
Computational Intelligence, Volume 9, Number 3,  1993 

HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION 
PROBLEM 

PATRICK PROSSER 
Department of Computer Science 

Universio of Strarhclyde, Livingstone Tower 
Glasgow GI I X H ,  Scotland 
e-mail: pat@cs.strath.ac.uk 

It might be said that there are five basic tree search algorithms for the constraint satisfaction 
problem (csp), namely, naive backtracking (BT), backjumping (BJ), conflict-directed backjumping 
(CBJ), backmarking (BM), and forward checking (FC). In broad terms, BT, BJ, and CBJ describe 
different styles of backward move (backtracking), whereas BT, BM, and FC describe different styles 
of forward move (labeling of variables). This paper presents an approach that allows base algorithms 
to be combined, giving us new hybrids. The base algorithms are described explicitly, in terms of a 
forward move and a backward move. It is then shown that the forward move of one algorithm may be 
combined with the backward move of another, giving a new hybrid. In total, four hybrids are presented: 
backmarking with backjumping (BMJ), backmarking with conflict-directed backjumping (BM-CBJ), 
forward checking with backjumping (FC-BJ), and forward checking with conflict-directed backjumping 
(FC-CBJ). The performances of the nine algorithms (BT, BJ, CBJ, BM, BMJ, BM-CBJ, FC, FC-BJ, 
FC-CBJ) are compared empirically, using 450 instances of the ZEBRA problem, and it is shown that 
FC-CBJ is by far the best of the algorithms examined. 

Key words: constraint satisfaction problem, tree search algorithms, backtracking, backjumping, 
backmarking, forward checking. 

1. INTRODUCTION 

The work reported in this paper was motivated by the following questions posed by 
Nadei (1989): 

Something to think about would be a synthesis of BM and BJ, into an algorithm called, 
say, BMJ (BackMarkJump). . . . Is it possible to combine both approaches while retaining 
all, or most, of the power of each? 

and further: 

Combining j-consistency with Backjump or Backmark should be possible, as suggested by 
Gaschnig. And Backmark and Backjump may themselves perhaps be combined. . . . Such 
algorithms deserve attention. 

This paper presents four "hybrid" tree search algorithms (algorithms created by combining 
the forward move of one algorithm with the backward move of another) for the constraint 
satisfaction problem (csp), one of these being BMJ. In addition, an algorithm which 
combines 2-consistency with backjumping is also presented. The technique of combining 
algorithms is presented, along with an empirical analysis of nine tree search algorithms. 

There appear to be five basic tree search algorithms for the constraint satisfaction 
problem, namely naive backtracking (BT) (Golomb and Baumert 1963, backjumping (BJ) 
(Gaschnig 1979), conflict-directed backjumping (CBJ, a new algorithm described later on), 
backmarking (BM) (Gaschnig 1977, 1979), and forward checking (FC) (Haralick and Elliott 
1980). In broad terms these algorithms might be classified as follows: BT, BM, and FC 
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FIGURE 1. The five base algorithms. 

chronologically backtrack, wherleas BJ and CBJ are informed backtrackers. BT, BM, BJ, 
and CBJ check backwards, from the current variable against the past variable, whereas 
FC checks forward, from the current variable against the future variables. 

The algorithms may be viewed from a different perspective. When we move from 
BT 3 BJ -+ CBJ we move progressively toward more informed styles of backtracking. 
However, BT, BJ, and CBJ all use the same style of forward move (labeling of variables). 
When we move from BT + BM + FC we traverse across different styles of forward 
move, but again each of these algorithms use the same style of backward move (chrono- 
logical backtracking). Therefore BT, BM and FC essentially describe a style of forward 
move, and BT, BJ, and CBJ describe a style of backward move.’ 

In Fig. 1 we have these five base algorithms. To top row represents moves, and the 
first column represents forward moves. It appears that four algorithms are missing. We 
should expect that we can take the forward move of one algorithm (for example FC) and 
combine it with the backward move of another (for example BJ) to give a new “hybrid” 
algorithm (for example FC-BJ, an algorithm that checks forward and jumps back). There- 
fore, we should expect the nine algorithms of Fig. 2. 

In Fig. 2, algorithms in a given row exploit the same style of forward move, and 
algorithms in a given column exploit the same style of backward move. When we move 
across the row (left to right) we move toward more informed styles of backtracking, and 
when we move down a column we move across different styles of foward move. 

Historically, tree search algorithms for the csp have been described in a recursive 
style, such that a recursive call corresponds to a foward move, and a return from a call 

‘We should consider BT as describing the most primitive forward move (checking against past variables) 
and the most primitive backward move (chronological backtracking). 
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FIGURE 2.  The five base and four hybrid algorithms. 

corresponds to a backward move. Therefore, the forward and backward moves are de- 
scribed implicitly, and search knowledge may be hidden within the procedure stack. This 
paper adopts a different approach. A tree search algorithm X is described by two functions, 
x-label and x-unlabel, and a calling procedure. Function x-label corresponds to the foward 
move of X ,  and x-iinfabel corresponds to the backward move of X. The functions are then 
called iteratively by a procedure (in this case bcssp, described in the following section). 
Therefore the forward and backward moves are made explicit, as is the search knowledge.* 
The act of combining algorithms is therefore simplified. To synthesize the hybrid X - Y  we 
take the forward move of X ,  x-label, and modify it such that it maintains the information 
required by the backward move of Y ,  giving us the function x-y-label. In addition we take 
the backward move of Y ,  y-unlabel, and modify it such that it maintains the information 
required by the forward move of X, giving us the function x-y-unlabel. The two functions, 
x-y-label and x-y-unlabel, then describe the hybrid X- Y .  

The remainder of this paper is organized as follows. The next section introduces the 
constraint satisfaction problem and the terminology applied to that problem. The coding 
conventions are introduced, along with the global variables that will be used by the 
following algorithms. Section 3 describes nine tree search algorithms for the csp. Section 
4 describes the experiments that were performed, and Section 5 analyses these results. 
Section 6 concludes this paper, looking backward over what has been presented, and 
forward toward what might still be done. 

ZThis approach is not new, as it was used by Dechter when describing chronological backtracking (Dechter 
and Pearl 1988) and graph-based backjumping (Dechter 1990). However, it was not exploited as a technique for 
combining algorithms, such as BM with BJ. 
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2. DEFINITIONS AND PROGRAMMING CONVENTIONS 

Definition I. The binary constraint satisfaction problem (bcsp) involves a set of variables 
{V l ,  V Z ,  . . . , V,,}. Each variable V;  has a finite (and discrete) domain of values D; = {vil, 
vi2, . . . , v~M, )  and may be assigned any one of the values vii E Di. In addition, we have a 
set of binary constraints {Cl,,, C1.2, . . . Cl,n, . . . , C2.1, C2.2 . . . , C Z , n ,  . . . , C,,,,, C n . 2  

. . . , C,,,,}, where the constraint Ci,j is a relation between Vi and V’, and if C;,, is null then 
there is no constraint acting from Vi to Vj. A binary constraint satisfaction problem can 
be associated with a constraint graph G (Mackworth 1977). V(G), the set of vertices in G ,  
corresponds to the set of variables, and A(G), the set of directed arcs in G,  corresponds 
to the set of binary constraints. The problem is then to find an assignment of values to 
variables, from their respective d’omains, which satisfy the constraints. There are a number 
of variants of this problem (Nutiel 1983). The one addressed in this paper is the binary 
constraint satisfaction “search” problem (bcssp). That is, we attempt to find the first 
solution. For the sake of brevity, the bcsp and its variant the bcssp will from now on be 
referred to as the C S P . ~  

Definition 2. The order of instatztiafion is the order in which variables are assigned values. 
The order of instantiation may be static or dynamic. In a static instantiation order the 
search process always instantiates some variable Vi before some other variable Vj. In a 
dynamic instantiation order the search process decides which variable to instantiate next 
based on the state of the search process. In this study we assume a static order of 
instantiation. 

DeJinifion 3. 
will be considered as the current variable. 

The current variable is the variable chosen for instantiation. Generally Vi 

Definition 4 .  The past variables are the variables that have already been instantiated. If 
variable Vh was instantiated before variable Vi it may be said that Vh is in Vi’s past. This 
may be represented via the ordering relation h < i. Therefore, we assume that the search 
tree grows downward and that ‘V1 is the root. Variables near the root of the search tree 
are then at a “shallow” depth and have low-valued subscripts, and variables far from the 
root are “deep” and have high-valued subscripts. 

Defintion 5 .  The future variables are the variables that have not yet been instantiated. If 
variable V; was instantiated before variable V, it may be said that vj is in Vi’s future. This 
may be represented by the ordering relationj > i. 

The algorithms that follow are described in a pseudocode modeled on Pascal and 
Common Lisp and that is an enhancement of that given in Nadel(l989). A fuller description 
of this language is given in Nadel (1989) and Appendix A of this paper. The following 
assumptions are made. 

The language supports list processing. It is assumed that the list processing functions 
list, push, pop, pushnew, remove, set-difference, union, and max-list are primitives of 
the language. 

’For a broader introduction to the: constraint satisfaction problem one might work through Meseguer’s 
overview (Meseguer 1989), Kumar’s survey (Kumar 1992), and the encyclopedia entries of Dechter (Dechter 
1992) and Mackworth (Mackworth 1992). 
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Variables local to a procedure are implicitly declared. The first occurrence of a variable 

The following variables are assumed to have been globally declared and thus accessible 
to all procedures. 

v: v is an array of values, such that v[i] is the value assigned to the variable Vi. From 
now on we will use v[i] in place of Vi when referring to the ith variable. 

n: n is the number of variables actually in the problem. We assume that the first 
variable is v [ l ]  and the last variable is v[n]. We also assume the existence of the 
pseudovariable v[O]. This is used as a convenience, i.e., an attempt to backtrack to 
v[O] will result in termination of the search process. 

n) is the 
domain of the variable v[i]. domain[i] is synonymous with Di, where domain[i] is a 
finite sequence of discrete values. Note the pseudovariable v[O] has domain[O] = 
nil. 

current-domain: current-domain is an array of sequences. current-domain[i] (for 0 5 
i 5 n)  is the sequence of values in dornain[i] that have not yet been shown to be 
inconsistent with respect to the ongoing search process, current-domain[i] is initial- 
ized to be equal to domain[i] (consequently current-domain[O] = nil). When the 
search process attempts to instantiate v[i] with a value, it selects that value from 
current-damain[i]. If that value is found to be incompatible with the current search 
state, it is then removed from current-domain[i]. If current-domain[i] is empty (nil), 
then the search process has examined all possible instantiations for v[i] without 
success, and backtracking takes place. When backtracking takes place (generally) 
current-domain[i] is reinstated (i.e., it becomes domain[iJ again). 

