clique and colour

Part 1: introduction to two core problems
Part 2: a study of branch and bound

Part 1: colour \& clique
gCol: Given a graph $G=(V, E)$ and an integer k, can the graph be coloured with k colours such that adjacent vertices take different colours?

Graph Colouring

.i. C: \backslash (срМ $1 . . \quad-\quad \square \quad \times$
Eile Edit Search View Encoding Language Settings Macro Run
Plugins Window ?

- g10.clq ${ }^{\boxed{2}}$

p edge 100
e 12
e 15
e 110
e 24
e 25
e 26
e 34
e 36
10 e 37
11 e 4
12 e 47
13 e 49
14 e 410
15 e 56
16 e 57
17 e 59
18 e 68
19 e 89

Ln: 1 Col: 1 Dos\Wind UTF-8

Graph Colouring

optimisation

```
Zn] colOpt.mzn — Untitled Project
File Edit MiniZinc View Help
New model Open Save Copy Cut Paste Undo Redo Shift left Shift right Run Stop}\mathrm{ Show project explorer
Configuration gCol.mzn « cliqueDecision.mzn « colOpt.mzn «
    1%
    2% colOpt: comput chromatic number (minimum number of colours required)
    3%
    5int: n;
    6array[1..n,1..n] of 0..1: A; % adjacency
    7
    8% declare constrained integer variables
    9array[1..n] of var 1..n: v; % v[i] = j <-> ith vertex is given jth colour
    10
    11% post constraints
    2constraint forall(i,j in 1..n where i<j)(if A[i,j] = 1 then v[i] != v[j] else true endif);
    13
    14var 1..n: chi; % the chromatic number
    15 constraint chi = max(v);
    16
    17 solve minimize chi;

13
14 var 1..n: chi; \% the chromatic number 15 constraint chi \(=\max (v)\);
16
17 solve minimize chi;
```

a. Command Prompt
C:\cpM\minizincCPM\cliqueAndColour>mzn-gecode colOpt.mzn data/g10.dzn
v = array1d(1..10 , [2, 3, 1, 2, 1, 2, 3, 1, 3, 1]);
chi = 3;

===========
C:\cpM\minizincCPM\cliqueAndColour>

```
```

Cas. Command Prompt
C:\cpM\minizincCPM\cliqueAndColour>mzn-gecode colOpt.mzn data/g10.dzn -a -s
v = array1d(1..10 , [2, 3, 1, 2, 1, 2, 3, 1, 3, 1]);
chi = 3;

===========
%% runtime: 0.006 (6.000 ms)
%% solvetime: 0.000 (0.000 ms)
%% solutions: 1
%% variables: 11
%% propagators: }1
%% propagations: }5
%% nodes: 13
%% failures: 5
%% restarts: 0
%% peak depth: }1
C:\cpM\minizincCPM\cliqueAndColour>_

```
\(\square\)
\(\times\)

\section*{g40.dzn}
\(C: \ c p M \backslash m i n i z i n c C P M \backslash c l i q u e A n d C o l o u r>m z n-g e c o d e ~ c o l 0 p t . m z n ~ d a t a / g 40 . d z n-s\)
\(\mathrm{v}=\operatorname{array} 1 \mathrm{~d}(1 . .40,[5,6,7,4,4,8,6,3,1,5,2,7,6,3,1,8,6,1,4,2,5,3,4,4,6,1,3\), \(2,5,7,2,8,3,8,5,5,5,8,7,4]\);
chi = 8;
-----------
=======
\%\% runtime: \(\quad 9.886\) ( 9886.000 ms\()\)
\%\% solvetime: 9.878 ( 9878.000 ms )
\%\% solutions: 3
\%\% variables: 41
\%\% propagators: 377
\%\% propagations: 12956547
\%\% nodes: 280452
\%\% failures: 140217
\%\% restarts: 0
\%\% peak depth: 40
C: \cpM\minizincCPM\cliqueAndColour>
g50.dzn

国 Command Prompt - mzn-gecode colopt.mzn data/g50.dzn -s \(\quad-\quad \square\)
C: \cpM\minizincCPM\cliqueAndColour>mzn-gecode colOpt.mzn data/g50.dzn -s

Don't hold your breath

Think on this ... will all gCol instances be hard? What will affect difficulty?
- Number of vertices (the order of the graph)?
- Number of edges (the size of the graph)?
- The number of colours allowed?

Think on this ... are there things we can do to help tackle gCol?
- Symmetry breaking?
- The order we choose to colour vertices?
- Problem reductions?
```

