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Abstract

This report is an effort to consolidate two different flavors of a surplus inven-
tory matching problem encountered in the steel industry:

e Surplus Unfinished Inventory Matching, and
e Surplus Finished Inventory Matching.

This report is compiled from two other reports that describe the heuristic solution
approaches developed for a real world application of these problems [1, 2]. The
focus here is to motivate these problems from an operations planning point of
view.

The initial sections of this report provide an overview of the production plan-
ning process in the steel industry and situate the surplus inventory problem within
this context. Subsequently the report is split into distinct parts:

Part I: Surplus Unfinished Inventory Matching
Part II: Surplus Finished Inventory Matching

The problem formulations and solution approaches in these sections are based on
the following technical reports respectively.

1. Kalagnanam,J.R., M. Dawande, M. Trumbo, H.S. Lee (1998) “The Surplus In-
ventory Matching Problem”, IBM Research Report 21071 (94285), IBM Research
Division, Yorktown Hts, NY.

2. Salman, F.S., J.R. Kalagnanam, S. Murthy (1997) “Cooperative Strategies for
Solving the Bicriteria Sparse Multiple Knapsack Problem”, IBM Research Report
21059 (94164), IBM Research Division, Yorktown Hts, NY.

Key Words: Matching; surplus inventory; integer programming; sparse bicrite-
ria multiple knapsack problem; multiple knapsack with colors; bipartite graphs.



1 Introduction

We introduce two problems that arise from operations planning applications in the
process industry. These problems involves matching an order book against surplus in-
ventory as a preprocessing step to production planning and were encountered in the
operation of a large steel plant. In this paper we describe these problems and the
heuristic solutions that were developed to solve it. The problem formulations gener-
alize beyond the steel application to other process industries such as paper and metal
processing industries. The solutions described here have been deployed in a steel plant
and are now used in daily mill operations. We also present a rigorous analysis compar-
ing the performance of the heuristic solutions against optimal solutions using integer
programming for small instances. However, the large instances could not be solved to

optimality.

Operations planning in a process industry typically begins with a order book which
contains a list of orders that need to be satisfied. The initial two steps in an operations
planning exercise involves (1) trying to satisfy orders from the order book using leftover
stock from the surplus inventory and (2) subsequently designing productions units for
manufacture from the remaining orders. This process is presented schematically in
Figure 1. In this paper, we discuss the first of the two steps from a optimization

perspective.

An important characteristic of a process industry is that production is on a made-to-
order basis. As a consequence, the surplus inventory is produced for one of the following

r€asons:

o Orders are cancelled after a set of items are produced to satisfy it,
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Figure 1: Conceptual flow of operations planning in the process industry
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o Items are below the quality level required for the orders that they were being

produced for, and

e Surplus items are requested during production or scheduling to satisfy restrictions

on machines or operations.

The production process in a steel plant is shown in Figure 2. As shown in the figure
a slab cast from the furnace is rolled through a hot and cold strip mill into a coil
after which it is finished according to order specifications. However, a slab tagged
as being a surplus item before the hot strip mill for any of the reasons mentioned
above is unfinished and is removed to inventory. Such unfinished inventory provides

great flexibility in terms of the number of different orders types that can be potentially



fulfilled from the same slab by different processing routes through the finishing mill.
It is indeed this flexibility that provides an opportunity for optimizing the application
of the order book against the surplus inventory. Production units which are tagged as
surplus after the finishing mill for quality reasons are classified as finished inventory

and can only be applied against other orders for which the quality requirements can be

met.
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Figure 2: Schematic of a Steel Mill

The problem of applying orders against an existing surplus inventory has a strong flavor
of a matching problem - we call this the Surplus Inventory Matching Problem.
The goal of Inventory Matching is to maximize the total weight of the order book
that is applied against the surplus inventory. An additional goal is to minimize the
unused weight of those slabs that are matched against orders. Hence surplus inventory

matching problem is a bicriteria problem.

Additionally there are two classes of constraints that need to be considered when match-

ing orders against surplus inventory.

e Assignment Restrictions: When matching an order against an inventory item

it is necessary to consider geometric and quality attributes which restrict the

Sheet, black plate




number of potential available matches.

e Processing Constraints: While packing multiple orders on an inventory item
additional processing constraints that restrict the set of feasible orders that can

be packed together need to be considered.

The surplus inventory matching problem can be modeled as variations of the multiple
knapsack problem. A bipartite graph is constructed with two sets of nodes, one for the
orders and the other for the inventory items (such as slabs). Refer to Figure 3. The
edges in this graph represent the potential matches between orders and slabs. In the
general case when all matches can be applied against all inventory items the bipartite
graph is complete. However the assignment restrictions render many of the edges in the
bigraph infeasible and this (often) results in a sparse bigraph. A model based on this
representation is referred to as a sparse bicriteria multiple knapsack problem. We will
show that this model is useful for modeling the surplus inventory matching problem

when we retrict ourselves to finished inventory.

Orders Slabs
(with their associated colors)

Figure 3: The surplus inventory matching problem

Processing constraints restrict the set of orders that can be packed together. Orders

have associated with them a unique route required to finish to specification. If orders



with different routes are packed to the same inventory item then these orders need
to be separated before the finishing mill. This requires cutting operations which are
expensive and hence are restricted to no more than one cut per slab. This translates to
having no more than two different routes packed onto the same slab. From a modeling
perspective it is convenient to represent each route with a unique color and associate a
unique color with each order. Now we can describe the processing constraint as a color
constraint which restrict the total number of colors per slab to be no more than two.
Now the multiple knapsack problem can be extended to have color constraints so that
no more than two colors are packed to the same inventory item. This is referred to as
the multiple knapsack problem with color and this is used to model unfinished surplus

inventory matching.

As indicated above, two different flavors of the surplus inventory matching problem

arise in the steel industry.

e Matching an order book against the unfinished inventory is modeled using the
multiple knapsack with color constraints. Orders are matched against unfinished
inventory and need to be finished according to order specifications. Both assign-

ment and processing constraints are considered.

e Matching an order book against the finished inventory can be modeled using the
bicriteria sparse multiple knapsack problem. Since only finished inventoy is being
used in the matching no further processing is necessary to finish orders. Only

assignment restrictions are considered for matching.

