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Abstract 

Van Hentenryck, P., Y. Deville and C.-M. Teng, A generic arc-consistency algorithm and its 
specializations, Artificial Intelligence 57 (1992) 291-321. 

Consistency techniques have been studied extensively in the past as a way of tackling 
constraint satisfaction problems (CSP). In particular, various arc-consistency algorithms 
have been proposed, originating from Waltz's filtering algorithm [27] and culminating in the 
optimal algorithm AC-4 of Mohr and Henderson [16]. AC-4 runs in O(ed 2) in the worst 
case, where e is the number of arcs (or constraints) and d is the size of the largest domain. 
Being applicable to the whole class of (binary) CSP, these algorithms do not take into 
account the semantics of constraints. 

In this paper, we present a new generic arc-consistency algorithm AC-5. This algorithm is 
parametrized on two specified procedures and can be instantiated to reduce to AC-3 and 
AC-4. More important, AC-5 can be instantiated to produce an O(ed) algorithm for a 
number of important classes of constraints: functional, anti-functional, monotonic, and their 
generalization to (functional, anti-functional, and monotonic)piecewise constraints. 

We also show that AC-5 has an important application in constraint logic programming 
over finite domains [24]. The kernel of the constraint solver for such a programming 
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language is an arc-consistency algorithm for a set ot basic constraints,  We p r o ~  ~ tilat A ( - 5 .  
in conjunct ion with node consistencv, provides a decision procedure for these c~nst ra in~ 
running in time O(ed). 

1. Introduction 

Many important problems in areas like artificial intelligence, operations 
research, and hardware design can be viewed as constraint satisfaction prob- 
lems (CSP). A CSP is defined by a finite set of variables taking values from 
finite domains and a set of constraints between these variables. A solution to a 
CSP is an assignment of values to variables satisfying all constraints, and the 
problem amounts to finding one or all solutions. Most problems in this class are 
NP-complete, which means that backtracking search is an important technique 
in their solution. 

Many search algorithms (see e.g. [2, 6-8, 11, 19]), preprocessing techniques, 
and constraint algorithms (see e.g. [12, 14, 16, 18, 27]) have been designed and 
analyzed for this class of problems (see the reviews [13, 20] for a comprehen- 
sive overview of this area). In this paper, we are mainly concerned with 
(network) consistency techniques, and arc consistency in particular. Con- 
sistency techniques are constraint algorithms that reduce the search space by 
removing, from the domains and constraints, values that cannot appear in a 
solution. Arc-consistency algorithms work on binary CSP and make such that 
the constraints are individually consistent. Arc-consistency algorithms have a 
long history of their own; they originate from the Waltz filtering algorithm [27] 
and were refined several times [12] to culminate in the optimal algorithm AC-4 
of Mohr and Henderson [16]. AC-4 runs in O(ed'-), where e is the number of 
arcs in the network and d is the size of the largest domain. 

Consistency techniques have recently L been applied in the design of con- 
straint logic programming (CLP) languages, more precisely in the design and 
implementation of CHIP [5, 24]. CHIP allows the solving of a variety of 
constraints over finite domains, including numerical, symbolic, and user- 
defined constraints. It has been applied to a variety of industrial problems and 
preserves the efficiency of imperative languages while shortening the develop- 
ment time significantly. Examples of applications include graph coloring, 
warehouse location, car sequencing, and cutting stock (see for instance [4, 24]). 
The kernel of CHIP for finite domains is an arc-consistency algorithm based on 
AC-3 for a set of basic binary constraints. Other (non-basic) constraints arc 
approximated in terms of the basic constraints. 

The research presented here originated as an attempt to improve further the 
efficiency of the kernel algorithm. This paper makes two contributions. First, 

Note that ,  Mackworth [12] ment ioned as early as 1977 the potential value of consistency 

techniques  for p rogramming  languages.  
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we present a new generic arc-consistency algorithm AC-5. The algorithm is 
generic in the sense that it is parametrized on two procedures that are specified 
but whose implementation is left open. It can be reduced to AC-3 and AC-4 by 
proper implementations of the two procedures. Moreover, we show that AC-5 
can be specialized to produce an O(ed) arc-consistency algorithm for important 
classes of constraints: functional, anti-functional, and monotonic constraints, as 
well as their piecewise forms. Second, we show that the kernel of CHIP 
consists precisely of functional and monotonic constraints and that AC-5, in 
conjunction with node consistency, provides a decision procedure for the basic 
constraints running in time O(ed). 

This paper is organized as follows. Section 2 describes the notation used in 
this paper and contains the basic definitions. Section 3 describes the generic arc- 
consistency algorithm AC-5 and specifies two abstract procedures ARcCoNs 
and LOcALARCCONS. Section 4 presents various representations for the do- 
mains. Sections 5-7 show how an O(ed) algorithm can be achieved for various 
classes of constraints by giving particular implementations of the two proce- 
dures. Section 8 introduces the concept of piecewise constraints, and Sections 
9-11 extend the results for piecewise functional, anti-functional, and mono- 
tonic constraints. Section 12 shows that AC-5, in conjunction with node 
consistency, provides an O(ed) decision procedure for the basic constraints of 
CLP over finite domains. Sections 13 and 14 discuss related work and state the 
conclusions of this research. 

2. Preliminaries 

We take the following conventions. Variables are represented by the natural 
numbers 1 . . . . .  n. Each variable i has an associated finite domain D i. All 
constraints are binary and relate two distinct variables. If i and j are variables 
(i < j) ,  we assume, for simplicity, that there is at most one constraint relating 
them, denoted Cij. As usual, Cij(v, w) denotes the boolean value obtained 
when variables i and j are replaced by values v and w respectively. We also 
denote by D the union of all domains and by d the size of the largest domain. 

Arc-consistency algorithms generally work on the graph representation of 
the CSP. We associate a graph G to a CSP in the following way. G has a node i 
for each variable i. For each constraint Cij relating variables i and j (i < j) ,  G 
has two directed arcs, (i, j )  and (j ,  i). The constraint associated to arc (i, j )  is 
Cij and the constraint associated to (j ,  i) is Cjg, which is similar to C~j except 
that its arguments are interchanged. We denote by e the number of arcs in G. 
We also use arc(G)and node(G) to denote the set of arcs and the set of nodes 
of graph G. 

We now reproduce the standard definitions of arc consistency for an arc and 
a graph. 
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Definition 1. Let (i, j ) E  arc(G).  Arc (i, j)  is arc-consistent with respect to l) i 

and  D i iff Vv @ D~, 3w E D/" (',i(v, w). 

Definition 2. Let ,@ = D~ x - • • × D,,. A graph G is arc-consistent will respect to 

iff V(i, j )  E arc(G):  (i, j )  is arc-consistent with respect to Ds and D,. 

The  next definition is useful in specifying the outcome of an arc-consistent 

algorithm. 

Convention 3. Let ,0P=D~ x . . . × D , ,  and ? , ~ ' = D  I × . . . ×  D,',. : P L S ~ '  is 

defined as (D I U DI)  x - . -  × (D,, U D,'~), and :JP ~ ~ '  is defined as (D 1 C_ DI)  
& . . . & ( D ,  C_ D;,). 

Definition 4. Let ~ = D~ × . . -  × D,,, ?? '= D'~ × . . .  x D,',. and ? P ' ~  `0P. !P' is 

the largest arc-consistent domain  for  G in SP iff G is arc-consistent with respect 

to :9 '  and there is no other 22" with ~P' E ~ "  ~ ~ such that G is arc-consistent 

with respect to ,°2". 

We now show that the largest arc-consistent domain always exists and is 

unique. 

Theorem 5 (Existence and uniqueness). Let ?~ = D~ x . . .  × D,,. The largest 
arc-consistent domain / ' o r  G in ~ exists and is unique. 

Proof.  To prove uniqueness, note that if G is arc-consistent with respect to 72' 

and with respect to ~",  then G is also arc-consistent with respect to ~P' k] ?P". 
Hence  the union of all the arc-consistent domains (included by ~ in 22) for G 

is also arc-consistent and is the largest arc-consistent domain for G in ~ by 
construction. Existence is straightforward since 0 x - . - x  0 is arc-consis- 

tent. [] 

The  purpose of an arc-consistency algorithm is, given a graph G and a set ~ ,  
to compute  ~ ' ,  the largest arc-consistent domain for G in 9~0. 

