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Abstract 

Van Hentenryck, P., H. Simonis and M. Dincbas, Constraint satisfaction using constraint 
logic programming, Artificial Intelligence 58 (1992) 113-159. 

Constraint logic programming (CLP) is a new class of declarative programming lan- 
guages whose primitive operations are based on constraints (e.g. constraint solving and 
constraint entailment). CLP languages naturally combine constraint propagation with 
nondeterministic choices. As a consequence, they are particularly appropriate for solv- 
ing a variety of combinatorial search problems, using the global search paradigm, with 
short development time and efficiency comparable to procedural tools based on the 
same approach. In this paper, we describe how the CLP language cc(FD), a successor 
of CHIP using consistency techniques over finite domains, can be used to solve two 
practical applications: test-pattern generation and car sequencing. For both applications, 
we present the cc(FD) program, describe how constraint solving is performed, report 
experimental results, and compare the approach with existing tools. 

1. Introduction 

The  pu rpose  o f  ou r  research is to  suppor t ,  wi th in  cons t ra in t  p r o g r a m -  

m i n g  languages,  c o m p u t a t i o n a l  p a r a d i g m s  under ly ing  c o m b i n a t o r i a l  search 

p rob lems .  It  is m o t i v a t e d  by  the h o p e  o f  r educ ing  s ignif icant ly  the deve lop-  
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ment time of these applications while preserving most of the efficiency of 
procedural languages. 

Combinatorial problems are ubiquitous in computer science. They ap- 
pear in areas as diverse as operations research (e.g. scheduling), hardware 
design (e.g. circuit verification), biology (e.g. DNA sequencing), finance 
(e.g. option trading), and software design (e.g. simulation and testing of 
protocols), to name a few. Many of these problems are of high complexity 
(NP-complete or worse), which means that there is no efficient algorithm 
for solving them. Much research, however, has been spent on designing 
algorithms to tackle these problems and one of the interesting outcomes has 
been the development of constraint solving algorithms for various classes of 
problems. 

Constraint programming has a long tradition in artificial intelligence. It 
can be traced back to the use of constraints in Sutherland's SKETCHPAD 
[67], the CONSTRAINT programming language of Sussman and Steele [66] 
and the work of Borning on ThingLab [2] among others. Mackworth also 
advocated, as early as 1977, the use of consistency techniques (a paradigm 
emerging from artificial intelligence to solve combinatorial search problems) 
in declarative languages as an alternative to chronological backtracking [42]. 
Constraint processing itself has also been present in many systems related 
to constraint solving such as REF-ARF [23], Alice [40], (assumption- 
based) truth maintenance systems (e.g. [15,21]), and various scheduling 
and planning systems (e.g. [24]). 

The starting point of our research was, however, slightly different. We 
began by recognizing that logic programming is an appropriate language 
for stating combinatorial search problems: its relational form makes it easy 
to state constraints while its (don't-know) nondeterminism removes the 
need for programming a search procedure. Unfortunately, traditional logic 
programming languages can also be very inefficient when presented with 
a natural formulation of combinatorial search problems, largely because of 
their passive use of constraints to test potential values instead of pruning the 
search space in an active manner [27]. As a consequence, traditional logic 
programming languages (e.g. Prolog) often lead to "generate and test" or 
"standard backtracking" approaches that exhibit the pathological behavior 
known as thrashing [42]. 

Early (CLP) languages such as CHIP [20], CLP(R) [37], Prolog II 
[13], and Prolog III [12] attempted to preserve the advantages of  logic 
programming while removing their limitations. The fundamental idea behind 
these languages, to use constraint solving instead of unification as the kernel 
operation of the language, was elegantly captured in the CLP scheme [36]. 
The CLP scheme defines a family of programming languages based on 
constraint solving and sharing the same semantic properties. It can be 
instantiated to produce a specific language by defining a constraint system 
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(i.e. defining a set of primitive constraints and providing a constraint solver 
for the constraints). Thus CHIP contains constraint systems over finite 
domains [72], Booleans [6], and rational numbers [30,74], Prolog III 
is endowed with constraint systems over Booleans, rational numbers, and 
lists, while CLP (R) solves constraints over real numbers. The CLP scheme 
was further generalized into the cc framework of concurrent constraint 
programming [54-56] to accommodate additional constraint operations 
(e.g. constraint entailment [43]) and new ways of combining them (e.g. 
implication or blocking ask [54] and cardinality [73]). More precisely, 
the cc framework accommodates all operations on constraints that can be 
defined as closure operators. The generalization significantly extends the 
scope of CLP languages by enabling issues such as concurrency, control, and 
extensibility to be addressed at the language level. 