C: C is an n x n array, where C[i,jJ is the name of a binary predicate (such as <, =, 
>, etc.) that holds between v[i] and v[jI. If C[i,j’J = nil then there is no constraint 
acting between v[i] and v[ jI ,  and all values in domain[i] are compatible with all 
values in domain[jl. Therefore, we have an intensional representation of a con- 
straint, rather than an extensional representation of a constraint (as a set of com- 
patible pairs). We might think of C as being a richer representation of the adjacency 
matrix of a directed graph. Rather than being a count of the number of directed arcs 
from vertex i to vertexj, C[i,jl is the name of a binary predicate (or nil). 

check(i,h): The function check(i,j] delivers a result of true if there is no constraint 
between v[i] and v[ j ]  (that is C[iJ = nif);  otherwise it delivers the result of applying 
the binary predicate C[i,jl between the instantiations of v[i] and v[jI (and is counted 
as a consistency check). 

The procedure below, bcssp, shows the environment within which the tree search functions 
will be called. 

within a procedure corresponds to an implicit declaration of that variable. 

domain: domain is an array of sequences, such that domain[i] (for 0 5 i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

PROCEDURE bcssp (n,status) 
BEGIN 

consistent + true; 
status t “unknown”; 
i t 1; 
WHILE status = “unknown” 
DO BEGIN 

I F  consistent 
THEN i + label(i ,consistent) 
ELSE i +- unlabel(i,consistent); 
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1 1  I F i > n  
12 . THEN status t “solution” 
13 
14 THEN status +- “impossible” 
15 END 
16 END; 

ELSE I F  i = 0 

Procedure bcssp addresses the binary constraint satisfaction search problem: 

Given a set of variables (where each variable has a discrete domain) and a set of binary 
relations that act between pairs of variables, find the first consistent instantiation of these 
variables which satisfies all the relations. 

The function label attempts to find a consistent instantiation for v[i].  The function 
takes as arguments the boolean (reference) variable consistent and the current variable i. 
label is called when consistent = true and 1 5 i I n. The function delivers as a result the 
new current variable. When label terminates with consistent = true, the variable v[i] will 
have been instantiated with a value that is consistent with the past variables, and i+l is 
delivered as a result (thus maintaining the static order of instantiation). When label ter- 
minates with consistent =false  then no consistent instantiation could be found for v[i], 
current-domain[i] = nil, and i is delivered as a result. Therefore, fabef can terminate in 
the following states: (a) consistent = true and 1 5 i 5 n,  (b) consistent = true and i = n + l ,  
or (c) consistent = false and 1 ‘5 i 5 n. When terminating in state (a) procedure bcssp 
will again call fabef with the new current variable. Terminating in state (b) will cause 
procedure bcssp to terminate with status set to solution, and terminating in state (c) will 
cause bcssp to call unlabef. 

Function unlabel performs backtracking from v[i] to v[h]. The function is called when 
consistent = false,  1 5 i 5 n,  and current-domain[i] = nil (all values have been tried for 
v[il without success). The function selects a past variable v[h] as the backtracking point 
and resets the variable v[J], for ;dl j ,  where h < j  I i. The value in v[h] is then removed 
from current-domain[h], consistent is set to true if there are values remaining in current- 
domain[h], and h is delivered as a result. Therefore unlabel can terminate in the following 
states: (a) consistent = true and 1 5 h 5 i, (b) consistent = f a l s e  and 1 5 h < i ,  or (c) 
consistent = false and h = 0. When terminating in state (a) procedure bcssp will then call 
label. Terminating in state (b) will cause procedure bcssp to call unlabef again, and 
terminating in state (c) will cause bcssp to terminate with status = impossible. 

In the functions that follow, a forward move by algorithm X will be named x-label, 
and a backward move will be named x-unfabef. For example BT (chronological backtrack- 
ing) is defined by functions bt-la be1 and bt-rrnlabel. These functions are then substituted 
into lines 9 and 10 respectively, of procedure bcssp. In the experiments that follow, the 
number of calls made to x-label is taken to be the number of nodes visited within the 
search tree. 

3. TREE SEARCH ALGORITHMS 

This section describes nine tree search algorithms for the constraint satisfaction search 
problem, and these are presented in the following order: BT, BJ, CBJ, BM, BMJ, BM- 
CBJ, FC, FC-BJ, FC-CBJ. Gen’erally, an algorithm is presented as a modification to an 
existing algorithm, and line numbering is adopted so that we can see just what changes 
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are required to take us from one algorithm to another. In essence, all the algorithms are 
amved at by performing minor modifications to BT, and this algorithm might be considered 
as a reference point. 

3.1. Chronological Backtracking 

In the backtracking algorithm (Bitner and Reingold 1975; Golomb and Baumert 1965; 
Walker 1960) variables are incrementally instantiated with values from their respective 
domains. When the current variable v[i] is assigned a value, consistency checking is 
performed backward against the past variables. If a consistency check fails then another 
value is selected from the domain of v[d and consistency checking is performed again. If 
no value can be found in the domain of v[i] that is consistent with the past variables, then 
the variable v[h], which was instantiated immediately before v [ i ] ,  is uninstantiated and a 
new value is sought for v[h]. The backtracking algorithm BT is described below by the 
functions bt-label and bt-unlabei. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

FUNCTION bt-label(i,consistent): INTEGER 
BEGIN 

consistent t false; 
FOR v[i] t EACH ELEMENT OF current-domain[i] WHILE not consistent 
DO BEGIN 

consistent t true; 
FOR h +- 1 TO i-1 WHILE consistent 
DO consistent t check(i,h); 
IF not consistent 
THEN current-domain[i] t remove(v[i],current-domain[i]) 
END; 

IF consistent THEN return(i+ 1) ELSE return@ 
END; 

bt-label attempts to find the first instantiation in current-domain[i] that is consistent 
with all of the past variables (the FOR loop, lines 4-11). When bt-label encounters some 
value in current-domain[i] that is inconsistent with the past variables, that value is removed 
from current-domain[i] (lines 9 and 10). The outer FOR loop terminates either (a) by 
making a consistent instantiation of v[i] or (b) by exhausting all values in current-domain[il. 
When terminating in state (a) consistent will be true, current-domain[iJ C_ domain[i], and 
i + l  is delivered as the new current variable. When terminating in state (b), current- 
dornain[i] will be nil, consistent will be false, and i is delivered as the current variable. 

1 FUNCTION bt-unlabel(i,consistent): INTEGER 
2 BEGIN 
3 h t i-1; 
4 current-domain[i] +- domain[i]; 
5 current-domainlh] t remove(v[h],current-domain[h]); 
6 
7 return(h) 
8 END; 

bt-unlabel chronologically backtracks from v[i] to v[h], where h t i-1 (line 3). As 
will be seen, line 3 is common to all of the chronological backtracking functions (bt- 
unlabel, bm-unlabel, and fc-unlabel). current-domain[i] is reset to domain[i] (line 4) and 

consistent +- current-domain[h] # nil; 
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the value v[h] is removed from currenr-domain[h] (line 5). When v[h] becomes the current 
variable (line 7) all future variables, v [ J ~ ,  will have current-dornain[jI = domain[jj, and all 
past variables (and the current variable) will have current-dornain[g] C dornain[g], where 
1 5 g 5 h < j  I n. This property holds for all of the backward-checking algorithms (BT, 
BJ, CBJ, BM, BMJ, and BM-CBJ). The reference variable consisrent is set to true if there 
are values remaining in current-dornain[h] (i.e., BT can now attempt a new instantiation 
for v[h]; otherwise consistent is, set to false (i.e., BT will then backtrack from v[h] to 
v[h- I]). The function returns h as the new current variable. The actions of lines 5 ,  6, and 
7 are common to all of the backtracking functions presented here. The action of line 5 in 
bt-unlabel might be interpreted as follows. 

Function bt-label was unable tlo find an instantiation for v[i] which was consistent. It is 
assumed that the instantiation of v[h] is the cause of this inconsistency. Therefore, by 
finding a new instantiation for v[h], consistent instantiations might be found for the future 
variables. 

This is a naive assumption. It mlay be the case that v[h] plays no role whatsoever in the 
conflict involving v[i]. When this happens the entire search subtree rooted on v[i] will be 
reexplored, and the functions bt-label and bt-unlabel will slavishly repeat the same set of 
actions with the same set of outcomes. This pathological behavior has been referred to as 
thrashing (Mackworth 1977). 

3 . 2 .  Backjumping (BJ) 

The backjumping (BJ) procedure of Gaschnig (1979) attempts to minimize the number 
of nodes visited within the search tree and consequently reduce the number of consistency 
checks performed by the search process. BJ does this by jumping back directly to the 
cause of a conflict. When the current variable v[il is to be instantiated with a value, a 
record is kept in the array element rnax-check[i] of the deepest variable with which v[if 
performed a consistency check. If no value can be found in current-domain[i] that is 
consistent with the past variables, BJ jumps back to v[h], where h = max-check[i]. That 
is, v[h] is the deepest variable tlhat precludes a candidate value for the current variable, 
and if v[h] is reinstantiated a consistent value may be found for v[i]. If on jumping back 
to v[h] there are no remaining varlues to be tried in current-dornain[h], BJ then chronolog- 
ically backtracks. Since v[h] must have passed consistency checks with all past variables, 
max-check[h] will be equal to h- 1, and when BJjumps back from v[h] it will actually step 
back to v[h-I]. Therefore, we might say that BJ is an algorithm that jumps and steps 
back. The function below, bj-label, corresponds to the labeling function for BJ. bj-label 
requires the global integer array max-check. rnax-check[i] is initialized to zero for all i. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

FUNCTION bj-label (i,consistent): INTEGER 
BEGIN 

consistent t false; 
FOR v[i] +- EACH ELEMENT OF current-domain[i] WHILE not consistent 
DO BEGIN 

consistent t true; 
FOR h t 1 TO i-1 WHILE consistent 
DO BEGIN 

consistent t check(i,h); 
max-check[i] t nnax(max-check[i],h) 
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11 END; 
12 IF not consistent 
13 
14 END; 
15 
16 END; 

THEN current-domain[i] c remove(v[i] ,current-domain[i]) 

I F  consistent THEN return(i+ 1) ELSE return(i) 

Function bj-label can be viewed as a modified version of bt-label. Whenever checking 
takes place between v[i] and v[h] the array element max-check[i] is updated (line 10). bt- 
label and bj-label differ only in this respect. The function below, bj-unlabel, performs the 
“jumpinghtepping” back from the current variable v[i] to the past variable v[h]. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

FUNCTION bj-unlabel (i,consistent): INTEGER 
BEGIN 

h 6 ma-check[i]; 
FOR j + h+ 1 TO i 
DO BEGIN 

max-checkti] +- 0; 
current-domainti] + domainljl 
END; 

curreqt-domain[h] t remove(v[h] ,current-domainlh]); 
consistent t current-domain[h] # nil; 
return(h) 

END; 

In line 3, h is selected as the backtracking point. In the FOR loop (lines 4-8) the variables 
V [ J ~  are reset (for h < j 5 i). By “reset” we mean that current-domain[’] is reset to 
dumain[j] and max-check[j] is reset to zero. Therefore, we are again assured that the 
current-domdin of the future variables are equal to their respective domain. Lines 9-11 
correspond to lines 5-7 in function bt-unlabel. 

