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The mathematical structure of the widely popular Sudoku puzzles is akin to typical hard constraint
satisfaction problems that lie at the heart of many applications, including protein folding and the
general problem of finding the ground state of a glassy spin system. Via an exact mapping of
Sudoku into a deterministic, continuous-time dynamical system, here we show that the difficulty of
Sudoku translates into transient chaotic behavior exhibited by the dynamical system. In particular,
we show that the escape rate κ, an invariant characteristic of transient chaos, provides a single
scalar measure of the puzzle’s hardness, which correlates well with human difficulty level ratings.
Accordingly, η = − log10 κ can be used to define a “Richter”-type scale for puzzle hardness, with
easy puzzles falling in the range 0 < η ≤ 1, medium ones within 1 < η ≤ 2, hard in 2 < η ≤ 3 and
ultra-hard with η > 3. To our best knowledge, there are no known puzzles with η > 4.

In Sudoku, considered as one of the world’s most pop-
ular puzzles [1], we have to fill in the cells of a 9× 9 grid
with integers 1 to 9 such that in all rows, all columns
and in nine 3×3 blocks every digit appears exactly once,
while respecting a set of previously given digits in some
of the cells (the so-called clues). Sudoku is an exact cover
type constraint satisfaction problem [2] and it is one of
Karp’s 21 NP-complete problems [3], when generalized to
N×N grids [4]. NP-complete problems are “intractable”
(unless P=NP) [2, 5] in the sense that all known algo-
rithms that compute solutions to them do so in expo-
nential worst-case time (in the number of variables N);
in spite of the fact that if given a candidate solution, it
takes only polynomial time to check its correctness.

The intractability of NP-complete problems has im-
portant consequences, ranging from public-key cryptog-
raphy to statistical mechanics. In the latter case, for the
ground-state problem of Ising spin glasses (±1 spins), one
needs to find the lowest energy configuration among all
the 2N possible spin configurations. Additionally, to de-
scribe the statistical behavior of such Ising spin models,
one has to compute the partition function, which is a sum
over all the 2N configurations. Barahona [6], then Istrail
[7] have shown that for non-planar crystalline lattices, the
ground-state problem and computing the partition func-
tion are NP-complete [7]. Since there is little hope in
providing polynomial time algorithms for NP-complete
problems, the focus shifted towards understanding the
nature of the complexity forbidding fast solutions to these
problems. There has been considerable work in this di-
rection, especially for the Boolean satisfiability problem
k-SAT, which is NP-complete for k ≥ 3. Due to com-
pleteness, all problems in NP (hence Sudoku as well),
can be translated (in polynomial time) and formulated
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as a k-SAT problem. In k-SAT we are given N Boolean
variables to which we need to assign 0s or 1s (TRUE or
FALSE) such that a given set of clauses in conjunctive
normal form are all satisfied (evaluate to TRUE). Just as
for the spin glass model, here we also have exponentially
many (2N ) configurations or assignments to search.

In the following we treat algorithms as dynamical sys-
tems. An algorithm is a finite set of instructions acting in
some state space, applied iteratively from an initial state
until an end state is reached. For example, the simplest
algorithm for the Ising model ground state problem, or
the 3-SAT problem would be exhaustively testing poten-
tially all the 2N configurations, which quickly becomes
forbidding with increasing N . To improve performance,
algorithms have become more sophisticated by exploit-
ing the structure of the problem (of the state space). Ac-
cordingly, now 3-SAT can be solved by a deterministic
algorithm with an upper bound of O(1.473N ) steps [8].
Here we will only deal with deterministic algorithms that
is, once an initial state is given, the “trajectory” of the
dynamical system is uniquely determined. Thus, we ex-
pect that the dynamics of those algorithms that exploit
the structure of hard problems will reflect the complex-
ity inherent in the problem itself. Complex behavior by
deterministic dynamical systems is coined chaos in the
literature [9–11], and thus the behavior of algorithms for
hard problems is expected to appear highly irregular or
chaotic [12].