int: n;
array[1..n,1..n] of 0..1: A; % adjacency
array[1..n] of 0..n-1: degree = [sum(j in 1..n)(1-A[i,j]) | i in 1..n];
% declare constrained integer variables
array[1..n] of var 1..n: v; % v[i] = j <-> ith vertex is given jth colour
% post constraints
constraint forall(i,j in 1..n where i<j)(if A[i,j] = 1 then v[i] != v[j] else true endif);
1 5
16 var 1..n: chi; % the chromatic number
constraint chi = max(v);
18
19%solve minimize chi;
%solve::int_search(sort_by(v,degree),smallest,indomain_max,complete) minimize chi;
2 1 ~ s o l v e : : i n t _ s e a r c h (v , s m a l l e s t , i n d o m a i n _ m a x , c o m p l e t e) ~ m i n i m i z e ~ c h i ;

```

\section*{G40 isolation ordering}
```

4.- Command Prompt
chi = 16;
J= array1d<1--40,[15, 14, 15, 13, 15, 14, 14, 12, 14, 13, 11, 12, 12, 13, 10, 11, 14, 10, 11, 9, 15, 12,
7, 6, 7, 13, 13, 9, 61);
chi = 15;
v = array1d<1.- 40, [14, 13, 14, 12, 14, 13, 13, 11, 13, 12, 10, 11, 11, 12, 9, 10, 13, 9, 10, 8, 14, 11, 9
5, 6, 12, 12, 8, 5]>;
chi = 14;
v = array1d<1, - 40, [13, 12, 13, 11, 13, 12, 12, 10, 12, 11, 9, 10, 10, 11, 8, 9, 12, 8, 9, 7, 13, 10, 8, 9
.11, 11, 7, 4]);
chi = 13;
= arway1d<1,-40, [12, 11, 12, 10, 12, 11, 11, 9, 11, 10, 8, 9, 9, 10, 7, 8, 11, 7, 8, 6, 12, 9, 7, 8, 11
10, 6, 3]);
chi = 12;
v = array1d<1, - 40, [11, 10, 11, 9, 11, 10, 10, 8, 10, 9, 7, 8, 8, 9, 6, 7, 10, 6, 7, 5, 11, 8, 6, 7, 10, 6
5, 2]>;
chi = 11;
v = array1d<1, -40, [10, 9, 10, 8, 10, 9, 9, 7, 9, 8, 6, 7, 7, 8, 5, 6, 9, 5, 6, 4, 10, 7, 5, 6, 9, 5, 4, 3
chi = 10;
v = array1d<1. - 40, [9, 8, 9, 7, 9, 8, 8, 6, 8, 7, 5, 6, 6, 7, 4, 5, 8, 4, 5, 3, 2, 6, 4, 1, 8, 4, 9, 3, 7,
chi = 9;
v= array1d<1, - 40, [8, 7, 8, 6, 8, 7, 5, 4, 3, 7, 2, 3, 5, 4, 3, 2, 5, 3, 2, 6, 8, 4, 1, 2, 5, 7, 4, 5, 8,
chi = 8;
==========
% runtime:
solvetime:
5.45:22.792 (20722792.00U ms)
5:45:22.777 (20722777.000 ms)
solutions: 33
variables:
propagators:
propagations:
nodes:
failures:
westares:
peak depth:

```

\section*{5:45:22.792 (20722792.000 ms)}

5:45:22.777 (20722777.000 ms)
33
41
377
3541249153
4106979452
2053489286
0
63

Warning: graph colouring can take over your life.
clique
clique: Given a graph \(\mathrm{G}=(\mathrm{V}, \mathrm{E})\) and an integer k , is there a subset of the vertices, of size \(k\), such that all vertices in that set are pair-wise adjacent


\section*{Clique}
g10.dzn

C:\cpM\minizincCPM\cliqueAndColour>mzn-gecode cliqueDecision.mzn data/g10.dzn -D"k=5" =====UNSATISFIABLE=====

C:\cpM\minizincCPM\cliqueAndColour>mzn-gecode cliqueDecision.mzn data/g10.dzn -D"k=4" =====UNSATISFIABLE=====

C:\cpM\minizincCPM\cliqueAndColour>mzn-gecode cliqueDecision.mzn data/g10.dzn -D"k=3" v = array1d(1..10 , [0, 1, 0, 1, 1, 0, 0, 0, 0, 0]);





Solution is not unique

C: \cpM\minizincCPM\cliqueAndColour>mzn-gecode cliqueDecision.mzn data/g10.dzn -D"k=3" -a \(\mathrm{v}=\operatorname{array} 1 \mathrm{~d}(1 . .10,[0,1,0,1,1,0,0,0,0,0]) ;\)
\(\mathrm{v}=\operatorname{array} 1 \mathrm{~d}(1 . .10,[0,1,0,0,1,1,0,0,0,0]) ;\)
\(v=\operatorname{array} 1 d(1 . .10,[0,0,1,1,0,0,1,0,0,0]) ;\)
\(v=\operatorname{array1d}(1 . .10,[0,0,0,1,1,0,1,0,0,0]) ;\)
\(v=\operatorname{array1d}(1 . .10,[1,1,0,0,1,0,0,0,0,0]) ;\)
\(v=\operatorname{array1d}(1 . .10,[0,0,0,1,1,0,0,0,1,0]) ;\)
optimisation


14 var 1..n: cliqueNumber; \% number of vertices in the clique 15 constraint cliqueNumber \(=\) sum(v);
16
17 solve maximize cliqueNumber;
g10.dzn

C: \cpM\minizincCPM\cliqueAndColour>mzn-gecode maxClique.mzn data/g10.dzn \(\mathrm{v}=\operatorname{array} 1 \mathrm{~d}(1 . .10\), \([0,1,0,1,1,0,0,0,0,0])\); cliqueNumber = 3;
```