Figure 3 demonstrates the behavior of BJ. The current variable v[5] has failed consis- 
tency checks with v[3] and v[l], and it is assumed that there are no values remaining in 
current-domain[S]. BJ then jumps back to v[3]. v[3] has passed all consistency checks with 
the variables in its past, namely v[l] and v[2], and max-check[3] = 2 .  If v[3] has no 
remaining values in current-dumain[3], BJ “steps” back to  v[2]. BJ then proceeds to 
reenumerate the search tree rooted on v[3]. 

In some respects it is important to note what BJ does not do, and we can do  this by 
being clear about the semantics of max-check[i]. max-check[i] is not the deepest variable 
that some trial instantiation of v[i] was in conflict with, but is the deepest variable that v[i] 
checked against. It is only when BJ moves forward from v[h] to v[i] and fails to find an 
instantiation for v[i] that rnax-check[i] is surely the deepest variable that v[i]  failed against. 
If mu-check[i] was always the deepest variable that precluded some candidate value from 
current-dornain[i] (and we could do this by updating max-check[i] only when a consistency 
check fails) we would have an incomplete algorithm. Assume we change the semantics of 
max-check accordingly, and change its name to max-fail, such that max-fail[i] is the deepest 
variable that was in conflict with v[i]. Assume that v[i] was in conflict with v[g] and v[h], 
where g < h. max-fail[i] will then be h. Assume that we then jump back to  v[h], and v[h] 
has experienced conflicts with v[f], w h e r e f c  g .  If there are no values in current-dornain[h] 
our “buggy” version of BJ would jump back to v[fl. The algorithm has jumped back too 
far; it should have jumped back to v[g]. Therefore BJ is conservative but safe, in that it 
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The Future 
FIGURE 3. A backward-checking scenario 

jumps and then steps back.4 We might then say that when jumpLkig back B is directed by 
consistency checks that have been performed rather than consistency checks which failed. 
If BJ was able to remember the set of variables that were in conflict with v[i] it should 
then be able to make a series of jumps back. 

3.3. Conflict-Directed Backjumping (CBJ) 

Where BJ steps back from v[h] after jumping back from v[ i] ,  the conflict-directed 
backjumper (CBJ) continues to jump across conflicts which involve both v[h] and v[ i] .  CBJ 
achieves this by recording the set of past variables that failed consistency checks with the 

41t may be of interest to note that in Gaschnig’s thesis (1979) BJ was presented “without formal proof” (p- 
170) and further, that suggested future work was to “prove that backmark and backjump are valid algorithms” 
(p. 239). 
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current variable (and we refer to this as a “conflict set” as in Dechter 1990). If no consistent 
instantiation can be found for v[i], we then jump back to the deepest variable, 4/21, that 
conflicted with v[i]. If on jumping back to v[h] we discover that there are no more values 
to be tried in current-domain[h] we then jump back to v[g], where v[g] is the deepest 
variable that was in conflict with either v[i] or v[h]. 

CBJ maintains a conflict set conf-set[i] for each variable, where the array confset is 
declared globally. Initially each element of conf-set[i] is set to be (0). When a consistency 
check fails between v[d and v[h], h is added to the set conf-set[d. Therefore, conf-set[d is 
the subset of the past variables in conflict with v[i]. If there are no remaining values to be 
tried in current-domain[i], CBJ jumps back to the deepest variable v[h], where h E con. 
set[i] (that is h t max-list(conf-ser[i]), where the function max-list delivers the largest 
integer in a set of integers). When jumping back from v[i] to v[h] the information in con$ 
ser[i] is carried upward to v[h]. The array element confset[h] becomes conf-ser[h] U c o n .  
ser[i] - h,  the set of variables in conflict with v[h] and v[i]. Therefore when further 
backtracking takes place from v[h], CBJ jumps back to v[g], where v[g] is the deepest 
variable in conflict with either v[h] or v[i]. It might be said that CBJ performs a primitive 
style of “learning while searching” (Dechter 1990), and that the current search knowledge 
exists within conf-ser[i] and current-domain[i]. conf-set[i] can be considered as a naive 
explanation of why values have been removed from current-domain[i], and is similar to 
the causelisr of Rosiers and Bruynooghe (1987). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 

FUNCTION cbj-label (i,consistent): INTEGER 
BEGIN 

consistent t false; 
FOR v[i] +- EACH ELEMENT OF current-domain[i] WHILE not consistent 
DO BEGIN 

consistent + true; 
FOR h + 1 TO i-1 WHILE consistent 
DO consistent + check(i,h); 
IF  not consistent 
THEN BEGIN 

pushnew(h- 1 ,conf-set[i]); 
current-domain[i] 6 remove(v[i],current-domain[i]) 
END 

END; 
IF consistent THEN return(i+ 1) ELSE return(i) 

END; 

Function cbj-label is very similar to bj-label. In bj-label the array element max-check[i] 
is maintained unconditionally (line 10 of bj-label), whereas in cbj-label the array element 
conf-set[i] is maintained conditionally. Only when a conflict has been detected between 
v[il and v[hl is h added to the set conf-set[i] (in line 11 the call pushnew(h- 1 ,conf-ser[i]) 
adds h- 1 to the set confset[i] if h- 1 is not already a member of ~onf-set[i]).~ 

1 FUNCTION cbj-unlabel (i,consistent): INTEGER 
2 BEGIN 
3 h +- max-list(conf-set[i]); 
4 conf-settthl +- remove(h,union(conf-set[h],conf-set[i])); 

5Note: we have to decrement h in line 1 1 .  This is so because on termination of the FOR loop of line 7,  h 
will have a value one greater than during the last execution of the statement of line 8. This is explained more 
fully in Appendix A. 
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F O R j  t h + l  TO i 
DO BEGIN 

conf-setlj] + (0); 
current-domainlj] +- domainlj] 
END; 

current-domain[h] t remove(v[h] ,current-domain[h]); 
consistent c current-domain[h] # nil; 
return(h) 
END; 

Again, function cbj-unlabef is similar to bj-unlabel. The backtracking point h (line 3) 
is the largest value in the set conf-set[i], whereas in bj-unlabel is max-check[i]. However, 
there is no analogue to line 4 within bj-unlabel. bj-unlabel makes no attempt to pass search 
knowledge upward through the search tree. If cbj-label is modified such that h is added 
to conf-set[i] unconditionally (move line 11 to position 8.1) CBJ will behave as BJ. An 
informal proof of the completeness of CBJ, using induction, has been given by Tsang 
(1992). 

In Fig. 3 a call to cbj-unlab~.1(5,consistent) would be made, with con$set[5] = {0,1,3}. 
Variables v[4] and v[3] would be uninstantiated, conf-set[3] would become {0, I}, consistent 
would be false, and cbj-unlabel would deliver as a result the value 3. Procedure bcssp 
would then make a call to cbj-unfabef(3,consistent), and v[2] and v[l] would be uninstan- 
tiated. The function call would terminate with consistent set to true, conf-set[l] = {0} ,  and 
would deliver a result of 1. 

CBJ has many features in common with Dechter’s graph-based backjumping algorithm 
GBJ (Dechter 1990). GBJ exploits the topology of the constraint graph when backtracking. 
When GBJ reaches a dead on v[i] it jumps back to the deepest variable among those 
connected to v[i] in the constraint graph, namely v[h], and if there are no values remaining 
to be tried for v[h] GBJ jumps back to v[g] where v[g] is the deepest variable connected 
to either v[i] or v[h]. GBJ computes for each variable the set parents[i], where parents[i] 
is the set of variables in v[i]’s past that are connected to v[i]. When no instantiation can 
be found for v[i] GBJ updates the global variable P (called the parent set), such that P t 
P U parents[i] - i, and jumps back to v[h], where h t max-lisr(P). The contents of P are 
then carried forward by GBJ. P has an alternative interpretation, namely P is the superset 
of variables that have been involved in conflicts experienced by the search process. If the 
search process reaches a dead-end a safe action is then to jump back to the deepest 
variable in P. Clearly, from our discussion on BJ, it can be seen that if P was dispensed 
with, or was reset whenever a successful forward move was made, we would again have 
an incomplete algorithm. 

3.4. Backmarking (BM) 

The backmarking algorithm (BM) of Gaschnig (1977) attempts to minimize the execu- 
tion of redundant consistency checks within a chronological backtracking algorithm. BM 
recognizes two situations where redundant checks can be avoided. The first situation is 
when the current variable V[i] is about to be reinstantiated with a value k ,  this instantiation 
previously failed consistency checking with some past variable v[h], and it is known that 
v[h] still holds that conflicting value. Therefore the consistency check will fail again, and 
BM need not consider that instantiation of v[i]. The second situation is when BM rein- 
stantiates v[i] with the value k ,  and it is known that earlier on in the search process 
consistency checking succeeded between that instantiation of v[i] and v[h]. It is known 
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that v[h] has not changed value; therefore that check will again succeed. Therefore BM 
does not perform the check between v[h] and v[i], and neither does it perform consistency 
checks between v[i] and any variable in the past of v[k]. 

BM employs two arrays in order to achieve these savings, namely rncl (the maximum 
checking level) and mbl (the minimum backup level). rncl is an n x m integer array, where 
m is the size of the largest domain of the n variables, and mbl is a one dimensional integer 
array of n elements. Initially all elements of mcl and mbl are set to 0. The array element 
mcl[i,k] is very similar to the array element max-check[i] in BJ. That is, max-check[i] is 
the deepest variable that v[i] checked against, whereas mcl[i,k] is the deepest variable that 
the instantiation v[i] +- k checked against. Therefore, mcl[i,k] is a finer grained version of 
max-check[i]. The array element mbl[zl records the shallowest past variable that has 
changed value since v[i] was the current variable.. Therefore, let h be mbl[zl. BM is aware 
that all variables in the past of v[k] have not changed value since BM last visited v[i]. 