CLP languages I support, in a declarative way, the solving of combina- 
torial search problems using the global search paradigm. The global search 
paradigm amounts to recursively dividing a problem into subproblems until 
the subproblems are simple enough to be solved in a straightforward way, 
and includes, as special cases, implicit enumeration, branch and bound, and 
constraint satisfaction. It is best contrasted with the local search paradigm, 
which proceeds by modifying an initial configuration locally until a solu- 
tion is obtained. These approaches are orthogonal and complementary. The 
global search paradigm has been used successfully to solve a large variety of 
combinatorial search problems with reasonable efficiency (e.g. scheduling 
[7], graph coloring [39], Hamiltonian circuits [9], and microcode labeling 
[19]) and provides, at the same time, the basis for exact methods as well 
as approximate solutions (giving rise to the so-called "anytime algorithms" 
[14]). 

The purpose of this paper is to illustrate how CLP languages can be used 
to solve two practical combinatorial search problems: test-pattern genera- 
tion and car sequencing. Test-pattern generation is a standard problem in 
hardware design and many algorithms have been proposed for the task. We 
show how to use constraint logic programming to design a simple algorithm 
whose behavior is similar in spirit to some of the best algorithms for the 
task and whose efficiency is competitive with specialized implementations 
of these algorithms. The second problem, car sequencing, was motivated by 
its presentation as a challenge for AI tools [48,49]. We propose a solution to 
this problem that can be described concisely in constraint logic programming 
and whose efficiency enables to solve large instances. 

The CLP language used in the above problems is cc(FD), an instance of 
the cc framework over finite domains that is best seen as a successor to the 

l In the following, we use the term CLP languages generically to denote  both  CLP and cc 
languages. 
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finite-domain part of CHIP. Both languages support the use of consistency 
techniques and local propagation in conjunction with don't-know nondeter- 
minism approximated by backtracking. In addition, they support depth-first 
branch and bound for combinatorial optimization problems. The novel as- 
pects of cc(FD) include the definition of new general-purpose combinators 
(such as cardinality, implication, constructive disjunction, and indexical 
constraints) and the availability of constraint entailment and constraint 
generalization as primitive operations on constraints, cc(FD) generalizes 
in an elegant way (and thus makes unnecessary) several features and con- 
straints of CHIP that were difficult to justify theoretically. As a consequence, 
it provides additional operational expressiveness, flexibility, and efficiency 
and lets us tackle problems such as disjunctions of constraints and the def- 
inition of primitive constraints. Preliminary solutions of the two problems 
described here were first expressed in CHIP (see [60] and [18]). The pre- 
sentation proposed in this paper subsumes them, both in the algorithmic 
methods, which are more advanced, and in the statement, which is simpler, 
more natural, and based on a solid theoretical foundation. 

The rest of the paper is organized as follows. Section 2 presents a tu- 
torial overview of cc(FD). Since the focus here is on applications, this 
overview is limited to those aspects of direct relevance to the two problems 
considered. Important combinators such as constructive disjunctions and 
indexical constraints are omitted here but can be found in [75]. Sections 3 
and 4 present respectively the test generation and car sequencing problems. 
For each application, we describe in detail how the problem can be stated 
and how constraint solving is performed and we also report a number of 
experimental results and comparisons. Section 5 contains our conclusions. 

2. Overview of cc(FD) 

Here we give an informal overview of the relevant parts of cc(FD). A 
more formal presentation, following the style of operational semantics in 
[54], is given in the appendix. 

Our overview proceeds in several steps. Section 2.1 sketches the syntax of 
the language and Section 2.2 introduces the CLP scheme. Sections 2.3, 2.4, 
and 2.5 discuss constraint entailment, the implication combinator, and the 
cardinality combinator, and Section 2.6 discusses the details of constraint 
solving in cc(FD). Note that the presentation separates the generic aspects 
of the language from the details of its constraint solver. This indicates that 
the combinators are general-purpose. 

