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Abstract. We show that single-digit “Nishio” subproblems in n×n Sudoku puz-
zles may be solved in time o(2n), faster than previous solutions such as the pattern
overlay method. We also show that single-digit deduction in Sudoku is NP-hard.

1 Introduction

Sudoku puzzles, appearing daily in newspapers and collected in many books, take the
form of a 9×9 grid of cells, some of which are filled in with numbers in the range from
1 to 9, such as the one in Figure 1 below. The task for the puzzle solver is to fill in the
remaining cells so that the numbers within every row, column, or 3× 3 block of cells
(bounded by the heavier border lines) are all distinct.

2 6 5 1
9 3

1 3 7
5 8 6

8
4 9 7

9 4 3
4 8

9 5 2 1

Fig. 1. A difficult Sudoku puzzle.

Every properly-designed Sudoku puzzle has a unique solution, and in most cases
this solution can be found by humans via a sequence of deductions that does not involve
trial and error or backtracking. Sudoku puzzlists typically learn a repertoire of deductive
rules that allow them to make steps towards solving a puzzle whenever they can find
certain patterns in it. As an example, if one of the 3×3 blocks can only contain digit d
in cells that belong to a single column, then d cannot be placed in any cell that belongs
to in that column but not to that block, for doing so would make it impossible to place
d within the block. Thus, in Figure 1, the digit 6 must be placed in one of two cells in
the middle column of the top middle 3× 3 block, and therefore it cannot be placed in
the middle column of the bottom middle block. Rules such as this, and exercises to help
learn them, may be found in guidebooks for Sudoku puzzle solving; see, e.g., [12, 28].
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Common variants of Sudoku shrink the puzzle to a 6×6 grid with 2×3 blocks, or
expand it to a 16×16 grid with 4×4 blocks; more generally, Sudoku puzzles may use
any ab×ab grid with blocks of size a×b. This variability allows us to apply the tools
of computational complexity to Sudoku, and it has been shown that, when generalized
to n× n grids, solving Sudoku is NP-hard [31]. In practice, however, it is not difficult
for computers to solve 9× 9 Sudoku puzzles using backtracking together with simple
deductive rules to determine the consequences of each choice and prune the search tree
whenever an inconsistency is discovered [6, 9]. Worst case bounds on the time to solve
Sudoku problems may be found by reducing Sudoku to graph list coloring on a graph
with n2 vertices, one for each cell, with a color for each number that may be placed
within a cell and with edges connecting pairs of cells that belong to the same row,
column, or block [14, 26]. A coloring algorithm of Lawler [17], specialized to these
graphs (using the fact that any color class in a valid coloring may be represented as a
permutation) can solve any Sudoku puzzle in worst case time O(2n2 ·n! ·nO(1)). Sudoku
puzzles may be reduced to instances of exact satisfiability (satisfiability of CNF for-
mulae by an assignment that makes exactly one term in each clause true) with O(n2)
variables and clauses [25] or to instances of exact set cover with O(n2) sets and el-
ements [15], again achieving a time bound exponential in n2. Sudoku puzzles have
also been used as a test case for many varied computer problem-solving techniques
including constraint programming [27], reduction to satisfiability [19, 30], harmony
search [11], metaheuristics [18], genetic algorithms [21], particle swarms [24], belief
propagation [22], projection onto the Birkhoff polytope [23], Gröbner bases [1], mixed
integer programming [16], and compressed sensing [2].

Despite the ease of solving Sudoku using these methods, there is still a need for
computer puzzle solvers that eschew both trial and error and sophisticated computer
search techniques, and that instead mimic human deduction [6, 9]. With a deductive
solver, we may estimate the difficulty of a puzzle by solving it using rules that are as
simple as possible and then assessing the cognitive complexity of the rules that were
needed. Difficulty estimation techniques of this type may also be used as a subroutine to
guide the puzzle generation process [15], or to explain a puzzle’s solution to a human, in
order to help teach the human how to solve Sudoku puzzles more easily. Additionally,
deductive puzzle solving algorithms may cast light on human psychology, by helping
us understand what kinds of thought processes are easier or more difficult for humans.