The arrays rncl and mbl are exploited as follows. Assume BM attempts the instantiation 
v[i] t k.  If mcl[i,k] < mbl[i] consistency checking must have failed between v[i] t k and 
the variable v[k], where k = mcl[i,k]. The variable v[h] has not reinstantiated with a value, 
and consistency checking will again fail. Therefore the instantiation v[i] +- k need not be 
considered. This is referred to as “type (a) saving” in Nadel (1989). When rncl[i,k] 2 

mbl[i], the instantiation v[i] t k must have passed consistency checking with the variables 
v[k], for all h,  where k < mbl[i]. Since these variables have not been re-instantiated these 
checks will continue to succeed. Therefore consistency checking need only be performed 
against variables v[h], for all h, where mbl[i] 5 k < i. This is referred to as a “type (b) 
saving” in Nadel(1989). The functions below, bm-label and bm-unlabel, describe an explicit 
form of backmarking. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

FUNCTION bm-label (i,consistent): INTEGER 
BEGIN 

consistent t false; 
FOR k -+ EACH ELEMENT OF current-domain[i] WHILE not consistent 
DO BEGIN 

consistent -+ mcl[i,k] 2 mbl[i]; 
FOR h + mbl[i] TO i-1 WHILE consistent 
DO BEGIN 

v[i] t k; 
consistent + check(i,h); 
mcl[i,k] t h 
END; 

IF not consistent 
THEN current-domainli] +- remove(v[i],current-domain[i]) 
END; 

IF consistent THEN return(i+ 1) ELSE return(i) 
END; 

The type (a) savings are achieved via line 6 above. That is, if mcl[i,k] < mbl[i] the FOR 
loop (lines 7 to 12) is not executed. Type (b) savings are achieved via the lower bound 
mbl[il of the FOR loop in line 7. Again, bm-label may be compared with bj-label. In bj- 
label the array element max-check[i] is maintained unconditionally (line 10 of bj-label), 
and in bm-label the array element mcl[i,k] is maintained conditionally (line 11 above). bj- 
label records only the deepest variable that v[i] checked against, whereas bm-label records, 
for each instantiation v[i] +- k ,  the deepest variable that that instantiation checked against. 
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Therefore it appears that the information in mcl can be exploited to allow BJ within BM 
(and this will be shown in the next section). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

FUNCTION bm-unlabel (i,consistent): INTEGER 
BEGIN 

h t i - I ;  
current-domain[i] t domain[i]; 
mbl[i] t h; 
FOR j +- h + l  TO n Dl0 mblb] t rnin(mblb],h); 
current-domain[h] t remove (v[h],current-domain[h]); 
consistent t current-domain[h] # nil; 
return(h); 

END; 

Lines 5 and 6 maintain the backtracking information within mbl, and if we remove lines 5 
and 6 ,  bm-unlabel becomes bt-unlabel. It is worth noting that BM is dependent upon a 
static order of instantiation. If the order of instantiation was allowed to change during the 
search process this would result in a corruption of the search knowledge within the arrays 
mcl and mbl. Therefore BM, and any hybrids of BM, cannot exploit heuristics that examine 
future variables during the search process. 

3.5. Backmarking and Backjumping (BMJ) 

From the discussion on BM it. appears that BJ can be incorporated within BM, resulting 
in the hybrid BMJ. It is anticipated that BMJ will enjoy the advantages of BM and BJ, 
namely, avoiding redundant consistency checks while reducing the number of nodes visited 
within the search tree. That is, 13MJ should make the type (a) and (b) savings described 
earlier, while being able to jump back to the source of conflicts. We can do this by modifying 
bm-label such that it maintains the information required by bj-unlabel (namely max- 
check[i]), and by modifying bj-urrlabel such that it maintains the information required by 
bm-label (namely mbl[i]). BMJ is then defined by the functions, bmj-label and bmj-unlabel. 

1 FUNCTION bmj-label (Lconsistent): INTEGER 
2 BEGIN 
3 consistent t false; 
4 
5 DOBEGIN 
6 
7 
8 DO BEGIN 
9 v[i] +- k; 

FOR k t EACH ELEMENT O F  current-domain[i] WHILE not consistent 

consistent +- mcl[i, k] L mbl[il; 
FOR h t mbl[i] TO i-1 WHILE consistent 

10 consistent t check(i,h); 
11 mcl[i,k] t h 
12 END; 
12.1 max-check[i] t max(max-check[i],mcl[i,kl); 
13 I F  not consistent 
14 THEN current-domain[i] t remove(v[i],current-domainlil) 
15 END; 
16 
17 END; 

I F  consistent THEN return(i+ 1) ELSE return(i) 
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By adding line 12.1 to bm-label we get brnj-label. This addition maintains the information 
required for backjumping, and corresponds to line 10 in bj-label (replacing h with mcl[i, 
k]). On reaching line 12.1 one of three states will hold, namely (i) mcl[i,k] < mbl[i] and 
consistent = false, (ii) mcl[i,k] 2 mbl[i] and consistent = true, o r  (iii) mcl[i,k] 2 mbl[i] 
and consistent = false. In state (i) a type (a) saving has been made by bmj-label and 
mcl[i,k] is the variable with which the instantiation v[i] +- k failed consistency checking 
in some previous call to bmj-label. In state (ii) a type (b) saving has been made by bmj- 
label, and mcl[i,k] = i-1. In state (iii) a type (b) saving has been made by bmj-label, and 
rncl[i,k] is the variable with which the instantiation ~ [ i ]  t k failed consistency checking 
in this call to bmj-label. Therefore in states (i) and (iii) consistency checking failed, but in 
state (i) this failure was detected in a previous call to bmj-label. 

1 FUNCTION bmj-unlabel (i,consistent): INTEGER 
2 BEGIN 
3 h +- max-check[i]; 
3.1 mbl[il +- h; 
3.2 
4 F O R j c h t - I T O i  
5 DOBEGIN 
6 max-checkfi] +- 0; 
7 current-domainti] +- domainlj] 
8 END; 
9 current-domain[h] +-- remove(v[h],current-domain[h]); 

FOR j t h + l  TO n DO mbllj] +- min(mbllj1,h); 

10 
11 return(h) 
12 END; 

consistent +- current-domain[h] # nil; 

By adding lines 3.1 and 3.2 to bj-unlabel we get bmj-unlabel. This addition maintains the 
information required by backmarking, and corresponds to lines 5 and 6 in bm-unlabel. As 
previously noted we might anticipate that BMJ will enjoy the advantages of both BM and 
BJ. Caveat actor: a careful study of bmj-unlabel reveals a scenario where BMJ might 
perform worse than BM. Assume BMJ jumps from v[i], over v[h], to v[g], and does so 
when mbl[hl < g. When v[h] again becomes the current variable consistency checks will 
be repeated between v[h] and the variable v[f], for allf, where mbl[h] s f< g. Therefore 
we can only be sure that BMJ enjoys some of the advantages of BM. 

3.6. Backmarking and Conflict-Directed Backjumping (BM-CBJ) 

The hybrid of BM and CBJ (BM-CBJ) can be realized by again modifying bm-label 
such that it maintains the information required by cbj-unlabel (namely conf-set[i]), and by 
modifying cbj-unlabel such that it maintains the information required by bm-label (namely 
mbl[i]). We should expect that BM-CBJ will be able to make the type (a) and (b) savings 
of BM, while being able to make the multiple jumps of CBJ. BM-CBJ is then defined by 
the following functions, brn-cbj-label and bm-cbj-unlabel. 

1 FUNCTION brn-cbj-label (i,consistent): INTEGER 
2 BEGIN 
3 consistent c false; 
4 
5 DOBEGIN 

FOR k +- EACH ELEMENT OF current-domain[i] WHILE not consistent 
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6 
7 
8 DO BEGIN 
9 v[i] + k; 

consistent + mcl[i,kl 2 mbl[i] 
FOR h +- mbl[i] TO i-1 WHILE consistent 

10 consistent +- che:ck(i,h); 
1 1  mcl[i,kl +- h 
12 END; 
13 I F  not consistent 
14 THEN BEGIN 
14.1 pushnew(mcl[i ,k] ,conf-set[i]); 
14.2 current-domain[i] t remove(v[i] ,current-domain[i]) 
14.3 END 
15 END; 
16 
17 END: 

I F  consistent THEN return(i+ 1) ELSE return(i) 

Line 14 of bm-label has been modified (lines 14.1 to 14.3 above) to give bm-cbj-label. 
Lines 14.1 and 14.2 correspond to lines 11 and 12 in cbj-label (replacing h-1 with mcl[i, 
k ] )  and maintains the information required by conflict-directed backjumping. On reaching 
line 14.1 it has been discovered that the instantiation v[i] +- k was inconsistent. This may 
have been discovered due to rncl[i ,k] being less than mbl[i] (line 6), or due to the failure 
of a consistency check at line 10. In both cases rncl[i,k] will be the variable with which 
consistency checking has failed, either in this call to bm-cbj-label (line 10) or in some 
previous call to  bm-cbj-label (line 6). Therefore mcl[i ,k] is added to the set conf-set[i]. 

1 FUNCTION bm-cbj-unlabel.(i,consistent): INTEGER 
2 BEGIN 
3 h t max-list(conf-set[$; 
4 conf-set[h] t remove:(h,union(conf-set[h],conf-set[i])); 
4.1 mbl[i] +- h; 
4.2 FOR j + h + l  TO n 110 mblb] + min(mblg1,h); 
5 F O R j t h + l T O i  
6 DOBEGIN 
7 conf-setti] +- (0); 
8 current-domainti] +- domainti]; 
9 END; 

10 current-domain[h] + remove(v[h],current-domain[h]); 
11 
12 return(h) 
13 END; 

consistent t current-domain[h] # nil; 

By adding lines 4.1 and 4.2 to cbj-unlabel we get bm-cbj-unlabel. These additions corre- 
spond to lines 5 and 6 in bm-unlabel. BM-CBJ will be prone to the same weaknesses as 
BMJ. That is, when BM-CBJ jumps from v[i], over v[h], to v[g], when mbl[hl < g, 
redundant consistency checking may take place between v[h] and v[f] (for allf, where 
mbl[h] ~f < 8). Indeed, we might expect BM-CBJ to perform worse than BMJ when 
BMJ performs worse than BM. This is so because BJ “jumps” then “steps” back, whereas 
CBJ can ‘3jump” and continue jumping. When jumping back the BM hybrids will be prone 
to the above weakness, and BM-CBJ will tend to jump more frequently than BMJ. 
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3.7. Explicit Forward Checking (FC) 

The forward-checking algorithm (FC) of Haralick and Elliott (1980) is a “looking ahead” 
scheme. When the search process makes a trial instantiation of a variable it looks ahead 
toward the future variables, and removes from the current-domain of those variables all 
values that are incompatible with the trial instantiation. Therefore, when FC again moves 
forward, and considers some new variable, we can be sure that all values in its current- 
domain are consistant with the past variables. If this “looking ahead” results in the 
annihilation of the current-domain of some future variable (and Nadel (1989) refers to this 
as a “domain wipe out”) a new value is tried for the current variable, and if no values 
remain to be tried FC backtracks chronologically. The goal of forward checking is to “fail 
early” by detecting inconsistencies within the search tree as early as possible, thus saving 
the exploration of fruitless alternatives. Forward checking performs more work per node 
than the algorithms presented so far, but attempts to visit as few nodes as possible. It is 
hope that this results in a net saving in consistency checks performed during the search 
process. 