2. I. Syntax 

Figure 1 shows an outline of the syntax of a cc(FD) program. A cc(FD) 
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Program 

Clauses 

Head 

Goal 

Body 

: : = Clauses 

::= Head :- Body I Clauses Clauses 

: : = Atom 

: := Atom 

::= true I Goal I c I Body , 

Body I c --+ Body I #(l,u,[c! ..... Cn]) 

Fig. 1. An outline of the syntax. 

p(X,Y,X) :- 

x E {0 ..... i0}, Y E {0 ..... I0}, Z E {0 ..... i0}, 

X t> Z + 3 ,  

Y ~< Z, 

q(X,Y,Z). 

q(X,Y,Z) :- 

r(X,Y). 

q(X,Y,Z) :- 

Z >_-Y+2. 

r(X,Y) :- 

X ~ < Y + 2 .  

Fig. 2. A simple program. 

is a set of  clauses in which each clause has a head and a body. A head 
is an atom, i.e. an expression of the form p(tl . . . . .  t , )  where tl . . . . .  t ,  are 
terms. A term is a variable (e.g. x) or a function symbol of arity n applied 
to n terms (e.g. f(X,g(Y))). A body is either true (the empty body), a 
goal (procedure call), a constraint (constraint solving), an implication, or 
a cardinality combinator. In this paper, variables are denoted by uppercase 
letters, constraints by the letter c, conjunctions of constraints by the letter a, 
terms by letters t and s, atoms by letters H and B, goals by the letter G, and 
integers by the letters l, u, and v, all possibly subscripted or superscripted. 
We also use C to denote a constraint system and D, possibly subscripted, to 
denote a finite domain. To illustrate the operational semantics of  (part of) 
cc(FD),  we use the simple program depicted in Fig. 2. 

2.2. The CLP scheme 

At least from a conceptual standpoint, the operational semantics of  the 
CLP scheme is a simple generalization of the semantics of  logic program- 
ming. It can be described as a goal-directed derivation procedure from the 
initial goal using the program clauses. A computation state is best described 
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by 

(1) a goal part: the conjunction of goals to be solved; 
(2) a constraint store: the set of constraints accumulated so far. 

Initially the constraint store is empty and the goal part is the initial goal. 
In the following, we denote the computation state by pairs ( G [] a ), where 
G is the goal part and a is the constraint store. We use e to denote an empty 
goal part or constraint store. An example computation state is 

(q(X,Y,Z) [] X,Y,Z E {0 ..... 10} ~ X i> Z + 3 ~ Y ~< Z). 

A computation step (i.e. the transition from one computation state to 
another) can be of  two types depending upon the selection of an atom or a 
constraint in the goal part. In the first case, a computation step amounts to 

(1) selecting an atom in the goal part; 
(2) finding a clause that can be used to resolve the atom; this clause 

must have the same predicate symbol as the atom, and the equality 
constraints between the goal and head arguments must be consistent 
with the constraint store; 

(3) defining the new computation state as the old one where the selected 
atom has been replaced by the body of  the clause and the equality 
constraints have been added to the constraint store. 

In the second case, a computation step amounts to 

(1) selecting a constraint in the goal part that can be satisfied with the 
constraint store; 

(2) defining the new computation state as the old one where the selected 
constraint has been removed from the goal part and added to the 
constraint store. 

For instance, given a computation state 

(q(X,V,Z) [] X,Y,Z C {0 ..... 10} & X >i Z + 3 ~ Y ~< Z) 

a computation step can be performed using the second clause of q (see 
Fig. 2) to obtain a new computation state 

(Z >/ Y + 2 [] X,Y,Z C {0 ..... i0} ~ X >i Z + 3 ~ Y ~ Z). 

Another computation step leads to the configuration 

(e [] X,Y,Z E {0 ..... I0} & X >i Z + 3 & Y ~< Z ~ Z >i Y + 2), 
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since the resulting constraint store is satisfiable. Note that, strictly speaking, 
equations should have appeared between the variables in the above example; 
they were omitted for clarity, since the variables have the same names in 
the program. 

As should be clear, the basic operation of the language amounts to deciding 
the satisfiability of a conjunction of constraints. Note also that each com- 
putation state has a satisfiable constraint store. This property is exploited 
inside CLP languages to avoid solving the satisfiability problem from scratch 
at each step. Instead, CLP languages keep a reduced (e.g. solved) form of 
the constraints and transform the existing solution into a solution including 
the new constraints. Hence the constraint solver is made incremental. For 
instance, the last constraint store may be represented as 

( e  [ ]  x E {s . . . . .  1o} ~ Y E {o . . . . .  5} ~ z E {2 . . . . .  7} 

X >_- Z + 3 & Y ~< Z ~ Z >~ Y + 2). 