Although the theory of nonlinear dynamical systems
and chaos is well-established, it has not yet been ex-
ploited in the context of optimization algorithms. One of
the difficulties lies with the fact that most optimization
algorithms are discrete and not easily cast in forms
amenable to chaos theory methods. Recently, however,
we have provided [13] a deterministic continuous-time
solver for the Boolean satisfiability problem k-SAT using
coupled ordinary differential equations (ODE) with a
one-to-one correspondence between the k-SAT solution
clusters and the attractors of the corresponding system of
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FIG. 1: Sudoku and its Boolean representation. (a) a typical puzzle with bold digits as clues (givens). (b) Setup of the
Boolean representation in a 9 × 9 × 9 grid. (c) Layer L4 of the puzzle (the one containing the digit 4) with 1-s in the location
of the clues and the regions blocked out for digit 4 by the presence of the clues (shaded area).

ODEs. This continuous-time dynamical system (CTDS)
is in a form naturally suited for chaos theory methods,
and thus it allows us to study the relationship between
optimization hardness and chaotic behavior. Here we
will focus only on solvable (SATisfiable) instances, and
thus the observed chaotic behavior will necessarily be
transient [11, 14, 15]. We need to emphasize, however,
that the dynamical properties characterize both the
problem and the algorithm itself. For this reason, one
compares the dynamical properties across problems of
varying hardness using the same algorithm. Neverthe-
less, since there are problem instances that are hard for
all known algorithms, the appearance of transient chaos
should be a universal feature of hard problems. It is
also important to observe that transient chaos is not an
N →∞ asymptotic behavior, but it appears for finite N ,
and thus measures of chaos can be used to characterize
and categorize the hardness of individual instances of
finite problems. To illustrate this, here we first map
the popular 9 × 9 (hence finite) version of Sudoku
into k-SAT, then we solve it using our deterministic
continuous-time solver [13]. By analyzing the behavior
of the corresponding trajectories of the CTDS we show
the appearance of transient chaos when increasing the
hardness of the Sudoku problems, and show that the
level of hardness (taken from human ratings of the puz-
zles) correlates well with a chaotic invariant, namely the
lifetime of chaos κ−1, where κ is called the escape rate
[11]. We conclude with a discussion on algorithmic per-
formance, dynamical properties and problem complexity.

Results

Sudoku as k-SAT

Because our continuous-time dynamical system [13]
was designed to solve k-SAT formulae in conjunctive nor-

mal form (CNF), we first briefly describe how Sudoku can
be interpreted as a +1-in-9-SAT formula, and then how
it is transformed into the standard CNF form. Further
details are shown in the Methods section.

In a Sudoku puzzle we are given a square grid with
9×9 = 81 cells, each to be filled with one of nine symbols
(digits) Dij ∈ {1, . . . , 9}, i, j = 1, . . . , 9 (with the upper-
left corner of the puzzle corresponding to i = 1, j = 1).
When the puzzle is completed each of the columns, rows
and 3×3 sub-grids (blocks partitioned by bold lines, Fig.
1a) must contain all the 9 symbols. Equivalently, all 9
symbols must appear once and only once in each row,
column and 3× 3 sub-grid.

To formulate Sudoku as a constraint satisfaction prob-
lem (CSP) using Boolean variables, we associate to each
symbol (digit) an ordered set of 9 Boolean variables
(TRUE=“1”, FALSE=“0”). The digit Dij in cell (i, j)
will be represented as the ordered set (x1ij , . . . , x

9
ij) with

xaij ∈ {0, 1}, a = 1, . . . , 9, such that always one and only
one of them is 1 (TRUE). Thus Dij = a is equivalent to
writing xbij = δa,b, where δa,b is the Kronecker delta func-
tion. This way we have in total 9× 9× 9 = 729 Boolean
variables xaij , which we can picture as being placed on a
3D grid (Fig. 1b), with a corresponding to the grid in-
dex along the vertical direction, and hence a is the digit
that is filling the corresponding (i, j) cell in the original
puzzle. The corresponding 9×9 2D layer at height a will
be denoted by La. For example in the puzzle shown in
Fig. 1a D1,9 = 4. In the given vertical column the vari-
able in the ath cell is xa1,9 = δa,4. The Sudoku constraints
can also be simply encoded using Boolean variables (see
Methods). They come from: 1) uniqueness of the sym-
bols in all the (i, j) Sudoku cells, 2) a symbol must occur
once and only once in each row, column and in each of
the nine 3 × 3 subgrids, and 3) obeying the clues. Con-
straint type 1) was already expressed above, namely that
for every cell (i, j), in the set (x1ij , . . . , x

