
clique and colour

Part 1: introduction to two core problems
Part 2: a study of branch and bound

Part 1: colour & clique

gCol

gCol: Given a graph G = (V,E) and an integer k, can the graph
be coloured with k colours such that adjacent vertices take
different colours?

Graph Colouring

Graph Colouring

g10

g10

6

4

9

10

1

5

3

2

7

8

Graph Colouring

Graph Colouring

g10

6

4

9

10

1

5

3

2

7

8

g10

6

4

9

10

1

5

3

2

7

8

optimisation

chromatic number (chi)

chromatic number (chi)

chromatic number (chi)

chromatic number (chi)

g40.dzn

g50.dzn

Don’t hold your breath

Think on this … will all gCol instances be hard? What will affect difficulty?

• Number of vertices (the order of the graph)?
• Number of edges (the size of the graph)?
• The number of colours allowed?

Think on this … are there things we can do to help tackle gCol?

• Symmetry breaking?
• The order we choose to colour vertices?
• Problem reductions?

Isolation Ordering of Vertices

G40 isolation ordering

Warning: graph colouring can take over your life.

clique

clique: Given a graph G = (V,E) and an integer k, is there a
subset of the vertices, of size k, such that all vertices in that
set are pair-wise adjacent

Clique

Clique

Clique

g10.dzn

g10

6

4

9

10

1

5

3

2

7

8

g10

6

4

9

10

1

5

3

2

7

8

Solution is not unique

optimisation

g10.dzn

g40.dzn

g100.dzn

g200.dzn

brock200_2.dzn

graph colouring and clique … are they related?

g05

g10

g20

g30

What is clique number and what is colour number?

What is clique number and what is colour number?

What is clique number and what is colour number?

What is clique number and what is colour number?



Part 2: branch and bound (BnB) using max clique (MC) as motivation

MiniZinc A sample of what’s to come

brock200_4

274,919 milliseconds
16,008,643 nodes

BnB A sample of what’s to come

brock200_4

mzn: 274,919 ms
java: 229 ms
speedup: 1,200

How did we do that? Small scale statistics

algorithmic sketch
staring with MC0
heading to BBMC

We have two sets …
C: is the growing clique, a set of vertices
P: is the candidate set, i.e. set of vertices that we might add to C