==========

```

C: \cpM\minizincCPM\cliqueAndColour>

\section*{g40.dzn}

C: \cpM\minizincCPM\cliqueAndColour>mzn-gecode maxClique.mzn data/g40.dzn
v = array1d(1..40 , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \(0,1,1,1,0,0,0,0,0,0,0,1,0,0,0,1])\);
cliqueNumber = 7;
-----------

C: \cpM\minizincCPM\cliqueAndColour>

\section*{g100.dzn}
: \cpM\minizincCPM\cliqueAndColour>mzn-gecode maxClique.mzn data/g100.dzn -s
\(\mathrm{v}=\operatorname{array1d}(1 . .100,[0,1,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0\),
\(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0\) \(, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])\)

\section*{}
\(\%\) runtime: \(\quad 0.238\) ( 238.000 ms )
\(\%\) solvetime: 0.214 (214.000 ms)
\%\% solutions: 9
\%\% variables: 101
\%\% propagators: 2428
\%\% propagations: 780716
\%\% nodes: 22563
\%\% failures: 11273
\%\% restarts: 0
\(C: \backslash c p M \backslash m i n i z i n c C P M \backslash c l i q u e A n d C o l o u r>m z n-g e c o d e ~ m a x C l i q u e . m z n ~ d a t a / g 200 . d z n ~-s\)
\(\mathrm{V}=\operatorname{array} 1 \mathrm{~d}(1 . .200,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\) , \(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0\), \(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0\), \(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\) \(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\), \(0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0]) ;\)
cliqueNumber = 11;
==========
\(\%\) runtime: \(9.010(9010.000 \mathrm{~ms})\)
\%\% solvetime:
8.937 ( 8937.000 ms )
solutions: 11
variables: 201
propagators: 9986
propagations: 26431102
nodes: 591891
failures: 295935
restarts: 0
\%\% peak depth: 199

\section*{brock200_2.dzn}
```