9
ij) one and only

one variable is TRUE, all others must be FALSE. Type
2) constraints are similar, e.g., in row i and layer a the
set (xai1, . . . , x

a
i9) must contain one and only one TRUE
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variable, all others must be false and this must hold for
all rows and layers, etc. Observe that all constraints are
in the form of a set of 9 Boolean variables of which we
demand that one and only one of them be TRUE, all
others FALSE. When this is satisfied, we say that the
constraint itself (or “clause”) is satisfied, or TRUE. Such
CSPs are called +1-in-k-SAT and they are part of so-
called “locked occupation problems”, which is a class of
exceptionally hard CSPs [16, 17]. Type 3) constraints
are generated by the clues (or givens) which are symbols
already filled in some of the cells and their number and
positioning determines the difficulty of the puzzle. They
are also set in a way to guarantee a unique solution to
the whole puzzle. If there are given d clues, then this im-
plies setting d Boolean variables to TRUE, which means
eliminating exactly 4d constraints of type 1) and 2) (one
vertical or uniqueness constraint, one row, one column
and one 3 × 3 subgrid constraint). Thus, Sudoku is a
+1-in-9-SAT type CSP with N Boolean variables and
324− 4d constraints. N is a complicated function of the
positioning of the clues.

In order to apply our continuous-time SAT solver we
need to bring the +1-in-9-SAT type CSP above into con-
junctive normal form. In k-SAT there are N Boolean
variables xi = {0, 1} and an instance is given as a
propositional formula F , which is the conjunction (AND,
denoted by ∧) of M clauses (constraints) Cm: F =
C1 ∧ · · · ∧Cm ∧ · · · ∧CM . Each clause is the disjunction
(OR, denoted by ∨) of k literals. A literal is a variable
(xi) or its negation (xi). For example a 3-SAT constraint
could be C1 = x1 ∨ x4 ∨ x5. All Boolean propositions F
can be formulated in CNF.

Once the transformation to CNF is completed we are
left with N variables and M SAT clauses (see Methods).
We will denote the number of variables appearing in con-
straint m by km, m = 1, . . . ,M (clearly, 1 ≤ km ≤ 9).
The parameters N , M and {km}Mm=1 all depend on the
clues that are difficult to express analytically, but easy to
determine computationally, as illustrated via examples.

The continuous-time deterministic k-SAT solver

In Ref [13] a continuous-time deterministic solver was
introduced to solve k-SAT problems in conjunctive nor-
mal form. The set of clauses specifying the constraints
are translated into an M × N matrix: C = {cmi} with
cmi = 1 if the variable xi is present in clause m in di-
rect (non-negated) form, namely xi ∈ Cm, cmi = −1 if
x̄i ∈ Cm and cmi = 0 if xi and x̄i are both absent from
Cm. To every variable xi one associates a continuous
spin variable si ∈ [−1, 1] such that when si = ±1 then
xi = (1 + si)/2 ∈ {0, 1}, and to every clause Cm one
associates the function:

Km(s) = 2−km
N∏
j=1

(1− cmjsj) , m ∈ {1, . . . ,M} . (1)