One of the more complex deduction rules commonly used by human Sudoku puz-
zlers considers the possible positions still open to a single digit d, and eliminates pos-
sible placements whenever they cannot be part of a consistent placement of d in every
row, column, and block of the puzzle, regardless of how the other digits are placed.
This technique is often called Nishio, after Tetsuya Nishio, although the same word
may also apply to unrestricted trial-and-error solution. Nishio deductions on a 9× 9
board are within the ability of skilled humans to solve mentally, often without written
notes, but it is not obvious how to implement them in a computer simulation of human
reasoning. In our prior work on a Sudoku solver [9] we used a polynomial time ap-
proximation to Nishio based on graph matching algorithms, that always makes correct
deductions but that, by ignoring the block structure of a Sudoku puzzle, is not always
able to solve puzzles that can be solved by Nishio such as the one in Figure 1.
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Fig. 2. The available positions for the digit 7 in the puzzle of Figure 1 before applying Nishio
(left) and after applying Nishio (right). Positions that might possibly hold a 7 are shown as open
circles, and positions that must be a 7 are shown as solid disks.

The main result of this paper is an algorithm for solving this single-digit deduction
problem exactly, with running time o(2n). Although its running time is exponential,
our new algorithm is implementable, faster than the n!/2O(n) time of previously used
but naive pattern overlay methods, faster than the 2nnO(1) time of a reduction to 3-
dimensional matching [4], and fast enough to include in a Sudoku solver. Secondarily,
we explain the exponential running time of our solution and of the other previous solu-
tions for this problem by showing that single-digit deduction is NP-hard.

2 Nishio

Define a valid placement of an n×n Sudoku puzzle to be a set of n cells of the puzzle
that includes exactly one cell in each row, column, and block of the puzzle, and let V
denote the set of valid placements. Suppose that the initial hints of a puzzle and prior
deductions have limited the placements of a digit d to a set S of possible cells (including
the ones already known to contain d). Then, we may further restrict S to its subset

Nishio(S) =
⋃{

V | (V ∈ V )∧ (V ⊂ S)
}
.

That is, we find the valid placements that are subsets of S, let Nishio(S) be the set of
cells participating in at least one valid placement, and eliminate potential placements
for d that do not belong to Nishio(S). This calculation defines the Nishio deduction rule.

For instance, consider the Sudoku puzzle in Figure 1. After several straightforward
deductions, two cells that were initially open to the digit 7 become occupied by other
digits, after which the remaining set S of cells in which 7’s may be placed is shown
in Figure 2(left). Nishio(S) is the subset of S shown in Figure 2(right). The cell in the
middle of the bottom row (row 9 column 5, or R9C5 for short) is not part of any valid
placement that is a subset of S, and is therefore not in Nishio(S). This may be seen by
finding the valid placements in S (there are four of them) and checking that none of them
contains this cell. An alternative method is to follow a chain of implications that would
follow from placing a 7 in R9C5, using the fact that each 3× 3 blocks of the puzzle
mus contain the digit 7. If a 7 is placed in R9C5, it would force the placement of a 7 in,
successively, R5C6, R4C1, R2C3, R1C7, and R9C9. But then, there would be two 7’s
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in row 9, in the cells R9C5 and R9C9. This contradiction shows that the placement of a
7 into R9C5 is impossible. Only one other digit, 3, can be placed into R9C5, and after
this placement another straightforward sequence of deductions completes the puzzle.

