheuristics.The construction heuristics are mainly greedy heuristics with various item and knapsackselection rules, in addition to a couple of heuristics that round the LP relaxation solutionof SMK. Most of these constructors aim at maximizing total assigned weight.The improver heuristics are either local exchange heuristics which aim to improve bothof the objectives, or heuristics which rearrange assigned items among knapsacks andunassign some items for the purpose of minimizing total waste. In the next two sub-sections we give a description of each heuristic.Constructors ImproversSimple Greedy Heuristics Local Exchange HeuristicsGreedy Heuristics with Knapsack Selection Heuristics to Increase Assigned WeightSuccesive Assignment Heuristics to Eliminate WasteLP Relaxation based Heuristics Table 7:31



8.1 Cooperative Strategies for Problem SolvingGiven an NP-hard optimization problem, it is di�cult to design heuristic algorithmswhich exhibit uniformly superior performance over all problem instances. An alternateapproach to tackle di�cult problems is to organize a collection of heuristic algorithmsso that they can cooperate with each other and uniformly exhibit superior performancewhich might not have been possible if they were used separately. Such an approachis especially attractive when the collection of heuristic algorithms vary in their perfor-mance over problem instances in an unpredictable way. Another ingredient requiredfor cooperative problem solving is an architecture that facilitates cooperation betweenthe heuristic algorithms and a control strategy that de�nes the rules of collaborationamong heuristics.In the original report we discuss in more detail the organization (i.e. the architectureand the control strategy) that we have used to build a cooperative problem solvingteam of heuristics for the multiple knapsack problem.9 Computational ExperimentsIn this section we examine the performance of the cooperative problem solving strategyand compare its behavior against traditional integer programming based techniques forBSMK problem using computational experiments. We also compare the performanceof the cooperative strategy against individual heuristics in an e�ort to quantify theimprovements gained by cooperation. Finally we analyze the non-dominated solutionsto identify concatenations of heuristics that generate good solutions.32



9.1 DataWe used real data from an inventory application problem in Steel Mill Industry [1]. Forthe instances available to us, the number of items vary between 111 and 439, while thenumber of knapsacks is between 18-43. The sparsity of the problems are in the range10% - 28%. Size and sparsity of these instances are summarized in Table 8.Data n m sparsity % Tot. Cap. Tot. Weightd1 439 24 27.7 641.85 4689.91d2 111 35 12.8 1009.32 1770.81d3 393 18 26.7 388.84 4276.53d4 209 43 10.6 889.21 3528.04d5 191 35 14.2 730.81 2885.49d6 155 18 18.6 446.32 1509.22Table 8: Information on real-life data. Sparsity denotes the edge density of the bipartitegraph representation in percentage of the number of edges of a complete bipartite graph.The last two columns denote the total capacity of knapsacks and the total weight ofitems.9.2 ImplementationIndividual heuristicsWe coded the heuristics presented earlier in C++ language using the LEDA library andperformed the tests on an IBM RS4000 machine operating under AIX. First, we col-lected solutions output by each constructor and improver heuristic and then found thenon-dominated solutions among all collected solutions. When running the improvers,we used the solution provided by the greedy-knapsack constructor as input. The ran-domized heuristics were run 10 times and the best solution among all runs was output.A-team 33



We incorporated the individual heuristics into an A-team architecture. We set the pa-rameters such as the stopping time and the probabilities for picking constructors andimprovers by a few initial tests. The probabilities for some of the improvers, (such asreplace-single, replace-pair, empty, and empty-and-reassign) which were more e�ectiveduring initial runs were increased. We examined the convergence of the solution popu-lation by running the A-team code for a cycle of 100, 500, 1000, 1500, 2000 and 3000heuristics. By observing the number of non-dominated solutions output, the maximumand average value of assigned weight minus waste of these non-dominated solutions, wedecided on the cycle length of the A-team run for each data set.IP based approachesIn order to assess the performance of the heuristics and the computational di�cultyof the problem, we tried to solve two IP's each with a single objective by a branch-and-cut method. The �rst problem considered to compare our results is the sparsemultiple knapsack problem, SMK, where the objective is to maximize assigned weightonly. The IP formulation of SMK was given earlier. In the second problem considered,the objective function is the sum of the two objectives, that is we maximize assignedweight minus waste (BSMK problem).In order to obtain the best bounds possible in a reasonable computation time, we addedthe best lower bound obtained from our heuristics to the IP formulation of SMK andMKBP, and solved them by CPLEX. After 1 hour of CPU time, we added the upperbound output by CPLEX to the formulation and ran CPLEX again (we waited longerfor larger instances such as d1 and d3). We repeated this procedure until no betterbounds were found in more than 2 hours. A comparison of the LP relaxation values34