3. The new arc-consistency algorithm 

All algorithms for arc consistency work with a queue containing elements  to 
reconsider.  In AC-3,  the queue contains arcs (i, j ) ,  while AC-4 contains pairs 
(i, v), where i is a node and v is a value. The novelty of AC-5 is that its queue 
contains elements  ((i,  j ) ,  w) ,  where (i, j )  is an arc and w is a value that has 
been  removed from D i and justifies the need to reconsider arc (i, j) .  
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To present AC-5, we proceed in several steps. We first present the necessary 
operations on queues. Then we give the specification of the two abstract 
procedures ARCCONS and LOCALARCCONS. Finally we present the algorithm 
itself and prove a number of results. 

3.1. Operations on queues 

The operations we need are described in Fig. 1. Procedure INITQUEUE simply 
initializes the queue to an empty set. Function EMPTYQUEUE tests if the queue 
is empty. Procedure ENQUEUE(i, A, Q) is used whenever the set of values A is 
removed from D r It introduces elements of the form ((k, i), v) in the queue 
Q where (k, i) is an arc of the constraint graph and v E A. Procedure DEQUEUE 
dequeues one element from the queue. In all specifications, we take the 
convention that a parameter p subscripted with 0 (i.e. P0) represents the value 
of p at call time. 

All these operations on queues except Procedure ENQUEUE can be achieved 
in constant time. Procedure ENQUEUE can be implemented to run in O(s), 
where s is the number of new elements to insert in the queue. The only 
difficulty in fact is Procedure ENQUEUE. It requires a direct access from a 
variable to its arcs (which is always assumed in arc-consistency algorithms). For 
most algorithms, Procedure ENQUEUE can be implemented to run in O(A) by 
using a lazy distribution of v on the arcs. To achieve this result, the queue can 
be organized to contain elements of the form ({ A 1 , . . . ,  A m }, v),  where A k is 
an arc and v is a value. Procedure ENQUEUE(i, A, Q) adds an element 
( { A  1, . . . ,  Am},  v)  to the queue, where the A k are arcs of the form (j, i), for 
each v E A. Procedure DEQUEUE picks up an element ( { A 1 , . . .  , Am} , w) 
with m >0 ,  removes an A k = (i, j )  from the set, and returns i, j, and w. 

procedure INITQUEuE(out Q) 
Post: Q = {}. 

function EMPTYQUEUE(in Q): Boolean 
Post: EMPTYQUEUE <::> (Q = {}). 

procedure DEQUEUE(inout Q, out i, j, w) 
Post: ((i, j),  w~ E Q0 and Q = Qo\((i ,  j ) ,  w) .  

procedure ENQUEUE(in i, A, inout Q) 
Pre : A C_ D i and i E node(G). 
Post: Q = Q0 u {((k, i), v ) l ( k ,  i) E arc(G) and v ~ A}. 

Fig. 1. The QUEUE module. 
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3.2. Specification oJ" the parametric procedures 

Figure 2 gives the specification of the two subproblems. Their implementa-  

tions for various kinds of constraints are given in the next sections. They can 
also be specialized to produce AC-3 and AC-4 from AC-5. 

Procedure ARCCONS(i, j, A) computes  the set of values A for variable i that 

are not supported by D/. Procedure LOCALARCCONS(i, j, w, A) is used to 

compute  the set of values in D no longer supported because of the removal  of 

value w from Dj. 

Note that the specification of LOCALARCCONS gives us much freedom in the 

result A to be returned. It is sufficient to compute A~ to guarantee the 

correctness of AC-5. However ,  the procedure gives us the opportuni ty to 
achieve more pruning (up to Az) while still preserving the soundness of the 

algorithm. In the extreme case where A~ is computed,  the element  w is thus not 

taken into account and LOCALARCCONS has the same result a s  ARCCONS] 

3.3. Algorithm AC-5 

We are now in a position to present Algorithm AC-5. The algorithm is 

depicted in Fig. 3 and has two main steps. In the first step, all arcs are 

considered once and arc consistency is enforced on each of them. Procedure 

REMOVE(A, D)  removes the set of values A from D. The second step applies 

LOCALARCCONS on each of the elements of the queue, possibly generating new 

elements  in the queue. 

3.4. Properties o f  A C-5 

We first prove the partial correctness of AC-5. Terminat ion,  

straightforward,  is proven in the complexity results. 

which is 

procedure ARCCONs(in i, j, out ~) 

Pre: (i, j )  E arc(G),  D i ~= 0, and D i =/- O. 
Post: J = <v • D, I V w •  D,= C,,(v, w)} 

procedure LOCALARCCONS(in i, j ,  w,  out A) 
Pre: (i, j ) E a r c ( G ) ,  w ~ D j ,  D,~=O, and D ~ # 0 .  

Post: A 1C A C A 2, 
with g I = {v • Dil C,j(v, w) and V w ' •  Dj: ~C,j(v ,  w')},  

A 2 = {v • D i ] V w ' •  Oi: -~Cii(v, w')}.  

Fig. 2. Specification of the procedures. 

: In fact, Procedure LOCALARCCONS can be made even less restrictive by replacing J~ by the set 
Jo = J, N {vlVw': ((i, j), w') E Q ~ ~C,,(v, w')}. This idea simplifies some of the algorithms 
but is not explored in this paper. 
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Algorithm AC-5 

Post: let ~0 = D10 × " "" × Dno, 
~ = D l X - - - x D  n 

G is maximally arc-consistent with respect to g in g0. 
begin AC-5 

1 INITQUEUE(Q) 
2 for each (i, j )  E arc(G) do 
3 begin 
4 ARCCONS(i, j, A); 
5 ENQUEUE(i, A, Q); 
6 REMOVE(A, Di) 

7 end; 
8 while not EMFrvQuEuE(Q) do 
9 begin 

10 DEQUEUE(Q, i, ], w); 
11 LOCALARCCONS(i, j, w, A); 
12 ENQUEUE(i, A, Q); 
13 REMOVE(A, Di) 

14 end 
end AC-5 

Fig. 3. The arc-consistency algorithm AC-5. 

Lemma 6. Let ~ * = D ~ × • • • x D* be the largest arc-consistent domain for G 

in go. The invariant g * E  g is preserved in AC-5  at lines 2 and 8. 

Proof. The invariant holds for the first execution of line 2, since Di = D~0 and 
D* C_ Dio. Execution of line 4 preserves the invariant because v E A ~ v~ '  
D*, since g *E g and g * is arc-consistent. It follows that D* C_ Oi\A and lines 
5 and 6 also preserve the invariant. The proof for the invariant in line 8 is 
similar. [] 

Theorem 7 (Partial correctness). Algorithm AC-5  is partially correct. 

Proof. We first show that G is arc-consistent with respect to g when AC-5 
terminates. If we assume the contrary, there must exist (i, j )  E arc(G) and 
v E D i such that Vw E Dj: -nCij(v, w). The value v must then be supported by 
some elements of D/0, otherwise it would have been removed from D i at line 6. 
Let w 1 . . . . .  w m (m > 0) be all the elements of D/o supporting v. The values w k 
(1 ~< k ~< m) are thus removed from D/0 during the execution, and elements of 
the form ( ( j , i ) ,  Wk) are inserted in the queue. Since AC-5 terminates, 
LOCALARCCONS(j, i, Wt, A) in line 11 is executed from some 1 (1 ~< l ~< m) with 
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procedure INITOUEUE(OUt Q) 
Post: V(k,  i) ~ arc(G): 

Status[(k, i), u]-- present if v C D~, 

- r e j e c t e d  if vSZD i. 

function EMPTYQUEUE(in Q) 
Post: V(k, i) ~ arc(G), Vv: 

Status[(k, i), v] ~- s u s p e n d e d .  

procedure DEQUEUE(inout Q, out i, j, w) 
Post: Status[(i, j ) .  w] - r e j  e c t e d .  

procedure ENQUEUE(in i, A inout Q) 
Pre: V(k, i) C arc(G),  Vv C A: 

Statusl(k, i), v] - p r e s e n t .  
Post: V(k, i) C arc(G), Vu C A: 

Status[(k, i), v] - s u s p e n d e d .  