Forward checking may be made explicit as follows. When the instantiation v[i] t k is 
attempted current-dornain[j] is filtered, for all j ,  where i < j 5 n. The effects of filtering, 
from v[i] to v[j], are recorded explicitly within the (global) array elements reductionsbl, 
future-fc[i], and past-fc[j].  The array element reductions[jl is a sequence of sequences, 
and is initialized to nil. Let reduction E reducrions[jl. reduction is a sequence of values 
that are disallowed in current-domuin[jl due to the instantiation of one of the past variables. 
The array element future-fc[i] is a set (and is treated as a stack, initialized to nil) repre- 
senting the subset of the future variables that v[il checks against. L e t j  Efuture-fc[i]. This 
is interpreted as follows: the current instantiation of v[i] forward checks against the future 
variable v[j1 and disallows a sequence of values in current-domain[j]. The array element 
past-fc[j] is a set (and is treated as a stack, initialized to (0)) representing the subset of 
the past variables that check against v[ j] .  Let i E pust-fclj1. This is interpreted as follows: 
the current instantiation of v[i] forward checks against v[jI disallowing a sequence of 
values from current-domain[j1.6 

The function below, check-forward, is called when the variable v[i] is instantiated with 
a value. It removes all values from current-domain[jl which are inconsistent with the 
current instantiation of v[ i] ,  where i < j .  It returns a result of true if there are values 
remaining in current-domain[jI, otherwise it delivers false. 
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FUNCTION check-forward(ij): BOOLEAN 
BEGIN 

reduction + nil; 
FOR vfi] +- EACH ELEMENT OF current-domainti] 
DO IF  not check(ij) 

IF reduction # nil 
THEN BEGIN 

THEN push(vlj],reduction); 

current-domainti] + set-difference(current-domainti] ,reduction) ; 
push(reduction,reductionslj3); 
push(j ,future-fc[i]) ; 
push(i,past-fclj]) 

6The array element past-fcb] will be exploited when combining forward checking with BJ and CBJ. past- 
fcljl is used in conflict detection and subsequent backtracking. However, past-fcb] is not used by the chronological 
backtracker FC, and is introduced at  this point only for convenience. 
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13 END; 
14 return(current-domainfi] # nil) 
15 END; 

On termination of the FOR loop the local variable reduction will contain the sequence of 
values in current-domain[j] that are inconsistent with respect to v[i]. In lines 9 to 12 a 
record is maintained of the effects of forward checking. The procedure below, undo- 
reductions, is called whenever the variable v[iI is uninstantiated. The procedure undoes 
all effects of forward checking from v[i]. 
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PROCEDURE undo-reductions(i) 
BEGIN 

FOR j f- EACH ELEMENT OF future-fc[i] 
DO BEGIN 

reduction +- pop(reductionsfjl); 
current-domainfi] *- union(current-domainfi],reduction); 
pop(past-fch1) 
END; 

future-fc[i] +- nil 
END; 

The statement in line 5 ,  pop(reduction[j]), removes the most recent reducfion from 
reductions[jl, and line 7 removes the backward reference from V[J~  to v[i]. In line 9 future- 
fc[i] is set to nil because v[i] no longer forward checks against any variable. 

The procedure below, update-ciirrent-domain, recomputes current-dornain[i] to be 
domain[i] less all values disallowed by forward checking (namely reductions[il). This 
procedure is called whenever v[i] is the current variable and there are no values remaining 
in current-domain[i].’ 

1 PROCEDURE updated-current-domain(i) 
2 BEGIN 
3 current-domain[i] t domain[i]; 
4 
5 DO current-domain[i] t set-difference(current-domain[il,reduction) 
6 END; 

FOR reduction t EACH ELEMENT OF reductions[i] 

The main body explicit forward checking can now be presented. The function below, fc- 
label, attempts to instantiate the current variable v[i]. When an instantiation is attempted, 
the current-domain of the future variables are filtered. Whenever a current-domain[j] 
becomes empty, the instantiation of v[i] is retracted and the effects of domain filtering 
from v[i] are undone. 

1 FUNCTION fc-label(i,consistent): INTEGER 
2 BEGIN 
3 consistent + false; 
4 
5 DOBEGIN 
6 consistent +- true; 
7 
8 DO consistent t check-forward(ij); 

FOR v[i] t EACH ELEMENT OF current-domain[i] WHILE not consistent 

FOR j t ii-1 TO n WHILE consistent 

’A call to  update-current domain(i) is the “FC equivalent” of the statement current-domain[i] + domain[il 
encountered in the previous “backward”-checking algorithms. 
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9 IF not consistent 
10 THEN BEGIN 
11 current-domain[i] t remove(v[i],current-domain[i]); 
12 undo-reductions(i) 
13 END 
14 END; 
15 
16 END; 

IF consistent THEN return(i+ 1) ELSE return@ 

fc-label should be compared with bt-label. These two functions differ in the FOR loop of 
line 7. bt-label vanes h ,  from 1 to i - I ,  checking backward against past variables, andfc- 
label vanes j ,  from i+ 1 to n,  checking against the future variables. In line 8 of bt-label a 
call is made to check(i,h), and in line 8 offc-label a call is made to check-forward(i,j). The 
only real addition is line 12 in fc-label, where the effects of forward checking are undone 
via the call to undo-reductions(i). 

FUNCTION fc-unlabel(i,consistent): INTEGER 
BEGIN 

h t i-1; 
undo-reductions(h); 
update-current-domain[i] ; 
current-domain[h] c remove(v[h],current-domain[h]); 
consistent t current-domain[h] st nil 
return(h); 

END; 

In line 4 the effects of forward check from v[h] are undone, and in line 5 current-domain[i] 
is recomputed. fc-unlabel should be compared to bt-unlabel. If we remove line 4 above, 
and replace line 5 with the statement current-domain[i] +- dornain[i], the function fc- 
unlabel becomes bt-unlubel. 

3.8. Explicit Forward Checking and Backjumping (FC-BJ) 

FC is prone to the same vagaries as BT, namely thrashing. There is nothing to prevent 
FC from chronologically backtracking to a variable that plays no role in the current conflict. 
Figure 4 demonstrates such a scenario within FC. 

In Figure 4. v[5] is the current variable, the past variables are above the bold line, v[1] 
forward checks against v[5], and v[3] forward checks against v[6]. In the call to function 
f~-label(5,consistent), no value can be found in current-domain[5] that is consistent with 
some value in current-domain[6]. The function call fc-label(5,consistent) terminates with 
consistent set to false, and delivers the integer result 5 .  bcssp then backtracks to v[4] via 
the function callfc-unlabel(5,consistent). This does not relax current-domain[6] or currenf- 
dornain[5]. The search subtree routed on v[5] will then be reexplored with identical results. 
This process will be repeated until current-domain[4] is exhausted. FC could have avoided 
this scenario if it had jumped back to v[3], relaxing current-domain[6] as a result of the 
call to undo-reductions(3). 

This weakness can be addressed by giving FC the “jumping” capability of BJ. The 
explicit representation of forward checking allows this to be done with relative ease. When 
check-forward(i,j) delivers a result of false,  the information in pust-fc[d and past-fc[f  can 



HYBRID ALGORITHMS IFOR THE CONSTRAINT SATISFACTION PROBLEM 287 

v[2] 

FIGURE 4. A forward-checking scenario. 

be analyzed to  deliver a backtraclting point. FC-BJ is realized by rnodifyingfc-label and 
bj-unlabel.* 

1 FUNCTION fc-bj-label(i,consistent): INTEGER 
2 BEGIN 
3 consistent +- false; 
4 
5 DOBEGIN 
6 consistent +- true; 
7 

FOR v[i] t EACH ELEMENT OF current-dornain[i] WHILE not consistent 

FOR j t i +  1 TO n WHILE consistent 

*As far as I am aware, FC-BJ was first described by Ottestad (1991). Unfortunately that definition is flawed. 
Ottestad’s algorithm is overly “optimistic” when it jumps back, and may prune out solutions. Therefore, it was 
not complete. 



288 COMPUTATIONAL INTELLIGENCE 

8 DO consistent t check-forward(ij); 
9 IF not consistent 

10 THEN BEGIN 
1 1  current-domain[i] + remove(v[i],current-domain[i]); 
12 undo-reductions(i) ; 
12.1 
13 END 
13.1 ELSE max-check[i] + i-1; 
14 END; 
15 
16 END; 

max-check[i] + max(max-check[i] ,max-list(past-fclj - 11)) 

IF  consistent THEN return(i+ 1) ELSE return@ 

Lines 12.1 and 13.1 maintain the information required for backjumping, namely max- 
~ h e c k [ i ] . ~  On reaching line 12.1 v[i] forward checked against v[j- 11 and annihilated current- 
domain [j-11. The reason why this happened was due to the variables forward checking 
against v[j- 11, namely past-fc[j- I], and the attempted instantiation of v[i]. On reaching 
line 12.1, i no longer forward checks against v[j-11. This is due to the call to undo- 
reductions(i7 in line 12, and i is no longer a member of past-fc[j-11. Therefore, in line 
12.1 max-check[i] becomes either the deepest variable that forward checks against v[j- I] 
or the previous value of max-check[i]. 

To prevent the conflict between v[i] and v[j’J from recurring we have the following 
options: (i) relax current-domain[JI by uninstantiating the deepest variable forward check- 
ing against v[J (namely max-check[i]), or (ii) relax current-domain[i] by uninstantiating 
the deepest variable forward checking against v[i] (namely max-tist(past-fc[i])). Option (i) 
may allow us to instantiate v[i] with the value that was last used, and this may be consistent 
with some value in the relaxed current-dornain[jl. Option (ii) may allow us to find a new 
instantiation for v[i] from the relaxed current-domain[i] that is consistent with some value 
in current-domain[Jl. Line 13.1 is in some respects artificial. This forces FC-BJ to behave 
in a manner similar to BJ, that is, jumping back followed by stepping back. If we jump 
back to v[i], and there are no values remaining in current-domain[i], we then chronologi- 
cally backtrack to h t i- I .  