and the upper bounds generated by a branch and bound method for data sets d1 to d6are given in Table 9. The running times given in Table 9 also give a crude idea on thecomputational di�culty of solving the problems by exact methods. It took 2.4 hours toget the optimal solution to SMK for data set d2, and we could not obtain the optimalsolution for any other problem. SMK MKBPData LP bound UB %Gap Time (hrs) UB %Gap Time (hrs)d1 641.85 639.70 0.34 9.2 639.70 0.34 2.6d2 612.64 472.14 29.76 2.4 403.83 51.70 4.4d3 385.37 384.99 0.10 6.2 381.14 1.11 8.0d4 785.67 687.63 14.05 4.0 606.86 29.46 6.9d5 659.39 598.38 9.92 16.1 510.79 29.10 6.4d6 444.01 424.20 4.67 8.2 414.37 7.15 5.0Table 9: A comparison of the LP relaxation value and the best upper bound (UB)obtained by a branch and bound method for the SMK and MKBP problems. Thecolumn (% Gap) denotes the deviation in % of the LP bound from the best availablebound. Time denotes the cpu time to obtain the given bounds.Here, we note that as the problem gets sparser, it gets harder in the sense that asolution that maximizes assigned weight does not necessarily have small waste, hencethe choice of the knapsack to which an item is assigned becomes more critical. As theproblem gets more relaxed (that is, the bipartite graph representation gets closer to acomplete graph), the problem gets closer to the multiple knapsack problem and usually,maximizing assigned weight su�ces to minimize waste at the same time.The sparsity of the problem plays a role also in determining the strength of the LPrelaxation. As sparsity increases, the gap between the LP relaxation value and theoptimal value gets larger for both problems.We also collected feasible solutions output by CPLEX and recorded the cpu times toobtain the solutions. In these runs we did not provide any bounds to the objective35



function initially, but reran CPLEX with previously obtained bounds whenever we hadto stop due to memory problems. We stopped this procedure when no improvementcould be obtained till the computer ran out of memory.One may also consider using the best lower bound output by the individual heuristics inthe IP formulation, as opposed to a cooperative strategy. However, using the heuristicsin this way does not improve upon the performance of the branch-and-cut method ofCPLEX signi�cantly. Even using the better bounds output by the cooperative strategydoes not yield the optimal solution in reasonable computation time.9.3 Comparative Evaluation of the Cooperative StrategyQuality of SolutionsThe quality of the solutions generated by using a cooperative strategy are signi�cantlybetter than the ones generated by individual runs, especially in the waste objective.A comparison of the solutions with maximum assigned weight generated by A-teamimplementation and individual runs is provided in Table 10. The waste of these solutionsare also given in the table. We see that the cooperation of the heuristics have been usefulto decrease the waste of the solutions that have the maximum assigned weight. We alsonote that we could not obtain any solutions with a better assigned weight by the exactsolution method (using CPLEX) for any of the problems except for d2.Solutions with maximum value of (assigned weight - waste), that are generated by theA-team implementation, individual heuristics, and CPLEX are given in Table 11. Weobserve a signi�cant di�erence in (assigned weight - waste) of the solutions generatedby the cooperative strategy versus those generated by individual heuristics, especially36