The largest clique found so far is called the incumbent and has a size maxSize

MC0

6

4

9

10

1

5

3

2

7

8

C = {}
P = {1,2,3,4,5,6,7,8,9,10}
maxSize = 0
incumbent = {}

Top of search

6

4

9

10

1

5

3

2

7

8

C = {1}
P = {2,5,10}
maxSize = 0
incumbent = {}

Select vertex 1

6

4

9

10

1

5

3

2

7

8

C = {1,2}
P = {5}
maxSize = 0
incumbent = {}

Select vertex 2

6

4

9

10

1

5

3

2

7

8

C = {1,2,5}
P = {}
maxSize = 0
incumbent = {}

Select vertex 5

6

4

9

10

1

5

3

2

7

8

C = {1,2,5}
P = {}
maxSize = 3
incumbent = {1,2,5}

Save as incumbent

6

4

9

10

1

5

3

2

7

8

C = {1,2,5}
P = {}
maxSize = 3
incumbent = {1,2,5}

backtrack

6

4

9

10

1

5

3

2

7

8

C = {1}
P = {5,10}
maxSize = 3
incumbent = {1,2,5}

Remove 2 from P

6

4

9

10

1

5

3

2

7

8

C = {1,5}
P = {}
maxSize = 3
incumbent = {1,2,5}

Select vertex 5

6

4

9

10

1

5

3

2

7

8

C = {1,5}
P = {}
maxSize = 3
incumbent = {1,2,5}

backtrack

6

4

9

10

1

5

3

2

7

8

C = {1}
P = {10}
maxSize = 3
incumbent = {1,2,5}

Remove 5 from P

6

4

9

10

1

5

3

2

7

8

C = {1,10}
P = {}
maxSize = 3
incumbent = {1,2,5}

Select vertex 10

6

4

9

10

1

5

3

2

7

8

C = {1,10}
P = {}
maxSize = 3
incumbent = {1,2,5}

backtrack

6

4

9

10

1

5

3

2

7

8

C = {}
P = {2,3,4,5,6,7,8,9,10}
maxSize = 3
incumbent = {1,2,5}

Remove 1 from P

6

4

9

10

1

5

3

2

7

8

C = {2}
P = {4,5,6}
maxSize = 3
incumbent = {1,2,5}

Select vertex 2

… and so on

MC0 blindly moves forwards whenever newP is not empty

Assume we have an incumbent and that |P| + |C| ≤ maxSize

Assume we have an incumbent and that |P| + |C| ≤ maxSize

We can cut off search and backtrack

Assume we have an incumbent and that |P| + |C| ≤ maxSize

We can cut off search and backtrack

|P| + |C| is a bound and when |P| + |C| ≤ maxSize we can abandon search in this branch

MC0 v MC1

brock200_4

MC0: 107,632 ms
MC1: 8,120 ms
speedup: 13

Our first bound

Small scale statistics

Assume we have an incumbent and that |P| + |C| ≤ maxSize

We can cut off search and backtrack

|P| + |C| is a bound and when |P| + |C| ≤ maxSize we can abandon search in this branch

Can we think of other bounds that we might compute?

Can we think of other bounds that we might compute?

• Degree of vertices in P
• All vertices in P are adjacent to all vertices in C
• The degree between vertices in P may be an measure

• Is this costly to compute?
• Does it pay off in runtime (i.e. economical)?

• If in P we have k vertices with degree ≥ k-1 … ?
• See Torsten Fahle for menu of filters and bounds

Can we think of other bounds that we might compute?

• The chromatic number of P?
• The chromatic number is greater than or equal to the clique number
• Therefore it is a safe bound (does not excessively prune search)
• But that’s NP-hard to compute!
• Is it economical?
• Can we make good use of colour?

Colour Classes

Assume we have a set of vertices P, we can greedely place these in colour classes

Colour Classes

Assume we have a set of vertices P, we can greedely place these in colour classes

1. k = 1
2. Create an empty colour class C_k
3. Select and remove a vertex v from P and add v to C_k
4. For all vertices w in P

4.1 if w is not adjacent to all vertices in C_k
4.2 then add w to C_k and remove w from P

5. If P is not empty then increment k and go to 2
6. k is an upper bound of the chromatic number of P

Colour Classes

Assume we have a set of vertices P, we can greedly place these in colour classes

1. k = 1
2. Create an empty colour class C_k
3. Select and remove a vertex v from P and add v to C_k
4. For all vertices w in P

4.1 if w is not adjacent to all vertices in C_k
4.2 then add w to C_k and remove w from P

5. If P is not empty then increment k and go to 2
6. k is an upper bound of the chromatic number of P

NOTE:
• colour classes are independent sets
• We can select at most one vertex from each colour class

6

4

9

10

1

5

3

2

7

8

P = {1,2,3,4,5,6,7,8,9,10}

Greedy colouring

6

4

9

10

1

5

3

2

7

8

P = {1,2,3,4,5,6,7,8,9,10}
C_1 = {1,3,8}

Greedy colouring

6

4

9

10

1

5

3

2

7

8

P = {2,4,5,6,7,9,10}
C_1 = {1,3,8}
C_2 = {2,7,9,10}

Greedy colouring

6

4

9

10

1

5

3

2

7

8

P = {4,5,6}
C_1 = {1,3,8}
C_2 = {2,7,9,10}
C_3 = {4,6}

Greedy colouring

6

4

9

10

1

5

3

2

7

8

P = {5}
C_1 = {1,3,8}
C_2 = {2,7,9,10}
C_3 = {4,6}
C_4 = {5}

Greedy colouring

6

4

9

10

1

5

3

2

7

8

• We get a greedy estimate (k) of chromatic number of
candidate set P

• We can do this in every call to expand …
• If |C| + k ≤ maxSize we can abandon current branch

Greedy colouring

6

4

9

10

1

5

3

2

7

8

• We get a greedy estimate (k) of chromatic number of
candidate set P

• We can do this in every call to expand …
• If |C| + k ≤ maxSize we can abandon current branch
• And we can get smart!