1 FUNCTION fc-bj-unlabel(i,consistent): INTEGER 
2 BEGIN 
3 h t max(max-check[i],max-list(past-fc[i])); 
4 
5 DOBEGIN 
6 max-checkti] + 0; 
6.1 undo-reductionsu); 
7 update-current-domain(i) 
8 END 
8.1 undo-reductions(h); 
9 current-domain[h] t remove(v[h],current-domain[h]); 

FOR j t i DOWNTO h+l  

10 
1 1  return(h) 
12 END: 

consistent +- current-domain[h] # nil; 

9Again, we have to decrement j in line 12.1 because on termination of the FOR loop of line 7 j will have a 
value that is one greater than during the last execution of the statement of line 8. Therefore, if consistent is false 
at line 9, j- 1 is the value that caused check-forward to deliver a result of false. 
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fc-bj-unlabel is realized by modifying bj-unlabel. In line 3 we select the backtracking 
point h. When h takes the value nzax-check[i], this corresponds to backtracking option (i) 
described above, and if h takes the value max-fist(past-fc[iJ) this corresponds to option 
(ii). The FOR loop of line 4 counts downward, from i down to h + l ,  so that the effects of 
forward checking are properly undone. Line 6.1 is an addition, undoing the effects of 
forward checking, and line 7 now calls update-currenf-domain(i) rather than resetting 
current-domain. 

It is expected that FC-BJ will enjoy the advantages of FC and BJ, resulting in a further 
reduction in nodes visited, leading to a further reduction in consistency checks performed 
during the search process. However, FC-BJ will still exhibit the BJ characteristic of 
jumping then stepping back. In Fig. 4 FC-BJ would jump from v[5] to 4-31 and would then 
proceed to step back to v[2J. 

3.9. Explicit Forward Checking and Conflict-Directed Backjumping (FC-CBJ) 

Incorporating conflict-directed backjumping into forward checking is now trivial.I0 

1 FUNCTION fc-cbj-label(i,consistent): INTEGER 
2 BEGIN 
3 consistent t false; 
4 
5 DOBEGIN 
6 consistent +- true; 
7 
8 DO consistent +- check-forward(ij); 
9 IF not consistent 

FOR v[i] +- EACH EL,EMENT OF current-domain[i] WHILE not consistent 

FOR j +- i+ l  TO n ‘WHILE consistent 

10 THEN BEGIN 
11 current-domain[i] t remove(v[i] ,current-domain[i]); 
12 undo-reductions(i) ; 
12.1 conf-set[i] +- union(conf-set[i],past-fclj- I]) 
13 END 
14 END; 
15 
16 END; 

By the addition of the line 12.1 to fc-label we get fc-cbj-label, where line 12.1 maintains 
the information required for conflict-directed backjumping, namely confser[i] . I 1  On reach- 
ing line 12.1 a conflict has been detected between the instantiation of v[i] and current- 
dornain[j- 1 ]. Due to the variables forward checking against current-dornain[j- 11 (namely 
past-fc[j- I]) the instantiation of v[i] annihilated current-dornain[j- 13. Therefore past- 
fc[j-l] is added to conf-set[i]. Again, due to the call to undo-reductions(3 in line 12, v[i] 
no longer forward checks against current-domain[ j -  11. 

IF  consistent THEN return(i+ 1) ELSE return($ 

1 FUNCTION fc-cbj-unlabel(i,consistent): INTEGER 
2 BEGIN 
3 h t max(max-iist(conf-set[i],max-list(past-fc[il)); 

IOIn fact i t  is a more “natural” algorithm than FC-BJ. Function fc-bj-label had to be engineered to prevent 
conflict-directed backjumping and force :simple backjumping. It should come as no surprise therefore that FC- 
CBJ was developed before FC-BJ. 

“Again we assume the loop variable J is available to line 12.1 and that the value j-I caused check-forward 
to deliver false. 
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4 
5 
6 
7 
7.1 
8 
9 
9.1 

10 
11 
12 

conf-set[h] t remove(h,union(conf-set[h],union(conf-set[i],past-fc[i]))); 
FOR j f- i DOWNTO h + l  
DO BEGIN 

conf-settj] + (0); 
undo-reductionsCj) ; 
update-current-domain@ 
END; 

undo-reductions(h) ; 
current-domain[h] c remove(v[h] ,current-domain[h]); 
consistent t current-domain[h] # nil 
return(h) 

13 END; 

fc-cbj-label is realized by modifying cbj-unlabel (lines 3 ,4 ,  5 ,  and 8 have been changed, 
and lines 7.1 and 9.1 have been added). Line 3 compares closely with line 3 of fc-bj- 
unlabel. In order to resolve the conflict involving v[i] we jump back to v[h] where (i) h is 
the closest past variable that forward checks against some variable in the future of v[i] 
(namely max-list(conf-set[i])), or (ii) h is the closest past variable that forward checks 
against v[i] (namely rnax-rist(past-fc[i])). In line 4 the conflict set involving v[h] is updated 
such that it includes (a) the variables in conflict with v[h], and (b) the variables in conflict 
with v[i], and (c) the variables forward checking against v[i]. In Fig. 4 FC-CBJ would 
backtrack from v[5] to v[3], and then from v[31 to v[Il. 

4. THE EXPERIMENTS 

The experiments were performed over a single problem, namely the ZEBRA, described 
below. This problem was chosen for a number of reasons. First, the problem is represen- 
tative of real world design problems (such as in Voss et al. 1990), and problems that exist 
within the scheduling domain (such as in Burke and Prosser 1991; Prosser 1989, 1990). 
Second, the problem is nontrivial, involving 25 variables and 122 constraints. Third, by 
permuting the order of instantiation we get significantly different search problems (Freuder 
1982). Therefore the ZEBRA problem allows us to choose from potentially 25! different 
problems. As will be seen, this has allowed us to generate a range of problems, from easy 
(taking hundreds of consistency checks) through to difficult (taking in excess of 100 million 
consistency checks). I *  

Finally, the order of instantiation has a number of measurable properties, namely 
bandwidth (Zabih 1990; Monien and Sudborough 1980), width, and induced width (Dechter 
1992). Given the constraint matrix C, and an order of instantiation d, then the bandwidth 
of a variable v[i] is the maximum value of li-jl, for a l l j ,  where 1 5 j I n and C[i,j1 # nil. 
That is, the bandwidth of v[i] is the maximum distance between v[i] and its adjacent 
predecessors. The bandwidth of the constraint graph G under the ordering d is then the 
maximum of the bandwidths of the variables, and will be written as B(d) .  The induced 
width of G under the ordering d, W*(d) ,  is a measure taken from the induced graph. That 
is, by recursively connecting any two parents sharing a common successor we induce a 
new constraint. The width of a variable is the number of adjacent predecessors of that 
variable, and the width of an ordering is the maximum width of all variables. W*(d)  is 
then the width of the induced graph under that ordering (Dechter and Meiri 1989). There- 

IZThis is not a new idea. This technique has been exploited by Gaschnig (1977) and Dechter (1990). 



HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM 29 1 

fore, we investigate (empirically) the effects of these topological parameters on the nine 
algorithms. 

The ZEBRA problem (also described in Dechter 1988, 1990; Smith 1992) is composed 
of 25 variables. These variables correspond to five houses (v[ll to v[5]: Red, Blue, Yellow, 
Green, Ivory), five brands of cigarettes (v[6] to v[lO]: Old-Gold, Parliament, Kools, Lucky, 
Chesterfield), five nationalities (u[  1 I] to v[ 151: Norwegian, Ukranian, Englishman, Span- 
iard, Japanese), five pets (v[16] to v[20]: Zebra, Dog, Horse, Fox, Snails), and five drinks 
(v[21] to v[25]: Coffee, Tea, Water, Milk, Orange Juice). Each of the variables has a domain 
of (1,2,3,4,5), with the exception of the Norwegian v[1] and Milk v[24], as described below. 
The ZEBRA constraints are described by the following statements: 

Each of the houses is a different color (C[i,jI + f, where 1 I i I 5 ,  1 s j  5 5 ,  i f 
13, inhabited by a single person, (C[i,jI + f, where 11 I i 5 15, 11 d j I 15, i # j ) ,  
who smokes a unique brand of cigarette (C[i, f  +- f, where 6 5 i 5 10, 6 d j  5 10, 
i ZJ?, has a preferred drink CC[i,j] t Z ,  where 21 5 i I 25, 21 s j  I 25, i ZJ], and 
owns a pet (C[i,J1 t #, where 16 5 i 5 20, 16 5 j d 20, i #j). 
The Englishman lives in the ]Red house. (C[13,1] f- = and C[1,13] t =). 
The Spaniard owns a Dog. (C[I4,17] t = and C[17,14] t =). 
Coffee is drunk in the Green house. (C[21,4] +- = and C[4,21] +- =). 
The Ukranian drinks Tea. (C[12,22] t = and C[22,12] t =). 
The Green house is to the right of the Ivory house.I3 (C[4,51 + > and C[5,4] +- <). 
The Old-Gold smoker owns Snails. (C[6,20] +-- = and C[20,6] + =). 
Kook are smoked in the Yellow house. (C[8,31 +- = and Cl3,Sl +- =). 
Milk is drunk in the middle house (dornain[24] =(3)). 
The Norwegian lives in the first house on the left (dornain[l] = (1)). 
The Chesterfield smoker lives next to the Fox owner. (C[10,19] +- next-to and 

Kools are smoked in the house next to the house where the Horse is kept. (C[8,18] t 

The Lucky smoker drinks Orange Juice. (C[9,25] t = and C[25,9] t =). 
The Japanese smokes Parliament. (C[15,7] + = and C[7,15] t =). 
The Norwegian lives next to the Blue house. (C[11,2] + next-to and C[2,11] +- next- 

C[ 19,101 t next-to). I4 

next-to and C[l8,8] t next-to). 

to). 