Graph matching can be used in a polynomial time approximation to Nishio(S) [9].
Define a bipartite graph G for which the n vertices on one side of the bipartition repre-
sent the rows of the puzzle, the n vertices on the other side represent the columns, and
in which an edge exists between two vertices r and c if and only if the cell in row r and
column c of the puzzle belongs to S. The perfect matchings of G correspond to subsets
of S that cover each row and column of the puzzle exactly once. If T is the set of edges
that participate in at least one perfect matching, then Nishio(S) ⊆ T ⊆ S, and T may
be safely used as an approximation to Nishio(S). However, by ignoring the requirement
that a placement must have exactly one cell in each block, this method allows some
invalid placements and therefore may not make as many deductions as the full Nishio
rule. In particular, this approximate Nishio method is incapable of solving Figure 1.

The calculation of Nishio(S) may be expressed as an exact satisfiability problem
with 3n clauses, one for each row, column, and block of the puzzle. Known methods for
exact satisfiability of instances with c clauses take time 2ccO(1) [5,20], and can therefore
be used to compute Nishio(S) in time 8nnO(1). Alternatively it can be expressed as a 3-
dimensional matching problem, and solved in randomized expected time 2nnO(1) [4].

In practice, Nishio deductions are often implemented using an algorithm called the
pattern overlay method [6, 29]. In this method, one precomputes a list of all the valid
placements in V ; in 9× 9 Sudoku, there are 46656 of them. Then, whenever a Nishio
deduction is called for, one loops through this list, testing whether each placement is a
subset of S and computing the union of the placements that are subsets of S. In n× n
Sudoku there are n!/2O(n) valid placements, each of which may be tested in time O(n2),
so the method takes time O(n!/2O(n)). Although usable for 9×9 Sudoku, this method
is too slow for 16×16 Sudoku, which has more than 1011 valid placements.

Our goal in this paper is to show how to perform the full Nishio deduction rule while
at the same time reducing its time bound to something that, while still exponential, is
significantly faster than the previously known methods described above.

3 Algorithm

We now describe our algorithm for calculating Nishio(S). Our main idea is to construct
a directed acyclic graph GS whose source-to-sink paths correspond one-to-one with the
valid placements of the Sudoku puzzle, with the ith edge of a path corresponding to
the cell in column i of a placement. We use depth first search to determine the set of
graph edges that participate in source-to-sink paths; the set Nishio(S) that we wish to
calculate is the set of puzzle cells corresponding to these participating graph edges.

The vertices of our graph will correspond to certain sets of rows of a Sudoku puzzle,
and it is convenient to represent these sets using 0–1 matrices. For instance, a set R of
rows in a standard 9×9 Sudoku puzzle may be represented by a 3×3 matrix r1 r2 r3

r4 r5 r6
r7 r8 r9
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0 0
0 0

0 1
0 0

0 0
1 0

0 0
0 1

1 0
0 0

0 1
0 1

1 0
0 1

0 1
1 0

1 0
1 0

0 1
1 1

1 1
0 1

1 1
1 0

1 0
1 1

1 1
1 1

(1,1)

(1,2)

(1,4)(2,1)
(2,2)

(1,2)
(2,2)

(2,4)

(3,1)

(3,2)

(3,4)(4,1)

(4,2)

(3,2)
(4,2)

(1,3)
(4,3)

(3,3)
(2,3)

(1,3)
(3,3)

(4,3)
(2,3)

(4,3)

(4,4)

Fig. 3. Left: A valid placement of four cells among the sixteen cells of a 4× 4 Sudoku puzzle
grid. Right: the graph GS of almost-balanced matrices constructed from these sixteen cells, with
its edges labeled by puzzle positions, and the correspondence between placements and paths.

where each coefficient is either 0 or 1: ri = 1 when row i belongs to R, and ri = 0 when
row i does not belong to R. Coefficients in the same row of the matrix as each other
correspond to rows of the Sudoku puzzle that pass through the same blocks as each
other; coefficients that are in different rows of the matrix correspond to puzzle rows
that pass through disjoint blocks. In the same way, if a Sudoku puzzle has blocks of
size a× b, we may represent sets of its rows by 0–1 matrices of dimensions b× a in
such a way that two coefficients belong to the same row of a matrix if and only if the
corresponding two puzzle rows pass through the same blocks. However, not every set of
puzzle rows, and not every 0-1 matrix, will be suitable for use in our graph: we restrict
our graph’s vertices to the almost-balanced matrices, defined below.