The rest of the paper is organized as follows. Section 2 provides a detailed description

of the order book and the surplus inventory. Both the assignment and the processing



constraints are discussed in detail. Subsequently the report is divided into two distinct
parts. Part I deals with the unfinished inventory matching problem and Part IT provides

an overview of the finished inventory problem.

2 Characterization of the Surplus Inventory Match-
ing Problem

We introduced the surplus inventory problem in terms of an order book which contains a
list of orders and their specifications. We also referred to surplus items in the inventory.
In this section we provide a detailed description of the order book and the surplus
inventory. The specification of orders and the use of surplus inventory (or slabs) in the
process industry has some unique attributes which are important in understanding the
integer formulations that arise while modeling these problems. Additionally we also

discuss the assignment and process constraints for matching.

2.1 The Order Book and Surplus Inventory

The order book contains a list of orders from various customers. Each order has a target
weight (O;) that needs to be delivered. However, there are allowances with respect to
this target weight which specify the minimum (Op:,) and maximum weight (Omaz)
that are accepted at delivery. Over and above the total weight (per order) that needs
to be delivered there are additional restrictions regarding the size and number of units
into which this order can be factorized at delivery. For example, with each order is
associated a range for the weight of the production units which are delivered. Let us
assume that the minimum weight for the production unit is PU,,;, and the maximum

18 PU,paz- Then for each order we need to deliver an integral number of production



units (PU,umper) of size in the interval [PU,min, PUpmgz] so that the total order weight
delivered is in the range [Omin, Omaz)- In order to fulfill an order, we need to choose a
size for the production unit (PUy;,.) and the number of production units (PU,umper) to

be produced such that

Omin S PUsize X PUnumber S Omam (1)

PUmin S PUsize S PUmam

PUpimper €40,1,2,...}

Notice that the PU,umper 1s a general integer variable. Additionally, the constraint

represented by Equation 1 is a bilinear constraint.

In addition to the weight requirements each order has three other classes of attributes:
(1) The first set pertains to the quality requirements such as grade, surface and internal
properties of the material to be delivered. (2) The second set are physical attributes such
as the width and thickness of the product delivered. (3) The third set of attributes refer
to the finishing process that needs to be applied to the production units. For example,

car manufacturers often require the steel sheets to be galvanized.

As discussed in the introduction, production in the process industry is usually on a
made-to-order basis and inventory is produced due to manufacturing considerations.
Associated with each item! in the surplus inventory are three sets of attributes: (1)
The first attribute pertains to quality requirements exactly as in the case of orders,

(2) the second case pertains to the physical dimensions of the slab such as the width,

1For simplicity, the surplus items in the inventory will be referred to as slabs in the rest of the
paper



thickness and the weight of the slab, and finally (3) associated which each item is a tag

that indicates whether it is an unfinished or finished inventory item.

2.2 Constraints for the Matching Problem

The surplus inventory matching problem requires that we maximize the total weight
of applied orders while minimizing the unused portion of the applied slabs, subject to
certain constraints that arise out of manufacturing considerations. In this subsection

we explicate these constraints.

For a given order book, we first assign for each order a set applicable slabs from the
surplus inventory. In the general case when we have no restrictions, all slabs can be
applied against any order. Let us represent this assignment using nodes for orders
and slabs, and arcs to indicate orders and slabs which can be applied against each
other. This leads to an undirected? bipartite graph from orders to slabs (in the surplus
inventory) which is complete since all orders and slabs are applicable against each
other. Furthermore, if we decompose each order into constituent production units,
then we can replace each order node by a corresponding set of production units (by
assuming an appropriate size for the production unit). Each production unit would
have the same set of arcs as the parent order. The complete bipartite graph can now
be solved as a multiple knapsack problem to maximize the total applied order weight.
Each arc represents a potential decision variable which determines the corresponding
slab (knapsack) into which the production unit is to be packed. Note however, the
multiple knapsack solution does not minimize the unused portions of the applied slabs.

In addition this formulation has assumed the size of the production unit rather than

2The graph is undirected because a slab j, applicable to order i implies that order i is applicable
against slab j.
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optimizing for this. However, it is useful to carry around a bipartite graph representation
(shown in Figure 3) of the problem since it provides a useful structure for describing

some of the manufacturing constraints.

2.2.1 Assignment Constraints

Two sets of constraints arise as a set of assignment restrictions in terms of the applicable
slabs for each order. These assignment restrictions are based on quality and physical

dimension considerations.

1. The first restriction is that for a given order only slabs which are of the same
quality or higher quality can be applied. If we were to list the orders and slabs in
terms of non-decreasing value of quality, then the quality restriction would lead
to a staircase structure. Consider the zero/one row for each order: the quality
of slabs improves as we move from left to right. Therefore once we find a slab of
good enough quality, all subsequent slabs are applicable to this order. Therefore
quality restrictions might actually reduce the total number of applicable slabs for

any order.

2. The second set of restrictions arise from considerations of width and thickness of
the orders and the slabs. Usually, the thickness and width of a slab can be altered
using rolling, however there is a corresponding range which identifies the limits
based on machining or rolling considerations. For example, a slab of width S,, and
thickness S; can be rolled to a slab of width in the range [S™", S™%%] and thickness
in the range [S™", S7**]. As long as the order width and thickness requirements
fall into this range, the order can be applied against the slab. These consideration

further restrict the number of slabs that can be assigned against an order. Notice

11



that this additional restriction does not affect the staircase structure but only

makes it sparse.

After incorporating these two restrictions, the order applicability matrix becomes quite
sparse, usually about 5% of the entries are non-zero. As a result these restrictions lead
to a more generalized version of the multiple knapsack problem where the assignment
restrictions can be specified as a bipartite graph. The conventional multiple knapsack
is an instance of this general problem with a complete bipartite graph. The problem
that we have outlined so far with the two restrictions above presents another instance

with a sparse staircase structure.