Greedy colouring

6

4

9

10

1

5

3

2

7

8

Non-increasing degree order {4,5,6,2,1,3,7,9,8,10}

Order vertices for colouring

6

4

9

10

1

5

3

2

7

8

Order vertices for colouring

Non-increasing degree order {4,5,6,2,1,3,7,9,8,10}
C_1 = {1,4,6}
C_2 = {3,5,8,10}
C_3 = {2,7,9}
k = 3
A tighter bound!

6

4

9

10

1

5

3

2

7

8

Non-increasing degree order {4,5,6,2,1,3,7,9,8,10}
C_1 = {1,4,6}
C_2 = {3,5,8,10}
C_3 = {2,7,9}
k = 3
A tighter bound!

Order vertices for colouring

There are other orderings
• a Brelaz ordering
• Minimum width ordering
• …

Can we do something with the colour classes, not just the value k?

6

4

9

10

1

5

3

2

7

8

In expand, iterate over vertices in colour classes from colour class C_k down to C_1
i.e. start with {2,7,9} then {3,5,8,10} finally {1,4,6}.

Visiting colour classes

6

4

9

10

1

5

3

2

7

8

In expand, iterate over vertices in colour classes from colour class C_k down to C_1
i.e. start with {2,7,9} then {3,5,8,10} finally {1,4,6}.

Visiting colour classes

If |C| + index of current colour class ≤ maxSize then backtrack …

6

4

9

10

1

5

3

2

7

8

In expand, iterate over vertices in colour classes from colour class C_k down to C_1
i.e. start with {2,7,9} then {3,5,8,10} finally {1,4,6}.

Visiting colour classes

If |C| + index of current colour class ≤ maxSize then backtrack …

… because we can only pick one vertex from each of the k colour classes (independent sets)

MC1 v MCSa1

brock200_4

MC1: 8,120 ms
MCSa1: 711 ms
speedup: 11 Our second, smartly used, bound

Small scale statistics

To a man with a hammer everything looks like a nail
• We can only select one vertex from a colour class
• Can we consider a colour class as a variable with a domain?
• If so, what colour class should we pick first?

Algorithmic Engineering

Having selected v from the candidate set P we create the new candidate set P’ as follows:

1. P’ = {}
2. forall w in P
 2.1 w is adjacent to v then add w to P’

Algorithmic Engineering

We might have P and P’ as BitSet and each row of the adjacency matrix a BitSet
such that having selected vertex v we can compute P’ as follows

 P’ = P and A[v]

… that is, give me all vertices in P that are adjacent to vertex v.

This exploits in-processor parallelism, and the resultant algorithm is BBMC

MCSa1 v BBMC1

brock200_4

MCSa1: 711 ms
BBMC1: 229 ms
speedup: 3 Good engineering

Small scale statistics

Algorithmic Engineering

Rewrite everything in C++

Algorithmic Engineering

Rewrite everything in C++

Go parallel

Want to know more?

Look at Patrick Prosser and Ciaran McCreesh on dblp

TSP

In TSP, as the current tour is being extended we have a set of cities yet to be visited

• Assume we have an incumbent and the cost of that tour, minCost
• Assume we have cost of current partial tour
• Assume we have set N of cities not yet visited
• Compute a MST for N
• If cost of partial tour plus cost of MST is ≥ minCost then backtrack

Generally

In most all optimisation problems where we use exact search there is
considerable effort to come up with sharp and economical bounds.

Generally

In most all optimisation problems where we use exact search there is
considerable effort to come up with sharp and economical bounds.

I have only presented Max Clique because that’s what I’ve
recently been working on with Ciaran

Generally

In most all optimisation problems where we use exact search there is
considerable effort to come up with sharp and economical bounds.

I have only presented Max Clique because that’s what I’ve
recently been working on with Ciaran …

… and maybe because this is all that I know