Definition 1. An almost-balanced matrix is a 0-1 matrix in which every two rows have
numbers of nonzeros that differ by at most one. The count of a 0-1 matrix is its total
number of nonzeros.

Next we describe the edges of graph GS. Each edge will correspond to a pair of
almost-balanced matrices that differ from each other in a single coefficient. More specif-
ically, suppose that A and B are two almost-balanced matrices, differing from each other
in their rth coefficient, and let this coefficient be 0 in A and 1 in B. Let c be the count of
matrix B. Then, if the cell in row r and column c of the puzzle belongs to S, we add an
arc in GS from A to B, labeled by the position (r,c). However, if puzzle cell (r,c) does
not belong to S, we leave vertices A and B disconnected from each other in GS.

Lemma 1. The valid placements in S are in one-to-one correspondence with the paths
in GS from the all-zero matrix to the all-one matrix.

Proof. Let P⊂ S be a valid placement, and let Pi denote the set of rows covered by the
cells in the first i columns of P. Then we may find a path in GS in which the ith vertex
is the matrix corresponding to Pi. Each such matrix is balanced, because the cells in the
first i columns of P must cover either bi/bc or di/be of the blocks that intersect each
row of the puzzle, and correspondingly each row of the matrix must have either bi/bc or
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di/be nonzeros. For each i, the two matrices corresponding to Pi and Pi+1 are connected
by an arc, corresponding to the puzzle cell in column i+1 of P.

In the other direction, any path through GS defines a set P of cells in S, the cells
appearing as labels on the path edges. Each edge of the path goes from a matrix of
some count i to a matrix of count i+ 1, so the path has to pass through all possible
counts and therefore P includes a cell in every column. Each path starts at the all-zero
matrix and changes the coefficients of the matrix one by one to all ones, so the path has
to pass through edges that change each individual coefficient and therefore P includes
a cell in every row. And, because of the balance condition, the part of the path that
passes from count bi to count b(i+1) must add exactly one nonzero to each row of the
almost-balanced matrices it passes through, from which it follows that P includes one
cell in each block in the ith column of blocks. Thus, P is a valid placement. ut

The construction of the graph GS, and the correspondence between placements and
paths, is illustrated for 4×4 Sudoku puzzles with 2×2 blocks in Figure 3.

To simplify our algorithm for computing Nishio(S), we precompute the graph GU ,
where U is the set of all puzzle cells; GS is the subgraph of edges of GU whose label
belongs to S. We let 0 and 1 denote the all-zero and all-one matrices respectively (the
source and the sink vertices of GS). Our algorithm performs the following steps:

1. Initialize a dynamic set T = /0 of puzzle cells.
2. Initialize a dynamic set V = {1} of vertices of GS that no longer need to be searched.
3. Initialize a dynamic set Z = {1} of vertices known to have paths to 1.
4. Perform a recursive depth-first search starting from 0. For each vertex v reached by

the search, add v to V , and then perform the following steps for each edge vw in GU
such that the label of vw belongs to S:
(a) If w is not in V , then search w recursively.
(b) If w is in Z, then add v to Z, and add the label of vw to T .

It follows from Lemma 1 that, after performing these steps, the set T constructed by
this algorithm is exactly Nishio(S).

4 Analysis

Our algorithm’s runtime is dominated by the number of a×b almost-balanced matrices,
which we abbreviate as Aa,b. Although we do not know of a closed-form formula for
Aa,b, it is not difficult to calculate it as a sum over binomial coefficients:

Aa,b =

b−1∑
i=0

((
b
i

)
+

(
b

i+1

))a

−
b−1∑
i=1

(
b
i

)a

.