Fig. 4. Thc Q)lrl!t,E module on structure Status. 

w k ~ ' D  i for all k (1 ~< k ~< m). By definition of L O C A L A R C C O N S ,  U ~ A holds 
and line 13 removes v from D~, resulting in a contradiction. 

Now, sincc 2P':~ 2@ by Lemma 6, where ~?* is the largest arc-consistent 
domain for G in ~ ,  it follows that !P ~JP*. This proves the partial correctness 
of AC-5. [] 

We now turn to the complexity results. To simplify the presentation, we 
introduce a new data structure Status which is a two-dimensional array, the first 
dimension being on arcs and the second on values. We also give the effect of 
the procedures manipulating the queue on Status in Fig. 4. Note that the actual 
implementation does not need to perform these operations; they are just 
presented here merely to ease the presentation and simplify the theorem. 

Algorithm AC-5 preserves the following invariant on lines 2 and 8 for Status: 

Status[(k, i), v] = present 
= suspended 

= rejected 

iff u E D~, 
iff u ~ ' D  i & ((k,  i), v) E ( ) ,  
iff v S g D i &  ( ( k , i ) , v ) f Z Q .  

We are now in a position to prove the following theorem. 

Theorem 8. Algorithm AC-5  has the following properties': 
(1) The invariant on data structure Status holds' on lines 2 and 8. 
(2) AC-5  enqueues and dequeues at most O(ed)  elements, and hence the size 

of  the queue is at most O(ed).  
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(3) AC-5 always terminates. 
(4) / f  s 1 . . . . .  Sp are the numbers of  new elements in the queue on each 

iteration at lines 5 and 12, then s 1 + .. • + Sp <~ O(ed). 

Proof. Property (1) holds initially. Assuming that it holds in line 2, it also 
holds after an iteration of lines 4-6. Line 5 makes sure that ( ( j ,  i), v)) is 
s u s p e n d e d  for all v ~ A and puts them on the queue, while line 6 removes A 
from D r So the invariant holds at the first execution of line 8. Execution of 
lines 10-13 preserves the invariant, lines 10 and 11 maintain it on their own, 
and lines 12 and 13 respectively make sure that ( ( j ,  i), v) is s u s p e n d e d  for 
all v E A and remove A from D i. 

Property (2) holds because each element of Status is allowed to make only 
two transitions: one from p r e s e n t  to s u s p e n d e d  through Procedure EN- 
QUEUE and one from s u s p e n d e d  to r e j e c t e d  through Procedure DEQOEUE. 
Hence there can only be O(ed) dequeues and enqueues. 

Properties (3) and (4) are direct consequences of property (2) and the 
preconditions of ENQUEtrE on the data structure Status. [] 

The space complexity of AC-5 depends on the maximal size of Q and on the 
size of the domains of the variables. The above theorem can be used to deduce 
the overall complexity of AC-5 from the complexity of Procedures ARcCONS 
and LOCALARCCONS. 

Theorem 9. 

(1) I f  the time complexity o f  ARCCONS is O(d 2) and the time complexity o f  
LOCALARCCONS is O(d),  then the time complexity of  AC-5 is O(ed2). 

(2) I f  the time complexity of  ARCCONS is O(d) and the time complexity o f  
LOCALARCCONs(i, j, w, A) /S O(A), 3 then the time complexity of AC-5 is 
O(ed). 

AC-3 is a particular case of AC-5 where the value w is never used in the 
implementation of Procedure LOCALARCCONS 4 (i.e. LOCALARCCONS is im- 
plemented by ARcCoNs). In this case, LOCALARCCONS and ARcCONS are O(d 2) 
and AC-5 is O(ed3). The space complexity is O(e +nd) ,  since the size of the 
queue can be reduced to O(e). 

AC-4 is also a particular case of AC-5 where the implementation of 
Procedure LOCALARcCor~s does not use node i, but maintains a data structure 
of size O(ed2). In this case, ARcCONs initializes the data structure and is 
O(d2), and LOCALARCCONS is O(d). The resulting algorithm is O(ed2). 

30(A) really means O(max(1, [A[)), since it should be O(1) when A is empty. 
4 Strictly speaking, in AC-3, arc(i, j)  is not enqueued when arc(j, i) is made consistent. This 

optimization could be added in AC-5 by adding j as an argument to ENQUEUE and adding the 
constraint k ~ j to its definition. 
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Since O(ed ~) is the optimal time complexity, there is no way to reduce the 
complexity other than considering particular classes of constraints, allowing us 
to implement,  in particular, Procedure ARCCONS in O(d) .  Note also that an 
arc-consistency algorithm in O(ed) is optimal for a subclass of constraints, 

since it is reasonable to assume that we need to check each value in each 
domain at least once. In the following sections, we characterize classes of 
constraints that guarantee that Procedure ARCCONS is O(d)  and Procedure 
LOCALARCCONS is linearly related to the size of its output set d hence resulting 

in an AC-5 algorithm for these classes running in time O(ed) and space 
O(ed + nd).  

4. Representation of domains 

Particular implementations of ARCCONS and LOCALARCCONS perform oper- 

ations on the domains depicted in Fig. 5. As the reader will notice, the 
operations we define on the domains are more sophisticated than those usually 
required by arc-consistency algorithms. In particular, they assume a total 

function SIzE(in D): Integer 

Post: S,zE---ID[. 

procedure REMOVEELEM(in v, inout D) 
Post: D = Do\ {v}.  

function MEMBER(in V, D): Boolean 
Post: MEMBER ¢:> (V C D). 

function MIN(in D): Value 
Post: MIN = min{v C D}. 

function MAx(in D): Value 
Post: MAX = max{v ~ D}. 

function Succ(in v, D):  Value 
Post: Succ = min{v'  E D Iv' > v}, 

function PREP(in v ,  D): Value 
Post: PRED = max{v'  ~ D lv'  < v}, 

= 3 C  

if 3v '  C D: v ' >  v, 
otherwise. 

if 3 v ' C D : v ' < v ,  
otherwise. 

Fig. 5. The DOMAIN module. 
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ordering on the domain D for reasons that will become clear later. 5 The 
additional sophistication is necessary to achieve the bound O ( e d )  for mono- 

tonic constraints. 
The  primitive operations on domains are assumed to take constant time. We 

present here two data structures that enable to achieve this result. 
The first data structure assumes a domain of consecutive integer values and 

is depicted in Fig. 6. The field s ize  gives the size of the domain, the fields rain 

and max are used to pick up the minimum and maximum values, the field 
e l e m e n t  to test if a value is in the domain, and the two fields p r e d  and s u c c  to 

access in constant time the successor or predecessor of a value in the domain. 
The  operation REMOVEELEMENT must update all fields to preserve the semantics. 
This can be done in constant time. 

When the domain is sparse, the data structure depicted in Fig. 7 can be used. 
It reasons about indices instead of values and uses a hash table to test 
membership in the domain. Although the time complexity of membership is 
theoretically not O(1),  under reasonable assumptions, the expected time to 
search for an element is O(1) [1]. 

For ease of presentation, we assume in the rest of the paper that AC-5 stops 
as soon as a domain becomes empty. 

Let  S = { b , . . . , B }  

D i = {v  I . . . .  , v , , ) C _ S  with Ok<Ok+ 1 and m > O .  
Syntax 

D i . s i z e :  integer 
O i . m i n :  integer E S 
O i . m a x :  integer E S 
D i . e l e m e n t :  array [ b . . B ]  of booleans 
D~.succ:  array [b. .B] of integers C S 
D i . p r e d :  array [b. .B] of integers E S 

Semantics 
D i . s i z e  = m 

O i . rain = o 1 

O i . m a x  = o m 

D i . e l e m e n t [ o  ] iff v E D i 

Di.SUCC[Vk] = V,+ 1 (1 ~< k < m) 
O i . s u c C [  V m ] = -I-oo 

D r p r e d [ V k ÷ l ]  = v k (1 ~< k <  m) 
D r p r e d [ v l ]  = -oo  

Fig. 6. DOUAIN data structure: consecutive values. 

5 Note  that if D is made up of several unconnected domains with distinct orderings, it is always 
possible to transform the underlying partial ordering into a total ordering. 
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Let  S = { e  Z . . . . .  e , }  with e k < e  k~l 

D~ = {e,,, . . . . .  e,.,} C_ S with v~ <: v~.+~ and m > 0  
Syntax 

D i . s i z e :  integer 

D i . m i n :  integer C {1 . . . . .  a} 

D~.ma x :  inter ~ { 1 . . . . .  a} 

D~. e l emen t :  

set of  couples  (e,  v)  with e ~ S and v ~ {0 . . . . .  a} ,  

organized  as a hash table on key e. 