A computation state is terminal if 

• the goal part is empty; 
• no clause can be applied to the selected atom to produce a new com- 

putation state or the selected constraint cannot be satisfied with the 
constraint store. 

A computation is simply a sequence of computation steps that either 
ends in a terminal computation state or diverges. A finite computation 
is successful if the final computation state has an empty goal, and fails 
otherwise. 

To illustrate computations in a CLP language, consider our simple program 
again. The program has only one successful computation, namely 

(p(x,Y,Z) [] e) 

(selecting the first constraint) 

(selecting the last constraint) 

(q(X,Y,Z) [] X,Y,Z E {0 ..... 10} & X >i Z + 3 & Y ~< Z) 

(using the second clause of fl) 

(z >i v + 2 [] x,Y,Z E {0 ..... 10} ~ X >I Z + 3 ~ Y ~< Z) 

(selecting the constraint) 

(e [] X,Y,Z E {0 ..... i0} ~ X I> Z + 3 ~ Y ~< Z ~ Z i> Y + 2) 

The program has also one failed computation: 
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(p(X,Y,Z) [] e ) 

(selecting the first constraint) 

(selecting the last constraint) 

(q(X,Y,Z) [] X,Y,Z 6 {0 ..... iO} ~ X >_- Z + 3 & Y ~< Z) 

(using the first clause of q) 

(r(X,Y,Z) [] X,Y,Z C {0 ..... I0} g X i Z + 3 & Y ~ Z> 

(using the clause of r) 

(X ~< Y + 2 [] X,Y,Z C {0 ..... I0} ~ X >_- Z + 3 g Y ~< Z). 

The last computation state is terminal since the conjunction of constraints 

X ~> Z + 3 & Y ~< Z & X ~< Y + 2 

is not satisfiable. 
Note that the results of  the computation are the constraint stores of the 

successful computations. Also, nothing has been said so far on the strategy 
used to explore the space of computations. Most CLP languages use a 
computation model similar to Prolog: atoms are selected from left to right 
in the clauses, clauses are tried in textual order, and the search space is 
explored in a depth-first manner with chronological backtracking in case of 
failures. 2 For instance, on the simple program, a CLP language typically 
uses the first clause for p, then the first clause for q, and finally encounters 
a failure when trying to solve r. Execution then backtracks to the second 
clause of q, giving the successful computation. 

2.3. Constraint entailment 

As mentioned previously, the cc framework considers other operations on 
constraints beyond constraint solving as well as additional ways of combining 
them. An important operation on constraints is constraint entailment, which 
amounts to finding out if a single constraint is implied by a conjunction of 
constraints, i.e. 

c ~ ( v ) ( a ~ c ) .  

Constraint entailment was introduced in the context of concurrent logic 
programming (e.g. [58]) by Maher [43] to endow these languages with a 
logical semantics. It can be viewed as well as a generalization of languages 
allowing coroutining and delay mechanisms (e.g. [ 10,13,17,28,47 ] ), and is 

2We see below that the additional combinators of cc (FD) permit more sophisticated search 
procedures. 
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one of the cornerstones of the cc framework, where it is used to synchronize 
concurrently executing agents. It was also used in CHIP (see [20,31]) inside 
the if_then_else construct and was instrumental in simulating hybrid circuits. 
Its interest for CLP languages lies in the opportunity it gives to reason about 
the constraints and to use the information gained in pruning. As we will 
see, it can be used to express non-primitive constraints following general 
principles from artificial intelligence and operations research. 

Both implication and cardinality, the two cc (FD) combinators used in our 
applications, make use of constraint entailment. The implication combinator 
was introduced in [54] in the context of  concurrent logic programming, 
while the cardinality combinator was proposed explicitly for CLP languages 
in [73]. 

2.4. The implication combinator 

Motivation 
Local propagation is one of the key ideas behind constraint programming 

languages such as CONSTRAINTS [66] and ThingLab [2]. Local propaga- 
tion (or value propagation) amounts to deducing values for some variables 
from those of other variables. For instance, an "and-gate" in a digital circuit 
may be defined by rules of the form 

"If one input is 0 then the output is 0", 
"If the output is 1 then the inputs are both 1". 