Each term in the left sum counts the number of ways of forming an almost-balanced
matrix whose a rows each have either i or i+1 nonzeros. The almost-balanced matrices
in which all rows have the same number j of nonzeros (except for the all-zero and all-
one matrices) are counted twice in the left sum, once for i = j−1 and a second time for
i = j. This double counting is corrected by subtracting the right sum.
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Theorem 1. The algorithm described in Section 3 correctly computes Nishio(S), for
ab×ab Sudoku puzzles, in time O(abAb,a).

Proof. Correctness follows from Lemma 1. The graph GS has Ab,a vertices; these ver-
tices may be constructed (as an explicit set of matrices) in the stated time bound, by
iterating over the possible numbers of nonzeros per row and forming all combinations
of rows with the given numbers of nonzeros, following the formula for Aa,b above.
Each vertex has at most ab outgoing edges, and for each possible outgoing edge we can
test whether the corresponding cell belongs to S and if so construct the edge in constant
time. Thus, the total number of edges in GS is at most abAb,a, and GS can be constructed
in time O(abAb,a). The remaining steps of the algorithm are all also proportional to the
size of GS, and therefore also at most O(abAb,a). ut

For n× n Sudoku puzzles with square blocks, Stirling’s formula may be used to
show that each binomial coefficient in the formula for A√n,

√
n is O(2

√
n/n1/4). Each

term in the summation is the sum of two coefficients, taken to the power
√

n, and is
therefore asymptotically bounded by 2n−Ω(

√
n logn) = o(2n). Multiplication by a poly-

nomial does not change this asymptotic bound, which therefore also applies to A√n,
√

n
itself and to the running time of the algorithm.

To compare this to the pattern overlay method, we must count the number of valid
placements in an n× n Sudoku puzzle, again with square blocks. A valid placement
may be specified by choosing, for each contiguous group of

√
n columns of the puzzle,

a one-to-one correspondence from columns to blocks such that corresponding pairs
of columns and blocks are covered by the same cell in the valid placement, and by
simultaneously choosing in the same way a one-to-one correspondence from rows to
blocks. With these two sets of correspondences in hand, the unique cell of the placement
within each block can be determined from the row and column corresponding to that
block. Therefore, the number of valid placements is exactly (

√
n)!2

√
n [7]. For instance,

for 9× 9 Sudoku this number is 3!6 = 46656. Asymptotically (via Stirling’s formula)
this number is 2n log2 n−O(n). Therefore, the time for the pattern overlay method, which
is at least proportional to the number of valid placements, grows more quickly as a
function of n than any constant power of the time for our new algorithm.

For 9×9 Sudoku our graph GS has 290 vertices and at most 936 edges, in contrast
to the set of 46656 valid placements, already enough of a difference to predict that
our algorithm will be significantly faster than the pattern overlay method. For 16× 16
Sudoku the difference is much greater: our graph GS has 19442 vertices in this case,
whereas the number of valid placements is 4!8 = 110075314176.

5 Implementation

We have implemented the new algorithm described here, and included it as part of a
Python program for solving and generating Sudoku puzzles reported on in our previous
paper [9].1 We did not carefully time our implementation, because of the difficulty

1 Available online as the Sudoku package in http://www.ics.uci.edu/~eppstein/PADS/
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3 9 7 4
5 9 2

4 9
6 3 2

2 5
3 1 7

7 8
8 3 7
9 1 5 8

Fig. 4. A very difficult Sudoku puzzle, formerly impossible for our software without backtrack-
ing, now solvable using the new Nishio algorithm.

of getting meaningful timings in a slow interpreted language such as Python, but the
addition of this deduction rule did not cause any perceptible slowdown to our program.

Our program includes deductive rules that, unlike the Nishio rule described here,
combine information about the placements of multiple digits in multiple cells, includ-
ing the non-repetitive path rules from our previous paper, and a heuristic reduction to
2-SAT. The 2-SAT instances that our software constructs from a Sudoku puzzle also in-
clude implications about the placements of single digits that are intended to cover many
common Nishio examples. But despite these additional rules, the new Nishio solver has
increased the power of our solver. In particular, among a collection of 36 Sudoku puz-
zles that our software previously found impossible to solve without backtracking, one
problem shown in Figure 4 has now become solvable thanks to the new Nishio solver.

