
Pancake Flipping with Two Spatulas

Mahfuza Sharmin a,b,1, Rukhsana Yeasmin b,2,
Masud Hasan b,3, Atif Rahman c,4 and M. Sohel Rahman b,d,5

a Department of Computer Science and Engineering, Ahsanullah University of
Science and Technology, Dhaka-1208, Bangladesh

b Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology, Dhaka-1000, Bangladesh

c Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley, CA 94720, USA

d Algorithm Design Group, Department of Computer Science, King’s College
London, Strand, London WC2R 2LS, England

Abstract

In this paper, we give approximation algorithms for several variations of the pan-
cake flipping problem, which is also well known as the problem of sorting by prefix
reversals. We consider the variations in the sorting process by adding prefix trans-
positions, prefix transreversals etc. along with the prefix reversals.

Keywords: Approximation algorithms, genome sorting, pancake flipping, sorting
permutations

1 Email: mhfz.sharmin@gmail.com
2 Email: smrity 23@yahoo.com
3 Email: masudhasan@cse.buet.ac.bd
4 Email: atif@eecs.berkeley.edu
5 Email: msrahman@cse.buet.ac.bd

Electronic Notes in Discrete Mathematics 36 (2010) 231–238

1571-0653/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2010.05.030

http://www.elsevier.com/locate/endm

1 Introduction

Given a permutation π, a reversal flips a substring of π, a transposition cuts
a substring of π and pastes it in a different location, and a transreversal is
a transposition with a flip done before the substring is pasted. In a prefix
version of each operation the corresponding substring is always a prefix of π.

The pancake flipping problem [3,7,13,16,17] deals with finding the minimum
number of prefix reversals required to sort a given permutation. This problem
was first introduced in 1975 by Dweighter [7], who described the motivation
of a chef to rearrange a stack of pancakes.

Aside from being an interesting combinatorial problem, this problem and
its variations have applications in interconnection networks and computational
biology. The number of flips required to sort the stack of n pancakes is the di-
ameter of the n-dimensional pancake network [16,17]. A well studied variation
of pancake flipping problem is the burnt pancake flipping problem [3,16,17].

A broader class of similar sorting problems, called the genome rearrange-
ment problems, is extensively studied in computational molecular biology. In
order to explain the existence of essentially the same set of genes having differ-
ences only in their order in different species, several rearrangement operations
have been suggested, including reversals [1,4,19], transpositions [2,8,14,10],
transreversals [15], prefix transposition [6], prefix reversal [11], etc.

This type of sorting problems are mostly NP-complete or of unknown com-
plexities. Caprara [5] proved that sorting by reversals is NP-hrad, whereas
Heydari and Sudborough [18] have claimed that sorting by prefix reversals
is NP-complete. Hence, researchers have focused mainly on different approx-
imation algorithms for these problems and their variantions. A number of
authors have also considered these by using more than one operations (rever-
sals, transpositions etc.) [9,12,15,20,21,22,23], mostly for signed permutations.

In this paper we study some variations of pancake flipping problem from
sorting permutations view point. We give a 3-approximation algorithm for
sorting by prefix reversals and prefix transpositions and a 2-approximation
algorithm for sorting by prefix reversals and prefix transreversals.

We also introduce the concept of forward march, the idea of which comes
naturally from a greedy approach where someone may try to sort from starting
to end, and give a 3-approximation algorithm for this problem.

The above problems resembles to variants of the original pancake flipping
problem where the chef has two spatulas in his two free hands. He can either
lift some pancakes from the top of the stack and flip them (a prefix reversal)
or he can lift a top portion of the stack with one hand, lift another portion

M. Sharmin et al. / Electronic Notes in Discrete Mathematics 36 (2010) 231–238232

from the top with the other hand, and place the top portion under the second
portion (a prefix transposition), possibly with a flip (a prefix transreversal).
Also, time to time, when a top portion of the stack is sorted he can remove it
from the stack (a forward march).

It is worth mentioning that the worst case ratios of our algorithms can
only be realized when an optimal algorithm applies no prefix reversals at all,
which is very unlikely in practice. Keeping this observation in mind, we derive
mathematically the equations for adaptive approximation ratio in terms of the
number of prefix reversals applied by an optimal algorithm.

We organize the rest of the paper as follows. Section 2 gives the pre-
liminaries. Section 3 presents the approximation algorithms. In Section 4, we
derive equations for approximation ratio in terms of number of prefix reversals
applied by an optimal algorithm. Finally, Section 5 concludes the paper. No-
tably, for space constraints we skipped the proofs of the lemmas and theorems,
which will be provided in the journal version.