To implement a program achieving this form of propagation, it is necessary 
to introduce a form of data-driven computation in which goals are sus- 
pended when not enough information is available and reactivated when new 
information allows them to be reconsidered. The purpose of the implication 
combinator for CLP languages is to achieve this form of behavior, to gen- 
eralize it to any constraint system, and to combine it with nondeterministic 
choice. 

Description 
As mentioned previously, the implication combinator has the form c ~ A 

where c is a constraint and A is a body. Its declarative semantics is simply 
given by logical implication. 

The main originality of the implication combinator lies in its operational 
semantics. The implication c ~ A ensures that A is executed only when 
(and as soon as) c is entailed by the constraint store. In other words, if c is 
entailed by the constraint store, c ~ A reduces to A. If -~c is entailed by the 
constraint store, c ~ A reduces to true. Otherwise, the computation blocks, 
waiting for more information. 
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Consider  again the descr ipt ion o f  an and-gate using local propagat ion  
techniques: 

• nd(X,Y,Z) :- 

X = 0 --+ Z = 0 ,  

Y=O-+Z=O, 

Z = I --* (X = I , Y = i), 

X= I-+Y=Z, 

Y=I-+X=Z, 

X = y --+ X = Z. 

The first rule says that, as soon as the constra int  store entails x = 0, the 

constra int  z = 0 mus t  be added to the constraint  store. Note  that  the last 

three rules actually do more  than  local value propagat ion;  they also propagate  
symbol ic  equalities and  one of  them is condi t ional  to a symbol ic  equality. 

N o w  the goal (and(X,Y,Z) [] X = O) produces  a constraint  store x = o t z -- 
0, since the goal (x = 0 --+ z = o [] x = 0) reduces to (z ,, 0 [] x = o) and  

hence to the constra int  store x = 0 ~ z = 0. Howeve r  the goal (~md(X,Y,Z) 

[] e) does not modi fy  the constra int  store, since none o f  the constraints  in 
the impl ica t ion  constructs  are entai led by the constraint  store. 

As men t ioned  previously,  a goal that  is b locked can be resumed when new 
in format ion  becom e  avai lable in the constra int  store. Assume for instance 

the compu ta t i on  state 

<X = 0 -~ Z = 0 , T = 0 -+ X = 0 [] T = 0). 

The  first goal x = 0 ~ z = 0 blocks since x = o is not  entai led by the con- 

straint  store. But the second goal can be executed, leading eventual ly to the 

compu ta t ion  state 

(X = 0 --+ Z = 0 [ ]  X = 0 & T = 0 ) .  

N o w  x = o is entai led by the const ra in t  store and  hence the first impl ica t ion 
can be executed. The  final constraint  store will be x = 0 t T = 0 t Z = 0. 

N o w  consider  building a full-adder using logical gates: 

fa(X,Y,Cin,S,C) :- 

~nd(X,Y,Cl), 

xor(X,Y,Sl), 

and(tin, SI ,C2), 

xor(Cin,Si,S), 

or(CI,C2,C). 

In the above  circuit, x and  Y are two input  bits, C i n  is the carry-in, s is the 
result bit, and  c is the carry-out.  I f  we use the impl ica t ion  combina to r  to 
define all logical gates, the query fa(X,V, 1, s ,o)  produces  the constra int  store 
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X=0&Y=0&S= I. 

The reason is the following. Since the result of the or-gate is 0, its two inputs 
cl and c2 must be 0. Since the second and-gate has output c2 equal to 0 and 
input t in  equal to 1, it follows that Sl must be 0, which implies that x and 
Y must be equal because of the first xor-gate. Since x and v appear both as 
inputs in the same and-gate, they must be equal to its output Cl, which is 0. 

The implication combinator thus introduces a notion of coroutining be- 
tween goals in the language, and the execution of goals can be interleaved 
in complex ways. Note that the goals synchronize by "asking" if some con- 
straints are entailed by the constraint store and that a suspended goal can 
be resumed by a modification of the constraint store by other goals. More- 
over, the implication combinator is not restricted to simple constraints, as 
illustrated above, but allows arbitrary constraints of the language. 