2.2.2 Color Constraints for Packing

The final set of constraints pertain to packing multiple orders on a slab. The assignment
restrictions specify a list of orders that can be applied against any slab in the surplus
inventory. However, not all orders assignable to a slab can be packed together on the
slab. Such packing constraints emerge out of process considerations in the hot and cold
mill and the finishing line in the case of a steel mill. Consider a schematic diagram of
the route of a slab through a steel mill (Figure 2). A slab is sent through a hot strip mill
and a cold mill (if required) and subsequently to the finishing line. After the hot/cold
mill the slab is in form of a sheet or a coil. Before the coils are sent to the finishing
line, they are cut according to different order specifications. Since orders with different
requirements for the finishing line are cut from the slab before processing it is possible
to pack such orders on the same slab. However, cutting coils is time consuming and
cumbersome and most important, the cutting machine is often the bottleneck in the

process flow. Hence often strong constraints are posed in terms of the number of cuts

12



per slab that are allowed based on the current state of the cutting machine.

The simplest representation of this constraint is to specify limit on the number of cuts
or the number of different order types (i.e. orders that need to be separated before the
finishing line). In order to represent this constraint more formally we introduce a color
attribute for each order which describes the set of finishing operations that are required.
Orders which require the same set of finishing operations are considered to be of the
same type (and hence the same color) and they do not need to be separated before
the finishing line. Orders that require different operations in the finishing line are of
different type (and hence of different color) have to be separated before the finishing
line. Associating a color with each order based on the finishing operations, we can
specify a constraint in terms of a limit on the number of different colored orders that
are allowed on the same slab. We refer to these process based constraints as the color

constraints.

Adding the color constraints and decomposing the orders into their constituent produc-
tion units provides an interesting variation to the multiple knapsack problem (shown in
Figure 3). Notice however that this is still an incomplete version of the surplus inven-
tory application problem where we have assumed a production unit size to decompose

the order into production units.

13



Part 1

The Unfinished Surplus Inventory
Matching Problem



3 The Unfinished Surplus Inventory Matching Prob-
lem

We first formulate the unfinished surplus inventory matching problem. We then provide
a simplified formulation which removes the non-linearities in the orginal model. A multi-
assignment based heuristic is then discussed briefly. Computational results from solving

a set of real instances to optimality and comparisons with the heuristic are provided.

4 Problem Formulation (P*)

Problem Constraints

Sien, 857 < Wil 1<j<M (2)
Seec, Yo <2 1<j<M
2 _J?én;:;;(l) 1<i<N,1<j<M
PUL,, < s < PU,, 1<i<N,1<j<M
ye e {0,1} Vee C;, 1<j<M
L e {0,1} 1<3<M
2 e 71 1<j<M

e Maximize applied weight.



N = Total number of orders.

M = Total number of slabs.

N; = Set of slabs incident to order .

N; = Set of orders incident to slab j.

5; = Production unit size of order i obtained from slab j.

2 = Number of production units for order 7 from slab j.

o = Set of colors incident on slab j.

Y5 = 1if an order(s) of color ¢ obtains material from slab j; 0 otherwise.

W; = Weight of slab j.

PU,in, PUpar = Minimum and maximum production unit sizes, respectively, for order .
S iny OO = Minimum and maximum order weight, respectively, for order .

l; = 1 if slab j is used to supply some order(s); 0 otherwise.

Table 1: List of notations

e Minimize surplus weight: A surplus is accounted for slab j only if we use the slab.

M
Y (Wil = > s525)
7=1 iENJ

If slab 7 is used, the first set of constraints indicate that the total production material
from slab j cannot exceed the weight of slab 7. The second set of constraints bounds the
number of distinct colors on slab j. The third and the fourth set of constraints set the
bounds for the number of production units and the production unit size, respectively,
for order ¢ from slab 7. Note that the expression for the total applied weight for order 1,

* 2% which is one of

> jen, S;z; is nonlinear. As such the total applied weight, Y%, Y jEN; 520

the objectives for the problem, and the constraint set (2) are nonlinear. Thus, the above
formulation is a nonlinear integer program. In the absence of efficient, general purpose
solution algorithms for this class of problems, we attempt to remove the nonlinearity
in the above formulation by assuming that for a given order, the production unit size

1s constant.

16



4.1 Simplified Problem Formulation (P)

In the original formulation, the production unit size for order : was allowed to vary
between PU: . and PU: .. To get a linear formulation, we assume that the pro-

duction unit size for a given order is constant. For a simplified formulation, we split

%
maz)

the max order weight, O into several production units of equal size, O, where

PU, < O < PU!_ . For example, consider an order ¢ with O = 30 tons,
PU:,, = 4 tons and PU’_ = 6 tons. We split order 7 into six production units

each having weight 5 tons. Thus, instead of one node (in Figure 2) corresponding to

order 7, we now have 5 identical nodes. Figure 3 illustrates this splitting. From an

Order Wi'g,hl = 5tons (for al six orders)
Max Order Weight = 30 tons

4 <=PUsize <=6

o ——

AR

Figure 4: Splitting of an order to simplify the problem

optimization point of view, note that such a splitting prevents us from exploiting the

fact that the production unit size of a given order can be any value between PU’

min
an . owever, such a simplification results in an integer linear program for
d PU;,,... H , h plificat 1t t [ p {

which several well-known solution methods exist. Note that if O'  can be split into

mazx

an integer number of production unit sizes between PU’, and PU!__ then such a

min mazx

splitting is always possible. If O __ is in the “block-out” region (i.e. it cannot be

mazx

split into an integer number of production unit sizes between PU’ . and PU! __ ), we

min mazx

follow a conservative strategy to make L;)Uz’;” | production units each of size PU ..

17



Problem Constraints

Yien, 'z < Wil 1<j<M

ZjeNimé‘ <1 1<:<N

Yoeeo,Y; <2 1<3<M
2 <0 1<i<N, 1<j<M
z’ € {0,1} 1<:<N,1<3<M
Y5 € {0,1} Yec C;, 1<j<M

Problem Objectives

N = Total number of orders.

