
Artificial Intelligence 58 (1992) 113-159 113
Elsevier

ARTINT 951

Constraint satisfaction using
constraint logic programming

Pascal Van Hentenryck

Brown University, Box 1910, Providence, RI 02912, USA

Helmut Simonis and Mehmet Dincbas

Cosytec, Parc Club Orsay-University, 4, rue Jean-Rostand, 91893 Orsay Cedex, France

Abstract

Van Hentenryck, P., H. Simonis and M. Dincbas, Constraint satisfaction using constraint
logic programming, Artificial Intelligence 58 (1992) 113-159.

Constraint logic programming (CLP) is a new class of declarative programming lan-
guages whose primitive operations are based on constraints (e.g. constraint solving and
constraint entailment). CLP languages naturally combine constraint propagation with
nondeterministic choices. As a consequence, they are particularly appropriate for solv-
ing a variety of combinatorial search problems, using the global search paradigm, with
short development time and efficiency comparable to procedural tools based on the
same approach. In this paper, we describe how the CLP language cc(FD), a successor
of CHIP using consistency techniques over finite domains, can be used to solve two
practical applications: test-pattern generation and car sequencing. For both applications,
we present the cc(FD) program, describe how constraint solving is performed, report
experimental results, and compare the approach with existing tools.

1. Introduction

The pu rpose o f ou r research is to suppor t , wi th in cons t ra in t p r o g r a m -

m i n g languages, c o m p u t a t i o n a l p a r a d i g m s under ly ing c o m b i n a t o r i a l search

p rob lems . It is m o t i v a t e d by the h o p e o f r educ ing s ignif icant ly the deve lop-

Correspondence to: P. Van Hentenryck, Brown University, Department of Computer Science,
115 Waterman St., 4th floor, Providence, RI 02906, USA. E-mail: pvh@cs.brown.edu.

0004-3702/92/$ 05.00 © 1992 - - Elsevier Science Publishers B.V. All rights reserved

114 P. Van Hentenrvck et al.

ment time of these applications while preserving most of the efficiency of
procedural languages.

Combinatorial problems are ubiquitous in computer science. They ap-
pear in areas as diverse as operations research (e.g. scheduling), hardware
design (e.g. circuit verification), biology (e.g. DNA sequencing), finance
(e.g. option trading), and software design (e.g. simulation and testing of
protocols), to name a few. Many of these problems are of high complexity
(NP-complete or worse), which means that there is no efficient algorithm
for solving them. Much research, however, has been spent on designing
algorithms to tackle these problems and one of the interesting outcomes has
been the development of constraint solving algorithms for various classes of
problems.

Constraint programming has a long tradition in artificial intelligence. It
can be traced back to the use of constraints in Sutherland's SKETCHPAD
[67], the CONSTRAINT programming language of Sussman and Steele [66]
and the work of Borning on ThingLab [2] among others. Mackworth also
advocated, as early as 1977, the use of consistency techniques (a paradigm
emerging from artificial intelligence to solve combinatorial search problems)
in declarative languages as an alternative to chronological backtracking [42].
Constraint processing itself has also been present in many systems related
to constraint solving such as REF-ARF [23], Alice [40], (assumption-
based) truth maintenance systems (e.g. [15,21]), and various scheduling
and planning systems (e.g. [24]).

The starting point of our research was, however, slightly different. We
began by recognizing that logic programming is an appropriate language
for stating combinatorial search problems: its relational form makes it easy
to state constraints while its (don't-know) nondeterminism removes the
need for programming a search procedure. Unfortunately, traditional logic
programming languages can also be very inefficient when presented with
a natural formulation of combinatorial search problems, largely because of
their passive use of constraints to test potential values instead of pruning the
search space in an active manner [27]. As a consequence, traditional logic
programming languages (e.g. Prolog) often lead to "generate and test" or
"standard backtracking" approaches that exhibit the pathological behavior
known as thrashing [42].

Early (CLP) languages such as CHIP [20], CLP(R) [37], Prolog II
[13], and Prolog III [12] attempted to preserve the advantages of logic
programming while removing their limitations. The fundamental idea behind
these languages, to use constraint solving instead of unification as the kernel
operation of the language, was elegantly captured in the CLP scheme [36].
The CLP scheme defines a family of programming languages based on
constraint solving and sharing the same semantic properties. It can be
instantiated to produce a specific language by defining a constraint system

Constraint satisfaction using CLP 115

(i.e. defining a set of primitive constraints and providing a constraint solver
for the constraints). Thus CHIP contains constraint systems over finite
domains [72], Booleans [6], and rational numbers [30,74], Prolog III
is endowed with constraint systems over Booleans, rational numbers, and
lists, while CLP (R) solves constraints over real numbers. The CLP scheme
was further generalized into the cc framework of concurrent constraint
programming [54-56] to accommodate additional constraint operations
(e.g. constraint entailment [43]) and new ways of combining them (e.g.
implication or blocking ask [54] and cardinality [73]). More precisely,
the cc framework accommodates all operations on constraints that can be
defined as closure operators. The generalization significantly extends the
scope of CLP languages by enabling issues such as concurrency, control, and
extensibility to be addressed at the language level.

CLP languages I support, in a declarative way, the solving of combina-
torial search problems using the global search paradigm. The global search
paradigm amounts to recursively dividing a problem into subproblems until
the subproblems are simple enough to be solved in a straightforward way,
and includes, as special cases, implicit enumeration, branch and bound, and
constraint satisfaction. It is best contrasted with the local search paradigm,
which proceeds by modifying an initial configuration locally until a solu-
tion is obtained. These approaches are orthogonal and complementary. The
global search paradigm has been used successfully to solve a large variety of
combinatorial search problems with reasonable efficiency (e.g. scheduling
[7], graph coloring [39], Hamiltonian circuits [9], and microcode labeling
[19]) and provides, at the same time, the basis for exact methods as well
as approximate solutions (giving rise to the so-called "anytime algorithms"
[14]).

The purpose of this paper is to illustrate how CLP languages can be used
to solve two practical combinatorial search problems: test-pattern genera-
tion and car sequencing. Test-pattern generation is a standard problem in
hardware design and many algorithms have been proposed for the task. We
show how to use constraint logic programming to design a simple algorithm
whose behavior is similar in spirit to some of the best algorithms for the
task and whose efficiency is competitive with specialized implementations
of these algorithms. The second problem, car sequencing, was motivated by
its presentation as a challenge for AI tools [48,49]. We propose a solution to
this problem that can be described concisely in constraint logic programming
and whose efficiency enables to solve large instances.

The CLP language used in the above problems is cc(FD), an instance of
the cc framework over finite domains that is best seen as a successor to the

l In the following, we use the term CLP languages generically to denote both CLP and cc
languages.

116 P. Van Hentenryck et al.

finite-domain part of CHIP. Both languages support the use of consistency
techniques and local propagation in conjunction with don't-know nondeter-
minism approximated by backtracking. In addition, they support depth-first
branch and bound for combinatorial optimization problems. The novel as-
pects of cc(FD) include the definition of new general-purpose combinators
(such as cardinality, implication, constructive disjunction, and indexical
constraints) and the availability of constraint entailment and constraint
generalization as primitive operations on constraints, cc(FD) generalizes
in an elegant way (and thus makes unnecessary) several features and con-
straints of CHIP that were difficult to justify theoretically. As a consequence,
it provides additional operational expressiveness, flexibility, and efficiency
and lets us tackle problems such as disjunctions of constraints and the def-
inition of primitive constraints. Preliminary solutions of the two problems
described here were first expressed in CHIP (see [60] and [18]). The pre-
sentation proposed in this paper subsumes them, both in the algorithmic
methods, which are more advanced, and in the statement, which is simpler,
more natural, and based on a solid theoretical foundation.

The rest of the paper is organized as follows. Section 2 presents a tu-
torial overview of cc(FD). Since the focus here is on applications, this
overview is limited to those aspects of direct relevance to the two problems
considered. Important combinators such as constructive disjunctions and
indexical constraints are omitted here but can be found in [75]. Sections 3
and 4 present respectively the test generation and car sequencing problems.
For each application, we describe in detail how the problem can be stated
and how constraint solving is performed and we also report a number of
experimental results and comparisons. Section 5 contains our conclusions.

2. Overview of cc(FD)

Here we give an informal overview of the relevant parts of cc(FD). A
more formal presentation, following the style of operational semantics in
[54], is given in the appendix.

Our overview proceeds in several steps. Section 2.1 sketches the syntax of
the language and Section 2.2 introduces the CLP scheme. Sections 2.3, 2.4,
and 2.5 discuss constraint entailment, the implication combinator, and the
cardinality combinator, and Section 2.6 discusses the details of constraint
solving in cc(FD). Note that the presentation separates the generic aspects
of the language from the details of its constraint solver. This indicates that
the combinators are general-purpose.

2. I. Syntax

Figure 1 shows an outline of the syntax of a cc(FD) program. A cc(FD)

Constraint satisfaction using CLP 117

Program

Clauses

Head

Goal

Body

: : = Clauses

::= Head :- Body I Clauses Clauses

: : = Atom

: := Atom

::= true I Goal I c I Body ,

Body I c --+ Body I #(l,u,[c! Cn])

Fig. 1. An outline of the syntax.

p(X,Y,X) :-

x E {0 i0}, Y E {0 I0}, Z E {0 i0},

X t> Z + 3 ,

Y ~< Z,

q(X,Y,Z).

q(X,Y,Z) :-

r(X,Y).

q(X,Y,Z) :-

Z >_-Y+2.

r(X,Y) :-

X ~ < Y + 2 .

Fig. 2. A simple program.

is a set of clauses in which each clause has a head and a body. A head
is an atom, i.e. an expression of the form p(tl t ,) where tl t , are
terms. A term is a variable (e.g. x) or a function symbol of arity n applied
to n terms (e.g. f(X,g(Y))). A body is either true (the empty body), a
goal (procedure call), a constraint (constraint solving), an implication, or
a cardinality combinator. In this paper, variables are denoted by uppercase
letters, constraints by the letter c, conjunctions of constraints by the letter a,
terms by letters t and s, atoms by letters H and B, goals by the letter G, and
integers by the letters l, u, and v, all possibly subscripted or superscripted.
We also use C to denote a constraint system and D, possibly subscripted, to
denote a finite domain. To illustrate the operational semantics of (part of)
cc(FD), we use the simple program depicted in Fig. 2.

2.2. The CLP scheme

At least from a conceptual standpoint, the operational semantics of the
CLP scheme is a simple generalization of the semantics of logic program-
ming. It can be described as a goal-directed derivation procedure from the
initial goal using the program clauses. A computation state is best described

118 P. Van Hentenryck et al.

by

(1) a goal part: the conjunction of goals to be solved;
(2) a constraint store: the set of constraints accumulated so far.

Initially the constraint store is empty and the goal part is the initial goal.
In the following, we denote the computation state by pairs (G [] a), where
G is the goal part and a is the constraint store. We use e to denote an empty
goal part or constraint store. An example computation state is

(q(X,Y,Z) [] X,Y,Z E {0 10} ~ X i> Z + 3 ~ Y ~< Z).

A computation step (i.e. the transition from one computation state to
another) can be of two types depending upon the selection of an atom or a
constraint in the goal part. In the first case, a computation step amounts to

(1) selecting an atom in the goal part;
(2) finding a clause that can be used to resolve the atom; this clause

must have the same predicate symbol as the atom, and the equality
constraints between the goal and head arguments must be consistent
with the constraint store;

(3) defining the new computation state as the old one where the selected
atom has been replaced by the body of the clause and the equality
constraints have been added to the constraint store.

In the second case, a computation step amounts to

(1) selecting a constraint in the goal part that can be satisfied with the
constraint store;

(2) defining the new computation state as the old one where the selected
constraint has been removed from the goal part and added to the
constraint store.