We have Km ∈ [0, 1] for all s ∈ [−1, 1]N . It is easy to
check that Km = 0 only for those si ∈ {−1,+1} values
for which the corresponding xi-s satisfy clause Cm (oth-
erwise we always have Km > 0) . That is, Km plays the
role of an energy function for clause Cm and its ground
state value of Km = 0 is reached if Cm is TRUE, and only
then. We also need the quantities Kmi = Km/(1−cmisi)
that is, with the i-th term missing from the product in
(1). Clearly, Kmi ∈ [0, 1/2]. The continuous time dy-
namical system introduced in [13] is defined via the set
of (N +M) ordinary differential equations (ODEs):

dsi
dt

=

M∑
m=1

2amcmiKmi(s)Km(s), i = 1, . . . , N (2)

dam
dt

= amKm(s), m = 1, . . . ,M , (3)

with the only requirements that si(0) ∈ [−1, 1], ∀i and
am(0) > 0, ∀m. The latter implies from (3) that
am(t) > 0, ∀m, t. It was shown in Ref [13] that system
(2-3) always finds the solutions to k-SAT problems (en-
coded via the C matrix), when they exist, from almost all
initial conditions (the exception being a set of Lebesgue
measure zero). Here we give an intuitive picture for why
that is the case. Due to (3) the auxiliary variables am
grow exponentially at rate Km. That is, the further is
Km from its ground-state value of 0, the faster am grows
(in that instant). Moreover, the longer has Km been
away from zero, the larger is am, as seen from the formal

solution to (3): am(t) = am(0) exp
(∫ t

0
dτKm

)
. Equa-

tion (2) can equivalently be written as a gradient descent
on an energy landscape V (s,a), that is ds/dt = −∇sV ,
where ∇s is the gradient operator in the spin variables
and V (s,a) =

∑
m amK

2
m(s) . Clearly, V ≥ 0 ∀t and

V = 0 if and only if s is a k-SAT solution, i.e., satisfies
all the clauses (Km(s) = 0, ∀m). From the behavior of
the am variables discussed above it also follows that the
least satisfied constraints will dominate V (terms with
the largest am-s). Without restricting generality, let the
a1K

2
1 term be the most dominant at t. Then keeping only

the dominant term on the rhs of (2) for those i for which
c1i 6= 0 we get dsi/dt = 2a1c1i(1− c1isi)(K1i)

2 or, equiv-
alently: d(1 − c1isi)/dt = −(1 − c1isi)2a1(K1i)

2. This
shows that the term (1−c1isi) is driven exponentially fast
towards zero, that is towards satisfying K1 (and all the
other constraints containing this term). As K1 decreases,
some other constraint becomes dominant, and thus, in
a continuous fashion, all constraints are driven towards
satisfiability. The exponential growth guarantees that
the trajectory is always pulled out of any potential well.
When the problem is unsatisfiable, the system generates
a chaotic dynamics in [−1, 1]N , indefinitely. For more
details about the properties of the CTDS (2-3) see Ref.
[13].
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FIG. 2: Solving Sudoku puzzles with the deterministic continuous-time solver (2-3). (a) presents an easy puzzle
with the evolution of the continuous-time dynamics shown within a 3 × 3 grid (rows 4-6, columns 7-9). (b) shows the same,
but for a known, very hard puzzle called Platinum Blonde [19].

Puzzle hardness as transient chaotic dynamics

Since Sudoku puzzles always have a solution, the cor-
responding Boolean SAT CNF formulation also has a so-
lution, and system (2-3) will always find it. The nature
of the dynamics, however will depend on the hardness of
the puzzle as we describe next.

In Fig.2a we show an easy puzzle with 34 clues (black
numbers) [22]. After transforming this problem into
SAT, we obtain N = 126 and M = 717, with a constraint
density of α = M/N = 5.69. As described above, in our
implementation there is a spin variable saij associated to
every Boolean variable xaij in every 3D cell (i, j, a). In
the right panels of Fig. 2 we show the dynamics of the
spin variables in the cells of the 3 × 3 grid formed by
rows 4-6 and columns 7-9. The saij(t) curves are colored
by the digit a they represent (a = 1, . . . , 9) as indicated
in the color legend of Fig 2. The dynamics was started
from a random initial condition. Indeed, our solver finds
the solution very quickly, for the easy puzzle in Fig.2a.