Data AW Ratio Waste Waste % Cpu TimeI 636.60 0.9952 5.25 0.82 4399.06d1 II 617.69 0.9656 24.16 3.76 37.81III 601.18 0.9398 40.67 6.24 29622.41I 470.98 0.9975 108.24 18.69 70.01d2 II 470.32 0.9961 230.50 32.89 1.48III 472.14 1.0000 110.04 18.90 8236.05I 383.20 0.9954 5.64 1.45 9834.42d3 II 382.33 0.9931 6.52 1.68 72.32III 366.10 0.9509 22.74 5.85 46009.14I 686.99 0.9990 110.97 13.91 318.17d4 II 673.39 0.9793 155.54 18.76 3.44III 686.99 0.9990 140.68 17.00 39923.20I 592.33 0.9899 96.92 14.06 183.70d5 II 590.23 0.9864 99.02 14.37 3.06III 591.33 0.9882 97.92 14.21 39360.16I 406.12 0.9574 30.95 7.08 76.46d6 II 402.92 0.9498 34.15 7.81 1.63III 402.97 0.9500 34.10 7.80 46570.32Table 10: A comparison of the solution with maximum assigned weight obtained by I)the A-team implementation, II) individual runs of all heuristics, and III) branch-and-cut. AW is assigned weight. Ratio is the ratio of AW to the best available bound for theassigned weight objective (from Table 9). Waste % is the ratio of the unused capacityto the total capacity of utilized knapsacks in percentage. Cpu time is given in seconds.for the harder instances such as d2 and d4. Slightly better solutions could be obtainedby CPLEX for only d2 and d4 in 4.4 and 6.9 hours, respectively. For larger instancessuch as d1 and d3, the feasible solutions output by CPLEX are signi�cantly inferior tothose output by the cooperative strategy with a di�erence of 10% and 7% of the bestupper bound available, respectively.The collection of heuristics are able to generate signi�cantly more non-dominated so-lutions when they cooperate in an A-team implementation. Few heuristics are ableto e�ectively improve both the objectives at the same time. As a result, while theindividual heuristics are good enough to maximize assigned weight, they are not ca-37



Data AW-Waste Ratio AW Waste Waste % Cpu TimeI 631.35 0.9869 636.60 5.25 0.82 4399.06d1 II 593.53 0.9278 617.69 24.16 3.76 37.81III 565.62 0.8842 603.74 38.11 5.94 44543.33I 396.72 0.9835 450.59 53.87 10.68 70.01d2 II 326.48 0.8094 338.14 11.66 3.33 1.48III 398.86 0.9888 471.31 72.45 13.32 15681.26I 377.56 0.9906 383.20 5.64 1.45 9834.41d3 II 375.81 0.9860 382.33 6.52 1.68 72.32III 354.36 0.9297 371.60 17.24 4.43 28723.18I 595.55 0.9814 657.99 62.45 8.67 318.17d4 II 566.41 0.9333 649.01 82.61 11.29 3.44III 605.34 0.9975 667.99 62.66 8.58 24942.31I 497.14 0.9733 580.33 83.19 12.54 183.70d5 II 491.21 0.9617 590.23 99.02 14.37 3.06III 465.90 0.9121 564.62 99.08 14.93 23117.35I 375.17 0.9054 406.12 30.95 7.08 76.46d6 II 368.70 0.8898 402.92 34.15 7.81 1.63III 365.83 0.8829 x 401.45 35.62 8.15 18203.67Table 11: A comparison of the solution with maximum (assigned weight - waste) ob-tained by I) the A-team implementation, II) individual runs of all heuristics, and III)branch-and-cut. The ratio is obtained using the best available upper bound for max-imizing assigned weight minus waste obtained from Table 9. Cpu time is given inseconds.
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pable of minimizing waste at the same time. On the other hand, using a cooperativeorganization, the heuristics which favor maximizing assigned weight and those whichfavor minimizing waste have the chance to take the output of one another as input.Therefore, they generate solutions with better values in both objectives.Run TimeClearly, combining the heuristics by the cooperative strategy increases running time asa cycle of 1500 - 3000 heuristics are run. However, still the run times are in a reasonablerange and are signi�cantly smaller compared to that of the branch-and-cut method.A single run of each individual heuristic takes between 0.01 - 45 seconds, dependingon the size of the problem and the heuristic used. The most time-consuming heuristicis the replace-single heuristic, which takes 45 seconds for d3 and only 0.24 seconds ford2. The constructor heuristics take very little time. While greedy heuristics run inless than a second, the lp-round and lp-greedy heuristics take slightly more time (0.17- 1.31 seconds). The most time-consuming constructor successive-assign takes 0.32 to4.25 seconds of cpu time.The A-team implementation takes a time of approximately 1 minute - 3 hours, depend-ing on the size of the problem. Still, the run times are signi�cantly small compared tothat of the branch-and-cut approach of CPLEX, which is in the order of 3 - 13 hours.All the run times are given in Tables 10 and 11. In these tables, the run time forindividual heuristics is the total time over all heuristics, as the best solution was pickedafter running all the heuristics. 39
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