D , . v a l u e :  array [1..a] of  e lements  E S 

D i . s u c c :  array [1..a] of  integers E {1 . . . . .  a} 

D i . p r e d :  array [ l . . a ]  of  integers C {1 . . . . .  a} 

Semantics 
D~.s i ze  = m 

D , . m i n  = v~ 

O i. m a x  - u m 

D ~ . e l e m e n t ( e )  = v (with e = e~.), if e E Di 

= 0. otherwise 

D i . v a l u e [ v  ] = e ,  

D ~ . s u c c [ v k ]  = v~ ~ (1 ~< k < m) 
Di.succ[v , , , ]  = + ~ 

D i . p r e d [ v k + l ]  = v k (1 ~< k < m) 

D i . p r e d [ V l ]  = - ~  

Fig. 7. DOMAIN data stucture: sparse values. 

5. Functional constraints 

Definition 10. A constra int  C is f u n c t i o n a l  with respect to a domain  D iff for  all 

v E D (respectively w C  D )  there exists at most  one w ~ D (respectively 

v E D )  such that  C ( v ,  w) .  

Note  that  the above definition is parametr ized  on a domain  D. Some 

constra ints  might  not  be functional  in general  but become  functional  when 
restr icted to a domain  of  values. An  example  of  a functional  constraint  is 
x = y + 5 .  

Convention 11. If  Cij is a functional  constraint ,  we denote  by f j ( v )  (respective- 

ly ~i(w)) the value w (respectively v) such that  Cil (v ,  w) .  If such a value does 

not  exist, the funct ion denotes  a value outside the domain  for which the 
const ra in t  holds. 
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procedure ARcCONS(in i, j, out A) 
begin 

1 A : = 0 ;  
2 for each v E D i do 
3 if fa(v)y~Dj then 
4 A : = A U { v }  

end 

Fig. 8. ARCCONs for functional constraints. 

The results presented in the paper assume that it takes constant time to 
compute the functions f~j and f#. in the same way as arc-consistency algorithms 
assume that C(v, w) can be computed in constant time. 

We can now present procedures ARcCor~s and LOCALARCCONS for functional 
constraints, as depicted in Figs. 8 and 9. It is clear that the procedures fulfill 
their specifications. Only one value per arc needs to be checked in Procedure 
ARCCONS since the constraint is functional. Procedure LOCALARcCoNs com- 
putes the set A 1 in this case and only one value needs to be checked. 
Procedures ARCCONS and LOCALARCCONS are respectively O(d) and O(1) for 
functional constraints. Hence we have an optimal algorithm. 

Theorem 12. Algori thm A C-5 is O(ed) for functional constraints with respect to 
D. 

Note that functional constraints add no requirement for the basic operations 
on the domains compared to traditional algorithms. 

6. Anti-functional constraints 

When  the negation of a constraint is functional (for instance, the inequality 
relation x ~ y), an optimal algorithm can also be achieved. 

procedure LOCALARCCoNS(in i, j, w, out A) 
begin 

1 i f  f]i(W) ~ D i then 
2 A:= { fji(w)} 
3 else 
4 A : = O  

end 

Fig. 9. LOCALARcCoNs for functional constraints. 
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procedure ARCCONS (in i. j, out A) 

begin 

1 S :=  SIzE(D/);  

2 w~ :=  M1N(Di); 
3 if s = 1 then 

4 A : - { J ; i ( w ~ I } A D ,  
5 else 

6 A : = 0  

7 end 

end 

Fig. 10. Procedure ARCCONS for anti-functional constraints. 

Definition 13. A constraint  Cii is anti-functional with respect to a domain  D iff 

-7 Cgj is funct ional  with respect  to D. 

Wi th  an anti-functional  constraint ,  for each value in the domain  there  is thus 

at mos t  one  value for which the constraint  does not  hold. Procedures  ARcCoNs 

and LOCALARCCONS are shown in Figs. 10 and 11. We use the same convent ion  

as for  funct ional  constraints.  
Ins tead  of  consider ing each e lement  of  D i, which would yield a complexi ty  

O ( d ) ,  the result of  ARCCONS is here achieved by considering the size of  D:. It 

is clear that  ARCCONS fulfills its specification: for D: = {w}, the resulting set 

should  contain  f,i(w) only if it is an e lement  of  D i. The  complexi ty  of  ARCCoNs 

is O(1) .  This allows the implementa t ion  of  LOCALARCCONS through  ARCCONS, 

leading to the same O(1) .  In this case, the value w is not  considered and 

LOCALARCCONS computes  the set A 2 of its specif icat ion:  ~ 

Theorem 14. Algorithm AC-5 is O(ed) ]'or anti-functional constraints with 

respect to D. 

procedure LOCALARcCoNs(in i, j, w, out A) 

begin 
1 ARCCONS(i, j, A) 

end 

Fig. 11. Procedure LOC:,LARcCoNs for anti-functional constraints. 

" The set k~ can also be computed in O(1) since one can show that A~ = ke\{f, (w)}. 
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7. Monotonic constraints 

We now consider another class of constraints: monotonic constraints, for 
example x ~< y - 3. This class of constraints requires a total ordering < on D, 
as mentioned previously. Moreover,  we assume that, for any constraint C and 
element  v E D, there exist elements w 1 and w 2 (not necessarily in D)  such that 

C(v, Wl) and C(w2, v) hold. This last requirement is used to simplify the 
algorithms but it is not restrictive in nature. 

Definition 15. A constraint C is monotonic with respect to a domain D iff there 
exists a total ordering on D such that, for all values v and w in D, C(v, w) 
holds implies C(v', w') holds for all values v' and w' in D such that v'  ~< v and 
W ' ~ W .  

Convention 16. Since AC-5 is working with arcs, we associate with each arc 

(i, j )  three functions fij, lastit, and nexqt and a relation >q.  Given a monotonic 
constraint Cit , the functions and relation for arc (i, j )  are 

fq(w) = max{v I Cq(v, w)}, lastit = MAX, 

nextij = PRED, >it = > 

while those for arc ( j ,  i) are 

fji(v) = min{w [C it(v, w)), lastti = MIN, 
nextt~ = Succ, >t~ = <" 

Moreover ,  since Procedures ARCCONS and LOCALARCCONS only use f/t' lastit' 
nextq, and >it for arc (i, j ) ,  we omit the subscripts in the presentation of the 
algorithms. These functions are assumed to take constant time to evaluate. 

We are now in a position to describe the implementation of Procedures 
ARcCONS and LOCALARCCONS for monotonic constraints. They are depicted in 
Figs. 12 and 13. 

Lemma 17. Procedures ARcCoNs and LOCALARCCONS fulfill their specifica- 
tions. 

Proof. Procedures ARcCONS and LOCALARCCoNs compute the set A = {v E 

Dilv >f(last(Dj))}. By monotonicity of the constraint, zi _C A 2 with A 2 = {v E 

DiIVw' E Dj: -nCq(v, w')}, and AEN {V E Dilv <_ f(last(Dt))) =O. Hence 
A -- A 2 and both postconditions are satisfied. [] 

Procedures ARcCoNs and LOCALARCCONS have as many iterations in lines 5 
and 6 as there are elements in the resulting set A. Hence it follows that we have 
an optimal algorithm. 
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procedure ARcCoNs(in i, j, out ,4) 
begin 

1 A : = 0  
2 v := last(Di); 
3 while u >f(last(Dj)) do 
4 begin 
5 J : : J u { v } ;  
6 u := next(v, Di) 
7 end 

end 

Fig. 12. ARCCONS for monotonic constraints. 

Theorem 18. Procedure AC-5 is O(ed) for monotonic constraints with respect 
roD.  

It is also clear that AC-5 can be applied at the same time to (anti-)functional 
and monotonic constraints with the same complexity. 