2.5. The cardinality combinator 

Motivation 
The cardinality combinator is a declarative and relational operator, in- 

tended for the handling of general forms of disjunctions which often occur 
in practical applications. It can be used to enforce arc-consistency on any 
arbitrary finite-domain constraints (within the complexity bound of the op- 
timal algorithm of [44] ) but, as should be clear from the presentation, it 
is not limited to finite-domain constraints. The cardinality has been used 
in numerous applications including scheduling, assignment, Hamiltonian 
circuit, and warehouse location problems. It will be important in the car 
sequencing application. 

Before entering into the description of the combinator, let us give an 
example to motivate the reader. Consider, for instance, a scheduling problem 
and assume that we face a disjunctive constraint between two tasks, i.e. the 
execution of the two tasks cannot overlap. Assume that sl and s2 represent 
the starting dates of the tasks and D1 and D2 their durations, the constraint 
can be expressed as 

disjunctive (SI ,DI, S2,D2) :- 

S1 + D1 ~ $2. 

disjunctive (Sl ,DI, $2,D2) :- 

S2 + D2 ~< $I. 

Unfortunately the above constraint is nondeterministic and introduces choice 
points during the execution. The first alternative, i.e. the second task is 
scheduled after the first task, will be selected and its constraint will be 
added to the constraint store. Subsequent execution may lead to a failure 
and require this choice to be reconsidered. The second alternative, i.e. the 
first task is scheduled after the second task, will then be considered. In 
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general, it is better to postpone choices as long as possible. The above con- 
straint can be used in two ways to achieve pruning: (1) if the maximal start 
date of s2 is smaller than the minimal start date of Sl added to D1, then the 
second task cannot be scheduled after the first task and (2) if the maximal 
start date of Sl is smaller than the minimal start date of s2 added to D2, 
then the first task cannot be scheduled after the second task. The cardinality 
combinator enables us to express this pruning in a natural way. 

Description 
As mentioned previously, the cardinality combinator has the form 

# ( l , u ,  [cl . . . .  ,cn]) 

where l and u are integers and cl . . . . .  c, are constraints. 
The declarative semantics is given as follows. # ( l ,  u, [ca,..., cn ]) is true 

iff the number of constraints ci (1 ~ i ~ n) satisfiable is not less than l 
and not more than u. It is false otherwise. 

Note that this combinator is quite expressive. A conjunction cl A . . .  A 
c, can be expressed as # ( n , , ,  [Cl, '" ,cn]) where • is a don't-care value, 
a disjunction Cl v . . .  v cn as # ( 1 , , ,  [cl . . . . .  cn]), and a negation -~c as 
# ( , ,  0, [c l). Other connectives such as equivalence ~ can now be obtained 
easily. In the applications, we feel free to use the logical operators instead 
of the cardinality combinator when convenient. 

Using the cardinality combinator, the disjunctive constraint can be im- 
plemented as follows: 

disjunction(Sl ,DI, S2,D2) :- 

#(I,*,[Sl + D1 ~ S2, S2 + D2 ~< Sl]). 

Once again, the main interest of the cardinality combinator lies in its 
operational semantics. The combinator implements a principle well known 
in operations research and artificial intelligence: "infer simple constraints 
from difficult ones". The intuitive idea is to make sure that the cardinality 
combinator can be satisfied in some way. Moreover, if there is only one 
way to satisfy it, then the constraints necessary to satisfy it are introduced 
in the constraint store. Constraint entailment is used to check if there is a 
way to satisfy the constraint. In the disjunctive example, the system makes 
sure that either the first task can be scheduled before the second one or the 
second task can be scheduled before the first one (or both). If the constraint 
store makes it impossible to schedule the first task before the second, then 
a constraint forcing the second task to be scheduled first is added to the 
constraint store. 

Consider a simple example: 



Constraint satisfaction using CLP 125 

(#(1,2,[x=4, Y-to]) ~ x>6 [] e) 

(#(1,2,[x=4, Y=lO]) [] x>6) 

(#(1,2,[Y=1o1) [] x>6) 

1 
X>6 & Y=IO 

This example contains a cardinality combinator requiring that x = 4 or 
Y = 10 be true. Initially neither these two constraints nor their negations 
are entailed by the constraint store, so the execution of the cardinality 
combinator blocks. The second goal x > 6 is selected, which implies that 
x ~ 4 is entailed by the constraint store. There is now only one way to 
satisfy the cardinality combinator, i.e. adding the constraint Y = 10 to the 
constraint store. 