The query is: “Who drinks water, and who owns the Zebra?”I5 
A program was written that randomly searched for 50 instances of the ZEBRA problem 

at a given bandwidth B(d) ,  such that no two instances represented the same instantiation 
order. This program was run with B(d)  in the range 16 5 B ( d )  5 24. In total, 450 problem 
instances were generated and saved to disk. A program was then developed such that an 
instantiation order could be read from disk, and the corresponding ZEBRA created. This 
involved renumbering the above variables and translating the constraint matrix C. In  turn, 
each of the tree search algorithms was applied to each of the problems, and a 6-tuple was 
captured (I A B W X Y ) ,  where 1 is a unique identifier for that problem instance (1 5 I d 
450), A was the name of the algalrithm (A E {BT, BJ, CBJ, BM, BMJ, BM-CBJ, FC, FC- 

I3Consequently the constraints C 14-51 and C [5,4] are overwritten. 
I4The relation “X next-to Y” is implemented as X-Y = t t .  
ISThe above problem definition differs from that in Dechter (1988, 1990) in that “The Green house is to the 

right of the Ivory house,” rather than “iimmediately to the right of.” This relaxes the problem, resulting in 11 
possible solutions rather than 1. This feature was exploited when developing the algorithms, in that if two 
algorithms were given the same instantiation order they should find the same solution. If they did not, then one 
of the algorithms was clearly incomplete. 
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TABLE 1 .  Consistency Checks. 

Algorithm CL cr Min Max 

BT 
BJ 
CBJ 
BM 
BMJ 

FC 
BM-CBJ 

FC-BJ 
FC-CBJ 

3,858,989 
503,324 
63,212 

396,945 
125,474 
25,470 
35,582 
16,839 
10,361 

9,6 1 6,407 
1,524,193 

193,846 
1,276,415 

361,595 
72,004 
71,012 
29,977 
16,383 

1773 
358 
339 
40 1 
300 
297 
262 
262 
262 

102,267,383 
19,324,081 
3,297,304 

18,405,5 14 
5,214,608 
1,237,283 

802,069 
280,302 
119,767 

BJ, FC-CBJ}), B the bandwidth of that problem instance, W the induced width of that 
ordering, X the number of consistency checks performed by A ,  and Y the number of nodes 
visited by A .  In total, 4050 6-tuples were captured. The experiments and analysis were 
executed on a SUN SPARCstation IPC, and the software was compiled SUN CLOS 4.0, 
developed under SPE. 

5. ANALYSIS OF RESULTS 

In analyzing the experimental data we first attempt to rank the nine algorithms with 
respect to consistency checks performed, and then with respect to the number of nodes 
visited. We then investigate the relationship between consistency checks and the topolog- 
ical parameters W*(d) and B(d) .  Finally, we look at the run times of the algorithms. 

Table 1 shows the performance of the algorithms with respect to the number of 
consistency checks performed. The column is the average number of consistency checks 
performed over the 450 instances of the ZEBRA problem, u is the standard deviation, Min 
is the minimum number of consistency checks performed (the best case over the 450 
instances), Max is the maximum number of consistency checks performed (the worst case 
over the 450 instances). 

Therefore, we may rank the algorithms as follows: FC-CBJ < FC-BJ < BM-CBJ < 
FC < CBJ < BMJ < BM < BJ < BT, where “<” is interpreted as  “on average performs 
less consistency checks than.” The algorithms were compared, one against the other, on 
each problem instance. An entry in Table 2 shows the number of times algorithm X (row 
X) performed less consistency checks than algorithm Y (column Y), over the 450 problem 
instances. A table entry was computed as 2;:: if X (P,) < Y (Pi) then 1 else 0 (where Pi is 
the ith problem, and X (Pi) and Y (PI)  are the number of consistency checks performed by 
algorithms X and Y respectively when applied to that problem). 

Looking at row BM we see that there were 31 instances where BM performed fewer 
checks than BMJ. Over these 31 instances BMJ performed on average 28% more checks 
than BM (and a worst case of 90% more checks). The only distinguishing feature of these 
problem instances was that BJ also performed worse than BM. These were eight instances 
where BM performed fewer checks than BM-CBJ. Over these eight instances BM-CBJ 
performed on average 16% more checks than BM (and a worst case of 40% more). Again, 
the distinguishing feature of these eight problem instances was that CBJ also performed 
worse than BM. In addition, (row BMJ) there were 17 instances where BMJ performed 
fewer checks than BM-CBJ (on average 13% more, worst case 45% more). All of these 17 
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TABLE 2. How Often One Algorithm (Row) Bettered Another (Column). 

BT BJ CBJ BM BMJ BM-CBJ FC FC-BJ 

0 0 0 0 0 0 0 BT - 

BJ 450 - 0 132 0 0 0 0 
CBJ 450 450 - 370 280 0 130 35 
BM 450 318 80 - 31 8 13 5 
BMJ 450 450 170 419 - 17 29 7 
BM-CBJ 450 450 450 442 433 - 286 117 

0 FC 450 450 320 437 421 163 - 
FC-BJ 450 450 415 445 443 333 438 - 
FC-CBJ 450 450 445 448 447 415 440 388 

FC-CBJ 

0 
0 
5 
2 
3 

35 
0 
0 
- 

instances were relatively easy problems (a maximum of 8,170 checks for BM-CBJ), and 
the two algorithms never differed by more than 20%. Therefore it appears from the above 
analysis that whenever BJ performs worse than BM (318 instances) there is a risk that 
BMJ will also perform worse than BM (31 instances). Similarly, when CBJ performs worse 
than BM (80 instances), there is, a risk that BM-CBJ will perform worse than BM (8 
instances). Although BJ always performed better than BT, and CBJ always performed 
better than BJ, this is no guarantee that FC-CBJ will always be better than FC-BJ (or that 
they will be better than FC). For example, there were 12 instances where FC performed 
the same number of checks as FC-BJ, 10 instances where FC was as good as FC-CBJ, 
and 62 instances where FC-BJ was as good as FC-CBJ. 

Table 3 shows the performance of the algorithms with respect to the number of nodes 
visited. BT and BM visit the same number of nodes in the search tree. This is expected, 
since BM is essentially BT modified such that it attempts to avoid redundant consistency 
checks. Similarly BMJ and BJ visit the same number of nodes, and BM-CBJ and CBJ visit 
the same number of nodes. Again, these are expected results, since BMJ is derived from 
BJ and BM-CBJ is derived from CBJ. Again we see evidence of the effects of forward 
checking. The FC hybrids consistently show a low mean number of nodes visited (and a 
consequent reduction in the standard deviation), consistently lower than any of the “back- 
ward-checking” algorithms. We may rank the algorithms as FC-CBJ < FC-BJ < FC < 
BM-CBJ = CBJ < BMJ = BJ < BM = BT, where “<” is read as “on average visits less 
nodes than.” 

TABLE 3. Nodes Visited. 

Algorithm IJ. cr Min Max 

BT 
BJ 
CBJ 
BM 
BMJ 

FC 

FC-CBJ 

BM-CBJ 

FC-BJ 

746,728 
92,842 
11,106 

746,728 
92,842 
11,106 
4,092 
1,877 
1,128 

1,742,012 
270,606 

3 1,409 
1,742,012 

270,606 
3 1,409 
8,643 
3,338 
1,733 

32 1 
68 
64 

32 1 
68 
64 
29 
29 
29 

15,862,302 
3,200,564 

521,643 
15,862,302 
3,200,564 

521,643 
123,403 
30,348 
12,247 
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TABLE 4. Coefficients of Correlation. 

BT 
BJ 
CBJ 
BM 
BMJ 

FC 
BM-CBJ 

FC-BJ 
FC-CBJ 

0.200 (0.322) 
0.124 (0.263) 
0.094 (0.162) 
0.165 (0.342) 
0.13 1 (0.275) 
0.105 (0.181) 
0.107 (0.156) 
0.082 (0.084) 
0.094 (0.081) 

0.186 (0.220) 
0.316 (0.246) 
0.052 (0.076) 
0.101 (0.260) 
0.122 (0.224) 
0.054 (0.079) 
0.100 (0.136) 
0.045 (0.051) 
0.036 (0.030) 

The data was analyzed to determine the effects of bandwidth and induced width on 
the algorithms.16 Table 4 shows the coefficients of correlation rx,y = (S,/(S;S,)(. For a 
sample of size 450 the P = 1% value of rx,y is 0.122. Therefore if r,,y 2 0.122 we can say 
with 99% confidence that there is a linear association between x and y .  Table 4 shows rx,y 
where y is consistency checks (and in parentheses y is the logarithm of consistency checks). 
In the second column x is bandwidth B (d) ,  and in the third column x is induced width 
W*(d). 

In Table 4 there is a statistically significant coefficient of correlation between checks 
and bandwidth for BT, BJ, BM, and BMJ, and between checks and induced width for BT, 
BJ, and BMJ. These are algorithms that check backward and either chronologically back- 
track or jump and step back. However, when we take the logarithm of consistency checks 
we find a significant coefficient of correlation with bandwidth for almost all the algorithms 
(the exceptions being FC-BJ and FC-CBJ). Therefore, it appears that for the majority of 
the algorithms the search effort (measured as consistency checks) is exponential in some 
function of B (d). With respect to the logarithm of induced width, CBJ, BM-CBJ, FC-BJ, 
and FC-CBJ show no significant values of rx,y. Therefore, it appears that B ( d )  is not a 
good predictor of search effort for FC-BJ and FC-CBJ, and neither is W*(d) for CBJ, BM- 
CBJ, FC-BJ, and FC-CBJ. In fact B (d)  and W*(d)  were not reliable predictors of search 
effort for any algorithm; for example, easy problems were found at high values of B (d), 
and difficult problems were found at low values of B ( d ) .  

We conclude this analysis with an investigation of the run times of the algorithms. It 
is uncommon for run times to be reported and there are a number of reasons why this is 
so. First, by measuring run time we may only be measuring the ability of the programmer 
that implemented the given algorithms or the peculiarities of the laboratory platform. 
Second, it may be argued that as we move to problems where the cost of evaluating 
constraints is high, our measure should only be the number of consistency checks per- 
formed during the search process. However, by measuring run time we get an indication 
of the overheads associated with particular algorithms over the ZEBRA problem, and that 
is the purpose of this investigation. The algorithms were applied to the 50 problems of 
bandwidth, 16 and the total run time was measured (in CPU seconds) for each algorithm, 
along with the total number of consistency checks performed over the 50 problems. The 
“checking rate” for each algorithm was then estimated. Table 5 shows, for each algorithm, 
the average number of consistency checks performed’ per CPU second (the checking rate), 

I6Width was not considered, the reasan being that the width of the ZEBRA is either 5 or 6 .  This is too small 
a range of x values. 
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TABLE 5. R.un Time (CPU seconds). 

Algorithm ChecksISec CL 

BT 11,973 322 
BJ 8,418 59.8 
CBJ 7,346 8.6 
BM 1,151 344 
BMJ 3,806 32.9 
BM-CBJ 4,592 5.5 
FC 7,569 4.7 
FC-BJ 7,102 2.4 
FC-CBJ 6,503 1.6 

Max 

8,541 
2,295 

488 
15,990 
1,370 

269 
105 
39 
18 

an estimate of the average CPU ruin time p (computed as p from Table 1 times the checking 
rate), and the worst-case CPU run time Max (computed as Max from Table 1 times the 
checking rate). 