Monotonic constraints revisited 

Let us reconsider the ARCCONS procedure for monotonic constraints. We 
first show that the Succ and PRED functions can always be applied on the initial 
domains (denoted D,!"it), thus eliminating the need to update part of the data 

structure. The revised procedure ARCCONS is depicted in Fig. 14. The only 
difference lies in lines 5 and 6, and thus obviously has no influence on the 
correctness of ARcCoNs, 

Procedure LOCALARCCONS could use ARCCONS, but a revised version is 
presented in Fig. 15. The correctness of LOCALARCCONS is a consequence of 
the preceding version, computing the set A2 of its specification, and the fact 
that when w <_ last(Dj), then Aj is empty by the monotonicity of C#. It is 
possible to compute A~,7 but this would prevent the reduction of domains as 

early as possible. 

procedure LOCALARCCONS(in i, j, in w, out A) 
begin 

1 ARCCONS(i, j, A) 
end 

Fig. 13. LOCALARCCONS for monotonic constraints. 

7 In line 4 in Fig. 15, replace f(last(Dj)) by f(w). 
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procedure ARcCo~s(in i, j, out A) 
begin 

1 A : = 0 ;  

2 v := last(Di); 
3 while v >f(last(D/)) do 
4 begin 
5 if v E D i then 

A:=aU{v}; 
6 v := next(v, DI nit) 
7 end 

end 

Fig. 14. Revised Procedure ARt:CoNs for monotonic constraints. 

Theorem 19. With the revised implementation depicted in Figs. 14 and 15, 
Procedure AC-5 is O(ed) for monotonic constraints with respect to D. 

Proof. This proof  requires the use of amortized complexity [22] to show that 
LOCALARCCONS is O(d)  amortized. The number of iterations for a call to the 
revised version of LOCALARCCONS is not O(d)  in the worst case, since some 
elements may have been removed from the domain. However ,  we can as- 
sociate, to each arc (i, j ) ,  d credits that are used each time a test in line 5 
(ARcCoNs) or in line 7 (LOCALARCCONS) is executed for arc (i, j )  and no 
element  is inserted. The total number of credits is thus O(ed). To prove the 
amortized O(d)  complexity, we show that a test in line 5 (ARcCONS) or in line 

procedure LOCALARCCONS(in i, j, in w, out A) 
begin 

1 A'=O; 
2 if w > last(D~) then 
3 begin 

4 v := last(Di); 
5 while v >f(last(Dj)) do 
6 begin 
7 if v E D i then 

~:=AU{v}; 
8 v := next(v, DI nit) 
9 end 

10 end 
end 

Fig. 15. Revised Procedure LOCALARcCoNs for monotonic constraints. 
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7 (LOCALARCCONS) is done at most once per value in the domain. Suppose that 
such a test is done on some v'. Then, after the execution of the following 

REMOVE, we have v ' >  last(D~), and this value is thus never considered again, 
since in each execution of ARCCONS and LOCALARCCONS, the first execution of 

the test always succeeds. Hence,  it follows from the number of credits and thc 
complexity of the first algorithm that we still have an optimal AC-5 
algorithm. [] 

8. P iecewise  cons tra int s  

The preceding sections are generalized to the case when the domain can be 
part i t ioned into groups such that elements of a group behave similarly with 

respect to a given constraint. 

C o n v e n t i o n  20. Let  S and P be sets, and C be a constraint. C(S, P) denotes 
Vv C S, Vw ~ P: C(v, w), and ~ C(S, P) denotes Vv ~ S, Vw ~ P: 7 C(u, w). 
We also use C(S, w) for C(S, {w}). 

Def in i t ion  21.  The partitions ~ = { S~ . . . . .  S,, } o f  D~ and ~ = { P0 . . . . .  P,.  } of 
Dj are a piecewise decomposition of Di and Dj with respect to C iff for all 

S k ~ 5 ~ and Pk, E ~ :  C(S k, Pk') or ~ C ( S  k, Pk') holds. 

Representation of  piecewise constraints 

Before  presenting the implementation of ARCCONS and LOCALARCCONS for 
constraints having some particular piecewise decomposition, we show in Fig. 16 
the operations on piecewise decompositions. For ease of implementation, we 
assume that elements in the groups of a piecewise decomposition are never 
removed during the execution. The piecewise decomposition of D i and Dj with 
respect to C~ is denoted 5eij = {SIJ~ " . . . .  , SI~} and c¢,j~ = {S,{i . . . . .  Sj,',}. We also 
introduce a new data structure Status-pd which is a two-dimensional array, the 
first dimension being on arcs (associated with a piecewise decomposition) and 
the second on group numbers. Its semantics is the following: 

S~ fq Di ~-O ~ Status-pd[(i, j ) ,  k] = f a l s e .  

Thus, Status-pd must be f a l s e  when the corresponding group is not empty. 
The primitive operations on a piecewise decomposition are assumed to take 

constant time, except that the complexity of EXTEND is assumed to be O(s), 
where s is the size of S~. 

A simple data structure that enables us to achieve these results is given in 
Fig. 17. Its space complexity is O(d)  per piecewise decomposition. This data 
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function NBGROUV(in i, j): Integer 
Post: NBGROuP = I jl - 1, 

function SIzEOFGROUv(in i, j, k): Integer 
Pre: 0 <<- k <<- NBGROUI'(i, j). 
Post: SIZEOFGROUa = Is~ " A D~I. 

function EMPTYGROUP(in i, j, k): Boolean 
Pre: 0 <~ k <~ NBGRoUP(i, j). 
Post: EMzrYGROUV ¢:> S~ fq O i = O. 

procedure EXTEND(in i, j, k, inout A) 
Pre: 0 <<- k <~ NBGROUP(i, j). 
Post: A = A o U (S~ U Di) ,  

Status-pd[(i,  j ) ,  k] = t r u e .  

function GRoueOF(in i, j, 
Pre: v E DI nit, 

Post: GRouPOF = k such 

v): Integer 

that v ~ S~. 

function FIRSTGROUP(in i, j): Integer 
Post: FIRSTGROUP = min(k I S~ n D i # 0}. 

function LASTGROUP(in i, j): Integer 
Post: LASTGROUP = max{k] S~ fq D i # 0}. 

function SizE(in i, j): Integer 
Post: SIZE = I(kl s~ n O i ~ 0}l. 

Fig. 16. The PIECEWISE DECOMPOSITION module. 

structure cannot be updated by the REMOVEELEM primitive in constant time 
since an element in a domain can belong to different groups in different 
piecewise decompositions. The update can easily be performed by the EN- 
QUEUE primitive, however, without affecting its complexity. 

It is not difficult to initialize the data structure in O(d) under the realistic 
assumption that it takes O(s) to find the s elements in D i (respectively Di) 
supporting a value v (respectively w) in D i (respectively Dj). In addition, the 
construction of the data structure assigns a group number to each value, so that 
the GROUPOF operation trivially takes constant time. In the following, we 
assume that the data structure has already been built. 

9. Piecewise functional constraints 

Intuitively, a piecewise functional constraint Cij is a constraint whose do- 
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Let ~o {S'/,, S;{} with n ~ 0  
Syntax 

S~j.group: array [1..n] of sets 
S~i.nbgroup: integer 
S~j.size: integer 
Sq.sizegroup: array [1.. n ] of integers 
Sq.first: integer 
Sq.last: integer 

Semantics 
Sii.group[k ] = S~ 
Sq.nbgroup = n 
Sq.s ize-- I{k l  D~ ¢0}1 
S,~.sizegroup[k] = IS'/A D,I 
Sti.first = min{klS~ o D~ ~0} 
Sq.last = max{k IS ~ A D~ ¢0}  

Fig. 17. PlECEWISE DECOMPOSITION data structure.  

mains can be decomposed into groups such that each group of D~ (respectively 
D/) is supported by at most one group of D i (respectively D~). 

Definition 22. A constraint Cq is piecewise functional with respect to domains 
Di and D/ iff there exists a piecewise decomposition t(¢ = {S o . . . . .  S,,} and 

= {P~ . . . .  , P,,,} of D, and D/ with respect to Cq such that for all S k ~ .7' 
(respectively Pk, ~ ~ ) ,  there exists at most one P~, ~ ~ (respectively S~ E J )  

such that C~i(S k, Pk,). 

Examples of functional piecewise constraints are the modulo (x = y rood z) 
and integer division (x = y div z) constraints. The e l e m e n t  constraint of the 
CHIP programming language [24] is a piecewise constraint as well. Finally, 
note that functional constraints are a subclass of piecewise constraints, in which 
the size of each group in the partition is exactly one. 

