
clique and colour 
 

Part 1: introduction to two core problems 
Part 2: a study of branch and bound 



Part 1: colour & clique 



gCol 



gCol: Given a graph G = (V,E) and an integer k, can the graph 
be coloured with k colours such that adjacent vertices take 
different colours?  

Graph Colouring 



Graph Colouring 



g10 



g10 
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Graph Colouring 



Graph Colouring 
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optimisation 



chromatic number (chi) 



chromatic number (chi) 



chromatic number (chi) 



chromatic number (chi) 



g40.dzn 



g50.dzn 

Don’t hold your breath 



Think on this … will all gCol instances be hard? What will affect difficulty? 
 
• Number of vertices (the order of the graph)? 
• Number of edges (the size of the graph)? 
• The number of colours allowed? 



Think on this … are there things we can do to help tackle gCol? 
 
• Symmetry breaking? 
• The order we choose to colour vertices? 
• Problem reductions? 



Isolation Ordering of Vertices 



G40  isolation ordering 



Warning: graph colouring can take over your life. 



clique 



clique: Given a graph G = (V,E) and an integer k, is there a 
subset of the vertices, of size k, such that all vertices in that 
set are pair-wise adjacent 

Clique 



Clique 



Clique 

g10.dzn 
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Solution is not unique 



optimisation 







g10.dzn 



g40.dzn 



g100.dzn 



g200.dzn 



brock200_2.dzn 



graph colouring and clique … are they related? 



g05 



g10 



g20 



g30 



What is clique number and what is colour number? 



What is clique number and what is colour number? 



What is clique number and what is colour number? 



What is clique number and what is colour number? 

 



Part 2:  branch and bound (BnB) using max clique (MC)  as motivation 



MiniZinc A sample of what’s to come 

brock200_4 

274,919 milliseconds 
16,008,643 nodes 



BnB A sample of what’s to come 

brock200_4 

mzn:    274,919 ms  
java:            229 ms 
speedup: 1,200 

How did we do that? Small scale statistics 



algorithmic sketch 
staring with MC0 
heading to BBMC 



We have two sets … 
C:  is the growing clique, a set of vertices 
P:  is the candidate set, i.e. set of vertices that we might add to C 

The largest clique found so far is called the incumbent and has a size maxSize 



MC0 
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C = {} 
P = {1,2,3,4,5,6,7,8,9,10} 
maxSize = 0 
incumbent = {} 

Top of search 
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C = {1} 
P = {2,5,10} 
maxSize = 0 
incumbent = {} 

Select vertex 1 
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C = {1,2} 
P = {5} 
maxSize = 0 
incumbent = {} 

Select vertex 2 
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C = {1,2,5} 
P = {} 
maxSize = 0 
incumbent = {} 

Select vertex 5 
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C = {1,2,5} 
P = {} 
maxSize = 3 
incumbent = {1,2,5} 

Save as incumbent 
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C = {1,2,5} 
P = {} 
maxSize = 3 
incumbent = {1,2,5} 

backtrack 
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C = {1} 
P = {5,10} 
maxSize = 3 
incumbent = {1,2,5} 

Remove 2 from P 



6 

4 

9 

10 

1 

5 

3 

2 

7 

8 

C = {1,5} 
P = {} 
maxSize = 3 
incumbent = {1,2,5} 

Select vertex 5 
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C = {1,5} 
P = {} 
maxSize = 3 
incumbent = {1,2,5} 

backtrack 
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C = {1} 
P = {10} 
maxSize = 3 
incumbent = {1,2,5} 

Remove 5 from P 
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C = {1,10} 
P = {} 
maxSize = 3 
incumbent = {1,2,5} 

Select vertex 10 
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C = {1,10} 
P = {} 
maxSize = 3 
incumbent = {1,2,5} 

backtrack 
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C = {} 
P = {2,3,4,5,6,7,8,9,10} 
maxSize = 3 
incumbent = {1,2,5} 