For instance, given a computation state

(q(X,V,Z) [] X,Y,Z C {0 10} & X >i Z + 3 ~ Y ~< Z)

a computation step can be performed using the second clause of q (see
Fig. 2) to obtain a new computation state

(Z >/ Y + 2 [] X,Y,Z C {0 i0} ~ X >i Z + 3 ~ Y ~ Z).

Another computation step leads to the configuration

(e [] X,Y,Z E {0 I0} & X >i Z + 3 & Y ~< Z ~ Z >i Y + 2),

Constraint satisfaction using CLP 119

since the resulting constraint store is satisfiable. Note that, strictly speaking,
equations should have appeared between the variables in the above example;
they were omitted for clarity, since the variables have the same names in
the program.

As should be clear, the basic operation of the language amounts to deciding
the satisfiability of a conjunction of constraints. Note also that each com-
putation state has a satisfiable constraint store. This property is exploited
inside CLP languages to avoid solving the satisfiability problem from scratch
at each step. Instead, CLP languages keep a reduced (e.g. solved) form of
the constraints and transform the existing solution into a solution including
the new constraints. Hence the constraint solver is made incremental. For
instance, the last constraint store may be represented as

(e [] x E {s 1o} ~ Y E {o 5} ~ z E {2 7}

X >_- Z + 3 & Y ~< Z ~ Z >~ Y + 2).

A computation state is terminal if

• the goal part is empty;
• no clause can be applied to the selected atom to produce a new com-

putation state or the selected constraint cannot be satisfied with the
constraint store.

A computation is simply a sequence of computation steps that either
ends in a terminal computation state or diverges. A finite computation
is successful if the final computation state has an empty goal, and fails
otherwise.

To illustrate computations in a CLP language, consider our simple program
again. The program has only one successful computation, namely

(p(x,Y,Z) [] e)

(selecting the first constraint)

(selecting the last constraint)

(q(X,Y,Z) [] X,Y,Z E {0 10} & X >i Z + 3 & Y ~< Z)

(using the second clause of fl)

(z >i v + 2 [] x,Y,Z E {0 10} ~ X >I Z + 3 ~ Y ~< Z)

(selecting the constraint)

(e [] X,Y,Z E {0 i0} ~ X I> Z + 3 ~ Y ~< Z ~ Z i> Y + 2)

The program has also one failed computation:

120 P. Van Hentenryck et al.

(p(X,Y,Z) [] e)

(selecting the first constraint)

(selecting the last constraint)

(q(X,Y,Z) [] X,Y,Z 6 {0 iO} ~ X >_- Z + 3 & Y ~< Z)

(using the first clause of q)

(r(X,Y,Z) [] X,Y,Z C {0 I0} g X i Z + 3 & Y ~ Z>

(using the clause of r)

(X ~< Y + 2 [] X,Y,Z C {0 I0} ~ X >_- Z + 3 g Y ~< Z).

The last computation state is terminal since the conjunction of constraints

X ~> Z + 3 & Y ~< Z & X ~< Y + 2

is not satisfiable.
Note that the results of the computation are the constraint stores of the

successful computations. Also, nothing has been said so far on the strategy
used to explore the space of computations. Most CLP languages use a
computation model similar to Prolog: atoms are selected from left to right
in the clauses, clauses are tried in textual order, and the search space is
explored in a depth-first manner with chronological backtracking in case of
failures. 2 For instance, on the simple program, a CLP language typically
uses the first clause for p, then the first clause for q, and finally encounters
a failure when trying to solve r. Execution then backtracks to the second
clause of q, giving the successful computation.

2.3. Constraint entailment

As mentioned previously, the cc framework considers other operations on
constraints beyond constraint solving as well as additional ways of combining
them. An important operation on constraints is constraint entailment, which
amounts to finding out if a single constraint is implied by a conjunction of
constraints, i.e.

c ~ (v) (a ~ c) .

Constraint entailment was introduced in the context of concurrent logic
programming (e.g. [58]) by Maher [43] to endow these languages with a
logical semantics. It can be viewed as well as a generalization of languages
allowing coroutining and delay mechanisms (e.g. [10,13,17,28,47]), and is

2We see below that the additional combinators of cc (FD) permit more sophisticated search
procedures.

Constraint satisfaction using CLP 121

one of the cornerstones of the cc framework, where it is used to synchronize
concurrently executing agents. It was also used in CHIP (see [20,31]) inside
the if_then_else construct and was instrumental in simulating hybrid circuits.
Its interest for CLP languages lies in the opportunity it gives to reason about
the constraints and to use the information gained in pruning. As we will
see, it can be used to express non-primitive constraints following general
principles from artificial intelligence and operations research.

Both implication and cardinality, the two cc (FD) combinators used in our
applications, make use of constraint entailment. The implication combinator
was introduced in [54] in the context of concurrent logic programming,
while the cardinality combinator was proposed explicitly for CLP languages
in [73].

2.4. The implication combinator

Motivation
Local propagation is one of the key ideas behind constraint programming

languages such as CONSTRAINTS [66] and ThingLab [2]. Local propaga-
tion (or value propagation) amounts to deducing values for some variables
from those of other variables. For instance, an "and-gate" in a digital circuit
may be defined by rules of the form

"If one input is 0 then the output is 0",
"If the output is 1 then the inputs are both 1".

To implement a program achieving this form of propagation, it is necessary
to introduce a form of data-driven computation in which goals are sus-
pended when not enough information is available and reactivated when new
information allows them to be reconsidered. The purpose of the implication
combinator for CLP languages is to achieve this form of behavior, to gen-
eralize it to any constraint system, and to combine it with nondeterministic
choice.

Description
As mentioned previously, the implication combinator has the form c ~ A

where c is a constraint and A is a body. Its declarative semantics is simply
given by logical implication.

The main originality of the implication combinator lies in its operational
semantics. The implication c ~ A ensures that A is executed only when
(and as soon as) c is entailed by the constraint store. In other words, if c is
entailed by the constraint store, c ~ A reduces to A. If -~c is entailed by the
constraint store, c ~ A reduces to true. Otherwise, the computation blocks,
waiting for more information.

122 P. Van Hentenryck et al.

Consider again the descr ipt ion o f an and-gate using local propagat ion
techniques:

• nd(X,Y,Z) :-

X = 0 --+ Z = 0 ,

Y=O-+Z=O,

Z = I --* (X = I , Y = i),

X= I-+Y=Z,

Y=I-+X=Z,

X = y --+ X = Z.

The first rule says that, as soon as the constra int store entails x = 0, the

constra int z = 0 mus t be added to the constraint store. Note that the last

three rules actually do more than local value propagat ion; they also propagate
symbol ic equalities and one of them is condi t ional to a symbol ic equality.

N o w the goal (and(X,Y,Z) [] X = O) produces a constraint store x = o t z --
0, since the goal (x = 0 --+ z = o [] x = 0) reduces to (z ,, 0 [] x = o) and

hence to the constra int store x = 0 ~ z = 0. Howeve r the goal (~md(X,Y,Z)

[] e) does not modi fy the constra int store, since none o f the constraints in
the impl ica t ion constructs are entai led by the constraint store.

As men t ioned previously, a goal that is b locked can be resumed when new
in format ion becom e avai lable in the constra int store. Assume for instance

the compu ta t i on state

<X = 0 -~ Z = 0 , T = 0 -+ X = 0 [] T = 0).

The first goal x = 0 ~ z = 0 blocks since x = o is not entai led by the con-

straint store. But the second goal can be executed, leading eventual ly to the

compu ta t ion state

(X = 0 --+ Z = 0 [] X = 0 & T = 0) .

N o w x = o is entai led by the const ra in t store and hence the first impl ica t ion
can be executed. The final constraint store will be x = 0 t T = 0 t Z = 0.

N o w consider building a full-adder using logical gates:

fa(X,Y,Cin,S,C) :-

~nd(X,Y,Cl),

xor(X,Y,Sl),

and(tin, SI ,C2),

xor(Cin,Si,S),

or(CI,C2,C).

In the above circuit, x and Y are two input bits, C i n is the carry-in, s is the
result bit, and c is the carry-out. I f we use the impl ica t ion combina to r to
define all logical gates, the query fa(X,V, 1, s ,o) produces the constra int store

Constraint satisfaction using CLP 123

X=0&Y=0&S= I.

The reason is the following. Since the result of the or-gate is 0, its two inputs
cl and c2 must be 0. Since the second and-gate has output c2 equal to 0 and
input t in equal to 1, it follows that Sl must be 0, which implies that x and
Y must be equal because of the first xor-gate. Since x and v appear both as
inputs in the same and-gate, they must be equal to its output Cl, which is 0.

The implication combinator thus introduces a notion of coroutining be-
tween goals in the language, and the execution of goals can be interleaved
in complex ways. Note that the goals synchronize by "asking" if some con-
straints are entailed by the constraint store and that a suspended goal can
be resumed by a modification of the constraint store by other goals. More-
over, the implication combinator is not restricted to simple constraints, as
illustrated above, but allows arbitrary constraints of the language.

2.5. The cardinality combinator

Motivation
The cardinality combinator is a declarative and relational operator, in-

tended for the handling of general forms of disjunctions which often occur
in practical applications. It can be used to enforce arc-consistency on any
arbitrary finite-domain constraints (within the complexity bound of the op-
timal algorithm of [44]) but, as should be clear from the presentation, it
is not limited to finite-domain constraints. The cardinality has been used
in numerous applications including scheduling, assignment, Hamiltonian
circuit, and warehouse location problems. It will be important in the car
sequencing application.

Before entering into the description of the combinator, let us give an
example to motivate the reader. Consider, for instance, a scheduling problem
and assume that we face a disjunctive constraint between two tasks, i.e. the
execution of the two tasks cannot overlap. Assume that sl and s2 represent
the starting dates of the tasks and D1 and D2 their durations, the constraint
can be expressed as

disjunctive (SI ,DI, S2,D2) :-

S1 + D1 ~ $2.

disjunctive (Sl ,DI, $2,D2) :-

S2 + D2 ~< $I.

Unfortunately the above constraint is nondeterministic and introduces choice
points during the execution. The first alternative, i.e. the second task is
scheduled after the first task, will be selected and its constraint will be
added to the constraint store. Subsequent execution may lead to a failure
and require this choice to be reconsidered. The second alternative, i.e. the
first task is scheduled after the second task, will then be considered. In

124 P. Van Hentenryck et al.

general, it is better to postpone choices as long as possible. The above con-
straint can be used in two ways to achieve pruning: (1) if the maximal start
date of s2 is smaller than the minimal start date of Sl added to D1, then the
second task cannot be scheduled after the first task and (2) if the maximal
start date of Sl is smaller than the minimal start date of s2 added to D2,
then the first task cannot be scheduled after the second task. The cardinality
combinator enables us to express this pruning in a natural way.

Description
As mentioned previously, the cardinality combinator has the form

(l , u , [cl ,cn])

where l and u are integers and cl c, are constraints.
The declarative semantics is given as follows. # (l , u, [ca,..., cn]) is true

iff the number of constraints ci (1 ~ i ~ n) satisfiable is not less than l
and not more than u. It is false otherwise.

Note that this combinator is quite expressive. A conjunction cl A . . . A
c, can be expressed as # (n , , , [Cl, '" ,cn]) where • is a don't-care value,
a disjunction Cl v . . . v cn as # (1 , , , [cl cn]), and a negation -~c as
(, , 0, [c l). Other connectives such as equivalence ~ can now be obtained
easily. In the applications, we feel free to use the logical operators instead
of the cardinality combinator when convenient.

Using the cardinality combinator, the disjunctive constraint can be im-
plemented as follows:

disjunction(Sl ,DI, S2,D2) :-

#(I,*,[Sl + D1 ~ S2, S2 + D2 ~< Sl]).

Once again, the main interest of the cardinality combinator lies in its
operational semantics. The combinator implements a principle well known
in operations research and artificial intelligence: "infer simple constraints
from difficult ones". The intuitive idea is to make sure that the cardinality
combinator can be satisfied in some way. Moreover, if there is only one
way to satisfy it, then the constraints necessary to satisfy it are introduced
in the constraint store. Constraint entailment is used to check if there is a
way to satisfy the constraint. In the disjunctive example, the system makes
sure that either the first task can be scheduled before the second one or the
second task can be scheduled before the first one (or both). If the constraint
store makes it impossible to schedule the first task before the second, then
a constraint forcing the second task to be scheduled first is added to the
constraint store.