M = Total number of slabs.

N; = Set of slabs incident to order 1.

N; = Set of orders incident to slab j.

:c; = 1if PU ¢ is assigned to some slab; 0 otherwise.

C; = Set of colors incident on slab j.

y]c»' = 1if an order(s) of color ¢ obtains material from slab j; 0 otherwise.
0* = Weight of order <.

W; = Weight of slab j.

l; = 1if slab j is used to supply some order(s); 0 otherwise.

Table 2: List of notations

e Maximize applied weight.
N
>, 0'a)
1=2 jEN;

e Minimize surplus weight: A surplus is accounted for slab j only if we use the slab.

M
Y (Wil; = > O'z?)
7=1 iENJ

4.2 Problem Complexity

Lemma 4.1 The Unfintshed Surplus Inventory Matching Problem, P, s NP-Complete.

18



Proof: If there are no assignment restrictions (i.e. an order can be assigned to any
slab), no color restrictions (i.e. all orders have the same color) and a single objec-
tive, namely, to maximize the applied order weight; the unfinished surplus inventory

matching problem specializes to the multiple knapsack problem [7] which is known to

be NP-Complete [5].

5 A Multi-Assignment Based Heuristic

One of the key considerations for developing a solution for this inventory application
problem was the requirement that the run time for generating the solution be less than
a couple of minutes. Therefore the design of heuristic was motivated by the desire for
near-optimal solutions that can be generated within a couple minutes. We will show in
the following sections that large instances of the inventory matching problem are hard
to solve optimally using integer programming techniques and these techniques do not
return solutions even after a few hours. For real applications such brittle behavior is
unacceptable and it more important to provide near a optimal solution quickly rather
than fail completely. It is with this motivation that we have developed a fast heuristic

algorithm based on building blocks from network flow algorithms.

Note: Unfortunately, due to confidentiality restrictions, we cannot provide a detailed
description of the heuristic we used for solving the problem. However, below we describe,

in brief, the main idea behind the heuristic.

The fast algorithm described in this section is a heuristic search algorithm. The search

is conducted in a space of matches (or edges of the bipartite graph). The algorithm

19



generates feasible solutions rapidly by assigning multiple edges in each iteration. These
feasible solutions are subsequently refined by undoing multiple poor matches to jump
to nodes on the search tree which represent partial solutions. These partial solutions
then become the root node for the subsequent search. Since both the forward step
and backtracking step are fast and create multiple assignments and unassignments this

algorithm returns near-optimal feasible solutions quickly.

We instantiate several matches at once and thereby diving down the search tree along
a particular branch. We identify several matches at once using the assignment problem
which provides a lower bound for the solution. Moreover a single application of the
weighted bipartite matching algorithm (assignment problem) provides only a partial
solution (i.e. we are only halfway down the search tree) and we need to apply this
iteratively until we generate a complete solution. After each application of the assign-
ment problem we use a constraint checker to prune out the inapplicable matches in the
bipartite graph. Once a complete solution is generated, it is evaluated for multiple ob-
jectives such as applied quantity and partial surplus using a multi-key filter and based
on this evaluation a subset of the matches are marked as undesirable. The search then
backjumps to a point in the search tree where the state of the solution is such that
the undesirable matches have not been applied. This entire process of diving down the
search tree and then backjumping to different point (and maybe branch) of the search
constitutes one iteration in the search and is illustrated in Figure 5. This search is

continued until several non-dominating solutions are found or the algorithm times out.

The multi-assignment backjumping algorithm consists of three main steps:

Diving: Create a feasible solution by applying Iterative Bipartite Matching on a given

initial solution. If feasible solution is near-optimal, store solution in a non domi-

20
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solution

diving

Figure 5: Schematic of the multi-assignment based backjumping algorithm
nated set,

Multi-Key Filter: Use a multi-key sort to identify undesirable matches in a given

feasible solution,

BackJumping: Remove undesirable matches from the feasible solution to create a

partial solution, and backjump to the position of the partial solution in the search

tree. Go back to the first step.

6 Computational Results

In this section we compare the performance of the heuristic, briefly discussed in the
previous section, against optimal solutions generated using integer programming. This
comparison is performed on a set of real instances encountered in the steel plant. Note
that for large instances integer programming techniques could not solve the problem

to optimality in well over six hours. However, the smaller instances that were solved

21



to optimality indicate that the heuristic solution provides results within 3% of the
optimal. The runtime of the heuristic for all the instances was within a few seconds.
A detailed comparison of the results and the runtimes for the heuristic and the integer

programming is shown in Tables 3-6.

6.1 Test Problems

In this section, we report our experience with solving problem P on two real world
problem instances, g; and gs. These problem instances are based on data from the
operations of a large steel plant. As explained above, we first decompose the input

graph connected components. Problem ¢; has 38 connected components while prob-

lem g has 29 connected components. The characteristics

of these components are

Problem | Number of | Number of | Number of | Number of | Edge
name orders slabs colors edges density
1 7217 50 1436 36381 10%
2 1524 24 347 9578 26%
3 6 12 2 34 47%
4 413 13 74 1209 22%
5 81 9 24 590 80%
6 200 15 30 383 12%
7 4 3 1 12 100%
8 10 2 4 15 75%
9 5 4 2 19 95%
10 55 6 19 162 49%
11 50 12 16 168 28%
12 3 6 1 18 100%
13 51 3 5 153 100%
14 199 11 59 753 34%
15 50 7 10 80 22%
16 46 59 20 1111 40%
17 39 3 23 57 48%
18 1 2 1 2 100%
19 365 18 110 1097 16%
20 197 2 127 299 75%

Table 3: Problem Characteristics: Problem gl
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shown in Tables 3 and 4 respectively. In Tables 3 and 4, the second, third and fourth
columns indicate the number of orders, number of slabs and number of distinct col-

ors, respectively, for these connected components. The edge density, calculated as

Number of edges
Number of Slabs x Number of Orders

1s given in column 6.