cliqueNumber = 12;
==========
%% runtime:
%% solutions: }1
%% variables: 201
%% propagators: 10025
%% propagations: 25233256
%% nodes: }54657
%% failures: 273275
%% restarts: 0
%% peak depth: }19

```
C: \cpM\minizincCPM\cliqueAndColour>mzn-gecode maxClique.mzn data/brock200_2.dzn -s
v = array1d(1..200, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \(1,0,0\)
, \(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0\),
\(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\),
\(0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1\)
, \(0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0\),
\(0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])\);
graph colouring and clique ... are they related?
 v = array1d(1..5 ,[1, 2, 1, 3, 3]);
chi = 3 ;
----------

C:\cpM\minizincCPM\cliqueAndColour>mzn-gecode maxClique.mzn data/g05.dzn
\(\mathrm{v}=\operatorname{array1d}(1 . .5,[0,1,1,1,0])\);
cliqueNumber = 3;
----------
=======-==
C:\cpM\minizincCPM\cliqueAndColour>.
 v = array1d(1..10 , [2, 3, 1, 2, 1, 2, 3, 1, 3, 1]);
chi = 3;
----------

C:\cpM\minizincCPM \cliqueAndColour>mzn-gecode maxClique.mzn data/g10.dzn
\(\mathrm{v}=\operatorname{array1d}(1 . .10,[0,1,0,1,1,0,0,0,0,0])\);
cliqueNumber = 3;
-----------

C:\cpM\minizincCPM\cliqueAndColour>

C: \cpM\minizincCPM\cliqueAndColour>mzn-gecode colopt.mzn data/g20.dzn
\(\mathrm{v}=\operatorname{array1d}(1 . .20,[5,2,1,3,1,3,1,5,3,4,2,3,2,4,2,4,4,5,5,4])\);
chi = 5;
-----------
==========
C: \cpM\minizincCPM\cliqueAndColour>mzn-gecode maxClique.mzn data/g20.dzn
\(\mathrm{v}=\operatorname{array1d}(1 . .20,[0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0])\);
cliqueNumber = 5;
===========
C: \cpM\minizincCPM\cliqueAndColour>

C:\cpM\minizincCPM\cliqueAndColour>mzn-gecode colOpt.mzn data/g30.dzn
\(\mathrm{v}=\operatorname{array1d}(1 . .30,[1,5,3,5,7,7,6,4,4,2,2,3,6,6,6,1,4,6,5,5,3,1,2,3,2,2,7\) , 7, 5, 1]);
chi = 7;
----------
==========
C: \cpM\minizincCPM\cliqueAndColour>mzn-gecode maxClique.mzn data/g30.dzn
\(\mathrm{v}=\operatorname{array1d}(1 . .30,[1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1\) , 0, 0, 0]);
cliqueNumber \(=6\);
----------
- \(=====-==\)

C: \cpM\minizincCPM\cliqueAndColour>


What is clique number and what is colour number?


What is clique number and what is colour number?


What is clique number and what is colour number?


What is clique number and what is colour number?

Part 2: branch and bound ( BnB ) using max clique ( MC ) as motivation

\section*{brock200_4}
\(0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0\),
\(1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0, \theta\)
\(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0])\);
cliqueNumber = 17;
-----------
```

%% runtime: 4:35.056 (275056.000 ms)
%% solvetime: 4:34.919 (274919.000 ms)
%% solutions: 17
%% variables: 201
%% propagators: 6812
%% propagations: 516927031
%% nodes: 16008643
%% failures: 8004305
%% restarts: 0
%% peak depth: }19

```
C: \cpM\minizincCPM\cliqueAndColour>

274,919 milliseconds 16,008,643 nodes

\section*{brock200_4}
```