Consider a simple example:

Constraint satisfaction using CLP 125

(#(1,2,[x=4, Y-to]) ~ x>6 [] e)

(#(1,2,[x=4, Y=lO]) [] x>6)

(#(1,2,[Y=1o1) [] x>6)

1
X>6 & Y=IO

This example contains a cardinality combinator requiring that x = 4 or
Y = 10 be true. Initially neither these two constraints nor their negations
are entailed by the constraint store, so the execution of the cardinality
combinator blocks. The second goal x > 6 is selected, which implies that
x ~ 4 is entailed by the constraint store. There is now only one way to
satisfy the cardinality combinator, i.e. adding the constraint Y = 10 to the
constraint store.

The cardinality combinator can be used to enforce arc-consistency on any
binary constraint in time O(ed 2), where e is the number of constraints and
d is the size of the largest domain. Given a constraint c(X, Y) with X ~ Dx
and Y e By, it is sufficient to generate for each value v E Dx a constraint
of the form

X = v ** Y E D

where D = {w ~ Dy I c (v ,w)} and vice versa for Y. The equivalence can
be rewritten easily into two cardinality formulas. The optimal bounds of
Mohr and Henderson [44] can be obtained by using counters to implement
cardinality and entailment.

2.6. Constraint system

Here we give an informal presentation of the constraint part of cc(FD).

Syntax
Definition 2.1. An arithmetic term is defined inductively as follows:

(1) A variable is an arithmetic term.
(2) A natural number is an arithmetic term.
(3) tl + t2, t l , t2, and t l - t2 are arithmetic terms if tl and t2 are arithmetic

terms.

The primitive constraints of the language are as follows:

Definition 2.2. A primitive constraint in cc(FD) can be of two forms:
(1) x ~x {vl Vn};
(2) t 1 ~2 t2,

126 P. Van Hentenryck et al.

where x is a variable, 'u I 'u n are natural numbers, 81 ~ {~, ~}, tl and t2
are arithmetic terms, and 82 ~ {>, >i, = , # , ~<, <}. Constraints of the first
type are called domain and non-membership constraints respectively, while
constraints of the second type are called arithmetic constraints.

Note that in cc(FD) each variable appearing in an arithmetic constraint
must also occur in a domain constraint.

Constraint solving
There are various ways of implementing a constraint solver for the above

constraints. Since the problem is decidable (because all variables must ap-
pear in a domain constraint), a decision procedure is possible for consistency
and entailment. However, a complete constraint solver would necessarily re-
quire exponential time (unless P = NP). The approach taken in cc(FD)
(and in CHIP as well) is to use consistency techniques instead and amounts
to replacing constraint solving by arc-consistency and constraint entailment
by arc-entailment.

Definition 2.3. A constraint c (x l , . . . , X n) is arc-consistent with respect to
D 1 , . . . , D n if, for each variable xi and value vi E Di, there exist values
/31 /)i_1,~3i+1 "u n in O1 Oi-l ,Di+l ,Dn such that c (v l , . . . , V n)
holds.

A set of constraints is arc-consistent with respect to a set of domains for
its variables iff all constraints are arc-consistent with respect to the domains.

Definition 2.4. A constraint c(xl xn) is arc-entailed by D1 ,Dn iff,
for all values vl vn in D 1 , . . . , D n , c(xl Xn) holds.

The operational semantics of the parts of cc(FD) presented in this pa-
per can be understood informally as an instance of the generic scheme
presented earlier in which consistency is replaced by the weaker notion
of arc-consistency and entailment by the weaker notion of arc-entailment.
Enforcing arc-consistency does not in general produce a decision procedure
(see [16] however for subclasses having that property). In conjunction with
nondeterminism, it produces the kind of languages advocated in [42]. Arc-
consistency algorithms have been intensively studied [42,44,45,77] but with
the primitive constraints considered in cc(FD), more efficient algorithms
can be exhibited. For instance, with binary constraints, arc-consistency can
be enforced in O (ed) where e is the number of constraints and d is the size
of the largest domain [16].

A formal semantics of cc(FD) in terms of the cc framework requires
decision algorithms for constraint solving and entailment. The key idea is to

Constraint satisfaction using CLP 127

divide the primitive constraints into two classes: (1) basic constraints (those
allowing an efficient decision procedure) and (2) non-basic constraints
defined in terms of the combinators. 3 The main benefit of investigating the
formal semantics has been the identification of a number of new combinators
(e.g. constructive disjunction and indexical constraints) that support, at the
language level, pruning principles previously hidden in the implementation.

3. Test-pattern generation

The first application we consider is in the field of digital circuit design:
automatic test-pattern generation (ATPG). Problems from circuit design are
useful in evaluating general problem solving techniques, since many special-
purpose methods have been developed in this area and different approaches
can be compared, using widely available benchmarks. CLP in general, and
CHIP in particular, have been applied to a number of problems from
digital circuit design, including formal verification [65], diagnosis [63],
synthesis [64] as well as simulation of hybrid circuits [31]. The use of
CLP for test generation has been discussed before [59,60,62]. The method
described here is based on [61]. We show that cc(FD) allows a simple
and declarative formulation of test generation as a constraint satisfaction
problem. Moreover, by using the implication operator to define demons, it is
possible to design an efficicnt test generation algorithm that requires only a
fraction of the development effort necessary with conventional approaches.

3.1. Problem statement

VLSI chips are produced by complex processes in which errors can arise,
hence only a certain percentage of chips will be error free. This yield varies
with different circuit types and processes, but can be as low as a few percent
for a new fabrication process. The manufacturer, on the other hand, wants
to sell chips with a low defect level, i.e. a low percentage of faulty chips
passing quality control. Test generation is the process of defining the tests
to apply to a circuit in order to detects faults. Williams [78] has presented
a model expressing the defect level as a function of yield and fault coverage,
the percentage of all faults detected by testing. This model makes clear the
necessity of finding a very high percentage of all faults in order to obtain a
low defect level for a process with a low yield.

3These constraints need not be considered primitive constraints in the language, since they
can be defined at the language level.

128 P. Van Hentenryck et al.

7.1.1. Fault models
Since many different physical failures can occur in a circuit, the only

way to test for all possible faults is to test all circuit behaviors over time,
which is clearly impractical. The principal idea of structural testing is to use
knowledge about the structure of a circuit and the underlying technology
to limit the number of cases we have to consider. There have been many
attempts to describe what types of faults can occur in different technologies
[1]. One of the earliest and still widely used fault models is the "stuck-at"
model. This assumes that all faults lead to the situation where some signal
in a circuit is permanently set to "1" or "0". The signal is then said to
be "stuck-at 1" (sal) or "stuck-at 0" (sa0). This fault model covers many,
though not all, device faults inside a VLSI circuit. It has been shown that
a test set that detects all single stuck-at faults also covers many other faults
(with the exception of time-sensitive faults). Most test generation systems
restrict themselves to the detection of single stuck-at faults at the logical gate
level. We will use this model and, in the rest of the section, fault coverage
should be understood as the percentage of all detected single stuck-at errors.

Note also that testing for stuck-at faults in a circuit does not require
generating tests for each fault, as some faults are covered by other faults
[51]. For instance, testing the output of an and-gate for saO automatically
tests the gate inputs for sa0. We can easily generate this more interesting
collapsed fault set in a preprocessing step.

3.1.2. Test generation and fault simulation
The ATPG problem is conceptually split into two subproblems: test gener-

ation and fault simulation. Test generation entails finding a test that detects
a certain fault for some component inside the circuit; fault simulation de-
tects which faults are covered by a particular pattern. Often the two parts
are intertwined and the whole process terminates when either a preset fault
coverage is obtained or a time limit is exceeded. The presentation here is
restricted to the test generation phase, which typically consists of three steps
[3]:

• Setup: To test a fault at the output of a certain gate, it is necessary to
ensure different behavior for the good and faulty circuits for this signal.
This can be achieved by controlling the gate, i.e. by applying certain
signals to the inputs of the gate. For instance, testing an and-gate for
a stuck-at-zero fault requires us to set both inputs of the gate to 1.

• Propagation: It is clearly not enough to create an internal difference
between the behavior of the good and the faulty circuit. This difference
must be observable at some output of the circuit. The propagation step
creates a sensitized path from the gate under test to some circuit
output. In general, one or several symbolic values are introduced and

Constraint satisfaction using CLP 129

the propagation step amounts to propagating these symbolic values
towards the primary outputs. The symbolic values represent the value
or the negation of the value at the gate under test and indicate where
the result of the test can be observed.
Justification: The last step assigns values to all signals in the circuit in
order to satisfy the conditions enforced by the setup and propagation
steps. Generating a test basically amounts to finding an assignment
of values for each of the primary inputs, that satisfies the constraints
imposed by the setup and propagation steps on the signals throughout
the circuit.

How these steps are implemented makes the difference between the various
test generation algorithms.

3.2. Problem solution

In this section, we present the test generation program in cc(FD). We
proceed in several steps. Section 3.2.1 discusses how circuits can be repre-
sented in logic programming. Section 3.2.2 shows how ATPG can be seen
as a constraint satisfaction problem. Section 3.2.3 shows how to implement
the basic elements as demons using the implication operator. Section 3.2.4
presents the basic test generation program, and Section 3.2.5 shows how
heuristics can improve the algorithm efficiency.

3.2. I. Circuit description
Logic programming can be considered as a simple but powerful hardware

description language. It supports in a natural way top-down development
and mixing of various hierarchical levels of circuit description. In logic
programming, a circuit can be specified by means of clauses that describe
components and modules and the interactions between them. A general
description of a full-adder can be given as follows:

fa(M,N,X,Y,Z,S,C) :-

and(M, [I iN] ,X,Y,Cl),

xor (M, [21N] ,X,Y,SI),

fanout (M, [SIN] ,SI,SII,S12),

and(M, [4iN] ,Z,SII,C2),

xor(M, [5IN] ,Z,St2,S),
or(M, [6IN] ,Cl,C2,C).

For simulation, the definition of the basic elements and, xor, and or can be
given by a set of ground clauses (the truth table definition). For instance,
an and-gate can be expressed as

and(simul,N,O,O,O).

130 P. Van Hen ten~ck et al.

and(simul,N,O,l,O).
and(simul,N,l,O,O).
and(simul,N,l,l ,1).

Here the first argument contains the operation mode (for instance, "test"
for test generation, "simul" for circuit simulation or "time" for delay time
computation) to distinguish between several user-defined operation modes.
The second argument assigns a unique identifier to each part (module or
basic component) of the circuit. Thus a hierarchical naming convention can
be easily implemented. The other arguments are the inputs and outputs of
the components. Note that no distinction is necessary between inputs and
outputs. Multiple internal connections between components are represented
by fanout points, since they are of special interest in test generation. In
previous examples (see Section 2.5), connections were represented by shared
logical variables.

The full-adder can now be used in other circuit descriptions and parame-
terized libraries of modules can be generated using hierarchical descriptions.
This kind of hierarchical description of circuits follows the style of logic
programming in top-clown development: one can replace the description
of a lower-level component without affecting the higher-level circuit def-
inition. The same circuit description can be used in various applications
including simulation, formal verification and fault diagnosis (see [62]).
Similar ways of describing hardware in logic programming are reported in
[11,22,32,33,68].