2 Preliminaries

Let π = [π0, π1, . . . , πn, πn+1] be a permutation of n + 2 distinct elements,
where π0 = 0, πn+1 = n + 1, and for each 1 ≤ i ≤ n, 1 ≤ πi ≤ n; the
middle n elements of π are to be sorted. A prefix reversal β = β(1, j) for
some 3 ≤ j ≤ n+1 transforms π into π ·β = [π0, πj−1, . . . , π1, πj, . . . , πn+1]. A
prefix transposition τ = τ(1, j, k) for some 2 ≤ j ≤ n and 3 ≤ k ≤ n + 1 with
k /∈ [1, j], transforms π into π ·τ = [π0, πj, . . . , πk−1, π1, . . . , πj−1, πk, . . . , πn+1].

An identity permutation ιn is a permutation such that πi = i for all 1 ≤
i ≤ n. Given two permutations, the problem of sorting one permutation to
another is equivalent to the problem of sorting a given one to ιn [1,2]. The
prefix reversal and prefix transposition distance between π and ι is d(π) = t
such that π · o1 · . . . · od(π) = ι and t is minimum, where for all 1 ≤ i ≤ t either
oi = β or oi = τ . Given a permutation π, the problem of sorting by prefix
reversals and prefix transpositions is to find d(π).

A breakpoint for this problem is a position i in π such that 2 ≤ i ≤ n and
|πi − πi−1| �= 1. In addition, position 1 is always considered as a breakpoint.
Position n+1 is considered a breakpoint when πn �= n. Let, b(π) is the number
of breakpoints in π. Therefore, b(π) ≥ 1, and b(π) = 1 only when π = ιn.

The breakpoint graph Gπ of π is an undirected multi graph whose vertices
are πi, for 0 ≤ i ≤ n + 1, and edges are of two types: grey and black ; for
1 ≤ i ≤ n+1, the vertices πi and πi−1 are joined by a black edge if and only if
there is a breakpoint between them, and for 0 ≤ j < i ≤ n + 1 and j �= i − 1,

M. Sharmin et al. / Electronic Notes in Discrete Mathematics 36 (2010) 231–238 233

3

1

Edge Type Scenario

4

2 π0 − π1 . . . πj−1 − πj

π0 − πi+1 . . . πj−1 − π1 . . . πiπjπ0 − π1 . . . πi − πi+1 . . . πj−1 − πj

τ3

π0 − π1 . . . πi−1 − πi . . . πj − πj+1 π0 − πi . . . πjπ1 . . . πi−1 − πj+1

τ1

π0 − π1 . . . πi−1 − πi . . . πj−1 − πj π0 − πj−1 . . . πi − πi−1 . . . π1 − πj

β4

π0 − πj−1 . . . π1πj

β2

Fig. 1. Edge types and Scenarios of SortByRT3.

there is a grey edge between πi and πj if and only if |πi − πj| = 1.

3 Approximation Algorithms

3.1 A 3-approximation algorithm for prefix reversals and prefix transpositions

For a permutation π and an operation o, denote �(π, o) = b(π) − b(π · o)
as the number of breakpoints that are removed due to operation o. Some
obvious but important observations about breakpoints are that �(π, β) ≤ 1
and �(π, τ) ≤ 2. That means, an optimal algorithm for this problem can
not remove more than two breakpoints by a single operation, which implies a
lower bound of d(π) ≥ � b(π)−1

2
�.

Our algorithm (let us call it SortByRT3) works on considering different
orientations of grey and black edges. Note that if a permutation is not sorted,
then there must be at least two grey edges in G(π) and each grey edge will
be incident to two black edges. A grey edge with its two adjacent black edges
must be one of the four types as shown in Fig. 1.

Lemma 3.1 Let (π1, πj) be a Type 1 grey edge. Then there exists at least one
black edge (πi−1, πi) for some 2 ≤ i ≤ j. We call such a black edge a trapped
black edge.

In our algorithm we scan the permutation from left to right to find the
first black edge incident to a grey edge. We apply the four scenarios for each
edge type, when possible, in the order as shown in Fig. 1.

Lemma 3.2 Given π and G(π), if any of the following two conditions is
satisfied, then a prefix reversal or a prefix transposition can be applied to π
such that it removes at least one breakpoint: (1) G(π) contains a grey edge

M. Sharmin et al. / Electronic Notes in Discrete Mathematics 36 (2010) 231–238234

(π1, πj) of Type 1 or 2 with π1 �= 1, and (2) G(π) contains a grey edge (πi, πj)
of Type 3 with π1 = 1.

Lemma 3.3 Given π and G(π), if Scenario 1, 2 or 3 is not applicable, then
a prefix reversal can be applied that does not remove any breakpoint but is
followed by two subsequent operations that removes at least two breakpoints.

Theorem 3.4 SortByRT3 is a 3-approximation algorithm.