In Fig. 2b we show the dynamical evolution of vari-
ables for a very hard Sudoku instance with only 21 clues.
This puzzle has been listed as one of the world’s hard-

est Sudokus, and even has a special name: “Platinum
Blonde” [18, 19], and it was the most “difficult” for our
solver among all the puzzles we tried. After transform-
ing it into SAT CNF, we obtain N = 257 variables and
M = 2085 constraints. Not only that we have twice
as many unknown variables but the constraint density
α = M/N = 8.11 is also larger than in the previous
case, signaling the hardness of the corresponding SAT
instance. The complexity of the dynamics in this case is
seen in the right panel of Fig. 2b, exhibiting long chaotic
transients before the solution is found at around t ' 150.
For an animation of the dynamics for a similarly hard
puzzle [12] see Ref [20].

We can also observe from the right panels in Fig 2 that
there is one dominating digit (a-value), corresponding to
which vertical cell at that given (i, j) grid cell has the
largest |saij | value. This can be taken as the digit Dij the
solver is considering in the given grid cell (i, j) at that
moment. We will use this observation to provide below an
alternate illustration of the dynamics’ transiently chaotic
behavior. Let us fix a random initial condition except for
two chosen variables that are varied along the points of
a square grid within the domain [−1, 1]2. There is no
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FIG. 3: Puzzle hardness as chaotic dynamics. We color the points of a 103 × 103 grid in an arbitrary plane (s1, s2) at
time instant t according to the digit Dpq the solver is considering in an arbitrary but fixed cell (p, q) at that instant, given that
we started the trajectory of the CTDS from those grid-points. For these initial conditions only the points in the (s1, s2) plane
were varied, all other spin values were kept fixed at the same randomly chosen values. For an easy problem (top row of panels),
and for (p, q) = (1, 1) almost all initial conditions in this plane involve only two digits, and after t = 20 the corresponding
trajectories have converged to the solution digit (9, light blue), except for a thin line, which, however, will also become light
blue. The bottom row of panels shows the same for a hard problem based on what happens in the cell (p, q) = (6, 8). The
strong sensitivity to initial conditions appears as fractal structures of increasing complexity as time goes on, before eventually
everything converges to the same color/digit (not shown).

particular relevance as to which pairs of variables are
chosen to be varied, let us denote them by s1 and s2.
Let us choose an arbitrary empty cell (p, q) in the original
Sudoku puzzle and monitor the dominating digit in it at
time t. We will color the initial conditions in the plane
(s1, s2) according to the dominating digit in (p, q) at time
t. This will provide a map expressing the “sensitivity
to initial conditions” that varies across time. Since all
puzzles have solutions, the maps eventually assume one
solid color according to the digit of the solution in the
monitored cell, however, for hard puzzles, it may assume
highly complex patterns before it does that, as shown in
Fig. 3. In Fig.3 we show these colormaps for the easy
and hard Sudoku puzzles shown in Fig.2 at times t =
10, 15, 20. For the easy puzzle (top row of panels) the cell
was chosen to be (p, q) = (1, 1). At time t = 10 the whole
map shows D1,1 = 6 (orange), which is not the solution
digit (it is still searching for the solution). At time t = 15,
however, we see two clearly separated domains, in one of

them D11 = 6, in the other D11 = 9 (cyan) and the latter
is the correct digit. As time passes, the orange (incorrect)
domain shrinks, because trajectories from an increasing
number of initial conditions find the solution. At t = 20
almost the whole map shows the correct digit D11 = 9,
except for a thin line.

In the case of the hard Sudoku puzzle (bottom row in
Fig. 3, (p, q) = (6, 8)) more colors enter the picture with
time, in a complex fractal-like pattern. On this fractal
set changing the initial condition slightly may result in a
completely different digit (color) being considered in cell
(p, q) at time t. This sensitivity to initial conditions is
indicative of the chaotic behavior of the (deterministic)
search dynamics.

The appearance of transient chaos is a fundamental
feature of the search dynamics and can be used to sep-
arate problems by their hardness. In Ref [13] we have
shown that within the thermodynamic limit (N → ∞,
M → ∞, α = M/N = const.) of random k-SAT ensem-
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bles this appears as a phase transition at the so-called
chaotic transition point αχ in terms of the constraint den-
sity α = M/N . Since there is no “thermodynamic limit”
for 9×9 Sudoku problems (N < 729), one cannot define a
simple order-parameter and use it to rate problem hard-
ness in the same way [13]. However, once a problem is
given, the corresponding dynamical system (2-3) is well
defined, and so is its dynamical behavior. Even though
we do not have a well-defined ensemble-based statistical
order parameter, (which has little meaning for specific
SAT instances anyway), here we show next how can we
use a well-known invariant quantity from non-linear dy-
namical system’s theory to categorize problem hardness
for specific instances.