3.2.2. ATPG as a constraint satisfaction problem
Our strategy is based on treating the test generation problem as a consistent

labeling problem. We use six symbolic values, 0, 1, d, ~o t , e, and enot. The
values d and e represent the value at the gate under test while dnot and enot
represent their negations. The basic difference between d, dnot, and e, enot
is in the way these values are propagated, d is assigned to the gate under
test and the goal of test generation is to propagate d or dnot to a primary
output so that the gate can be observed. Once a test has been found, it is
sufficient to run the circuit with the test and to observe the value of the
gate at a suitable primary output. The values e and enot are introduced
because of fanout points: without the values e and enot, a fanout point
would need to propagate a d or dnot value to all outputs. Since the values d
and dnot impose severe constraints on the gates in order to propagate them
towards the primary outputs, the algorithm may be unable to find a test in
some cases. With the values e and enot, a fanout point propagates a d (or
a dnot) on one output and an e (or an enot) on the other outputs. Since
it devotes no effort to propagating e and enot, the algorithm avoids the

Constraint satisfaction using CLP 131

and 0 1 d d e i

0 0 0 0 0

1 0 1 d d e

d -- d d --

e 0 e d -- e 0

i oi-- ~ o i

Fig. 3. Definition of an and-gate in six-value logic.

xor

0

1

d

@

0 i d d e

0 1 d d e

1 0 d d i e

dd

~d

e ~ 0 1

~ e 1 0

Fig. 4. Definition of an xor-gate in six-value logic.

not lO I d d e i

I 1 0 d d~ e

Fig. 5. Definition of a not-gate in six-value logic.

above-mentioned drawback. The resulting algorithm is complete (it finds a
test if one exists), which is not the case for the algorithm using a five-value
logic.

Figures 3-5 give the definitions of some gates (dnot and enot are repre-
sented by d and V). These definitions are intended to propagate the values d
and dnot towards the primary outputs and hence some input combinations
are prohibited. Consider for example the and-gate. If an input is a value
d, then the other input must be either 1 or e in order to propagate d to
the output. The handling of the value dnot is similar. Note also that the
values e and enot are not necessarily propagated to the output of the gate;
this illustrates the main difference between the values e, enot and the values
d, dnot. The xor-gate is also interesting to analyze. As soon as an input is d
or dnot, the other input must be 0 or 1 respectively. Note that a value d can
thus be propagated as a dnot on the output. The not-gate is straightforward.

The possible values for a fanout point are given by the predicate definition
in Fig. 6. Note especially how the value d is propagated: only one of the
outputs is assigned to d, the other being given the value e. There are
of course two possible ways of propagating d depending upon the output
chosen.

Test generation is then performed by the following method. Variables

132 P. Van Hentenryck et al.

~, f anout (Mode, Label, Stem, Branch i, Branch2)

fanout (M,N,O,O,O).

fanout(M,N,l,1,1).

fanout (M,N,d,d,e).

fanout (M,N,d,e,d).

f anout (M, N, dnot, d_not, enot).

f anout (M, N, dnot, enot, dnot).

fanout (M,N,e,e,e).

f anout (M, N, enot, ShOt, enot).

Fig. 6. Definition of a fanout in the six-value logic.

throughout the circuit are required to take one of the six signal values. In
addition, the primary inputs can only take values 0 or 1. One primary output
will have a d or dnot value and some others can have e or enot values.
The circuit gates impose local constraints between their inputs and outputs
(defined by the truth tables above). The gate under test will have a d as
output and suitable inputs to control the gate. The key advantage of this
description is that all constraints can be expressed just as local constraints.
The existence of a d-path from the gate under test to a primary output is
guaranteed by the constraints. This is the main difference from the classical
ATPG algorithms [26,29,53], which use a five-value logic and rely on a
global control strategy to create the d-path and choose between alternatives.
Note also that the solution is not described algorithmically by changes to
be applied to an empty assignment, but rather as a constraint satisfaction
problem.

3.2. 3. Gates as demons
A simple definition of the gates as truth tables would lead to an ex-

tremely inefficient program. For a better approach, we exploit two features
of cc(FD): domain constraints and the implication operator. Each line in
the circuit is associated with a variable constrained to take one of the six
possible values. In addition, the primary inputs are constrained to be 0 or
1. The implication operator is then used to define a demon for each type
of gate. The demons make sure that the gates propagate values as soon
as possible and reduce the search space whenever possible by removing
values from the variables. The demon definition is a generalization of that
presented in the description of the implication operator. For instance, the
demon for an and-gate is depicted in Fig. 7.

Note that the implications use both equations and non-membership and
domain constraints to reduce the search space by removing variable values.
Also, each implication solves the constraint, i.e. if an implication has been

Constraint satisfaction using CLP 133

and_demon(X,Y,Z):-

x = o -~ (z = o, Y ~ {d,dnot}),

Y -- 0 ~ (z = 0, x ¢ { d , ~ o t }) ,
Z -- 1 --~ (X = 1 , Y -- 1) ,

X = 1 "--~ Y = Z ,

Y=I-~X=Z,

X = Y ---+ (X = Z, X ~ {d,dno%}),

X = d --+ (Y E <l,e}, Z = d),

Y = d ~ (Y 6 {i,e}, Z = d),

X = d.no% ---+ (Y E {1,enot}, Z = dnot),

Y = dnot --+ (Y E {1,enot}, Z = dnot),

X = e ---+ Y = enot -+ Z = O,

X = enot -~ Y = e -~ Z = O.

Fig. 7. Implementation of an and-gate in the six-value logic.

and(test(Gatel,Fault),Gate,X,Y,d) :-

Gatel = Gate,

inverse(FaulZ,Setup),

and(X,Y,Setup).

and(test(Gate1,Fault),Gate,X,Y,Z):-

Gatel ~ GaZe,

Z E { O , l , d , d n o t , e , e n o t } ,

a n d _ d e m o n (X , Y , Z) .

this is the g.u.t.

to test the fault

setup opposite value

use the 0-1 demon

it is not the g.u.t.

domain constraint

use the six-valued demon

Fig. 8. The and-gate definition for A T P G .

applied, then all remaining values for its variables are valid. Finally, note
that we do not enforce an assignment of the gate inputs in the case where
the output takes the value 0. The constraint blocks until an assignment is
made to an input either by propagation or by a labeling routine.

3.2.4. The basic ATGP program
We can now present the basic program.
Each type of gate is associated with a new procedure. Figure 8 illustrates

the approach for an and-gate. Besides the inputs and output, the procedure
receives two arguments: a term test(Gate,Fault), which is the same for
all gates, and a unique identifier for the gate. The term test(aate,Fault)
indicates which gate Gate is under test for a given fault Fault; for example,
test([2] ,1) is used for testing a sal fault at gate 2.

The procedure for each type of gate is defined by two clauses. The first
clause handles the case of the gate under test (g.u.t.), recognized by the

134 P. Van Hentenryck et al.

test(+,+,+,-): generate test for output of Gate at Fault saO or sal

the third arg is a list of inputvars of the circuit

test(Gate,Fault,Inputlist,Output):-

domain_constraints(Inputlist,O,1),

circuit(test(Gate,Fault),[],Inputlist,Output),

labeling(Inputlist).

labeling(+): assign 0 or i to all inputs of the circuit

labeling([]).

labeling([XlT]):-

member(X,[O,l]),

labeling(T).

Fig. 9. A T P G program.

equality Gate1 = Gate, where Gatel is the unique identifier of the gate under
test and Gate is the gate currently considered. The clause simply assigns the
value d to the output. In addition, the clause controls the gate by stating a
constraint on the inputs to produce the desired output. The desired output is
obtained from the type of fault by the procedure inverse and the constraint
is enforced using the 0-1 definition of the and-gate as described in Section
2.4. For example, an sa0 fault for the and-gate would produce 1 as the
desired output (i.e. Setup is l) and the 0-1 and-gate is called with x, Y,
and Setup as arguments. In this case, the 0-1 definition assigns x and Y
to 1. The second clause handles the general case, i.e. when the gate under
consideration is not the gate under test. The clause simply enforces a domain
constraint for the output and calls the six-value definition.

The complete program for test generation is shown in Fig. 9. It uses a
circuit description and the predicate definitions above. The first argument
of test is the label of the gate to test, the second argument is the fault type
to test, and the third argument must be instantiated to the list of variables
for the primary inputs of the circuits (this list is assigned 0-1 values by
the labeling routine). The predicate domain_constraints generates suitable
domain constraints for the primary inputs to guarantee that they are given
a 0-1 value. The second goal enforces the constraints associated with each
gate relating its inputs to outputs. The last goal simply assigns values to the
primary inputs. As usual in constraint programming, the generation phase is
interleaved with the constraint propagation part at run time, although they
are separated in the problem statement.

The algorithm described so far is complete, i.e. it finds a test pattern if
one exists and fails otherwise. We now explore several ways of improving
its efficiency.

Constraint satisfaction using CLP 135

3.2.5. Heuristics
The basic procedure described so far requires making many possible

choices. To obtain an efficient system, it is necessary to develop heuristics
that avoid making the wrong choices. In this section we describe some
of the heuristics used in our test generation program. We show that this
information can easily be added into the program.

Controllability and observability
When propagating a d-value from the fault to a primary output, no choices

are needed as long as there is a unique path. When a d-value reaches
a fanout stem however, the d-path can continue along any of the stems
and we have to decide which one to follow. Several measures have been
proposed to estimate the difficulty of finding a path from some point inside
the circuit to an output [4]. This value, called an observability measure, can
be precomputed in a preprocessing step. For each fanout point, we obtain
an ordering for the fanout stems, and try to propagate the d-value along the
path with highest observability first.

A similar measure estimates how difficult it is to set a point inside the
circuit to a particular value, 0 or 1. This controllability is used to decide
which values to assign to controlling inputs of xor-gates in the d-path. If it
is easy to set a point to 0, we use this value; if not, we set it to 1.

Both controllability and observability are heuristic values. Since they are
obtained by simple computations, for example ignoring reconvergent fanout,
they give only hints on which values to test first, and do not eliminate the
need for backtracking completely.

Labeling
The choice of an appropriate labeling routine is crucial for many constraint

satisfaction problems but turns out not to be as important for test generation.
We use a routine that assigns the variables in the order given, but chooses
randomly between 0 and 1 for the first assignment. For most of the example
circuits tested below, the labeling is done without any deep backtracking.

Limiting backtracking
Some faults in circuits can be untestable; they are redundant. The program

may not be able to detect this in reasonable time. Tests for other faults can
be very difficult to obtain. To avoid spending too long trying to find a test,
we have to limit the search performed on any one fault. This can be done
in two ways: one is to limit the number of backtrack steps performed in
the search, the other is to limit the execution time spent on each case. Both
methods are rather simple to add to the program.

136 P. Van Hentenryck et al.

Z X C1 Cout

Fig. 10. Test generation example.

X : ~ ~ " C1 r--,,, x ~ c1 [~ u t

y ~ C2

Fig. 11. Test generation example (continued).

3.3. Example

We use the full-adder circuit described above to illustrate the behavior
of the program. We explain the steps required to generate a test for an sal
fault at the output of xor-gate 2 (see Fig. 10).

The query to execute is

?- test([2],l,[X,Y,Z],[S,Cout]).

The program enforces all constraints imposed by the circuit. To control
gate 2, sl is assigned the value d. In addition, since the test is an sal fault,
the variable Setup is assigned to o. The xor-demon for the gate is then
executed with the output equal to 0. This assignment entails, by definition
of the xor-gate, the equality of both inputs of gate 2 (see Fig. 10 where
the equality is shown as a double arrow), which is the weakest constraint
necessary to make sure that the output is 0. All other gates use the six-value
definitions; their purpose is to propagate the value d (or dnot) towards the
primary outputs. Let us review how this is done.

The equality between x and Y enables one of the implications of the and-
gate to be reduced (shown in the picture as a dotted arrow), leading to the
equality of x with ¢1 and the removal of d and dnot from Cl (see Fig. 11).
Then the rule for fanout point 3 is executed, creating the constraints Sll =
d and s12 = e (see Fig. 11). This triggers another implication for and-gate
4, binding z to 1 and c2 to d, which in turn triggers an implication for gate
5, binding s to enog (see Fig. 12). The rule for gate 6 now binds Cout to d
and cl to 0 and, by unification, x to 0 and Y to o (see Fig. 12).