Obviously, in a piecewise functional constraint C 0, if all the unsupported 
elements of Di (respectively Dp) are in the same group (e.g. S 0 and Pc~), then 
the piecewise decompositions 5 ¢ = {S o, . . . ,  S,,} and ~ = { P0 . . . .  , P,,} have 
the same number of groups and the groups can be renumbered such that the 
following hold: 

(PF1) -~Cq(So, Dj) and ~Cq(Di ,  Po); 
(PF2) Cq(Sk, Pk), l <~k<~n; 
(PF3) -nCq(S~., Pk'), 1 ~< k,k '  <~ n and k ~a k'. 

The implementation of ARcCoNs and LOCALARCCONS for piecewise func- 
tional constraints assumes a piecewise decomposition that satisfies (PF1)-  
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(PF3). The following property states necessary and sufficient conditions for a 
piecewise functional constraint. 

Property 23. A constraint Cir is piecewise functional with respect t o  D i and Dj iff 
there exists a partition b ~ = { S o , . . . ,  Sn} of Di such that 

(1) Cir(Sk, w) or -aCir(Sk, W) for all w E D  r and O<~k<-n; 
(2) Cij(Sk, w) ~ -1Cir(Sk, , w) for all w E Dr, 0 <<- k,k'  <~ n, and k ~ k'. 

Proof. The "only if" part is straightforward. For the "if" part, let us assume 
that there is some unsupported element in D i and in D r and that all the 
unsupported elements in D i are in S O (otherwise groups can be merged and 
renumbered without affecting conditions (1) and (2)). We construct ~ - -  
{P0 . . . .  , Pn} in the following way: 

Pk--(w~Djl3v~S~,C,j(v,w)}, l ~ k ~ n ,  

Po= Dj\ I,-3 Pt. 
l<<_l<~n 

It is sufficient to prove that ~ is a partition and that ~ and ~ satisfy 
(PF1)-(PF3).  

We first prove that ~ is a partition. 

(A) Pk CI Pk' = 0 (k # k'). This holds for k = 0 or k' = 0. For k # 0 # k', let 
w ~_ Pk" By definition of Pk, we have 30 E S~: Cij(v, w). Hence by (1), 
Cir(s k, w). By (2) we have --1Cir(Sk, , W), that is V v ' E  Sk,: "7 Cir(v', w). 
Hence wJ~Pk,. 

(B) Suppose that Pk = tJ (k >0) .  Then S k = I~ (impossible since 6e is a 
partition), or S k contains unsupported elements (impossible by hypoth- 
esis). Hence P~ ~ ~. 

Now we prove that 6e and ~ satisfy (PF1)-(PF3). 
(PF1) holds by definition of S O and P0. 
(PF2): Let w E Pk. By definition of Pk, 3v '  ~ S k such that C/r(v' , w). By (1), 

Cir(S k, w), that is Vv E Sk: C~r(v , w). Hence C~r(S~, Pk)" 
(PF3): Let w E  P k. Since Pk N P k, =~J (k ~ k'), wJ~Pk,. By definition of 

Pk,, we have Vv' E Sk,:--nCir(v, w). Hence -nCir(Sk, Pk')" [] 

The procedures ARCCONs and LOCALARCCONS for piecewise functional 
constraints are given in Figs. 19 and 20. Line 2 handles the group S~ containing 
all the unsupported elements of the initial domain D r The procedures use the 
boolean function UNSUPPORTED specified in Fig. 18. The correctness of these 
procedures is an immediate consequence of the correctness of procedures for 
functional constraints. One can also easily see that the semantics of Status-pd is 
an invariant at lines 2 and 8 in AC-5, assuming it holds initially. 
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function UNSUPPORTED(in i, j,  k): Boolean 
Pre: 0 <~ k <~ NBGROUP(i, j). 
P o s t :  UNSUPPORTED 

EMPTYGROuP(j, i, k)/x -qStatus-pd[(i, j), k] 

Fig. 18. The UNSUPPORTED function. 

procedure ARCCONs(in i, j, out A) 
begin 

1 A : = 0 ;  
2 EXTEND(i, j, 0, A); 
3 for k := 1 to NBGROUP(i, ]) do 
4 if UNSUPPORTED(i, j, k)  then 
5 EXTEND(i, ], k, A) 

end 

Fig. 19. ARCCONs for piecewise functional constraints. 

The time complexity is analyzed globally within AC-5. If the complexity of 
all the executions of ARCCONS and LOCALARCCONS for a given arc (i, j) is 
bounded by O(d), then AC-5 is O(ed). The complexity of execution of 
ARCCONS and LOCALARCCONS depends mainly on the number of executions of 
the EXTEND procedure. For an arc (i, j) ,  by the specification of UNSUPPORTED 
and EXTEND (on Status-pd), at most one EXTEND operation is made per group, 
and hence the complexity is bounded by O(d). If we use amortized complexity 
as in the case of monotonic constraints, it follows that we have an optimal 
algorithm. 

Theorem 24. Procedure AC-5 is O(ed) for piecewise functional constraints'. 

procedure LOCALARCCONs(in i, j, w, out A) 
begin 

1 A : = 0 ;  
2 k := GRouPOF(j, i, W); 
4 if UNSUPPORTED(i, j, k) then 
5 EXTEND(i, j, k, A) 

end 

Fig. 20. LOCALARCCONS for piecewise functional constraints. 
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10. Piecewise anti-functional constraints 

We now turn to piecewise anti-functional constraints such as x # y mod 3. A 
piecewise anti-functional constraint is a constraint whose domains D i and D~ 
can be decomposed into groups such that each group of D i (respectively D/) is 
not supported by at most one group of 1)] (respectively Di). 

Definition 25. A constraint Ci/is anti-functional with respect to D~ and 1:)/iff 
-7 Ci/is piecewise functional with respect to D i and D/. 

With the same notations as in the preceding section, procedures ARCCONS 
and LOCALARCCONS for anti-functional constraints can easily be extended in 
the piecewise framework (see Figs. 21 and 22). Note the test for k # 0, since 
group 0 supports all groups. By a complexity analysis similar to that of the 
preceding section, one can show that in AC-5 there will be at most one 
execution of EXTEND per group. Hence the following result. 

Theorem 26. Algorithm A C-5 is O( ed) for piecewise anti-functional constraints. 

procedure ARCCONS(in i, j, out A) 
begin 

1 A:=l~; 
2 s := SIZE(/, i): 
3 k := FIRSTGROUP(j, i); 
4 if s = 1 and k # 0  

and not EMI~rYGROuP(i, j, k) then 
5 EXTEND(i, j, k, A) 

end 

Fig. 21. Procedure ARCCoNs for piecewise anti-functional constraints. 

procedure LOCALARCCONs(in i, /, W, out A) 
begin 

1 ARCCONS(i, ], A) 
end 

Fig. 22. Procedure LOCALARcCoNs for piecewise anti-functional constraints. 
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11. Piecewise monotonic constraints 

Monotonic constraints are finally generalized to piecewise monotonic con- 
straints, for example x <~ y div 5. 

Definition 27. A constraint Cij is piecewise  m o n o t o n i c  with respect to D i and l), 
iff there exists a piecewise decomposition ,~=  {S o . . . . .  S,,} and ?P = 
{Po . . . . .  P,,,) of D~ and Dj with respect to C,  such that 

c,(s,, p,) => c,(&,, P,,) 

f o r ( ) ~ k ' ~ < k ~ n  and 0 ~  < / ~  < l ' ~ m .  

Convention 28. As for monotonic constraints, we associate to each arc (i, j)  
three functions ~j, lastij, and nextij and a relation >~j. Given a piecewise 
monotonic constraint C,,  the functions and relation for arc (i, j)  are: 

jr" .~j(k) = max{{-1} O { k ' ] C i i ( S ~ ,  S~.)}} , 

l a s t , (a ,  b) = LASTGROuP(a, b) . 

nex t , j ( k )  = k - 1 . > , -  > . 

while those for arc ( j ,  i)  are 

Jii(k)  = min{{NBGROuP(j, i) + 1} U {k' I Csj(Sk,,' 'J 5~")}}. 

last~i(a, b) = Fmsa'GRouP(a, b) . 

n e x t , ( k )  = k + 1 . >1, = < 

procedure ARCCONs(in i, j, out A) 
begin 

1 A:=0;  
2 k : -  last(i ,  j);  
3 while k > f ( l a s t ( j ,  i ))  do 
4 begin 
5 if not EMr'rYGROUP(i, j, k) then 

EXTEND(i, j ,  k ,  J ) ;  
6 k:  = n e x t ( k )  
7 end 

end 

Fig. 23. Procedure ARCCONS for piecewise monotonic constraints. 