Problem | Number of | Number of | Number of | Number of | Edge
name orders slabs colors edges density
1 5119 20 552 14750 14%
2 638 35 88 3208 13%
3 19 4 6 43 56%
4 2 3 1 6 100%
5 60 7 12 163 38%
6 407 4 24 1097 67%
7 11 1 2 11 100%
8 111 6 21 445 66%
9 17 1 15 17 100%
10 44 1 15 44 100%
11 4 1 1 4 100%
12 183 8 33 396 27%
13 49 10 10 161 32%
14 39 4 6 73 46%
15 3 4 1 12 100%
16 12 1 2 12 100%
17 23 4 5 81 88%
18 6 1 2 6 100%

Table 4: Problem Characteristics: Problem g2

6.2 Decomposing the problems

If the input graph (Figure 1) has several connected components, solving problem P for
the whole graph (instead of solving each connected component separately) can become
computationally expensive for methods which use the linear programming relaxation
of P since, in general, the dual linear program becomes highly degenerate. Hence,

we consider each connected component separately. We use a simple depth-first search

[6] procedure to find these connected components. If a connected component has a

23



balanced sparse cut (A cut C of G is a set of edges which when removed decomposes
the graph into two or more connected components. A sparse cut is a cut with a small
number of edges. A balanced sparse cut is a sparse cut which decomposes the graph into
two components of roughly the same size), then it is possible to further reduce the size
of the problems to be considered by branching on the edges of the cut. Unfortunately,
for our problems, the balanced cuts were of about size 100 which was not small enough

to exploit divide and conquer strategies.

6.3 Computational Experience

Since the problem we consider is a bi-criteria problem, in general, no single objective
function models the optimization of both the criteria exactly. Here, we consider a well
known variation where a “budget” constraint on the partial surplus is added and then
the applied weight is maximized. For getting a value for this budget, we use the multi-
assignment based heuristic given in the previous section. The results for this heuristic
are given in Tables 5 and 6. We use the partial surplus value returned by the heuristic
(say, ps*) to add the constraint Partial Surplus < ps* to the problem formulation in
Section 3.2 and then maximize the applied weight. The results of solving this variation
to optimality (using CPLEX 5.0) are also presented in Tables 5 and 6. We also use
these results to compare the performance of the heuristic. The idea is to bound the
partial surplus by the same value as that returned by the heuristic and then compare
the applied weights for the optimum and heuristic solutions. For Tables 5 and 6, the

time refers to seconds on an IBM RS/6000 workstation with 64 MB of memory.

For problem ¢g;, CPLEX was unable to solve 4 components to optimality while for

problem g, 10 components could not be solved to optimality. For such components, we
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compare the heuristic with the best integer feasible solution found within a time limit
of 3 hours. Note that since these components could not be solved to optimality, the
solution obtained by the heuristic might be better than the best integer feasible solution
found. For example, components 16 and 19 of problem g;. The heuristic requires 2
seconds for all the components of problem ¢, and 3 seconds for all the components of

problem g;. The average relative error in the applied weight, where the relative error for

optimum value - heuristic solution

each component is calculated as -
optimum value

x 100, is 2.49% and
3.05% for problems g; and g, respectively. Since there is a large disparity between the

sizes of the different components, a more reasonable measure is the weighted relative

Problem Heuristic Solution Optimal Solut ion

name Appl. Wt. | Part. Surplus Time Appl. Wt. | Part. Surplus Time
1 408.79 10.69 ok ok 10800.00*
2 601.00 247.00 612.75 216.69 10800.00*
3 104.78 44.321 105.63 43.47 0.65

4 2.80 24.58 2.80 24.58 0.01

5 97.29 73.90 101.03 70.17 1.34

6 53.00 2.95 54.90 1.48 10800.00*
7 12.00 0.97 12.00 0.97 0.05

8 118.26 3.60 Total 119.75 3.04 10800.00*
9 20.00 1.00 Time 21.00 1.00 1.05
10 18.00 1.37 = 2 Sec. 19.37 0.00 0.01
11 10.00 1.96 10.00 1.96 0.01
12 151.91 14.94 157.78 9.08 10.06
13 79.80 21.48 80.06 18.58 1.57
14 79.23 6.79 80.21 5.80 0.92
15 26.00 13.47 26.00 13.47 0.01
16 11.59 2.23 13.79 0.03 0.04
17 71.00 9.73 76.69 4.03 3.23
18 15.00 1.25 15.00 0.35 0.03

Table 5: Comparing the heuristic and optimal solution: Problem g2
* Time limit (10800 Seconds) exceeded.
*** No feasible solution found within the time limit.

error. Here, we weight the relative error for each component by the number of edges in

that component. The average weighted relative error in the applied weight, where the
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weighted relative error for each component is calculated as

optimum value - heuristic solution
number of edges X - X
optimum value

100

is 2.89% and 2.33% for problems g; and g, respectively.

Problem Heuristic Solution Optimal Solution

name Appl. Wt. | Part. Surplus Time Appl. Wt. | Part. Surplus Time
1 1035.96 72.58 ok ok 10800.00*
2 627.38 11.78 Rk Rk 10800.00*
3 13.99 16.54 14.25 5.79 0.03

4 299.53 20.53 301.62 19.06 10800.00"
5 162.72 15.16 174.93 2.95 10800.00*
6 266.81 61.26 271.11 57.98 10800.00*
7 17.50 15.54 Total 17.50 5.93 0.02

8 34.86 8.95 Time 35.37 2.16 0.89

9 23.95 83.93 = 3 Sec. 25.54 82.34 0.02
10 124.04 9.28 127.97 5.35 10800.00*
11 173.43 31.28 175.00 30.13 0.85
12 27.00 8.06 28.00 7.56 0.05
13 32.00 8.80 32.04 8.76 0.48
14 262.00 6.01 264.33 4.18 10800.00*
15 128.31 20.07 132.40 17.24 7090.47
16 473.39 165.66 443.40 148.37 10800.00*
17 65.20 32.14 67.00 0.96 3.88
18 40.00 0.56 40.00 0.56 73.56
19 417.18 28.27 410.04 27.02 10800.00*
20 39.44 3.76 42.60 0.76 5.65

Table 6: Comparing the heuristic and optimal solution: Problem gl
* Time limit (10800 Seconds) exceeded.
*** No feasible solution found within the time limit.
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Part 11

The Finished Surplus Inventory
Matching Problem



7 The Finished Surplus Inventory Matching Prob-
lem

In this part we model the finished surplus inventory matching problem as a bicriteria
sparse multiple knapsack problem. An integer programming formulation of this model
is provided and computational experiments on a set of hard real world instances are
conducted. We also present some classes of general heuristics for multiple knapsack

problems that were used to solve the bicriteria problem.