*:4.}\mathrm{ Command Prompt
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MC0 ../data/brock200_4.clq
17 633542730 107632
12 19 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MC1 ../data/brock200_4.clq
17 143183318120
1219 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MCSa1 ../data/brock200_4.clq
17 58730711
12 19 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique BBMC1 ../data/brock200_4.clq
1758730229
12 19 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>

```
\[
\begin{array}{lr}
\text { mzn: } & 274,919 \mathrm{~ms} \\
\text { java: } & 229 \mathrm{~ms} \\
\text { speedup: } 1,200
\end{array}
\]
algorithmic sketch
staring with MCO
heading to BBMC

We have two sets ...
\(\boldsymbol{C}\) : is the growing clique, a set of vertices
\(\boldsymbol{P}\) : is the candidate set, i.e. set of vertices that we might add to C

The largest clique found so far is called the incumbent and has a size maxSize

\[
\begin{aligned}
& C=\{ \} \\
& P=\{1,2,3,4,5,6,7,8,9,10\} \\
& \operatorname{maxSize}=0 \\
& \text { incumbent }=\{ \}
\end{aligned}
\]

\begin{tabular}{l}
\(\mathrm{C}=\{1\}\) \\
\(P=\{2,5,10\}\) \\
maxSize \(=0\) \\
incumbent \(=\{ \}\) \\
\hline
\end{tabular}

\section*{Select vertex 1}

\begin{tabular}{l}
\(\mathrm{C}=\{1,2\}\) \\
\(P=\{5\}\) \\
maxSize \(=0\) \\
incumbent \(=\{ \}\) \\
\hline
\end{tabular}

\section*{Select vertex 2}

\(\mathrm{C}=\{1,2,5\}\)
\(\mathrm{P}=\{ \}\)
maxSize \(=0\)
incumbent \(=\{ \}\)

\author{
Select vertex 5
}

\[
\begin{aligned}
& C=\{1,2,5\} \\
& P=\{ \} \\
& \text { maxSize }=3 \\
& \text { incumbent }=\{1,2,5\}
\end{aligned}
\]

\[
\begin{aligned}
& C=\{1,2,5\} \\
& P=\{ \} \\
& \text { maxSize }=3 \\
& \text { incumbent }=\{1,2,5\}
\end{aligned}
\]

\[
\begin{aligned}
& C=\{1\} \\
& P=\{5,10\} \\
& \text { maxSize }=3 \\
& \text { incumbent }=\{1,2,5\}
\end{aligned}
\]

\(C=\{1,5\}\)
\(P=\{ \}\)
maxSize \(=3\)
incumbent \(=\{1,2,5\}\)

\(C=\{1,5\}\)
\(P=\{ \}\)
maxSize \(=3\)
incumbent \(=\{1,2,5\}\)

\(C=\{1\}\)
\(P=\{10\}\)
maxSize \(=3\)
incumbent \(=\{1,2,5\}\)

\(C=\{1,10\}\)
\(P=\{ \}\)
maxSize \(=3\)
incumbent \(=\{1,2,5\}\)

\section*{Select vertex 10}

\[
\begin{aligned}
& C=\{1,10\} \\
& P=\{ \} \\
& \text { maxSize }=3 \\
& \text { incumbent }=\{1,2,5\}
\end{aligned}
\]

\[
\begin{aligned}
& C=\{ \} \\
& P=\{2,3,4,5,6,7,8,9,10\} \\
& \text { maxSize }=3 \\
& \text { incumbent }=\{1,2,5\}
\end{aligned}
\]

\[
\begin{aligned}
& C=\{2\} \\
& P=\{4,5,6\} \\
& \text { maxSize }=3 \\
& \text { incumbent }=\{1,2,5\}
\end{aligned}
\]

\section*{Select vertex 2}
... and so on
```

MCO - Notepad

```

File Edit Format View Help
import java.util.*;
public class MCO extends MC \{
```