Constraint satisfaction using CLP 137

y ~ C2

z -

y o ~ Y "

Fig. 12. Test generation example (continued).

x ~ l ~ c10~dOU t

y ~ C2

, , s

Fig. 13. Test generation example (continued).

The final solution is then

X = Y = CI = O, $1 = d,

S11 = d, $12 = e,

C2 = d, Cout = d,

Z = 1, S ---- enot

(as shown in Fig. 13). The test pattern generated for the sal fault at the
output of gate 2 is [0,0,1].

This example is unusual in that all constraints are ultimately solved, i.e.
all variables are instantiated to values. No generation of values for the
primary inputs is thus necessary. For more complex examples however, this
will not be the case: some constraints will block and wait until variables are
instantiated by the labeling procedure in the test predicate.

3.4. Computation results

An evaluation of a test generation method must include experiments
with large, realistic circuits. We use the ISCAS benchmark set [35] to test
our method. The results show that a constraint-based ATPG system, while
currently not as fast as specialized programs, finds test sets even in large
circuits in a reasonable time with a high fault coverage.

The benchmark set was defined in 1985 to compare different test genera-
tion systems [35]. The results on a Sun 3/260 are given in Table 1, which
shows the name of the circuit, the number of gates, the size of the collapsed
fault set, and the number of primary inputs and outputs. For each circuit,

138 P. Van Hentenryck et al.

Table 1
Benchmark results.

Name Gates Faults In Out Red Ab % # Time
432 160 524 36 7 1 3 99.24 68 34.0
499 202 758 41 32 8 0 98.94 62 32.6
880 383 942 60 26 0 0 100 74 68.3

1355 546 1574 41 32 8 2 99.36 92 126.7
1908 880 1879 33 25 5 5 99.47 124 245.2
2670 1193 2747 233 140 97 41 94.98 105 433.2
3540 1669 3428 50 22 127 25 95.57 175 703.9
5315 2307 5350 178 123 59 22 98.49 141 819.3
6288 2406 7744 32 32 34 0 99.56 37 265.5
7552 3512 7550 207 108 88 122 97.22 281 2223.6

we show the number o f redundant faults detected (Red), the number o f

aborted faults (Ab), for which the procedure did not find a test or could not

detect redundancy, the fault coverage (%), and the number o f test patterns

(#) generated. Execution times are shown for test generation only (Time).

The program obtains quite high fault coverage for all test examples. The

first test patterns detect many new faults and then the number decreases

slowly. The same behavior can be observed for the other systems. This

shows a t radeo f f between fault coverage and execution time. By investing

more time, a slightly better fault coverage can be obtained.

The average t ime needed to find one test pattern for each of the example

circuits grows nearly linearly with the size of the circuit. This is to be

expected since, with our program, the whole circuit must be simulated to

find a test pattern.

Table 2 shows the results o f several special-purpose systems. It is very

hard to compare two different test generation algorithms in a fair way.

Fault coverage can be compared relatively easily since most systems use

the same fault set. Execution times vary widely. Systems are implemented

Table 2
Benchmark comparison.

Name Socrates FAN D-Alg AIDSTG

% sec % % % sec
432 99.24 5.3 94.7 97.4 99.05 70
499 98.94 24.9 93.5 68.5 99.29 101
880 100 5.7 100 100 100 107

1355 99.49 34.3 93.5 58.2 99.64 301
1908 99.52 63.1 94.6 95.0 99.59 533
2670 95.49 61.1 93.2 95.3 96.25 809
3540 95.95 89.0 92.0 94.4 95.90 1398
5315 98.88 45.4 98.2 98.5 99.21 934
6288 99.56 32.8 98.5 99.1 99.48 892
7552 98.25 243.5 93.7 96.3 98.26 2121

Constraint satisfaction using CLP 139

on different machines in different languages. For some systems, only total
time is given, for others only test generation time. However, we can observe
two main points. First, the fault coverage of our approach is quite good, in
some cases exceeding some of the specialized programs. This means that the
model and the propagation mechanisms used are quite powerful, finding a
test pattern even in difficult cases. Second the experimental results indicate
that the performance of the program is within a constant factor of the best
specialized algorithms. This is encouraging given the effort spent in the
development of these hand-crafted programs, the specialized nature of the
problem, and the room left for optimization in constraint languages. It shows
that a general and flexible programming language like cc(FD), especially
designed for short development time and rapid prototyping, enables us to
design a small declarative program whose efficiency is within a constant
factor of the best special-purpose algorithms.

4. The car sequencing problem

The second application we consider is the so-called car sequencing prob-
lem. This was motivated by an article published in A I Expert [48] which
posed the problem as a challenge for AI technology. We describe a solution
using cc (FD).

4. I. Problem statement

Cars in production are placed on an assembly line that moves through
various production units responsible for installing such options as air-
conditioning, radios, etc. The assembly line can be viewed as composed
of slots, and each car must be allocated to a single slot. However, the cars
cannot be allocated arbitrarily: the production units have limited capacity

9V 10V (M) ATWlG Brglez FAN
% sec % % % % sec

99.1 8.1 98.9 95.9 99.24 93.7 3.6
98.9 18.1 98.9 88.0 98.94 99.4 16.2

100 26.3 100 99.2 100 100 1.3
99.5 72.6 98.7 86.7 97.27 99.5 13.5
99.6 143.2 99.4 81.9 99.52 99.5 13.5
95.4 517 93.7 81.1 95.34 95.7 49.4
96.1 452 94.7 90.0 95.71 96.0 42.9
98.9 844 98.6 96.4 98.82 98.9 19.7
99.6 1039 69.9 99 99.56 99.5 31.7
98.1 1446 96.6 92.2 98.19 98.2 118.6

140 P. Van Hentenryck et al.

Table 3

A car sequencing example.

Classes
Option 1
Option 2
Option 3
Option 4
Option 5

1 2 3 4 5 6

Y Y Y
- - y y - y

y Y -
y Y - y

Y
Cars 1 1 2 2 2 2

Capacity
1/2
2/3
1/3
2/5
1/5

Table 4
Car sequencing: a solution.

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6

S 1 8 2 8 3 8 4 8 5 8 6 8 7 $8 8 9 S10
+
- - . . [-

+ + -

+ +
+ +

+ +

and they need time to set up the options on the cars as the assembly line is
moving in front of the unit. These capacity constraints are formalized using
constraints of the form r outof s, which indicate that the unit is able to
produce at most r cars with the option out of each sequence of s cars. The
car sequencing problem amounts to finding an assignment of cars to the
slots that satisfies the capacity constraints.

We illustrate the problem on a simple example. In the example and the
algorithm below, cars requiring the same set of options are clustered into
classes, since they cannot be distinguished for any useful purpose in the
algorithm. Table 3 presents a problem with five options, six classes, and ten
cars. Here "y" means that a particular option is required by the class, " -"
means that it is not required. The capacity constraint r/s should be read
as r outof s. For example, two cars of class 6 need to be produced. They
require options 1 and 2. The capacity unit for option 1 has a constraint
"1 outof 2", indicating that no two consecutive cars can require the option
since the unit cannot set up the option on the two consecutive cars while
the line is moving.

The search space in this problem is made up by the possible values for
the slots of the assembly line. Tables 4 and 5 depict a solution to the simple
example, where " - " denotes an inconsistent value and " + " an assigned
value; the assembly line itself is best described by the options selected for
each slot.

C o n s t r a i n t s a t i s f a c t i o n u s i n g C L P 141

Table 5
Car sequencing: the assembly line in a solution.

Option 1
Option 2
Option 3
Option 4
Option 5

S1 $2 $3 $4 $5 $6 $7 $8 $9 SlO
+ - + - + + - +

+ + - + + - + +

+ + +

+ + + +

+ + -

4.2. Problem solution

As is typical of finite-domain programs, the program contains two pans: a
constraint part that generates the problem constraints and a choice part that
assigns values to some of the problem variables. In this section we describe
the variables used in modeling the problem, the constraints expressed in
terms of these variables as well as short programs describing how these
constraints may be generated, and the way choices are performed. We then
describe the basic program and show how to improve its efficiency.

Conventions. We assume that we are given n classes of cars. Each class i
contains ni cars (ni >/0) such that the total numbers of cars is ns = ~,'~=1 ni.
We also assume m different options. For each class i and option j , we have
a Boolean o 0 which is true if class i requires option j and false otherwise.
For convenience, we represent true by 1 and false by 0.

4.2.1. Problem variables
The first step towards the solution is to identify the problem variables

in terms of which the constraints are stated. To each slot i (1 <~ i <~ ns),
we associate a variable Si denoting the class of cars assigned to the slot.
These variables, called the slot variables, represent the main output of the
program.

Each slot i is also associated with m variables, one for each option denoted
0 1 , 0 2 , . . . , 0 m. O~i (1 <<. i <~ ns and 1 ~ j ~< m) is equal to 1 if the class
Si (the class assigned to slot i) requires option j and 0 otherwise. These
variables are called the option variables. There are O (ns) slot variables and
0 (ns x m) option variables. In the above example, there are 10 slot variables
(S1 S10) and 50 option variables O~,. . . , O~ , O~0,... , O150 .

4.2.2. Domain constraints
We now turn to the problem constraints. The first constraints are the

domain constraints for the slot and option variables. Each slot variable Si
has a constraint Si 6 { 1 n} and each option variable ~ has a constraint
O: 6 {0, 1}. In other words, each slot variable can be assigned a class of

142 P. Van Hentenryck et al.

cars while each slot variable is assigned a Boolean value. A simple recursive
program can be used to generate these constraints:

st ate_domains ([], Low, High).

state_domains ([F I T], Low, High) : -

F E Low..High,

state_domains (T, Low, High).

The goal state_domains (L,0,1) imposcs a Boolean domain to all variables in
the list r.

Thc domain constraints gcnerated for the example in Table 3 are as
follows:

$1 E {1 6} , Sxo E {1 ,6},
O~ E {0, 1} O15 E {0, 1} O~o E {0, 1} O15o E {0, 1}.

4.2.3. Capaci ty constraints
The capacity constraints are stated in terms of the slot variables. If the

capacity constraint for option j (1 ~< j ~ m) is of the form r o u t o f s,
constraints must be generated of the form

6 (+ . . . + O{+s_ l <~ r, 1 <~ i <~ n s - s + 1.

For instance, option 1 (1 outof 2) generates the constraints

O (+ O ~ ~< 1,

O91 +O~0 ~< 1,

while option 2 (2 outof 3) generates the constraints

O2 + O2 + O~ ~< 2,

O2 + O32 + O2 ~ 2,

A program can
s". Specialized to

atmost lout of 2 ([]).

atmost loutof2 ([O]) .
atmostloutof2([O1,02[Os]) :-

Ol + 02 ~< 1,

atmost loutof 2 ([0210s]).

The above program generates linear inequalities for the variables. Overall
there are O (n s x m) capacity constraints.

+ 0~o ~< 2.

be written to generate all constraints of the form "r outof
a constraint of the type "1 outof 2", it looks like

Constraint satisfaction using CLP 143

4.2.4. Demand constraints
It is also necessary to make sure that the cars requested are produced. For

each class i (1 ~< i ~< n), a constraint

exactly(ni, [S1 Sns], i)

has to be generated, where $1,. . . ,Sns are the slot variables and ni is the
number of cars in class i. The constraint exaetly(N,L,M) holds iff there are
exactly N variables in the list i whose values are equal to M.

In fact, since there are ns slot variables and each of them will be assigned
to a class (and thus a car), it is only necessary to make sure that the
assignment produces no more cars from a class than are actually necessary.
Hence the above constraints reduce to atmoat constraints,

atmost(ni, [$1 Sns], i).

A constraint atmost (N,L,M) holds iff there are at most N variables in the list
L whose values are equal to ~l.

To express the atmost constraint, we make use of the cardinality combi-
nator. The idea is that a constraint

atmost(ni, [Sl Sns], i)

corresponds to the cardinality formula

(, , h i , [S1 = i , . . . , Sns = i]).