7.1 The Bicriteria Sparse Multiple Knapsack Problem

We are given a set of items N = {1,...,n} and a set of knapsacks M = {1,...,m}.
Each item 7 € N has a weight w; and each knapsack : € M has a capacity ¢; associated
with it. All w; and ¢; are positive real numbers. In addition, for each item 57 € N a
set A; C M of knapsacks that can hold item j is specified. Although A;’s suffice to
represent the assignment restrictions, for convenience we also specify for each knapsack

1 € M, the set B; C N of items that can be assigned to the knapsack.

The goal is to find an assignment of items to the knapsacks. That is, for each knapsack
1 € M, we need to choose a subset 5; of items in N to be assigned to knapsack 2, such
that:

(1) All S,’s are disjoint. (Each item is assigned to at most one knapsack.)

(2) Each S, is a subset of B;, for< =1,...,m. (Assignment restrictions are satisfied.)

(3) > wj<g¢,fore=1,...,m. (Total weight of items assigned to a knapsack does
JES;
not exceed the capacity of the knapsack.)
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(4) > > w;is maximized. (Total weight of items assigned is maximized.)
1€M jES;

(5) >(ci— > wj)is minimized, where I C M denotes the set of indices of non_empty
el JES;
S;. (Total waste due to the unused portion of each utilized knapsack is minimized.)

We refer to this problem as the bicriteria sparse multiple knapsack problem (BSMK).

Without loss of generality we assume that w; < ¢;, V5 € B;, otherwise j can be removed
from B;. The problem becomes trivial if all A;’s are disjoint, or if - cp w; < ¢;, Vi €
M. In the case that all B;’s are disjoint, the problem decomposes into m single 0-1

knapsack problems. Thus, we exclude these cases from consideration.

Note that the assignment restrictions can also be represented by a bipartite graph,
where the two disjoint node sets of the graph correspond to the sets N and M. Let
G = (V, E) be the corresponding bipartite graph with V"= N U M. Then, there exist
an edge (¢,7) € E between nodes ¢ and j if and only if 7 € B;. With this representation
the sparsity of the problem refers to the edge sparsity of the bipartite graph G. The
bicriteria problem is more relevant for sparser problems because for more constrained
problems, a solution with maximum assigned weight does not necessarily have small

waste.

7.2 Problem Formulation

In this section we provide two formulations for the finished inventory matching problem.
First we formulate the problem for a single objective of maximizing total assigned weight
- we refer to this as the sparse multiple knapsack problem (SMK). Later we extend this
formulation to incorporate the second objective of minimizing waste called the bicriteria

sparse multiple knapsack problem (BSMK).
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The IP formulation of SMK is as follows.

max ), Y, W;T;

1€M jEB;

st
Yowjz; < ¢, 1€ M
JjEB;
> z; <1, geN
1€A;

:EijE{O,l}, iEAj, jEN

where the 0-1 variable z;; denotes whether item j is assigned to knapsack ¢. The LP

relaxation corresponds to relaxing integrality of these variables.

In the second problem considered, the objective function is the sum of the two objectives,
that is we maximize assigned weight minus waste. We call this problem BSMK as it

combines multiple knapsack and bin packing aspects. The IP formulation is as follows.

max Y, > wizy— (X cizi— Y Y W)

1€M jEB; ieM €M jeB;
st

2, wiTi; S ¢z, 1€ M

JjEB;

> z; <1, geN

1€A;

mijE{O,l}, iEAj, J€EN
z€40,1}, i e M

where we introduce the 0-1 variable z; to denote whether any item is assigned to knap-
sack 7. The objective function equals 2 Y7;cps Y e, Wi Ti; — 2iem G 2i, and the LP
relaxation corresponds to relaxing the integrality of all variables. The LP relaxation
of both SMK and BSMK problems have the same optimal value because an optimal
solution to the LP relaxation of BSMK will have zero waste. Hence, we refer to the

relaxation of both problems by “the LP relaxation”.
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7.3 Problem Complexity

The SMK problen can be modeled as a generalized assignment problem (GAP) with

missing edges weighted with zero profit. It is well known that GAP is NP-complete [2].

8 Heuristics for the Multiple Knapsack Problem

With the aim of generating non-dominated solutions for BSMK, we have developed a
collection of constructor and improver heuristics. Most of these heuristics are simple
greedy heuristics which are adapted from the heuristics in the literature used for multiple
knapsack and variable-size bin packing problems. In addition, we have a few randomized

heuristics.

The construction heuristics are mainly greedy heuristics with various item and knapsack
selection rules, in addition to a couple of heuristics that round the LP relaxation solution

of SMK. Most of these constructors aim at maximizing total assigned weight.

The improver heuristics are either local exchange heuristics which aim to improve both
of the objectives, or heuristics which rearrange assigned items among knapsacks and
unassign some items for the purpose of minimizing total waste. In the next two sub-

sections we give a description of each heuristic.

Constructors Improvers

Simple Greedy Heuristics Local Exchange Heuristics

Greedy Heuristics with Knapsack Selection Heuristics to Increase Assigned Weight
Succesive Assignment Heuristics to Eliminate Waste

LP Relaxation based Heuristics

Table 7:
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8.1 Cooperative Strategies for Problem Solving

Given an NP-hard optimization problem, it is difficult to design heuristic algorithms
which exhibit uniformly superior performance over all problem instances. An alternate
approach to tackle difficult problems is to organize a collection of heuristic algorithms
so that they can cooperate with each other and uniformly exhibit superior performance
which might not have been possible if they were used separately. Such an approach
is especially attractive when the collection of heuristic algorithms vary in their perfor-
mance over problem instances in an unpredictable way. Another ingredient required
for cooperative problem solving is an architecture that facilitates cooperation between
the heuristic algorithms and a control strategy that defines the rules of collaboration

among heuristics.