MC0 (int n,int[][]A,int[] degree) {super(n,A,degree);}
void expand(ArrayList<Integer> C,ArrayList<Integer> P){
if (timeLimit > 0 \&\& System.currentTimeMillis() - cpuTime >= timeLimit) return;
nodes++;
for (int i=P.size()-1;i>=0;i--){
int v = P.get(i);
C.add(v);
ArrayList<Integer> newP = new ArrayList<Integer>(i);
for (int j=0;j<=i;j++){
int w = P.get(j);
if (A[v][w] == 1) newP.add(w);
}
if (newP.isEmpty() \&\& C.size() > maxSize) saveSolution(C);
if (!newP.isEmpty()) expand(C,newP);
C.remove(C.size()-1);
P.remove(i);
}

```
```

MCO - Notepad
File Edit Format View Help
import java.util.*;
public class MC0 extends MC {
MC0 (int n,int[][]A,int[] degree) {super(n,A,degree);}
void expand(ArrayList<Integer> C,ArrayList<Integer> P){
if (timeLimit > 0 \&\& System.currentTimeMillis() - cpuTime >= timeLimit) return;
nodes++;
for (int i=P.size()-1;i>=0;i--){
int v = P.get(i);
C.add(v);
ArrayList<Integer> newP = new ArrayList<Integer>(i);
for (int j=0;j<=i;j++){
int w = P.get(j);
if (A[v][w] == 1) newP.add(w);
}
if (newP.isEmpty() \&\& C.size() > maxSize) saveSolution(C);
if (!newP.isEmpty()) expand(C,newP);
C.remove(C.size()-1);
P.remove(i);
}
MCO blindly moves forwards whenever newP is not empty

```

Assume we have an incumbent and that \(|P|+|C| \leq\) maxSize

Assume we have an incumbent and that \(|P|+|C| \leq \operatorname{maxSize}\)

We can cut off search and backtrack

Assume we have an incumbent and that \(|P|+|C| \leq \operatorname{maxSize}\)

> We can cut off search and backtrack
\(|P|+|C|\) is a bound and when \(|P|+|C| \leq\) maxSize we can abandon search in this branch
```

File Edit Format View Help
import java.util.*;
public class MC1 extends MC {
MC1 (int n,int[][]A,int[] degree) {super(n,A,degree);}
void expand(ArrayList<Integer> C,ArrayList<Integer> P){
if (timeLimit > 0 \&\& System.currentTimeMillis() - cpuTime >= timeLimit) return;
nodes++;
for (int i=D size()-1\cdoti>=0.i--){
if (C.size() + P.size() <= maxSize) return;
int v = P.get(i);
C.add(v);
ArrayList<Integer> newP = new ArrayList<Integer>(i);
for (int j=0;j<=i;j++){
int w = P.get(j);
if (A[v][w] == 1) newP.add(w);
}
if (newP.isEmpty() \&\& C.size() > maxSize) saveSolution(C);
if (!newP.isEmpty()) expand(C,newP);
C.remove(C.size()-1);
P.remove(i);
}
}

```

\section*{brock200_4}

\section*{©:3. Command Prompt}

C: \cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MC0 ../data/brock200_4.clq 17633542730107632
12192829385465717993117127139161165186192
C: \cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MC1 ../data/brock200_4.clq
17143183318120

C: \cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MCSa1 ../data/brock200_4.clq
1758730711
12192829385465717993117127139161165186192
C: \cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique BBMC1 ../data/brock200_4.clq
1758730229

C: \cpM\minizincCPM\cliqueAndColour\distribution\java>

MCO: \(107,632 \mathrm{~ms}\)
MC1: \(8,120 \mathrm{~ms}\)
speedup: 13
Our first bound

Assume we have an incumbent and that \(|P|+|C| \leq \operatorname{maxSize}\)

We can cut off search and backtrack
\(|P|+|C|\) is a bound and when \(|P|+|C| \leq\) maxSize we can abandon search in this branch

Can we think of other bounds that we might compute?
- Degree of vertices in \(P\)
- All vertices in P are adjacent to all vertices in C
- The degree between vertices in P may be an measure
- Is this costly to compute?
- Does it pay off in runtime (i.e. economical)?
- If in \(P\) we have \(k\) vertices with degree \(\geq k-1 \ldots\) ?
- See Torsten Fahle for menu of filters and bounds
- The chromatic number of \(P\) ?
- The chromatic number is greater than or equal to the clique number
- Therefore it is a safe bound (does not excessively prune search)
- But that's NP-hard to compute!
- Is it economical?
- Can we make good use of colour?
```