3.2 A 2-approximation algorithm

Now we improve the ratio considering prefix transreversal. A prefix transre-
versal βτ = βτ(1, j, k), for some 2 ≤ j ≤ n, 3 ≤ k ≤ n + 1 with k /∈ [1, j],
transforms π into π · βτ = [π0, πj, . . . , πk−1, πj−1, . . . , π1, πk, . . . , πn+1]. An-
other important observation about breakpoints regarding prefix transreversals
is: �(π, βτ) ≤ 2, which keeps the lower bound for sorting by prefix reversals

and prefix transreversals same as: d(π) ≥ � b(π)−1
2

�. Now, the next lemma is
the key to our 2-approximation.

Lemma 3.5 Let π be a permutation with π1 = 1 and let its associated break-
point graph be G(π). If G(π) contains a grey edge of Type 4, then a prefix
transreversal can be applied that removes at least one breakpoint.

Theorem 3.6 An algorithm (SortByRT2) that produces prefix reversals, pre-
fix transpositions, and/or prefix transreversals according to Lemma 3.5 is an
approximation algorithm with factor 2 for sorting by prefix reversals and prefix
transreversals.

3.3 A 3-approximation algorithm with forward march

At the very beginning or after applying a prefix reversal/transposition to π,
a prefix π0, . . . , πi, for 0 ≤ i ≤ n + 1, may be already sorted. In that case
we update π as the unsorted suffix of π, i.e., as π = πi, . . . , πn+1, and the
size of π is reduced by i, i.e., n = n − i. The next prefix reversal or prefix
transposition is applied on updated π. This concept of moving forward along
with the sorting is called forward march.

For our algorithm with forward march, we redefine breakpoint and break-
point graph. We no more consider the position 1 as a default breakpint,
Clearly, π is sorted if and only if it has no breakpoint. Note that at any time,
π0 is the last element in the sorted part and there always exists a black edge
between π0 and π1. We call this black edge the starting black edge.

M. Sharmin et al. / Electronic Notes in Discrete Mathematics 36 (2010) 231–238 235

Due to breakpoint redefinition, some of our previous observations are mod-
ified. In particular, now we have �(π, β) ≤ 2 and �(π, τ) ≤ 3. Consequently,

a new lower bound is: d(π) ≥ b(π)
3

.

Our algorithm (SortByRTwFM3) works on considering different orienta-
tion of grey and black edges (see Fig. 1). The unsorted πt has at least two
grey edges and at least one black edge in addition to the starting black edge
(π0, π1). We apply a prefix transposition or a prefix reversal in order accord-
ing to the five scenarios shown in Fig. 2, and if possible, perform a forward
march. It is immediate that after each reversal or transposition the number of
breakpoints is reduced by at least one. So our algorithm needs at most b(π)

operations. With the lower bound of d(π) ≥ b(π)
3

, the following theorem holds.

Theorem 3.7 SortByRTwFM3 is a 3-approximation algorithm.

Now, next Lemma proves that Scenarios 4 and 5 can complete sorting and
others are to improve the practical performance without affecting the ratio.

Scenario 2

π0 πi . . . πj−1 π1 . . . πi−1 πj

πi . . . πj−1π0 πjπ1 . . . πi−1

π0 πj−1 . . . π1πj

π0 πi. . . πj−1 πjπ1 . . . πi−1

π0 πi . . . πj−1 π1 . . . πi−1 πj

π0 π1. . . πi−1 πi . . . πj−1 πj

τ1

Scenario 1

Scenario 3

Scenario 4
π0 πjπi. . . πj−1π1. . . πi−1

τ4

Scenario 5

β5
π0 πj−1π1 πj

π0 πjπi. . . πj−1π1. . .πi−1

τ3

π0 π1. . . πi−1 πjπi . . .πj−1

τ2

Fig. 2. Scenarios of SortByRTwFM3

Lemma 3.8 Scenario 4 and Scenario 5 are sufficient to sort the permutation.

4 Adaptive approximation ratios

Motivated by observation that, an optimal algorithm would apply both pre-
fix reversal and prefix transposition we derive approximation ratio ρr that is
adaptive to the number of prefix reversals r applied by an optimal algorithm.

Theorem 4.1 When r prefix reversals are applied by respective optimal al-
gorithms, adaptive approximation ratios of our algorithms are: (1) ρr ≤
3 − 3r

b(π)+r−1
for SortByRT3, (2) ρr ≤ 2 − 2r

b(π)+r−1
for SortByRT2, and (3)

ρr ≤ 3 − 3r
b(π)+r

for SortByRTwFM3.

M. Sharmin et al. / Electronic Notes in Discrete Mathematics 36 (2010) 231–238236

5 Conclusion

In this paper we have studied some variations of pancake flipping problem from
sorting unsigned permutations view point, problems that arise in genome re-
arrangement. Besides the algorithm with performance ratio 3 and 2, we have
introduced a new concept called forward march which contributes another 3-
approximation algorithm. By analyzing the problems in a more practical way
better approximation ratios have been presented. In future it would be inter-
esting to improve the approximation ratio and to decide their complexities.