In the original report we discuss in more detail the organization (i.e. the architecture
and the control strategy) that we have used to build a cooperative problem solving

team of heuristics for the multiple knapsack problem.

9 Computational Experiments

In this section we examine the performance of the cooperative problem solving strategy
and compare its behavior against traditional integer programming based techniques for
BSMK problem using computational experiments. We also compare the performance
of the cooperative strategy against individual heuristics in an effort to quantify the
improvements gained by cooperation. Finally we analyze the non-dominated solutions

to identify concatenations of heuristics that generate good solutions.
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9.1 Data

We used real data from an inventory application problem in Steel Mill Industry [1]. For
the instances available to us, the number of items vary between 111 and 439, while the
number of knapsacks is between 18-43. The sparsity of the problems are in the range

10% - 28%. Size and sparsity of these instances are summarized in Table 8.

Data n m sparsity % Tot. Cap. Tot. Weight

dl 439 24 27.7 641.85 4689.91
d2 111 35 12.8 1009.32 1770.81
d3 393 18 26.7 388.84 4276.53
d4 209 43 10.6 889.21 3528.04
ds 191 35 14.2 730.81 2885.49
d6 155 18 18.6 446.32 1509.22

Table 8: Information on real-life data. Sparsity denotes the edge density of the bipartite
graph representation in percentage of the number of edges of a complete bipartite graph.
The last two columns denote the total capacity of knapsacks and the total weight of
items.

9.2 Implementation

Individual heuristics

We coded the heuristics presented earlier in C++ language using the LEDA library and
performed the tests on an IBM RS4000 machine operating under AIX. First, we col-
lected solutions output by each constructor and improver heuristic and then found the
non-dominated solutions among all collected solutions. When running the improvers,
we used the solution provided by the greedy-knapsack constructor as input. The ran-

domized heuristics were run 10 times and the best solution among all runs was output.

A-team
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We incorporated the individual heuristics into an A-team architecture. We set the pa-
rameters such as the stopping time and the probabilities for picking constructors and
improvers by a few initial tests. The probabilities for some of the improvers, (such as
replace-single, replace-pair, empty, and empty-and-reassign) which were more effective
during initial runs were increased. We examined the convergence of the solution popu-
lation by running the A-team code for a cycle of 100, 500, 1000, 1500, 2000 and 3000
heuristics. By observing the number of non-dominated solutions output, the maximum
and average value of assigned weight minus waste of these non-dominated solutions, we

decided on the cycle length of the A-team run for each data set.

IP based approaches

In order to assess the performance of the heuristics and the computational difhiculty
of the problem, we tried to solve two IP’s each with a single objective by a branch-
and-cut method. The first problem considered to compare our results is the sparse
multiple knapsack problem, SMK, where the objective is to maximize assigned weight
only. The IP formulation of SMK was given earlier. In the second problem considered,
the objective function is the sum of the two objectives, that is we maximize assigned

weight minus waste (BSMK problem).

In order to obtain the best bounds possible in a reasonable computation time, we added
the best lower bound obtained from our heuristics to the IP formulation of SMK and
MKBP, and solved them by CPLEX. After 1 hour of CPU time, we added the upper
bound output by CPLEX to the formulation and ran CPLEX again (we waited longer
for larger instances such as d1 and d3). We repeated this procedure until no better

bounds were found in more than 2 hours. A comparison of the LP relaxation values
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and the upper bounds generated by a branch and bound method for data sets d1 to d6
are given in Table 9. The running times given in Table 9 also give a crude idea on the
computational difficulty of solving the problems by exact methods. It took 2.4 hours to
get the optimal solution to SMK for data set d2, and we could not obtain the optimal

solution for any other problem.

SMK MKBP
Data | LP bound | UB  %Gap Time (hrs) | UB  %Gap Time (hrs)
dl 641.85 639.70 0.34 9.2 639.70 0.34 2.6
d2 612.64 472.14  29.76 2.4 403.83 51.70 4.4
d3 385.37 384.99 0.10 6.2 381.14 1.11 8.0
d4 785.67 687.63 14.05 4.0 606.86 29.46 6.9
db 659.39 598.38  9.92 16.1 510.79 29.10 6.4
d6 444.01 424.20 4.67 8.2 414.37 7.15 5.0

Table 9: A comparison of the LP relaxation value and the best upper bound (UB)
obtained by a branch and bound method for the SMK and MKBP problems. The
column (% Gap) denotes the deviation in % of the LP bound from the best available
bound. Time denotes the cpu time to obtain the given bounds.

Here, we note that as the problem gets sparser, it gets harder in the sense that a
solution that maximizes assigned weight does not necessarily have small waste, hence
the choice of the knapsack to which an item is assigned becomes more critical. As the
problem gets more relaxed (that is, the bipartite graph representation gets closer to a
complete graph), the problem gets closer to the multiple knapsack problem and usually,

maximizing assigned weight suffices to minimize waste at the same time.

The sparsity of the problem plays a role also in determining the strength of the LP
relaxation. As sparsity increases, the gap between the LP relaxation value and the

optimal value gets larger for both problems.

We also collected feasible solutions output by CPLEX and recorded the cpu times to

obtain the solutions. In these runs we did not provide any bounds to the objective
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function initially, but reran CPLEX with previously obtained bounds whenever we had
to stop due to memory problems. We stopped this procedure when no improvement

could be obtained till the computer ran out of memory.

One may also consider using the best lower bound output by the individual heuristics in
the IP formulation, as opposed to a cooperative strategy. However, using the heuristics
in this way does not improve upon the performance of the branch-and-cut method of
CPLEX significantly. Even using the better bounds output by the cooperative strategy

does not yield the optimal solution in reasonable computation time.