Colour Classes

```

Assume we have a set of vertices P, we can greedely place these in colour classes

Assume we have a set of vertices P, we can greedely place these in colour classes
1. \(\mathrm{k}=1\)
2. Create an empty colour class C_k
3. Select and remove a vertex \(v\) from \(P\) and add \(v\) to \(C \_k\)
4. For all vertices \(w\) in \(P\)
4.1 if \(w\) is not adjacent to all vertices in C_k
4.2 then add \(w\) to \(C_{-} k\) and remove \(w\) from \(P\)
5. If \(P\) is not empty then increment \(k\) and go to 2
6. \(k\) is an upper bound of the chromatic number of \(P\)

Assume we have a set of vertices P , we can greedly place these in colour classes
1. \(k=1\)
2. Create an empty colour class C_k
3. Select and remove a vertex \(v\) from \(P\) and add \(v\) to \(C_{-} k\)
4. For all vertices \(w\) in \(P\)
4.1 if \(w\) is not adjacent to all vertices in C_k
4.2 then add \(w\) to \(C_{-} k\) and remove \(w\) from \(P\)
5. If \(P\) is not empty then increment \(k\) and go to 2
6. \(k\) is an upper bound of the chromatic number of \(P\)

\section*{NOTE:}
- colour classes are independent sets
- We can select at most one vertex from each colour class


Greedy colouring
\[
P=\{1,2,3,4,5,6,7,8,9,10\}
\]


Greedy colouring
\[
\begin{aligned}
& P=\{1,2,3,4,5,6,7,8,9,10\} \\
& C \_1=\{1,3,8\}
\end{aligned}
\]


Greedy colouring
\[
\begin{aligned}
& P=\{2,4,5,6,7,9,10\} \\
& C \_1=\{1,3,8\} \\
& C \_2=\{2,7,9,10\}
\end{aligned}
\]


Greedy colouring
\[
\begin{aligned}
& \text { P=\{4,5,6\}} \\
& \text { C_1 }=\{1,3,8\} \\
& \text { C_2 }=\{2,7,9,10\} \\
& \text { C_3 }=\{4,6\}
\end{aligned}
\]


Greedy colouring
\[
\begin{aligned}
& P=\{5\} \\
& \text { C_1 }=\{1,3,8\} \\
& \text { C_2 }=\{2,7,9,10\} \\
& \text { C_3 }=\{4,6\} \\
& \text { C_4 }=\{5\}
\end{aligned}
\]

- We get a greedy estimate (k) of chromatic number of candidate set \(P\)
- We can do this in every call to expand ...
- If \(|C|+k \leq\) maxSize we can abandon current branch

- We get a greedy estimate (k) of chromatic number of candidate set \(P\)
- We can do this in every call to expand ...
- If \(|\mathrm{C}|+\mathrm{k} \leq\) maxSize we can abandon current branch
- And we can get smart!


Non-increasing degree order \(\{4,5,6,2,1,3,7,9,8,10\}\)


Non-increasing degree order \(\{4,5,6,2,1,3,7,9,8,10\}\)
C_1 \(=\{1,4,6\}\)
C_2 \(=\{3,5,8,10\}\)
C_3 \(=\{2,7,9\}\)
\(\mathrm{k}=3\)
A tighter bound!


Can we do something with the colour classes, not just the value \(k\) ?


Visiting colour classes

In expand, iterate over vertices in colour classes from colour class C_k down to C_1 i.e. start with \(\{2,7,9\}\) then \(\{3,5,8,10\}\) finally \(\{1,4,6\}\).


In expand, iterate over vertices in colour classes from colour class C_k down to C_1 i.e. start with \(\{2,7,9\}\) then \(\{3,5,8,10\}\) finally \(\{1,4,6\}\).

If \(|C|+\) index of current colour class \(\leq\) maxSize then backtrack ...


In expand, iterate over vertices in colour classes from colour class C_k down to C_1 i.e. start with \(\{2,7,9\}\) then \(\{3,5,8,10\}\) finally \(\{1,4,6\}\).

If \(|C|+\) index of current colour class \(\leq\) maxSize then backtrack ...
... because we can only pick one vertex from each of the k colour classes (independent sets)

\section*{brock200_4}
```