In other words, the cardinality formula makes sure that at most ni constraints
in [$1 = i Sns = i] hold, and hence that at most ni slots are assigned a
car from class i. There are n demand constraints. The following constraints
are generated for our example:

~(* ,1 , [S l = 1 Slo = 1]),
o . .

(* , 2 , [$ 1 = 6 SlO = 6]) .

These cardinality formulas can be generated in a simple way by the
following program which, given a list L and two integers N and x, makes sure
that at most N elements of the list L are assigned to M.

atmost (N,L,M) :-

colle ct_equalit lea (L ,M, Eqs),

#(*,N,Eqs) °

collect_equalities([] ,M, []).

collect_equalities([FIT],M, IF = M i Eqs]) :-

colle ct_equalit ie s (T, M, Eqs).

144 P. Van Hentenryck et al.

The first goal in the atmost predicate collects equalities between the value M
and the elements of the list L, while the cardinality combinator makes sure
that at most r~ of them are true.

4.2.5. Link constraints
Although all constraints seem to have been enforced at this point, an

important step is still missing. The option variables and slot variables have
been left completely unconnected so that a slot variable can be assigned a
value without influencing its corresponding option variables and vice versa.
To ensure correctness and to perform effective pruning, it is necessary to link
the slot and option variables. The link is achieved by generating constraints
of the form eZement(I,L,V) which hold iff element I of the list i is equal to
v. Each option j will be connected with slot i by the constraint

element(Si, [e l i , . . . , o~j], ~),

where e l i , . . . , onj are the 0-1 values specifying which classes require option
j . In the example, the connection between the slots and options is enforced
by the constraints

element (Sl, [1 , 0 , 0 , 0 , 1 , 1] ,Oil),

element(Sl,[O,O,1,0,O,O],O~),

element(Slo,[1,0,0,0,1,1],Olo),

element (Slo, [0, O, I, O, O, O] , 0~o).

There are O(ns × m) relation constraints.
How should a constraint element(I,L,V) be defined? Obviously, it is desir-

able that, as soon as x is given a value, v is assigned its corresponding value
(for instance, in the above first constraint, if sl is assigned to 3, 01 must
be assigned to 0). On the other hand, much more pruning can be achieved.
In particular, as soon as s~ is restricted to the values 1, 4, and 5, 01 must
be given the value 1. In the same way, as soon as 01 is assigned the value
1, s, is restricted to take values in {1,4,5}. In other words, we would like
element (I , L , V) tO be arc consistent.

To enforce arc-consistency on element (I,L,V), it is sufficient to generate
cardinality constraints of the form

V = e ¢~ I 6 {ii ip}

where e is a value in L and i~ ip are all the positions in list L whose
value is e. In general, a constraint must be generated for each value in L,
although this is not necessary in the car sequencing application (since only

Constraint satisfaction using CLP 145

Boolean values are used). For instance, the first element constraint of our
example generates the constraint

ol = 1 ,~ sl • ~ 1 , s , 6 } .

A simple program can be written to generate the above constraints. The
equivalence ~ should be understood as an abbreviation for a cardinality
formula and illustrates the fact that the cardinality operator can be used to
enforce arc-consistency of any constraint (preserving the complexity bounds
of the optimal algorithm of [44]).

4.2.6. Basic program
We now present the basic program, which amounts to stating the con-

straints and generating values for the slots variables.

sequencing(Line, InstanceData) ~-

state_constraints (Line, InstanceData),

generate_values (Line).

state_constraints (Line,

[NbSlot s, NbOpt ions, NbClasse s,

Opt ionInfo, CarInfo]) : -

generate_slots (Line, NbSlot s),

generate_option_variables (Options, NbSlot s, NbOpt ions),

state_domain_constraints (Line, 1, NbClasse s),

state_domain_constraints (Opt ions, O, I),

state_demand_constraints (Line, CarInfo),

state_capacity_constraints (Options, OptionInf o),

state_link_constraints (Line, Options, Opt ionInf o).

The arguments of the predicate are the list of slots variables and the data
characterizing the instance. The generation of constraints creates as many
variables as there are slots in the assembly line, creates the option variables,
and states all the above-mentioned constraints. Generating the constraints
can be done by simple recursive programs (as has been shown in the above
presentation) and poses no particular difficulty. Assigning a value to the
slot variables produces a solution satisfying the constraints. The generation
of values simply assigns to each of the slot variables a value between 1 and
n, that is, a class of cars.

4.2.7. Improving efficiency
The above program provides us with a reasonably efficient solution to the

car sequencing problem. It is possible, however, to speed up the program
significantly by exploiting properties of the solutions and making choices
wisely.

146 P. Van Hentenryck et al.

R e d u n d a n t (su r roga te) cons t ra in t s

A traditional technique in operations research amounts to generating
surroga te constraints: constraints which are not strictly necessary to guarantee
correctness of the application but perform pruning by exploiting properties
that must be satisfied by the solutions. In other words, the constraints are
redundant semantically but not operationally.

The car sequencing problem has a surrogate constraint worth exploiting.
Assume that option j has a capacity constraint r outof s. We know that
the last s slots contain only r cars, so the other slots must contain all the
remaining cars having that option. I fp cars require option j , we can generate
a constraint

O~l + . . . + O~ns_ s >_. p - r .

More generally, the last k x s (k = 1 , 2 , . . . , n s / s) slots can contain only
k × r cars and hence the constraints

+oJ ns-k×s >>" p - k x r

can be generated.
In our example, for instance, option 1 is requested by five cars and has

capacity "l outof 2". Since only one car can be scheduled in the last two
slots, four cars must be sequenced in the first eight slots. Pursuing the
reasoning, we can generate the following constraints:

ol ÷ . . . + ,> 4 ,

o', + . . . + ol ,> 2.

The effect of these constraints is to prune the search space early and to
escape deep backtracking and thrashing by recognizing and avoiding failures
as soon as possible. It is not difficult to write a recursive program generating
the above constraints.

Firs t - fa i l p r inc ip le
Following [34], we make use of the first-fail principle in the choice pro-

cess: that is we try to choose the most constrained variable to be instantiated
next. In the car sequencing, this is done by choosing the variable with the
smallest domain (i.e. the one that can be given the smallest number of
values) and, in case of equality, the more demanding one in terms of the
options.

Constraint satisfaction using CLP 147

Table 6
Car sequencing: search space after one choice.

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6

SI $2 $3 $4 $5 $6 $7 $8 $9 SI 0
+

Table 7
Car sequencing: the assembly line after one choice.

$1 $2 $3 $4 $5 $6 $7 $8 $9 $10
Option 1
Option 2
Option 3
Option 4
Option 5

m
+
+

4.3. Example

The above program first states the constraints and then makes choices.
After the first choice (i.e. $1 = 1), the search space and the assembly
line are depicted in Tables 6 and 7. Now, giving to $2 its first possible
value, i.e. 2, leads directly to the solution presented at the beginning of the
example. Indeed, this choice immediately removes the value 2 for all other
slot variables and prevents variables $3, $4, and $5 from taking the value 4
because of option 4. This intermediate state is depicted in Tables 8 and 9.

But the surrogate constraints for option 2 require that $3 and $4 be
assigned a class including option 2, since six cars with option 2 must be
produced. The effect of these assignments is to fix all option variables
concerning option 2 and to remove possible values from the slot variables.
The search space and assembly line at that stage are depicted in Tables 10
and 11.

At this point, the demand constraints for class 5 come into play. Two cars
of class 5 must be produced; since only two places are left for them, they

Table 8
Car sequencing: search space after two choices (part I).

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6

S1 S 2 S 3 S 4 S 5 S 6 S 7 $8 S 9 SlO
+
- +

148 P. Van Hentenryck et aL

T a b l e 9

C a r sequencing: the a s s e m b l y l ine a f t e r t w o c h o i c e s (p a r t I) .

Option 1

Option 2

Option 3

Option 4

Option 5

sl s2
+ -

+ -

+ +

S3 84 S5 86 S7 58 $9 S l 0

T a b l e 10

C a r s e q u e n c i n g : s e a r c h s p a c e a f t e r t w o c h o i c e s (p a r t I I) .

C l a s s 1

C l a s s 2

C las s 3

C l a s s 4

C l a s s 5

C l a s s 6

sl s2
+ -
- +

$3 $4 $5 $6 $7 $8 $9 $10

are assigned immediately. This leads to the search space and assembly line
depicted in Tables 12 and 13. The final step amounts to using the surrogate
constraints for option 1. These constraints fix all options concerning option
1 and lead to the solution depicted earlier in this paper. Note that here a
solution was found in two choices without any backtracking.

T a b l e 11

C a r sequencing: the a s s e m b l y l ine a f t e r t w o c h o i c e s (p a r t I I) .

Sl Sz $3 $4 $5 $6 $7 $8 $9 Slo
Option 1 + -

O p t i o n 2 - - + + - + + - + +

Option 3 + - -

O p t i o n 4 + + - - -

O p t i o n 5

T a b l e 12

C a r s e q u e n c i n g : s e a r c h s p a c e a f t e r t w o c h o i c e s (p a r t I I I) .

S 1 S 2 S 3 S 4 S 5 S 6 S 7 $8 S 9 Slo
C l a s s 1 +

C l a s s 2 - +

C l a s s 3

C l a s s 4

C l a s s 5 + - - + - -
C l a s s 6

Constraint satisfaction using CLP 149

Table 13
Car sequencing: the assembly line after two choices (part III).

Option 1
Option 2
Option 3
Option 4
Option 5

Sl 82 83 84 S5 86 87 88 89 Sl0
+ - _ + +
_ _ + + - + + - +

+ - _ + +
+ +

4.4. Compu t a t i on results

A large number of experiments have been run to evaluate the efficiency
of the algorithm on various problem instances. Remember that, since the
problem is NP-complete, it is always possible to construct an instance that
will require exponential t ime (whatever the proposed program).

The basic assumption in our experiments was that the assembly line
supported five different options with the following capacity constraints: 1
outof 2, 2 outof 3, 1 outof 3, 2 outof 5, and 1 outof 5. Given this assumption,
several parameters were still left free: the number of cars ns, the particular
requirements for the cars, and the utilization of each production unit. In our
experiments, ns varied from 5 to 200 and random data were generated for
the utilization percentage and the options required by the cars. This random
generation guarantees an overall percentage of utilization of the resources.
Typically, we would ask for 70% or 80% but experiments have shown that it
is possible to make this percentage even higher. For each experiment, large
data samples (around 100) were generated.

When ns < 50, the program finds a solution in a few seconds, generally
with very little if any backtracking. When ns = 50, the scheduling time
is around 15 seconds on a Sun 3/160. Once again, little backtracking was
needed to reach a solution.

When ns = 100, the average scheduling time is less than a minute with

Table 14
100 cars sequencing with about 70% of option utilization.

ns n %-1 %-2 %-3 %-4 %-5 CPU time
100 24 72 72 72 67 70 52 sec.
100 24 74 75 100 90 60 58 sec.
100 21 84 68 75 60 75 56 sec.

Table 15
100 cars sequencing with about 80% of option utilization.

ns n %-1 %-2 %-3 %-4 %-5 CPU time
100 25 88 84 72 77 75 62 sec.
100 22 78 80 84 90 70 58 sec.
100 21 80 81 75 72 75 59 sec.

150 P. Van Hentenryck et al.

Table 16
100 cars sequencing with about 70% of option utilization.

ns n %-1 %-2 %-3 %-4 %-5 CPU time
200 29 86 77 89 85 85 336 sec.
200 29 89 82 83 83 95 340 sec.
200 31 84 81 95 82 100 345 see.

a utilization percentage around 70%. Table 14 reports some typical results.
The first column n s is the number of cars, the second column n indicates the
number of different classes, the next five columns indicate the utilization
percentage of each option and the last column shows the CPU time required
to generate the constraints and find a schedule. Increasing the utilization
percentage to 80% increases the CPU time by only a few seconds. Typical
results are shown in Table 15.