Remove 1 from P 
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C = {2} 
P = {4,5,6} 
maxSize = 3 
incumbent = {1,2,5} 

Select vertex 2 



… and so on 





MC0 blindly moves forwards whenever newP is not empty 



Assume we have an incumbent and that |P| + |C| ≤ maxSize  



Assume we have an incumbent and that |P| + |C| ≤ maxSize  

We can cut off search and backtrack 



Assume we have an incumbent and that |P| + |C| ≤ maxSize  

We can cut off search and backtrack 

|P| + |C| is a bound and when |P| + |C| ≤ maxSize we can abandon search in this branch  





MC0 v MC1 

brock200_4 

MC0: 107,632 ms  
MC1: 8,120 ms 
speedup: 13 

Our first bound 

Small scale statistics 



Assume we have an incumbent and that |P| + |C| ≤ maxSize  

We can cut off search and backtrack 

|P| + |C| is a bound and when |P| + |C| ≤ maxSize we can abandon search in this branch  

Can we think of other bounds that we might compute?  



Can we think of other bounds that we might compute?  

• Degree of vertices in P 
• All vertices in P are adjacent to all vertices in C 
• The degree between vertices in P may be an measure 

• Is this costly to compute? 
• Does it pay off in runtime (i.e. economical)? 

• If in P we have k vertices with degree ≥ k-1 … ? 
• See Torsten Fahle for menu of filters and bounds 



Can we think of other bounds that we might compute?  

• The chromatic number of P? 
• The chromatic number is greater than or equal to the clique number 
• Therefore it is a safe bound (does not excessively prune search) 
• But that’s NP-hard to compute! 
• Is it economical? 
• Can we make good use of colour? 



Colour Classes 

Assume we have a set of vertices P, we can greedely place these in colour classes  



Colour Classes 

Assume we have a set of vertices P, we can greedely place these in colour classes  

1. k = 1 
2. Create an empty colour class C_k 
3. Select and remove a vertex v from P and add v to C_k 
4. For all vertices w in P 

4.1 if w is not adjacent to all vertices in C_k 
4.2   then add w to C_k and remove w from P 

5. If P is not empty then increment k and go to 2 
6. k is an upper bound of the chromatic number of P 



Colour Classes 

Assume we have a set of vertices P, we can greedly place these in colour classes  

1. k = 1 
2. Create an empty colour class C_k 
3. Select and remove a vertex v from P and add v to C_k 
4. For all vertices w in P 

4.1 if w is not adjacent to all vertices in C_k 
4.2   then add w to C_k and remove w from P 

5. If P is not empty then increment k and go to 2 
6. k is an upper bound of the chromatic number of P 

NOTE:  
• colour classes are independent sets 
• We can select at most one vertex from each colour class 
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P = {1,2,3,4,5,6,7,8,9,10} 

Greedy colouring 
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P = {1,2,3,4,5,6,7,8,9,10} 
C_1 = {1,3,8} 

Greedy colouring 
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P = {2,4,5,6,7,9,10} 
C_1 = {1,3,8} 
C_2 = {2,7,9,10} 

Greedy colouring 
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P = {4,5,6} 
C_1 = {1,3,8} 
C_2 = {2,7,9,10} 
C_3 = {4,6} 

Greedy colouring 
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P = {5} 
C_1 = {1,3,8} 
C_2 = {2,7,9,10} 
C_3 = {4,6} 
C_4 = {5} 

Greedy colouring 
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• We get a greedy estimate  (k) of chromatic number of 
candidate set P 

• We can do this in every call to expand … 
• If |C| + k ≤ maxSize we can abandon current branch 

Greedy colouring 



6 

4 

9 

10 

1 

5 

3 

2 

7 

8 

• We get a greedy estimate  (k) of chromatic number of 
candidate set P 

• We can do this in every call to expand … 
• If |C| + k ≤ maxSize we can abandon current branch 
• And we can get smart! 