A Richter-type scale for Sudoku hardness

As suggested by the two examples in Fig 3, the hard-
ness of Sudoku puzzles correlates with the length of
chaotic transients. A consistent way to characterize these
chaotic transients is to plot the distribution of their life-
time. Starting trajectories from many random initial
conditions, let p(t) indicate the probability that the dy-
namics has not found the solution by analog time t. A
characteristic property of transient chaos [11, 21] in hy-
perbolic dynamical systems is that p(t) shows an expo-
nential decay: p(t) ∼ e−κt, where κ is called the escape
rate. The escape rate, an easily measurable quantity,
theoretically can be expressed as a zero of the spectral
determinant of the evolution operator corresponding to
the dynamical system (2-3) and well approximated using
the machinery of cycle expansions based on dynamical
zeta functions [21]. It is an invariant measure of the dy-
namics in the sense that it characterizes solely the chaotic
non-attracting set in the phase space of the system, and
it does not depend on the distribution of the initial condi-
tions, its support, or the details of the region from where
the escape is measured (as long as it contains the non-
attracting set) [11].

In Fig. 4a we plot the distribution p(t) in log-linear
scale for several puzzles gathered form the literature. The
distributions were obtained from over 104 random initial
conditions. The decay shows a wide range of variation
between the puzzles. For easy puzzles the transients are
very short, p(t) decays fast resulting in large escape rates
but for hard puzzles κ can be very small. Fig. 4b shows a
zoom onto the p(t) of hard puzzles. In spite of the large
variability of the decay rates, we see that in all cases
the escape is exponentially fast or faster (the curves in
Figures 4a,b are straight lines or bend downward).

The several orders of magnitude variability of κ natu-
rally behooves us to use a logarithmic measure of κ for
puzzle hardness, see Fig.4c, which shows the escape rates
on a semilog scale as function of the number of clues, d.
Thus, the escape rate can be used to define a kind of
“Richter”-type scale for Sudoku hardness:

η = − log10(κ) (4)

with easy puzzles falling in the range 0 < η ≤ 1, medium
ones in 1 < η ≤ 2, hard ones in 2 < η ≤ 3 and for
ultra-hard puzzles η > 3.

We chose several instances from the “Sudoku of the
Day” website [22] in four of the categories defined there:
easy (black square), medium (red circle), hard (green
x) and absurd (blue star). These ratings on the web-
site try to estimate the hardness of puzzles when solved
by humans. These ratings correlate very well with our
hardness measure η, giving an average hardness value of
〈η〉 = 0.816 for easy, 〈η〉 = 1.439 medium, 〈η〉 = 1.782 for
hard and 〈η〉 = 1.809 for what they call absurd. Another
site we analyzed puzzles from is “Extreme Sudoku” [23]
(brown + signs on Fig.4). It claims to offer extremely
hard Sudoku puzzles, their categories being: evil, exces-
sive, egregious, excruciating and extreme. Indeed those
puzzles are difficult with a range of η ∈ [1.1, 1.9] on the
hardness scale, however, still far from the hardest puzzles
we have found in the literature. Occasionally, daily news-
papers present puzzles claimed to be the hardest Sudoku
puzzles of the year. In particular, the escape rate for the
Caveman Circus 2009 winner [24] (turquoise diamond)
and the Guardian 2010 hardest puzzle [25] (maroon di-
amond) are indeed one order of magnitude smaller than
the hardest puzzles on the daily Sudoku websites, placing
them at η = 2.93 and η = 2.82 on the hardness scale. The
USA Today 2006 hardest puzzle [26], however, does not
seem to be that hard for our algorithm having η = 2.17
(magenta diamond). Eppstein [27] gives two Sudoku ex-
amples (orange left-pointing triangles) while describing
his algorithm, one with η = 1.288 and a much harder
one with η = 2.017. Elser et al. [12] present an ex-
tremely hard Sudoku (black filled circle), which has an
escape rate of κ = 0.0023 resulting in η = 2.639.