C%.4. Command Prompt
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MC0 ../data/brock200_4.clq
17633542730 107632
12}1928293854 65 71 79 93 117 127 139 161 165 186 192
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MC1 ../data/brock200_4.clq
17 14318331 }812
12}192829 38 54 65 71 79 93 117 127 139 161 165 186 192
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MCSa1 ../data/brock200_4.clq
17 58730 711
12 19 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192

```
1758730229

C: \cpM\minizincCPM\cliqueAndColour\distribution\java>

MC1: \(\quad 8,120 \mathrm{~ms}\)
MCSa1: 711 ms speedup: 11

To a man with a hammer everything looks like a nail
- We can only select one vertex from a colour class
- Can we consider a colour class as a variable with a domain?
- If so, what colour class should we pick first?

\section*{Algorithmic Engineering}

Having selected \(v\) from the candidate set \(P\) we create the new candidate set \(P^{\prime}\) as follows:
1. \(P^{\prime}=\{ \}\)
2. forall \(w\) in \(P\)
2.1 w is adjacent to v then add w to \(\mathrm{P}^{\prime}\)

\section*{Algorithmic Engineering}

We might have \(P\) and \(P^{\prime}\) as BitSet and each row of the adjacency matrix a BitSet such that having selected vertex \(v\) we can compute \(P^{\prime}\) as follows
\[
\mathrm{P}^{\prime}=\mathrm{P} \text { and } \mathrm{A}[\mathrm{v}]
\]
... that is, give me all vertices in \(P\) that are adjacent to vertex \(v\).
This exploits in-processor parallelism, and the resultant algorithm is BBMC

\section*{brock200_4}
```

OB.4.4. Command Prompt
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MC0 ../data/brock200_4.clq
17 633542730 107632
12 19 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MC1 ../data/brock200_4.clq
17 143183318120
1219 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192
c:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique MCSa1 ../data/brock200_4.clq
17 58730711
12 19 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192
C:\cpM\minizincCPM\cliqueAndColour\distribution\java>java MaxClique BBMC1 ../data/brock200_4.clq
1758730229
12 19 28 29 38 54 65 71 79 93 117 127 139 161 165 186 192

```


MCSa1: 711 ms
BBMC1: 229 ms speedup: 3

Good engineering
```

Algorithmic Engineering

```
Rewrite everything in C++

Rewrite everything in C++

Go parallel

Want to know more?

Look at Patrick Prosser and Ciaran McCreesh on dblp

In TSP, as the current tour is being extended we have a set of cities yet to be visited
- Assume we have an incumbent and the cost of that tour, minCost
- Assume we have cost of current partial tour
- Assume we have set N of cities not yet visited
- Compute a MST for N
- If cost of partial tour plus cost of MST is \(\geq\) minCost then backtrack

In most all optimisation problems where we use exact search there is considerable effort to come up with sharp and economical bounds.

In most all optimisation problems where we use exact search there is considerable effort to come up with sharp and economical bounds.

> I have only presented Max Clique because that's what I've recently been working on with Ciaran

In most all optimisation problems where we use exact search there is considerable effort to come up with sharp and economical bounds.

> I have only presented Max Clique because that's what I've recently been working on with Ciaran ...
... and maybe because this is all that I know
```