Perhaps more importantly, by using this Nishio solver, the software can now provide
simpler human-readable explanations of how to solve difficult Sudoku puzzles. For in-
stance, the puzzle shown in Figure 1 was previously solvable by our software, but only
by means of both the non-repetitive path rules and the reduction to 2-SAT. In the new
version of our solver, the only complex rule needed to solve this puzzle is Nishio.

6 Hardness

The time bound for our Nishio algorithm is exponential; to justify our failure to provide
a polynomial algorithm, we show that Nishio(S) is NP-hard to compute. Computing
Nishio(S) is a functional problem, and to determine its computational complexity it is
more convenient to reduce it to a decision problem, which we call the Nishio decision
problem. In this problem, one is given as input two integers a and b, and a set S of cells
in an ab×ab grid for Sudoku puzzles with block size a×b. The output is yes if this set
of cells contains a valid solution; that is, if Nishio(S) 6= /0; it is no if Nishio(S) = /0.

Theorem 2. The Nishio decision problem is NP-complete.
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Fig. 5. Reduction from 3-SAT to the Nishio decision problem

Proof. Clearly, the problem is in NP: to show that the output is yes, we need only
exhibit a single valid placement that is a subset of S.

To show NP-hardness, we reduce 3-SAT to the Nishio decision problem, by trans-
forming any 3-SAT instance into an instance S of the Nishio problem. The transformed
problem uses an n2× n2 grid with block size n× n where n is chosen to be at least as
large as max(v+ c,3c+1) and where v and c are the numbers of variables and clauses
in the 3-SAT instance. We create a gadget for each 3-SAT variable consisting of certain
cells in a horizontally aligned set of Sudoku blocks. Each of these blocks contains two
cells of S, in two distinct rows and columns of the grid, and each of these cells is in
the same row as one cell in a different block of the gadget, so that the conflict graph
of all these cells forms a single cycle. There are only two consistent ways of placing a
digit within these blocks and rows: one using the even positions in the cycle (which we
associate with assignments of the value true to the variable) and the other using the odd
positions (which we associate with assignments of the value false to the variable).

We also make a gadget for each 3-SAT clause consisting of cells in a horizontally
aligned set of four blocks, three for the three terms of the clause and one more terminal
block. We place into S three cells in each of these four blocks, lying on four rows that
pass through these four blocks, one “truth-setting row” and three “conflict rows”. In the
block corresponding to a term t, S contains one cell in the truth-setting row, and two
cells in the conflict row for that block; all three of these cells are placed within the same
two columns as the cells in the corresponding block of the variable gadget for t. These
cells are placed in such a way that, no matter which truth assignment is used for t, one
of the two positions in the conflict row for the clause remains available. However, the
choice of the column on which to place the cell in the truth-setting row of the block for
term t is made in such a way that this cell may only be used when t is given a truth
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assignment compatible with the clause. In the terminal block, all three cells are chosen
within a single column, one in each of the gadget’s three conflict rows.

Finally, in order to ensure that the set of cells in these gadgets can be part of a valid
placement for the whole puzzle, we add to S any cell that is outside the union of the
blocks, rows, and columns used in these gadgets.

In any valid placement that is a subset of S, the cells of the placement within each
variable gadget must correspond to a valid truth assignment to that variable, for other-
wise not all of the gadget’s blocks could be covered by the placement. In each clause
gadget, the terminal block must have one of its cells chosen, on one of the conflict
rows, and the corresponding term block must have a cell chosen on the truth-setting
row, compatibly with the truth assignment to that term. Therefore, any valid placement
must necessarily correspond to a truth assignment for the given 3-SAT instance.