A generic arc-cons&tency algorithm 315 

procedure LOCALARcCONS(in i, j, in w, out A) 
begin 

1 A : = 0 ;  
2 kw := GROUPOF(i, j, W); 
3 if kw > last( j, i) then 
4 begin 
5 k : =  last(i,/); 
6 while k > f(last(j, i)) do 
7 begin 
8 if not EMPTVGROUP(i, j, k) then 

EXTEnD(i, j, k, A); 
k : =  next(k) 

end 
9 

10 
11 

end 
end 

Fig. 24. Procedure LOCALARcCobls for piecewise monotonic constraints. 

The definition of f/j requires some sophistication to handle the case when S~ 
(or S~, i) is unsupported. The above functions are assumed to take constant time 
to evaluate. As for monotonic constraints, subscripts are omitted in the 
algorithms presented in Figs. 23 and 24. Their correctness is an immediate 
consequence of the correctness of ARCCONS and LOCALARCCONS for monotonic 
constraints. The complexity analysis is also similar to that for monotonic 
constraints. In all the executions of ARcCONS and LOCALARCCONS for a given 
arc (i, j ) ,  a test in line 5 (AscCor~s) or line 8 (LoCALARCCONS) is made at most 
once per group. Hence we have an optimal algorithm. 

Theorem 29. Algorithm AC-5 is O(ed) for piecewise monotonic constraints. 

12. Application 

We describe the application of AC-5 to constraint logic programming over 
finite domains. Constraint logic programming [9] is a class of languages whose 
main operation is constraint solving over a computation domain. A computa- 
tion step amounts to checking the satisfiability of a conjunction of constraints. 

Constraint logic programming over finite domains has been investigated in 
[23-25]. This is a computation domain in which constraints are equations, 
inequalities, and disequations over natural number terms or equations and 
disequations over constants. Natural number terms are constructed from 
natural numbers, variables ranging over a finite domain of natural numbers, 
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and the standard arithmetic operators (+ ,  × . . . .  ). Some symbolic constraints 

are also provided to increase expressiveness and, in addition, users can define 

their own constraints. This computation domain is available in CHIP [5] and its 

constraint solver is based on consistency techniques, arithmetic reasoning, and 

branch and bound. It has been applied to numerous problems in combinatorial 

optimization such as graph coloring, warehouse location, scheduling and 

sequencing, cutting stock, assignment problems, and microcode labeling to 

name a few (see for instance [4, 24]). 

Space does not allow us to present the operational semantics of the 

language. Let us just mention that the kernel of the constraint solver is an 

arc-consistency algorithm for a set of basic constraints. Other (non-basic) 

constraints are approximated in terms of the basic constraints and generate 

new basic constraints. The basic constraints are either domain  constraints or 

ari thmetic  constraints, and are as follows (variables are represented by upper- 

case letters and constants by lower-case letters): 

• domain constraint: X ¢ {a t . . . .  , a,,~; 

• arithmetic constraints: a X ¢  b, a X  = b Y  + c, aX<~ b Y  + c, aX>~ b Y  + c 

with a, a ,, b, c ~ O and a ~0 .  

These constraints have been chosen carefully in order to avoid having to solve 

an NP-complete constraint satisfaction problem. For instance, allowing two 

variables in disequations or three variables in inequalities or equations leads to 

NP-complete problems. 

We now show that AC-5 can be the basis of an efficient decision procedure 

for basic constraints. 

Definition 30. A sys tem o f  constraints S is a pair { A C ,  D C )  where AC is a set 

of arithmetic constraints and DC is a set of domain constraints such that any 

variable occurring in an arithmetic constraint also occurs in some domain 

constraint of S. 

Definition 31. Let S = { A C ,  DC)  be a system of constraints. The set D, is the 

domain  of x in S (or in D C )  iff the domain constraints of x in D C  are 

x C D~ . . . . .  x C D k and D, is the intersection of the D/s.  

Let us define a solved form for the constraints. 

Definition 32. Let S be a system of constraints. S is in solved f o r m  iff any unary 
constraint C ( X )  in S is node-consistent 8 with respect to the domain of X in S, 

and any binary constraint C ( X ,  Y )  in S is arc-consistent with respect to the 

domains of X and Y in S. 

As usual, a unary constraint C is node-consistent with respect to D iff Vv E D: ('(v). 
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We now study a number of properties of systems of constraints in solved 

form. 

Property 33. Let C(X,  Y )  be the binary constraint aX<~ b Y +  c or aX>~ 

b Y +  c, arc-consistent with respect to D x =  { V l , . . . ,  on} and D y =  

{Wl, . . . ,Wm}.  Assume also that v l < . ' ' < v  n and w l < ' ' ' < w  m. Then we 
have that C is monotonic and C(v 1, wl)  and C(vn, win) hold. 

Property 34. Let C(X,  Y )  be the binary constraint a X  = b Y  + c with a,b ~ 0, 
arc-consistent with respect to D x = {v 1 . . . . .  on} and D r = {wl ,  . . . , win}. 
Assume also that v l < . . . < v  n and w~ < . . . <  w m. Then we have that C is 

functional, n = m,  and C(vi, wi) holds. 

The satisfiability of a system of constraints in solved form can be tested in a 
straightforward way. 

Theorem 35. Let S = ( AC,  D C )  be a system of  constraints in solved form. S is 

satisfiable i f  (0, D C )  is satisfiable. 

Proof. It is clear that (0, D C )  is not satisfiable iff the domain of some variable 
is empty in DC. If the domain of some variable is empty in DC, then S is not 
satisfiable. Otherwise, it is possible to construct a solution to S. By Properties 
33 and 34, all binary constraints of S hold if we assign to each variable the 
smallest value in its domain. Moreover, because of node consistency, the unary 
constraints also hold for such an assignment. [] 

It remains to show how to transform a system of constraints into an 
equivalent one in solved form. This is precisely the purpose of the node- and 
arc-consistency algorithms. 

Algorithm 36. To transform the system of constraints S into a system in solved 
form S': 

(1) Apply a node-consistency algorithm to the unary constraints of S = 
( A C ,  D C )  to obtain ( A C ,  D C ' ) .  

(2) Apply an arc-consistency algorithm to the binary constraints of 
( AC,  D C ' )  to obtain S ' =  ( AC,  DC").  

Theorem 37. Let S be a system of  constraints. Algorithm 36 produces a system 
o f  constraints in solved form equivalent to S. 

We now give a complete constraint solver for the basic constraints. Given a 
system of constraints S, Algorithm 38 returns true if S is satisfiable and false 
otherwise. 
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Algorithm 38. To check the satisfiability of a system of constraints A: 
(1) Apply Algorithm 36 to S to obtain S' :-- {AC, DC). 
(2) If the domain of some variable is empty in DC, return false: otherwise 

return true. 

In summary, we have shown that node- and arc-consistency algorithms 
provide us with a decision procedure for basic constraints. The complexity of 
the decision procedure is the complexity of the arc-consistency algorithm. 
Using the specialization of AC-5 for basic constraints, we obtain an O(ed) 
decision procedure. 

13. Discussion and related work 

In this section, we discuss the practicability of our algorithms and their 
relationships with other work. 

Our results indicate that many classes of constraints lead to an O(ed) 
arc-consistency algorithm improving on the O(ed 2) bound of [16]. Although a 
better asymptotic complexity does not guarantee a faster algorithm, empirical 
and theoretical results suggest the practicability of our results. On the theoreti- 
cal side, it is easy to see that the constant factors are in fact small in our 
algorithms (in general 1 or 2). On the empirical side, most of these classes have 
been integrated in the cc(FO) programming language [26] improving the 
computational results of many algorithms compared to the previous versions 
based on AC-3 and AC-4. This will be discussed in a forthcoming paper. It is 
however important to note that AC-4 and some classes studied here increase 
the memory requirement. Hence, for memory management reasons, AC-3 may 
sometimes be preferable. 