Greedy colouring 
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Non-increasing degree order {4,5,6,2,1,3,7,9,8,10} 

Order vertices for colouring 
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Order vertices for colouring 

Non-increasing degree order {4,5,6,2,1,3,7,9,8,10} 
C_1 = {1,4,6} 
C_2 = {3,5,8,10} 
C_3 = {2,7,9} 
k = 3 
A tighter bound! 
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Non-increasing degree order {4,5,6,2,1,3,7,9,8,10} 
C_1 = {1,4,6} 
C_2 = {3,5,8,10} 
C_3 = {2,7,9} 
k = 3 
A tighter bound! 

Order vertices for colouring 

There are other orderings 
• a Brelaz ordering 
• Minimum width ordering 
• … 



Can we do something with the colour classes, not just the value k? 



6 

4 

9 

10 

1 

5 

3 

2 

7 

8 

In expand, iterate over vertices in colour classes from colour class C_k down to C_1  
i.e. start with {2,7,9} then {3,5,8,10} finally {1,4,6}. 

Visiting colour classes 
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In expand, iterate over vertices in colour classes from colour class C_k down to C_1  
i.e. start with {2,7,9} then {3,5,8,10} finally {1,4,6}. 

Visiting colour classes 

If |C| + index of current colour class ≤ maxSize then backtrack … 
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In expand, iterate over vertices in colour classes from colour class C_k down to C_1  
i.e. start with {2,7,9} then {3,5,8,10} finally {1,4,6}. 

Visiting colour classes 

If |C| + index of current colour class ≤ maxSize then backtrack … 

… because we can only pick one vertex from each of the k colour classes (independent sets) 



MC1 v MCSa1 

brock200_4 

MC1:     8,120 ms  
MCSa1:    711 ms 
speedup: 11 Our second, smartly used, bound 

Small scale statistics 



To a man with a hammer everything looks like a nail 
• We can only select one vertex from a colour class 
• Can we consider a colour class as a variable with a domain? 
• If so, what colour class should we pick first? 



Algorithmic Engineering 

Having selected v from the candidate set P we create the new candidate set P’ as follows: 
 
1. P’ = {} 
2. forall w in P  
      2.1 w is adjacent to v then add w to P’ 



Algorithmic Engineering 

We might have P and P’ as BitSet and each row of the adjacency matrix a BitSet 
such that having selected vertex v we can compute P’ as follows 
 
                            P’ = P and A[v] 
 
… that is, give me all vertices in P that are adjacent to vertex v. 
 
This exploits in-processor parallelism, and the resultant algorithm is BBMC 



MCSa1 v BBMC1 

brock200_4 

MCSa1:     711 ms  
BBMC1:    229 ms 
speedup:  3 Good engineering 

Small scale statistics 



Algorithmic Engineering 

Rewrite everything in C++ 



Algorithmic Engineering 

Rewrite everything in C++ 

Go parallel 



Want to know more? 
 

Look at Patrick Prosser and Ciaran McCreesh on dblp 



TSP 

In TSP, as the current tour is being extended we have a set of cities yet to be visited 
 
• Assume we have an incumbent and the cost of that tour, minCost 
• Assume we have cost of current partial tour 
• Assume we have set N of cities not yet visited 
• Compute a MST for N 
• If cost of partial tour plus cost of MST is ≥ minCost then backtrack 



Generally 

In most all optimisation problems where we use exact search there is 
considerable effort to come up with sharp and economical bounds. 



Generally 

In most all optimisation problems where we use exact search there is 
considerable effort to come up with sharp and economical bounds. 

I have only presented Max Clique because that’s what I’ve  
recently been working on with Ciaran  



Generally 

In most all optimisation problems where we use exact search there is 
considerable effort to come up with sharp and economical bounds. 

I have only presented Max Clique because that’s what I’ve  
recently been working on with Ciaran … 

… and maybe because this is all that I know 