References

[1] Bafna, V., and Pevzner, P., Genome rearrangements and sorting by reversals,
Proc. FOCS’93 (1993), 148-157. Also in SIAM J. Comp., 25 (1996) 272-289.

[2] Bafna, V., and Pevzner, P., Sorting Permutations by Transpositions, Proc.
SODA’95 (1995), 614-623. Also in SIAM J. Discr. Math., 11(2) (1998) 224-
240.

[3] Bass, D.W., and Sudborough, I.H., Pancake problems with restricted prefix
reversals and some corresponding Cayley networks, J. Paral. Distr. Comp. 63(3)
(2003), 327-336.

[4] Berman, P., Hannenhalli, S., and Karpinski, M., 1.375-approximation algorithm
for sorting by reversals, Proc. ESA’02 in:LNCS 2461, Springer (2002), 200-210.

[5] Caprara, A., Sorting by Reversals is difficult, Proc. RECOMB’97 (1997), 75-83.

[6] Dias, Z., and Meidanis, J., Sorting by Prefix Transpositions, Proc. SPIRE’02,
in:LNCS 2476, Springer (2002), 463-468.

[7] Dweighter, H., Problem E2569, Amer. Math. Monthly 82 (1975), 1010.

[8] Elias, I., and Hartman, T., A 1.375-Approximation Algorithm for Sorting by
Transpositions, Proc. WABI’05 in:LNCS 3962, Springer (2005), 204-214.

[9] Eriksen, N., (1+ε)-approximation of Sorting by Reversals and Transpositions,
Theor. Comp. Sci., 289(1) (2002), 517-529.

[10] Firoz, J.S., Hasan, M., Khan, A.Z., Rahman, M. Sohel, The 1.375
Approximation Algorithm for Sorting by Transpositions Can Run in O(n log n)
Time, Proc.WALCOM 2010 in:LNCS 5942, Springer (2010), 161-166.

[11] GATES, W.H., and PAPADIMITRIOU, C.H., Bounds for sorting by prefix
reversal, Discrete Mathematics, 27 (1979), 47-57.

M. Sharmin et al. / Electronic Notes in Discrete Mathematics 36 (2010) 231–238 237

[12] Gu, Q.P., Peng, S., and Sudborough, H., A 2-approximation algorithm for
genome rearrangements by reversals and transpositions, Theor. Comp. Sci.,
210(2) (1999), 327-339.

[13] Hannenhalli, S., and Pevzner, P., Transforming cabbage into turnip, Proc.
STOC’95 (1995), 178-189.

[14] Hartman, T., A simpler 1.5-approximation algorithm for sorting by
transpositions, Proc. CPM’03 in:LNCS 2676, Springer (2003), 156-169.

[15] Hartman, T., and Sharan, R., A 1.5-approximation algorithm for sorting
by transpositions and transreversals, Proc.WABI’04 in:LNCS 3240, Springer
(2004), 50-61.

[16] Heydari, M.H., and Sudborough, I.H., On Sorting by Prefix Reversals and the
Diameter of Pancake Networks, Parallel Architectures and Their Efficient Use,
in:LNCS 678, Springer (1993), 218-227.

[17] Heydari, M.H., and Sudborough, I.H., On the diameter of the pancake network,
J. Algorithms, 25(1) (1997), 67-94.

[18] Heydari, M.H., and Sudborough, I.H., Sorting by prefix reversals is NP-
complete, To be submitted (as mentioned in [23]).

[19] Kececioglu, J., and Sankoff, D., Exact and approximation algorithms for the
inversion distance between two permutations, Proc. CPM’93, in:LNCS 648
Springer (1993), 87-105. Also in Algorithmica, 13 (1995)180-210.

[20] Lin, G.H., and Xue, G., Signed genome rearrangements by reversals and
transpositions: Models and approximations, Proc. COCOON’99 in:LNCS 1672,
Springer (1999), 71-80.

[21] Lou, X., and Zhu, D., A 2.25-Approximation Algorithm for Cut-and-Paste
Sorting of Unsigned Circular Permutations, Proc. COCOON’08, in:LNCS 2476,
Springer (2008), 331-341.

[22] Rahman, A., Shatabda, S., and Hasan, M., An Appoximation Algorithm for
Sorting by Reversals and Transpositions, J. Discr. Algorithms 6(3) (2008), 449-
457.

[23] Walter, M.E., Dias, Z., and Meidanis, J., Reversal and transposition distance of
linear chromosomes, Proc. SPIRE’98 in:IEEE CS, 3962 (1998), 96-102.

M. Sharmin et al. / Electronic Notes in Discrete Mathematics 36 (2010) 231–238238