When n s = 200, the average scheduling time is around 5 minutes for
an overall utilization percentage of 70% and thus scheduling time does not
change when we increase the percentage to 80%. Table 16 reports some
typical results.

Note that the potential search space to explore in the last example is 20031 .
The program must generate 200 slots variables, 1000 option variables, more
than 1000 cardinality constraints, and about 3000 numerical constraints.
Only the slot variables, however, need to be instantiated to give a solution
however, whereas an integer programming solution would require more
than 7000 variables, of which 6000 would need to be instantiated to find a
solution.

In the experiments, the execution time was found to increase quadratically
in the average. No instance was found that could not be solved (even when
n s = 400) although such instance could be constructed since the problem
is NP-complete.

5. Conclusion

We have shown how to solve two practical combinatorial search problems
using cc(FD), a successor to CHIP using consistency techniques on finite
domains. The test generation problem is a well-known problem in digital
circuit design and we have presented an original and complete algorithm for
the task based on constraint satisfaction. The car sequencing problem was
posed as a challenge for AI technology and a constraint-based solution has
also been presented.

Both problems can be expressed concisely and declaratively in cc(FD)
and require a small fraction of the development necessary to obtain "equiv-
alent" procedural programs. The resulting programs can be easily extended,

Constraint satisfaction using CLP 151

modified, and specialized due to the declarative nature of the language.
In addition, the resulting algorithms can solve large instances of the prob-
lems in reasonable time and are competitive with procedural programs to a
constant factor.

Current and future research is devoted to (1) design aspects in order
to capture more abstractions useful in combinatorial search problems and
(2) to implementation issues (to reduce the constant factor with respect to
procedural languages).

Appendix A. Formalization of the semantics of cc(FD)

Here we formalize, following [54], the operational semantics of cc(FD)
using a structural operational semantics [50]. Those interested in a broader
and more rigorous handling of the semantics can refer to [36] and [55,56];
[36] contains a complete description of the CLP scheme while [55,56]
respectively describe the operational and denotational semantics (in terms
of information systems and closure operators) of the cc framework.

A.I. The CLP scheme

The operational semantics makes use of a transition system.

Definition A.1. A transition system is a triple (F, T, ~) where F is a set of
configurations, T c_ F is the set of terminal configurations and ~ c_ F x F
is the transition relation satisfying

VTET, VY'EF, 7~/ ~7'.

The configurations of the transition system are the computation states
(G [] a). When the goal part is empty, we represent the configuration
by the constraint part only; when the constraint part is empty, we represent
the configuration by the goal part only. Terminal configurations are simply
successful computation states (i.e. constraint stores) or the terminal block
to denote blocking.

A transition ?, ,7 ' can be read as "configuration ~ nondeterministically
reduces to 7'". The transition rules in this paper are presented using the
format

(condition 1)
. , .

(condition n)

7~----~71

152 P. Van Hentenryck et al.

expressing the fact that a transition from 7 to y' can take place if the
conditions are fulfilled. We are now ready to present the various transition
rules.

Goal Reduction. A goal can be reduced to the body of a clause if the
constraint store is consistent with the equality constraints.

p (s l , . . . , S n) : - B 1 , . . . , B m E P

C ~ (3) (a A tl = Sl A " " A tn = Sn)

(P (t l tn) [] a)
' ' (B 1 , . . . , B m [] a A t l = S l & ' " & t n = S n)

In the above transition rule, p (t l , tn) is the atom selected, P denotes
the program, (3) (~u) represents the existential closure of ~, and the pro-
gram clause has been renamed properly to avoid sharing any variable with
the goal. 4 The rule expresses formally the first kind of computation step
described in the informal presentation. If there exists a clause in the program
with the same predicate name as the selected atom (condition 1) and if the
equality constraints are consistent with the constraint store (condition 2),
then a computation step is possible. The new computation state is obtained
from the old one by replacing the selected atom by the clause body and
adding the equality constraints to the constraint store.

Constraint Solving. A constraint can be removed from the goal part iff it
is consistent with the constraint store.

C ~ (3) (a A c)

(c [] a) ~ - - * a & c

This rules captures what was informally described by the second type of
computation step.

Conjunction. If any of the goals in a conjunction can make a transition, the
whole conjunction can make a transition as well and the constraint store is
updated accordingly. This is the traditional interleaving rule.

(G1 [] a) , G' I [] a ')

(G1, G2 [] a , (G ' 1, G2 [] a ')

(G 2 , G I [] a , (G 2 , G' l [] a ')

4In recent work [56], Saraswat et al. give an operational semantics precluding the need for
renaming.

(GI [] a),

(G1, G2 [] a

(G2, GI [] a

Constraint satisfaction using CLP

(7 I

' ' (G2 [] 0")

' ' (G2 [] o")

These are the only rules necessary for the CLP scheme.

153

A.2. The implication combinator

We now describe precisely the semantics of the implication combinator.

Implication. An implication c ~ A never fails. If c is entailed by the
constraint store, it reduces to the body A. If -,c is entailed by the constraint
store, the implication terminates successfully. Otherwise, the implication
blocks.

c b (v) (a --, c)

(c ~ A [] a) , , (A , a)

c b (v) (a ~ ~c)

(c ~ A [] a) , , a

c ~ ~(v) (a ~ c)

c b -~(v) (a ~ -~c)

(c ---+ A [] a) , , b l o c k

A.3. The cardinality combinator

The precise behavior of the combinator can be described by the following
transition rules taken from [73].

Trivial Satisfaction. If l < 0 and u is greater than or equal to the number
of constraints q , . . . , Cn, then #(l , u, [q c ,]) is trivially satisfied:

l ~ O A n < < . u

(# (l , u , [q Cn]) [] a) , , a

154 P. Van Hentenryck et aL

Positive Satisfaction. A formula # (n , u , [Cl cn]) with n ~< u can be
satisfied only if the conjunction c~ A.. . A cn is consistent with the constraint
store:

l < ~ u A l = n

C ~ (3) (aACl A . . .ACn)

(# (l , u , [q ,cn]) [] a) ~ - - , a & c l & . . . & cn

Negative Satisfaction. A formula #(l , 0, [cl ,Cn]) with l ~< 0 can be
satisfied only if the conjunction "~cl A.. "A,Cn is consistent with the constraint
store:

I < ~ u A u = O

e ~ (3) (a A-~cl A... A-~cn)

(# (l , u , [cl Cn]) [] a) ~--~ a & -wl & . . . & -,Cn

The above three rules make up the basic cases for the cardinality combi-
nator. Two of them allow the inference of primitive constraints, and hence
prune the search space with the help of the transition rules for conjunction.

Positive Reduction. When a constraint ci is entailed by the constraint store,
the cardinality formula can be simplified by dropping the constraint and
decrementing the bounds.

c ~ (v) (a ~ ci)

O < / < n A l < ~ u V O < u < n A l~<O

(# (I , u , [Cl , . . . ,C i ,Cn]) [] a)

, , (# (l - 1,u - 1, [Cl, . . . ,Ci_l,Ci+ 1 Cn]) [] a)

The condition on l and u forces the rule to be mutually exclusive with
the three satisfaction rules,

Negative Reduction. When the negation of a constraint ci is entailed by the
constraint store (i.e. ci inconsistent with a) , the cardinality formula can be
simplified by dropping the constraint:

c ~ (v) (a ~ -~c~)

O < l < n A l < ~ u V O < u < n A l<<.0

(# (l , u , [cl ci ,Cn]) [] a)

, ~ (# (l , u , [Cl , . . . ,Ci- l ,Ci+l ,Cn]) [] a)

Constraint satisfaction using CLP 155

The above two rules achieve progress towards the satisfaction rules by
reducing the number of constraints and (possibly) the bounds. But the
computation with the cardinality combinator may now block as none of
the constraints can be decided upon (for entailment) with respect to the
constraint store.

Blocking. The cardinality combinator blocks if there is no constraint ci
such that either ci or its negation -~ci is entailed by the constraint store and
none of the satisfaction rules apply:

C~ (V) (a~c j) for all 1 ~<j ~< n

C ~ (V) (a - - . - ~ c j) for all 1 ~<j ~< n

0 < l < n A l<~u V 0 < u < n A l ~ < 0

(#(l,u, [q,...,Cn]) [] a) , , block

We now reconsider our simple example and indicate the transition rules
used in the derivation.

(#(1,2,[x=4, Y=1o]) ~ x>6 [] e>

(conjunction)
(#(1,2,[x=4, Y=10]) [] x>s)

(negative reduction)
(#(I,2,[Y=IO]) [] X>6)

(positive satisfaction)
X>6 ~ Y=IO

A. 4. Operational semantics

The actual operational semantics of the language can be defined in terms
of its success, divergence, and failure sets. We use the notation P F to
denote the fact that the transition occurs in the context of program P. We
denote b y , *, the transitive closure of~ , and say that a configuration 7
diverges in program P if there exists an infinite sequence of transitions

P t - T I ,711 , . . . b ' 7 i ' ~ ' " .

The operational semantics is now given in terms of three sets: the success,
divergence, and blocking sets:

SS[P1 = { G I P F G , * , a } ,
DS[P] = {GI G diverges in P),
BS[P] = {GIP~- G, *, block}.

The failure set can now be defined in terms of the above three sets:

FS[P] = {GIG ~ SS[P] UDS[P] UBS[P]}.

156 P. Van Hentenryck et al.

Another semantic defini t ion can be given to capture the results of the

computat ion:

RES[P,G] = {a [P G, 0.}

In order to achieve the above semantics, the CLP language should be
embedded with a complete constraint solver; this means that, given a con-

straint 0., the constraint solver should return irue i f C D (3)(0") and fa l se

otherwise.

Acknowledgement

The initial solutions o f the applications were proposed while the au-
thors were at ECRC (Munich) . Conversat ions with Yves Deville and Vijay
Saraswat significantly improved our presentation. We also thank the three
reviewers for their careful comments and suggestions. In particular, the
comments (and humor) of the second reviewer (who will recognize herself
or h imsel f easily) are (greatly) appreciated. Tr ina Avery helped correcting
our English. This research was supported in part by the Nat ional Science
Founda t ion under grant number CCR-9108032 and by the Office o f Naval
Research and the Defense Advanced Research Projects Agency under Con-

tract N00014-91-J-4052.

References

[1] J.A. Abraham, Fault modeling in VLSI, in: T.W. Williams, ed., VLSI Testing, Advances
in CAD for VLSI 5 (North-Holland, Amsterdam, 1986) 1-27, Chapter 1.

[2] A. Borning, The programming lansuage aspects of ThingLab, a constraint-oriented
simulation laboratory, ACM Trans. Programm. Lang. Syst. 3 (4) (1981) 353-387.

[3] P.S. Bottorff, Test generation and fault simulation, in: T.W. Williams, ed., VLSI Testing,
Advances in CAD for VLSI 5 (North-Holland, Amsterdam, 1986) 29-64, Chapter 2.

[4] F. Brglez, P. Pownall and R. Hum, Applications of testability analysis: from ATPG to
critical delay path tracing, in: Proceedings IEEE International Test Conference (1984).

[5] F. Brglez, P. Pownall and R. Hum, Accelerated ATPG and fault grading via testability
analysis, in: Proceedings IEEE International Symposium on Circuits and Systems, Kyoto,
Japan (1985) 695-698.

[6] W. Buttner and H. Simonis, Embedding Boolean expressions into logic programming, J.
Symbol. Comput. 4 (1987) 191-205.

[7] J. Carlier and E. Pinson, Une methode arborescente pour optimiser la dur6e d'un
JOB-SHOP, Tech. Rept. ISSN 0294-2755, I.M.A. (1986).

[8] W.T. Cheng, The back algorithm for sequential test-generation, in: Proceedings IEEE
International Conference on Computer Design: VLSI in Computers and Processors
(ICCD88), Rye Brook, NY (1988).

[9] N. Christofides, Graph Theory: An Algorithmic Approach (Academic Press, New York,
1975),

[10] K.L. Clark and F. McCabe, The control facilities of IC-PROLOG, in: D. Michie,
ed., Expert Systems in the Microelectronic Age (Edinburgh University Press, Edinburgh,
1979) 122-149.