As far as related work is concerned, three closely related papers deserve to 
be mentioned. Mohr and Masini [17] also discovered independently the subset 
of arithmetic constraints that can be solved in O(ed). The constraints consid- 
ered were binary equations, inequalities, and disequations, which are respec- 
tively subcases of functional, monotonic, and anti-functional constraints. They 
indicate informally how to modify AC-4 to include these constraints, but do 
not present a uniform and generic algorithm like AC-5. 

Perlin's algorithm [21] is an arc-consistency algorithm working on a graph 
representation of the CSP where the values (not the variables) are nodes and 
the constraints are represented by links between nodes. The algorithm is then 
bounded by the size of the graph. Perlin investigates the idea of factoring 
constraints in this graph representation. More precisely, he studies the idea of 
splitting a constraint C(x, y) into a conjunction of three constraints C~ (x, t 1) & 
C2(t ~, t2) & C3(t2, y) (with t~ and t 2 being two new variables) such that 
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(1) arc consistency produces the same pruning on the problem variables; 
(2) the graph associated to the new problem is smaller than the initial graph. 

It turns out that arc consistency runs in O(ed) when the constraints all express 
equalities between some of the constraint variables. Note that, in this case, 
C2(tl, t2) reduces to an equation (a subcase of functional constraints). The 
contributions of Perlin can thus be summarized as 

(1) the identification of a general preprocessing technique, factorization, to 
reduce the size of the graph; and 

(2) the identification of a special kind of functional constraints. 

It should be easy to generalize those results to the case of functional constraints 
between some of the constraint variables. Similarly, we believe (but have not 
yet proven) that the bound for piecewise monotonic constraints can be 
obtained from factorization, piecewise functional constraints, and monotonic 
constraints. Note however, that an inconvenience of the graph representation 
is its memory requirement: a functional constraint requires O(d) space with the 
graph representation and requires constant space in AC-5. 

Arc consistency of functional constraints can be solved through a reduction 
to 2-sat [10], keeping the O(ed) result. However, this algorithm also uses O(d) 
space per constraint. 

Finally, it is also interesting to study the evolution of arc-consistency 
algorithms. The main contribution of AC-4 was the idea of working with 
domain values instead of domain variables. This idea is systematically exploited 
by Perlin to obtain a better bound for some classes of constraints through 
factorization. Exploiting the structure of the domains is the new idea behind 
Mohr and Masini's work and the monotonic constraints of this paper. Finally, 
exploiting the structure of the constraints is the key idea behind the piecewise 
constraints of this paper. AC-5 accommodates these results in a unified and 
generic algorithm. 

14. Conclusion 

A new generic arc-consistency algorithm AC-5 is presented whose specializa- 
tions include, not only AC-3 and AC-4, but also an O(ed) algorithm for 
important subclasses of constraints including functional, monotonic, and anti- 
functional constraints, as well as their piecewise counterparts. An application 
of AC-5 to constraint logic programming over finite domains is described. 
Together with node consistency, it provides the main algorithms for an O(ed) 
decision procedure for basic constraints. From a software engineering perspec- 
tive, AC-5 has the advantage of uniformity. Each constraint may have a 
particular implementation, based on AC-3, AC-4, or some specific techniques, 
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without influencing the main algorithm. As a consequence, many different 
implementation techniques can be interleaved together in a natural setting. 

Current research is devoted to applying these ideas to path-consistency and 
non-binary constraints. It turns out that similar improvements can be obtained 
for path-consistency algorithms although the algorithms are somewhat more 
complicated. Non-binary constraints are also being investigated to obtain the 
equivalent of GAC-4 [15] for AC-5. Preliminary results indicate that the results 
carry over for some classes of constraints, although once again the algorithms 
are more involved. 

Acknowledgement 

We thank an anonymous 1JCAI reviewer for mentioning the reduction to 
2-sat, Eugene Freuder for pointing out the work of Perlin, and the anonymous 
AI Journal reviewers for their careful comments and suggestions. The help of 
Trina Avery for correcting our English is also appreciated. This research was 
supported in part by the National Science Foundation under grant number 
CCR-9108032 and by the Office of Naval Research under grant N00014-91-J- 
4052, ARPA order 8225. 

References 

[1] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms (MIT Press, 
Cambridge, MA, 199(I). 

[21 R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems. Artif. 
lntell. 34 (1988) 1-38. 

[3] Y. Deville and P. Van Hentenryck, An efficient arc consistency algorithm for a class of CSP 
problems, in: Proceedings IJCAI-91, Sydney, Australia (1991). 

[41 M. Dincbas, H. Simonis and P. Van Hentenryck, Solving large combinatiorial problems in 
logic programming, J. Logic Programming 8 (1-21 (199(I) 75 93. 

[5] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthicr, The 
constraint logic programming language CHIP, in: Proceedings International Con ierence on 
F~fth Generation ¢k)mputer Systems, Tokyo, Japan (19881. 

[61 E.C. Freuder, Synthesizing constraint expressions, Commun. ACM 21 (1978) 958-966. 
[7] J. Gaschnig, A constraint satisfaction method for inference making, in: Proceedings 12th 

Annual Allerton ConJ~renee on Circuit ~vstem Theory, Urbana-Champaign. II, (19741 866 
874. 

[8] R.M. Haralick and G.L. Elliot, Increasing tree search efficiency for constraint satisfaction 
problems, Artif. lntell. 14 (1980) 263-313. 

[9] J. Jaffar and S. Michaylov, Methodology and implementation of a CLP system, in: Proceed- 
ings Fourth b~ternational Conference on Logic Programming, Melbourne, Australia (1987). 

[ 10] S. Kasif, On the parallel complexity of discrete relaxation in constraint satisfaction networks. 
Artif. lntell. 45 (1990) 275-286. 

]11] J.-L. Lauriere, A language and a program for stating and solving combinatorial problems, 
Artif. lntell. 10 (l)  (1978) 29-127. 

[12] A.K. Mackworth, Consistency in networks of relations, Arti]~ lntell. 8 (1) (1977) 99-118. 



A generic arc-consistency algorithm 321 

[13] A.K. Mackworth, Constraint Satisfaction (Wiley, New York, 1987). 
[14] A.K. Mackworth and E.C. Freuder, The complexity of some polynomial network consistency 

algorithms for constraint satisfaction problems, Artif. Intell. 25 (1985) 65-74. 
[15] R. Mohr, Good old discrete relaxation, in: Proceedings ECAI-88, Munich, Germany (1988). 
[16] R. Mohr and T.C. Henderson, Arc and path consistency revisited, Artif. lntell. 28 (1986) 

225 -233. 
[17] R. Mohr and G. Masini, Running Efficiently Arc Consistency (Springer, Berlin, 1988) 

217-231. 
[18] U. Montanari, Networks of constraints: fundamental properties and applications to picture 

processing, Inf. Sci. 7 (2) (1974) 95-132. 
[19] U. Montanari and F. Rossi, An efficient algorithm for the solution of hierarchical networks of 

constraints, in: Workshop on Graph Grammars and Their Applications in Computer Science, 
Warrenton (1986). 

[20] B. Nadel, Constraint satisfaction algorithms, Cornput. lntell. 5 (4) (1989) 188-224. 
[21] M. Perlin, Arc consistency for factorable relations, in: Proceedings, Third International 

Conference on Tools for Artificial Intelligence, San Jose, CA (1991) 340-345. 
[22] R.E. Tarjan, Amortized computational complexity, SIAM J. Alg. Discrete Methods 6 (1985) 

306-318. 
[23] P. Van Hentenryck, A framework for consistency techniques in logic programming, in: 

Proceedings IJCAI-87, Milan, Italy (1987). 
[24] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, Logic Programming Series 

(MIT Press, Cambridge, MA, 1989). 
[25] P. Van Hentenryck and M. Dincbas, Domains in logic programming, in: Proceedings 

AAA1-86, Philadelphia, PA (1986). 
[26] P. Van Hentenryck, V. Saraswat and Y. Deville, Constraint processing in ce(FD), Tech. 

Rept. Brown University, Providence, RI (1992). 
[27] D. Waltz, Generating semantic descriptions from drawings of scenes with shadows, Tech. 

Rept. AI271, MIT, Cambridge, MA (1972). 