The table entries accurately ireflect the observed performance of the algorithms over 
the ZEBRA problem. BM was the most expensive algorithm to run. The reason for this 
is due to the relative simplicity in evaluating constraints within the ZEBRA compared with 
the costs of accessing the array element mcl[i,k] in bm-label and updating mbl during each 
call to bm-unlabel. In fact the mlost costly aspect of BM is during backtracking. When a 
call is made to bm-unlabel(i,consistent) the loop of line 6 is called, updating the array 
element mbl[j’l f o r j  in the range i I j 5 n. BM trades consistency checks against array 
accesses, and in the ZEBRA this is not an advantage. The “checking rates” of BMJ and 
BM-CBJ are significantly better than BM. The reason for this is due to the reduction in 
nodes visited by these two algorithms, with a subsequent reduction in updates of mbl. 
That is, BMJ and BM-CBJ mak.e substantially fewer calls to bmj-unlabel and bm-cbj- 
unlabel respectively. 

It has been argued by Ginsberg (1990) and others that when it comes to ranking the 
algorithms more should be made of timings and less should be made of consistency checks 
or nodes visited. The ranking with respect to run times is FC-CBJ < FC-BJ < FC < BM- 
CBJ < CBJ < BMJ <BJ < BT <: BM (reading “<” as “on average solves the ZEBRA in 
less time than”). This ranking is in broad agreement with the previous two (checks and 
nodes visited). We see FC overtaking BM-CBJ (FC performs more checks, but does them 
nearly twice as fast as BM-CBJ), and BJ and BT overtaking BM (for the same reason). 
Looking at run times we might group the algorithms into three lanes: in the fast lane we 
would have those that (on average) gave a response in less than 10 sec (FC-CBJ, FC-BJ, 
FC, BM-CBJ, CBJ), in the middle lane we have those that gave a response in about a 
minute (BMJ and BJ), and in the crawler lane we have those that take 5 min or more (BT 
and BM). Therefore, to stay in the fast lane we need to use FC or CBJ, and to get the 
greatest speed we can combine them. 

6. CONCLUSION 

The process of combining ti-ee search algorithms has been described for four new 
algorithms: BMJ, BM-CBJ, FC-BJ, and FC-CBJ. It seems likely that this approach may 
be applied to other algorithms. Immediate candidates for this process might be the nine 
full arc consistency hybrids in Nadel (1990) and GBJ (Dechter 1990). Therefore we have 
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(at least) 4 choices of backward move (bt-unlabel, bj-unlabel, cbj-unlabel, and gbj-unlabel) 
and 12 choices of forward move (bt-label, bm-label, fc-label, and 9 others due to Nadel). 
Therefore, we should be able to synthesize (at least) 48 algorithms. 

It was predicted that the BM hybrids, BMJ and BM-CBJ, could perform worse than 
BM because the advantages of backmarking may be lost when jumping back. Experimental 
evidence supported this. Therefore, a challenge remains. How can the backmarking be- 
havior be protected? It was also noted that backmarking requires a static order of instan- 
tiation in order to maintain the integrity of its search knowledge (arrays mcl and mbl). 
This suggests that BM, and the BM hybrids, cannot exploit heuristic knowledge during 
the search process. This may be considered as a severe limitation on the worth of these 
algorithms. However, this is not the case with the FC hybrids. FC-BJ and FC-CBJ can 
exploit heuristic knowledge. The functions fc-label, fc-bj-label and fc-cbj-label can be 
modified such that they select the current variable with the assistance of some heuristic. 
This suggests further experiments, similar to those in Dechter and Meiri (1989). 

There is room for improvement within FC, BJ, and CBJ. These algorithms can be 
modified such that they detect infeasible values during the search process, and remove 
them once and for all. For example, in FC if the instantiation v[i] +- k forward checks 
against v [ J ~ ,  and this annihilates current-domain[J1, and no other variable forward checks 
against v b l ,  we can remove k from domain[il. This corresponds to detecting 2-inconsis- 
tencies. A similar approach can be taken when checking backward in BJ. In CBJ, when 
we jump back from v[i] to v [ h ] ,  and v[i] is in conflict only with v[h], we have again 
discovered a 2-inconsistency (and in Prosser 1992 it is shown that we may discover k- 
inconsistencies). There are further enhancements possible with CBJ. When jumping back 
from v[i] ,  over v[~cJ ,  to v[h] we do not need to reset current-domain[Jl if conf-setl[JI is a 
subset of the past variables. When this approach is taken we realize a type (a) saving as 
in BM. This suggests that it is possible to incorporate a partial backmarking capability into 
FC-CBJ. Therefore, whenever fc-cbj-unlabel jumps back from v[i] to v[h] it might return 
values to current-domain[J1 only when h 5 max-list(conf-set[J), for allj,  where h < j  5 
n. This gives us’ algorithm FC-PBM-CBJ, where PBM is “partial” backmarking, and a 
distributed version of that algorithm has been reported by Luo, Hendry, and Buchanan 
( 1992). 

It was observed, over the 450 test cases, that the “champion” was FC-CBJ, on average 
performing fewer consistency checks than any other algorithm and visiting fewer nodes in 
the search tree. In the laboratory (SUN SPARCstation IPC, SUN CLOS 4.0, ZEBRA) 
this resulted in the best run times. Caveat emptor. It is naive to say that one of the 
algorithms is the “champion.” The algorithms have been tested on one problem, the 
ZEBRA. It might be the case that the relative performance of these algorithms will change 
when applied to a different problem. For example, it is easy to imagine a case where BT 
will outperform any algorithm based on forward checking (FC, FC-BJ, and FC-CBJ). 
Imagine we have a problem with n variables, where each variable has a domain of size m. 
Assume that the first value in the domain of each of the variables is consistent with the 
past variables. This would result in BT performing X ; i  consistency checks, whereas FC 
would perform ZL;mXi consistency checks. Although such a problem appears overly 
artificial, we must taken into consideration other features. If the domains of variables are 
large (possibly continuous) any style of forward checking may be hopeless, and back- 
marking would require inordinate amounts of storage for the array mcl. Even if the nature 
of the variables’ domains is not an issue, we might deny ourselves the opportunity to 
exploit heuristic knowledge, as noted above. Therefore, when selecting one of these 
algorithms for a particular application the designer should take an exploratory approach. 
If it is an appIication where FC is known to perform well, we should expect the FC-CBJ 
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will be even better. If it is an application where backward checking is required (BT or 
BM), again we should incorporate CBJ. 
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APPENDIX A. PROGRAMMING CONVENTIONS 

The algorithms are written in a pseudocode modeled on a combination of Pascal and 
Common Lisp Object System (CLOS) and are essentially an ehanced version of the 
language described in Appendix I1 of Nadel (1989). 

The assignment operator t has been used in place of the more conventional := 

All reserved words are written in uppercase (such as BEGIN, END, FOR) with the 

The FOR-WHILE loop is used extensively. The form of this construct is as follows: 

(becomes equal to). 

exceptions of nil, true, and false. 

FOR v t lower TO upper WHILE condition DO body 

The loop initializes the variable v to be the integer value lower. If v I upper and 
condition is true then body is executed. On each subsequent iteration of the loop the 
variable v is incremented, and if (i) v 5 upper, and (ii) condition = true, then body is 
executed again. The loop terminates when either v > upper or condition isfalse. On 
termination of the loop, v is available and retains its most recent value. Thus, the loop 
terminates with v having a value one greater than after the last execution of body. 
It has been assumed that iteration is allowed over a list. Assume S is a finite list of 
discrete values: 

FOR v t EACH ELEMENT OF S WHILE condition DO body 

On first executing the above construct, the condition is tested, and if condition is true, 
v is then assigned the first element of the list S and body is executed. On each 
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subsequent iteration of the loop the condition is tested, and if (i) condition is true, and 
(ii) the list has not been exhausted, then v is assigned the next element from the list S 
and body is executed again. 'The loop terminates when either condition is false or the 
list S has been exhausted. On termination of the loop, v is available, and v retains its 
most recent value. 
It is assumed that all parameters to a function or procedure are treated as reference 
variables. 
The statement retum(x) terminates a function and delivers as a result the value of x. 
Semicolons are used to terminate successive statements. A statement is not terminated 
by a semicolon if it is terminated by an END. 
For the sake of brevity, type declarations of variables are assumed to be implicit. 
Therefore the first occurrence of a variable is taken as an implicit declaration. 
It is assumed that the language has a list processing capability, and that the language 
performs garbage collection. The list processing functions are described below. 

list: list constructs and returns a list of its arguments. For example: x t list(1,2,3,4) 
assigns to the variable x the list (1 2 3 4) .  In the functions that follow it will be 
assumed that the list x = (1 2 3 4). 

push: pmh(e ,  f) pushes the element e onto the list 1 and delivers as a result the modified 
list 1. For example: let y c- lisr(1,2,3). A call to push(3,y) delivers as a result the list 
(3  1 2 3 )  and y = (3  1 2 3) .  

pushnew: pushnew(e,r) pushes the element e onto the list 1 if e is not already a member 
of 1. Therefore pushnew(e,r) is equivalent to 

IF not member(e, r) THEN push(e, 0 
For example: let y t 1isf(1,2,3,). A call to pushnew(3,y) delivers as a result the list 
(1 2 3 )  andy  = (1 2 3). 

pop: p o p ( f )  delivers as a result the first element of the list 1 and destructively removes 
that element from the list 1. For example: let y + list(1,2,3,4). A call to p o p b )  will 
deliver the result 1, and y is now ( 2  3 4). 

remove: remove(e,r) delivers as a result the list 1 with the first occurrence of the 
element e removed. For example: let y +- list(1,2,3,2). A call to remove(2,y) delivers 
the list ( 1  3 2) ,  and y = (1 2 3 2) (that is, y is not modified). 

set difference: set-differenct.(ll,12) delivers as a result the list of elements in I1 which 
are not in 12. For example: let x t list(1,2,3,4) and y + fist(2,3,5). A call to set- 
difference(x,y) delivers the list (1 4). 

union: union(ll,12) delivers as a result a new list containing everything that is an 
element of either of the lists 11 and 12. For example: let x +- 1ist(1,4,3) and y +- 
list(l,3,5). A call to u n i o n ( ~ , ~ )  delivers as a result the list ( I  4 3 5) .  

max-list: rnux-list(i) delivers, the largest value in a list of integers. If 1 is empty (nil) 
then mux-fist(nil) delivers-max-int. 