9.3 Comparative Evaluation of the Cooperative Strategy

Quality of Solutions

The quality of the solutions generated by using a cooperative strategy are significantly
better than the ones generated by individual runs, especially in the waste objective.
A comparison of the solutions with maximum assigned weight generated by A-team
implementation and individual runs is provided in Table 10. The waste of these solutions
are also given in the table. We see that the cooperation of the heuristics have been useful
to decrease the waste of the solutions that have the maximum assigned weight. We also
note that we could not obtain any solutions with a better assigned weight by the exact

solution method (using C PLEX) for any of the problems except for d2.

Solutions with maximum value of (assigned weight - waste), that are generated by the
A-team implementation, individual heuristics, and CPLEX are given in Table 11. We
observe a significant difference in (assigned weight - waste) of the solutions generated

by the cooperative strategy versus those generated by individual heuristics, especially
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Data AW  Ratio Waste Waste % | Cpu Time
I | 636.60 0.9952 5.25 0.82 4399.06

dl IT | 617.69 0.9656 24.16 3.76 37.81
ITT | 601.18 0.9398 40.67 6.24 29622.41

I | 470.98 0.9975 108.24 18.69 70.01

d2 IT | 470.32 0.9961 230.50 32.89 1.48
ITT | 472.14 1.0000 110.04 18.90 8236.05

I | 383.20 0.9954 5.64 1.45 9834.42

d3 IT | 382.33 0.9931 6.52 1.68 72.32
ITT | 366.10 0.9509 22.74 5.85 46009.14

I | 686.99 0.9990 110.97 13.91 318.17

d4 IT | 673.39 0.9793 155.54 18.76 3.44
ITT | 686.99 0.9990 140.68 17.00 39923.20

I |592.33 0.9899 96.92 14.06 183.70

db IT | 590.23 0.9864 99.02 14.37 3.06
ITT | 591.33 0.9882 97.92 14.21 39360.16

I | 406.12 0.9574 30.95 7.08 76.46

d6 IT | 402.92 0.9498 34.15 7.81 1.63
ITT | 402.97 0.9500 34.10 7.80 46570.32

Table 10: A comparison of the solution with mazimum assigned weight obtained by I)
the A-team implementation, II) individual runs of all heuristics, and III) branch-and-
cut. AW is assigned weight. Ratio is the ratio of AW to the best available bound for the
assigned weight objective (from Table 9). Waste % is the ratio of the unused capacity
to the total capacity of utilized knapsacks in percentage. Cpu time is given in seconds.
for the harder instances such as d2 and d4. Slightly better solutions could be obtained
by CPLEX for only d2 and d4 in 4.4 and 6.9 hours, respectively. For larger instances
such as d1 and d3, the feasible solutions output by CPLEX are significantly inferior to
those output by the cooperative strategy with a difference of 10% and 7% of the best

upper bound available, respectively.

The collection of heuristics are able to generate significantly more non-dominated so-
lutions when they cooperate in an A-team implementation. Few heuristics are able
to effectively improve both the objectives at the same time. As a result, while the

individual heuristics are good enough to maximize assigned weight, they are not ca-
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Data AW-Waste Ratio AW Waste Waste % | Cpu Time
I 631.35 0.9869 636.60 5.2b 0.82 4399.06

di II 593.53 0.9278 617.69 24.16 3.76 37.81
III 565.62 0.8842 603.74 38.11 5.94 44543.33

I 396.72 0.9835  450.59 53.87 10.68 70.01

d2 II 326.48 0.8094 338.14 11.66 3.33 1.48
III 398.86 0.9888 471.31 72.45 13.32 15681.26

I 377.56 0.9906  383.20 5.64 1.45 9834.41

d3 II 375.81 0.9860 382.33 6.52 1.68 72.32
III 354.36 0.9297 371.60 17.24 4.43 28723.18

I 595.55 0.9814 657.99 62.45 8.67 318.17

d4 II 566.41 0.9333 649.01 82.61 11.29 3.44
III 605.34 0.9975  667.99 62.66 8.58 24942 .31

I 497.14 0.9733 580.33 83.19 12.54 183.70

db II 491.21 0.9617  590.23 99.02 14.37 3.06
III 465.90 0.9121  564.62 99.08 14.93 23117.35

I 375.17 0.9054 406.12 30.95 7.08 76.46

d6 II 368.70 0.8898  402.92 34.15 7.81 1.63
III 365.83 0.8829 x401.45 35.62 8.15 18203.67

Table 11: A comparison of the solution with mazimum (assigned weight - waste) ob-
tained by I) the A-team implementation, II) individual runs of all heuristics, and III)
branch-and-cut. The ratio is obtained using the best available upper bound for max-
imizing assigned weight minus waste obtained from Table 9. Cpu time is given in

seconds.
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pable of minimizing waste at the same time. On the other hand, using a cooperative
organization, the heuristics which favor maximizing assigned weight and those which
favor minimizing waste have the chance to take the output of one another as input.

Therefore, they generate solutions with better values in both objectives.

Run Time

Clearly, combining the heuristics by the cooperative strategy increases running time as
a cycle of 1500 - 3000 heuristics are run. However, still the run times are in a reasonable

range and are significantly smaller compared to that of the branch-and-cut method.

A single run of each individual heuristic takes between 0.01 - 45 seconds, depending
on the size of the problem and the heuristic used. The most time-consuming heuristic
is the replace-single heuristic, which takes 45 seconds for d3 and only 0.24 seconds for
d2. The constructor heuristics take very little time. While greedy heuristics run in
less than a second, the lp-round and lp-greedy heuristics take slightly more time (0.17
- 1.31 seconds). The most time-consuming constructor successive-assign takes 0.32 to

4.25 seconds of cpu time.

The A-team implementation takes a time of approximately 1 minute - 3 hours, depend-
ing on the size of the problem. Still, the run times are significantly small compared to

that of the branch-and-cut approach of CPLEX, which is in the order of 3 - 13 hours.

All the run times are given in Tables 10 and 11. In these tables, the run time for
individual heuristics is the total time over all heuristics, as the best solution was picked

after running all the heuristics.
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