The smallest escape rates we have found are for the
Sudokus listed as the hardest on Wikipedia [19, 28] (red
triangles). The five puzzles, which we tested are called
Platinum Blonde, Golden Nugget, Red Dwarf, coly013
and tarx0134. They have a hardness in the range 3 <
η < 3.6, the Platinum Blonde (shown in Fig.2b) being
the hardest with η = 3.5789 (corresponding to an escape
rate of κ = 0.00026).

While the escape rate correlates surprisingly well with
human ratings of Sudoku hardness, it is natural to ex-
pect a correlation with the number of clues, d. Indeed,
as a general rule of thumb, the fewer clues are given,
the harder the puzzle, however, this is not universally
true [1]. Here we tested a few instances with minimal
[29], that is 17 clues and almost minimal 18 clues (or-
ange filled circles) [30–32]. As seen from Fig.4c, these
are actually easier (1.2 < η < 2.4) than the hardest in-
stances with more d = 21, 22 clues. In Fig.4d we then
plot the escape rate as function of the constraint density
α = M/N , leading to practically the same conclusion.
This is because the constraint density α is essentially lin-
early correlated with the number of givens d, as shown
in Fig.4e. The apparent non-monotonic behavior of puz-
zle hardness with the number of givens, (or constraint
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FIG. 4: Escape rate as hardness indicator. (a) shows the distribution in log-linear scale of the fraction p(t) of 104 randomly
started trajectories of (2-3) that have not yet found a solution by analog time t for a number of Sudoku puzzles taken from the
literature (see legend and text) with a wide range of human difficulty ratings. The escape rate is obtained from the best fit to
the tail of the distributions. (b) is a magnification of (a) for hard puzzles. (c) and (d) show the escape rate κ in semilog scale
vs the number of clues d and constraint density α indicating good correlations with human ratings (color bands). (e) shows
the relationship between the number of clues d and α for the puzzles considered.

density) is due to the fact that hardness cannot simply
be characterized by a global, static variable such as d or
α, but it also depends on the positioning pattern of the
clues, as also shown by concrete examples in Ref [1].

Discussion

Using the world of Sudoku puzzles, here we have pre-
sented further evidence that optimization hardness trans-
lates into complex dynamical behavior by an algorithm
searching for solutions in an optimal fashion. Namely,
there seems to be a trade-off between algorithmic per-
formance and the complexity of the algorithm and/or its

behavior. Simple, sequential search algorithms have a
trivial description and simple dynamics, but an abysmal
worst-case performance (2N ), whereas algorithms that
are among the best performers are complex in their de-
scription (instruction-list) and/or behavior (dynamics).
This happens because in order to improve performance,
algorithms have to exploit the structure of the problem
one way or another. As hard problems have complex
structures, the dynamics of the algorithms should be in-
dicative of the problem’s hardness. However, as a word of
caution, observing complex dynamics performed by some
black-box algorithm does not necessarily imply problem
hardness. For example, one could consider any arbitrary,
but ergodic dynamical system with complex behavior in
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the same state space as the problem’s. Ergodicity guar-
antees the algorithm to eventually visit all of the 2N

states, and hence to always find solutions. But its in-
struction list would have no relevance to the problem
itself (apart from the checking instructions to see if the
new state satisfies the problem) and thus, it could take
long times to find solutions even for problems that are
otherwise easily solved by other algorithms. Hence, dy-
namical properties can only be regarded as descriptors
of problem hardness if they are generated by algorithms
that: 1) exploit the structure of the state space of the
problem and 2) they show similar or better performance
compared to other algorithms on the same problems.