In the other direction, suppose that our given 3-SAT instance has a valid truth as-
signment; that is, for each clause we may choose a term in that clause that is assigned
to be true. We may use this truth assignment, and the choice of the true term in each
clause, to guide the choice of a non-conflicting set of cells in each row, column, and
block of the gadgets of the Nishio instance. Note that this choice necessarily includes
a cell within each of the rows, columns, and blocks used by the gadgets. The remain-
ing rows, columns, and blocks of the puzzle grid may be covered by cells chosen by a
greedy algorithm as there is no possibility of additional conflicts.

Thus, the two problems, the initial 3-SAT instance and the Nishio decision problem
derived from it, are equivalent: one problem has a positive solution if and only if the
other does. This equivalence completes the NP-completeness proof. ut

The gadgets used in this reduction are depicted in schematic form in Figure 5. It
follows immediately that computing Nishio(S) for arbitrary sets S is NP-hard. Concep-
tually, however, there is a minor difficulty with applying this result to Sudoku puzzles,
because whenever we apply the Nishio rule to a Sudoku puzzle we will be guaranteed
that Nishio(S) is nonempty. Thus, the class of sets for which it is difficult to tell whether
Nishio(S) is empty and the class of sets arising in puzzle solving may be disjoint. To
resolve this issue, we use an additional trick.

Theorem 3. It is NP-hard to compute Nishio(S), even restricted to the class of in-
stances for which Nishio(S) is nonempty.

Proof. Starting with a hard 3-SAT instance X , we modify X to produce a new 3-SAT
instance X ′ with an additional variable v0, such that there always exists a solution to X ′

with v0 true but such that there exist solutions with v0 false if and only if X is satisfiable.
To do so, we turn X into a 4-SAT instance by adding v0 to each of its clauses, and then
split every four-term clause (a∨b∨c∨d) into two three-term clauses (a∨b∨x)∧(¬x∨
c∨d) where x is a new variable introduced for each clause that needs to be split.

We then use the same reduction as the one above, on the modified instance X ′, and
let S be the set of cells constructed by the reduction. Then Nishio(S) will always be
nonempty (it will contain valid placements corresponding to truth assignments with v0
true). However, it will contain the cells from the false assignment to v0 if and only if the
initial 3-SAT instance X is satisfiable. Because it is NP-hard to determine whether X is
satisfiable, it is also NP-hard to determine whether these cells belong to Nishio(S). ut
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7 Conclusions

We have developed a new algorithm for solving single-digit deduction problems in
Sudoku. Despite the NP-hardness of the problem, our algorithm solves it in an amount
of time that is only mildly exponential, significantly faster than the pattern overlay
method previously used for the same task. Our algorithm does not explain how humans
might solve Nishio problems (itself an interesting problem for future research) but can
be used as one of the deduction rules in a human-like non-backtracking Sudoku solver.

The requirements that a valid placement cover each row and column of the puzzle
exactly once can be formulated in terms of bipartite matching. but the additional con-
straints coming from the blocks of the puzzle form an obstacle to the polynomial-time
solution of this sort of matching problem. Matching has many other applications, and
it is possible that the techniques we develop here may be of interest in some of them.
Our method also resembles dynamic programs for the traveling salesman problem and
related problems [3, 13] and might potentially help speed up some of these problems.

A curiosity arising from this work is that the graph of 2×2 almost-balanced matri-
ces in Figure 3 is the skeleton of the rhombic dodecahedron. Is this a coincidence, or do
the larger graphs constructed in the same way have a similar polyhedral description?

The graph reachability algorithm at the heart of our method takes time linear in the
number of edges of graph GS. In other application domains where graph reachability
algorithms also apply, we have obtained additional speedups using bit-parallel program-
ming techniques [8, 10]. Can similar techniques also speed up Nishio deduction?

Another question in the nexus of Sudoku puzzle solving and exponential time exact
algorithms remains unsolved: what is the worst case time for solving complete n× n
Sudoku puzzles? Is it possible to achieve 2o(n2) time for this problem?
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