Constraint satisfaction using CLP 157

[11] W.F. Clocksin, Logic programming and digital circuit analysis, J. Logic Programm. 4
(1) (1987) 59-82.

[12] A. Colmerauer, An introduction to Prolog III, Commun. ACM 28 (4) (1990) 412-418.
[13] A. Colmerauer, H. Kanoui and M. Van Caneghem, Prolog, bases throriques et

developpements actuels, T.S.L (Techniques et Sciences lnformatiques) 2 (4) (1983)
271-311.

[14] T. Dean and M. Boddy, An analysis of time-dependent planning, in: Proceedings
AA41-88, St. Paul, MN (1988) 49-54.

[15] J. de Kleer, An assumption-based TMS, Artif. Intell. 28 (1986) 127-162.
[16] Y. Deville and P. Van Hentenryck, An efficient arc consistency algorithm for a class of

CSP problems, in: Proceedings IJCAI-91, Sidney, Australia (1991).
[17] M. Dincbas and J.-P. Lepape, Metacontrol of logic programs in METALOG, in:

Proceedings International Conference on Fifth Generation Computer Systems (FGCS'84),
Tokyo, Japan (1984) 361-370.

[18] M. Dincbas, H. Simonis and P. Van Hentenryck, Solving the car sequencing problem
in constraint logic programming, in: Proceedings European Conference on Artificial
Intelligence (ECAI-88), Munich, Germany (1988).

[19] M. Dincbas, H. Simonis and P. Van Hentenryck, Solving large combinatorial problems
in logic programming, J. Logic Programm. 8 (1-2) (1990) 75-93.

[20] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier, The
constraint logic programming language CHIP, in: Proceedings International Conference
on Fifth Generation Computer Systems, Tokyo, Japan (1988).

[21] J. Doyle, A truth maintenance system, Artif. Intell. 12 (1979) 231-272.
[22] K. Eshghi, Application of meta-level programming to fault finding in logic circuits, in:

Logic Programming and Its Applications (Ablex, Norwood, NJ, 1985) 208-219.
[23] R.E. Fikes. A heuristic program for solving problems stated as non-deterministic

procedures, Ph.D. Thesis, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, PA (1968).

[24] M.S. Fox, Constraint-directed search: a case study of job-shop scheduling, Tech. Rept.
CMU-CS-83-161, Carnegie-Mellon University, Pittsburgh, PA (1983).

[25] H. Fujiwara, FAN: a fanout oriented test pattern generation algorithm, in: Proceedings.
IEEE International Symposium on Circuits and Systems, Kyoto, Japan (1985) 671-674.

[26] H. Fujiwara and T. Shimono, On the acceleration of test generation algorithms, IEEE
Trans. Comput. 32 (1983) 1137-1144.

[27] H. Gallaire, Logic programming: further developments, in: Proceedings IEEE Symposium
on Logic Programming, Boston, MA (1985) 88-99 (Invited Paper).

[28] H. Gallaire and C. Lasserre, Metalevel control for logic programs, in: Logic Programming
(Academic Press, New York, 1982) 173-185.

[29] P. Goel, An implicit enumeration algorithm to generate tests for combinational logic
circuits, IEEE Trans. Comput. 30 (1981) 215-222.

[30] T. Graf, Extending constraint handling in logic programming to rational arithmetic,
Internal Report, ECRC, Munich, Germany (1987).

[31] T. Graf, P. Van Hentenryck, C. Pradelles and L. Zimmer, Simulation of hybrid
circuits in constraint logic programming, Comput. Math. AppL 20 (9-10) (1990) 45-56;
Preliminary version in: Proceedings IJCAI-89, Detroit, MI (1989).

[32] E. Gullichsen, Heuristic circuit simulation using PROLOG, Integr. VLSI J. 3 (1985)
283-318.

[33] R. Gupta, Test-pattern generation for VLSI circuits in a Prolog environment, in:
Proceedings Third International Conference on Logic Programming, London (1986) 528-
535.

[34] R.M. Haralick and G.L. Elliot, Increasing tree search efficiency for constraint satisfaction
problems, Artif lntelL 14 (1980) 263-313.

[35] ISCAS, Special Session on ATPG, in: Proceedings IEEE International Symposium on
Circuits and Systems, Kyoto, Japan (1985) 663-698.

[36] J. Jaffar and J.-L. Lassez, Constraint logic programming, in: Proceedings 14th ACM
Symposium on Principles of Programming Languages (POPL-87), Munich, Germany

158 P. Van Hentenryck et al.

(1987).
[37] J. Jaffar and S. Michaylov, Methodology and implementation of a CLP system, in:

Proceedings Fourth International Conference on Logic Programming, Melbourne, Australia
(1987).

[38] M. Kawai, K. Oozeki, M. Takahashi, M. Ono, Y. Ishizaka and T. Masui, Automatic test
pattern generator for large combinational circuits, in: Proceedings IEEE International
Symposium on Circuits and Systems, Kyoto, Japan (1985) 663-666.

[39] M. Kubale and D. Jackowski, A generalized implicit enumeration algorithm for graph
coloring, Commun. ACM28 (4) (1985) 412-418.

[40] J.-L. Lauriere, A language and a program for stating and solving combinatorial problems,
Artifl lntell. 10 (1) (1978) 29-127.

[41] A. Lioy, Adaptive backtrace and dynamic partitioning enhance ATPG, in: Proceedings
IEEE International Conference on Computer Design: VLSI in Computers and Processors
(ICCD88), Rye Brook, NY (1988).

[42] A.K. Mackworth, Consistency in networks of relations, Artifi Intell. 8 (1) (1977) 99-118.
[43] M.J. Maher, Logic semantics for a class of committed-choice programs, in: Proceedings

Fourth International Conference on Logic Programming, Melbourne, Australia (1987)
858-876.

[44] R. Mohr and T.C. Henderson, Arc and path consistency revisited, Artif Intell. 28 (1986)
225-233.

[45] U. Montanari, Networks of constraints: fundamental properties and applications to
picture processing, Inf. Sci. 7 (2) (1974) 95-132.

[46] M. Muarkami and H. Kikuchihara, Test generation for LSI circuits using extended nine-
valued method, in: Proceedings IEEE International Symposium on Circuits and Systems,
Kyoto, Japan (1985) 675-678.

[47] L. Naish, Negation and control in Prolog, Ph.D. Thesis, University of Melbourne,
Australia (1985).

[48] B.D. Parrello, CAR WARS: the (almost) birth of an expert system, AI Expert 3 (1)
(1988) 60-64.

[49] B.D. Parrello, W.C. Kabat and L. Wos, Job-shop scheduling using automated reasoning:
a case study of the car-sequencing problem, J. Autom. Reasoning 2 (1) (1986) 1-42.

[50] G.D. Plotkin, A structural approach to operational semantics, Tech. Rept. DAIMI
FN- 19, CS Department, University of Aarhus, Denmark (1981).

[51] D.K. Pradhan, Fault Tolerant Computing (Prentice Hall, Englewood Cliffs, NJ, 1986).
[52] B.C. Rosales and P. Goel, Results from application of a commercial ATG system to

large-scale combinatorial circuits, in: Proceedings IEEE International Symposium on
Circuits and Systems, Kyoto, Japan (1985) 667-670.

[53] J. Roth, Diagnosis of automata failure: a calculus and a method, IBM J. Res. Dev. 10
(1966) 278-291.

[54] V.A. Saraswat, Concurrent constraint programming languages, Ph.D. Thesis, Carnegie-
Mellon University, Pittsburgh, PA (1989).

[55] V.A. Saraswat and M. Rinard, Concurrent constraint programming, in: Proceedings 17th
A CM Symposium on Principles of Programming Languages, San Francisco, CA (1990).

[56] V.A. Saraswat, M. Rinard and P. Panangaden, Semantic foundations of concurrent
constraint programming, in: Proceedings 19th ACM Symposium on Principles of
Programming Languages, Orlando, FL (1991).

[57] M. Schulz, E. Trischler and T. Sarfert, Socrates: a highly efficient automatic test
pattern generation system, in: Proceedings International Test Conference, Washington,
DC (1987).

[58] E. Shapiro, The family of concurrent logic programming languages, Comput. Surv. 21
(3) (1990) 413-510.

[59] H. Simonis, Test generation using logic programming, Tecb. Rept. TR-LP-34, ECRC,
Munich, Germany (1988).

[60] H. Simonis, Test generation using the constraint logic programming language CHIP,
in: Proceedings 6th International Conference on Logic Programming, Lisbon, Portugal
(1989).

Constraint satisfaction using CLP 159

[61] H. Simonis, ATPG revisited, Tech. Rept. TR-LP-56, ECRC, Munich, Germany (1990).
[62] H. Simonis and M. Dincbas, Using an extended Prolog for digital circuit design,

in: Proceedings IEEE International Workshop on AI Applications to CAD Systems for
Electronics, Munich, Germany (1987) 165-188.

[63] H. Simonis and M. Dincbas, Using logic programming for fault diagnosis in digital
circuits, in: Proceedings German Workshop on Artificial Intelligence (GWAI-87), Geseke,
Germany (1987) 139-148.

[64] H. Simonis and T. Graf, Technology mapping in CHIP, Tech. Rept. TR-LP-44, ECRC,
Munich, Germany (1990).

[65] H. Simonis, H.N. Nguyen and M. Dincbas, Verification of digital circuits using CHIP,
in: G.J. Milne, ed., Proceedings IFIP WG 10.2 International Working Conference on the
Fusion of Hardware Design and Verification, Glasgow, Scotland (1988).

[66] G.J. Sussman and G.L. Steele Jr, CONSTRAINTS--a language for expressing almost-
hierarchical descriptions, Artif. Intell. 14 (1) (1980) 1-39.

[67] I.E. Sutherland, SKETCHPAD: A man-machine graphical communication system, MIT
Lincoln Labs, Cambridge, MA (1963).

[68] D. Svanaes and E.J. Aas, Test generation through logic programming, Integr. VLSI J. 2
(1984) 49-67.

[69] Y. Takamatsu and K. Kinoshita, An efficient test generation method by 10-V algorithm,
in: Proceedings IEEE International Symposium on Circuits and Systems, Kyoto, Japan
(1985) 679-682.

[70] Y. Tohma and K. Goto, Test generation for large-scale combinational circuits by using
Prolog, in: Proceedings 6th International Conference on Logic Programming, Lisbon,
Portugal (1987).

[71] E. Trischler and M. Schulz, Applications of testability analysis to ATG: methods and
experimental results, in: Proceedings IEEE International Symposium on Circuits and
Systems, Kyoto, Japan (1985) 691-694.

[72] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, Logic Programming
Series (MIT Press, Cambridge, MA, 1989).

[73] P. Van Hentenryck and Y. Deville, The cardinality operator: a new logical connective
and its application to constraint logic programming, in: Proceedings Eighth International
Conference on Logic Programming (ICLP-91), Paris, France (1991).

[74] P. Van Hentenryck and T. Graf, Standard forms for rational linear arithmetics in
constraint logic programming, in: Proceedings International Symposium on Artificial
Intelligence and Mathematics, Fort Lauderdale, FL (1990).

[75] P Van Hentenryck, V. Saraswat and Y. Deville, Constraint Logic Programming over
Finite Domains: the Design, Implementation, and Applications of cc(FD), Tech. Rept.,
Brown University, Providence, RI (1992).

[76] P. Varma and Y. Tohma, Protean, a knowledge based test generator, in: Proceedings
IEEE 1987 Custom Integrated Circuits Conference, Portland, OR (1987).

[77] D. Waltz, Generating semantic descriptions from drawings of scenes with shadows, Tech.
Rept. A1271, MIT, Cambridge, MA (1972).

[78] T.W. Williams, VLSI Testing, Advances in CAD for VLSI S (North-Holland,
Amsterdam, Netherlands, 1986).