The continuous-time dynamical system [13] (2-3) as a
deterministic algorithm does have these features: 1) the
search happens on an energy landscape V =

∑
m amK

2
m

that incorporates simultaneously all the constraints
(problem structure) 2) it solves easy problems efficiently
(polynomial time, both analog and discrete) and 3) it
guarantees to find solutions to hard problems even for
solvable cases where many other algorithms fail. Al-
though it is not a polynomial cost algorithm, it seems
to find solutions in continuous-time t that scales poly-
nomially with N [13]. These features and the fact that
the algorithm is formulated as a deterministic dynami-
cal system with continuous variables, allows us to apply
the theory of nonlinear dynamical systems on CTDS (2-
3) to characterize the hardness of Boolean satisfiability
problems. In particular, via the measurable escape rate
κ, or its negative log-value η, we can provide a single-
scalar measure of hardness, well defined for any finite
instance. We have illustrated this here on Sudoku puz-
zles, but the analysis can be repeated on any other en-
semble from NP. Having a mathematically well-defined
number to characterize optimization hardness for spe-
cific problems in NP provides more information than the
polynomial/exponential-time solvability classification, or
knowing what the constraint density α = M/N is (the
latter being a non-dynamic/static measure). Moreover,
within the framework of CTDS (2-3), dynamical systems
and chaos theory methods can now be brought forth to
help develop a novel understanding of optimization hard-
ness.

Methods

Here we continue to describe in detail how a Sudoku
puzzle is transformed into a SAT problem in CNF.

Type 1) constraints (main text) impose the uniqueness
of the symbol Dij in a given cell, expressed as a +1-in-
9-SAT constraint:

(x1ij , x
2
ij , . . . , x

9
ij) . (5)

Having 9 × 9 cells in the puzzle, this gives in total 81,

+1-in-9-SAT constraints.
Type 2) constraints on rows, columns and sub-grids

further impose that in every layer La we have the follow-
ing 27, +1-in-9-SAT constraints:

Rows:

(xai1, x
a
i2, . . . , x

a
i9), i = 1, . . . , 9 (6)

Columns:

(xa1j , x
a
2j , . . . , x

a
9j) j = 1, . . . , 9 (7)

Subgrids:

(xam+1,n+1, x
a
m+1,n+2, x

a
m+1,n+3,

xam+2,n+1, x
a
m+2,n+2, x

a
m+2,n+3, (8)

xam+3,n+1, x
a
m+3,n+2, x

a
m+3,n+3) . m, n = 0, 3, 6

Together with the 81 constraints of type 1) we thus have
in total 9 × 27 + 81 = 324 constraints in +1-in-9-SAT
form.

Finally, type 3) constraints are imposed via d given
digits or clues. It was only recently shown that unique-
ness of a solution demands that d ≥ 17 [29]. As discussed
in the main text, each clue will eliminate 4 constraints:
in its vertical tower, its column, its row and the 3 × 3
sub-grid containing the clue. For example, let us exam-
ine layer L4 (Fig.1c) of the puzzle shown in Fig.1a. There
are three clues of 4 in cells (1, 9), (3, 3), (4, 4) and thus
x41,9 = 1, x43,3 = 1, x44,4 = 1 have to be fixed as TRUE in
L4. In order to satisfy the constraints, the other variables
in the same rows, columns, blocks and vertical columns
must be set to FALSE. The unknown variables left in
the SAT problem will be those in the light cells of Fig.1c.
(The other clues will eliminate constraints and variables
in other layers and vertical columns.) The total num-
ber of unknown variables N depends on d and on the
placement of clues. The number of constraints is always
324−4d, however the number of variables in a clause can
vary. For example in Fig.1c the constraint correspond-
ing to the second row in layer L4 has only 2 unknown
variables left (+1-in-2-SAT).

After the unknown Boolean variables and the con-
straints have been identified we need to transform the
formula into CNF. There are several ways of doing this,
here we use the following general procedure. A +1-in-k-
SAT clause defined on the (y1, y2, . . . , yk) variables can
be written as one k-SAT and k(k − 1)/2 of 2-SAT con-
straints:

(y1 ∨ y2 ∨ · · · ∨ yk) ∧

∧
i<j

(yi ∨ yj)

 (9)

The disjunction (∨) of the first k variables enforces
that at least one variable must be true, but the rest of
(k(k−1)/2) 2-SAT type constraints ensure that only one
of them is allowed to be true.
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