The cardinality combinator can be used to enforce arc-consistency on any 
binary constraint in time O(ed  2 ), where e is the number of  constraints and 
d is the size of  the largest domain. Given a constraint c(X, Y) with X ~ Dx 
and Y e By, it is sufficient to generate for each value v E Dx a constraint 
of the form 

X = v  ** Y E D  

where D = {w ~ Dy I c (v ,w)}  and vice versa for Y. The equivalence can 
be rewritten easily into two cardinality formulas. The optimal bounds of  
Mohr and Henderson [44] can be obtained by using counters to implement 
cardinality and entailment. 

2.6. Constraint system 

Here we give an informal presentation of the constraint part of cc(FD).  

Syntax 
Definition 2.1. An arithmetic term is defined inductively as follows: 

(1) A variable is an arithmetic term. 
(2) A natural number is an arithmetic term. 
(3) tl + t2, t l ,  t2, and t l -  t2 are arithmetic terms if tl and t2 are arithmetic 

terms. 

The primitive constraints of  the language are as follows: 

Definition 2.2. A primitive constraint in cc(FD) can be of two forms: 
(1) x ~x {vl . . . . .  Vn}; 
(2) t 1 ~2 t2, 
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where x is a variable, 'u I . . . . .  'u n are natural numbers, 81 ~ {~, ~}, tl and t2 
are arithmetic terms, and 82 ~ {>, >i, = , # ,  ~<, <}. Constraints of the first 
type are called domain and non-membership constraints respectively, while 
constraints of  the second type are called arithmetic constraints. 

Note that in cc(FD) each variable appearing in an arithmetic constraint 
must also occur in a domain constraint. 

Constraint solving 
There are various ways of implementing a constraint solver for the above 

constraints. Since the problem is decidable (because all variables must ap- 
pear in a domain constraint), a decision procedure is possible for consistency 
and entailment. However, a complete constraint solver would necessarily re- 
quire exponential time (unless P = NP). The approach taken in cc(FD) 
(and in CHIP as well) is to use consistency techniques instead and amounts 
to replacing constraint solving by arc-consistency and constraint entailment 
by arc-entailment. 

Definition 2.3. A constraint c ( x l , . . . , X n )  is arc-consistent with respect to 
D 1 , . . . , D n  if, for each variable xi and value vi E Di, there exist values 
/31 . . . . .  /)i_1,~3i+1 . . . . .  "u n in O1 . . . . .  Oi-l ,Di+l  . . . .  ,Dn such that c ( v l , . . . , V n )  
holds. 

A set of constraints is arc-consistent with respect to a set of  domains for 
its variables iff all constraints are arc-consistent with respect to the domains. 

Definition 2.4. A constraint c(xl  . . . . .  xn) is arc-entailed by D1 . . . .  ,Dn iff, 
for all values vl . . . . .  vn in D 1 , . . . , D n ,  c(xl  . . . . .  Xn) holds. 

The operational semantics of the parts of cc(FD) presented in this pa- 
per can be understood informally as an instance of the generic scheme 
presented earlier in which consistency is replaced by the weaker notion 
of arc-consistency and entailment by the weaker notion of arc-entailment. 
Enforcing arc-consistency does not in general produce a decision procedure 
(see [16] however for subclasses having that property). In conjunction with 
nondeterminism, it produces the kind of languages advocated in [42]. Arc- 
consistency algorithms have been intensively studied [42,44,45,77] but with 
the primitive constraints considered in cc(FD), more efficient algorithms 
can be exhibited. For instance, with binary constraints, arc-consistency can 
be enforced in O (ed) where e is the number of constraints and d is the size 
of the largest domain [ 16 ]. 

A formal semantics of cc(FD) in terms of the cc framework requires 
decision algorithms for constraint solving and entailment. The key idea is to 
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divide the primitive constraints into two classes: ( 1 ) basic constraints (those 
allowing an efficient decision procedure) and (2) non-basic constraints 
defined in terms of the combinators. 3 The main benefit of investigating the 
formal semantics has been the identification of a number of new combinators 
(e.g. constructive disjunction and indexical constraints) that support, at the 
language level, pruning principles previously hidden in the implementation. 

3. Test-pattern generation 

The first application we consider is in the field of digital circuit design: 
automatic test-pattern generation (ATPG). Problems from circuit design are 
useful in evaluating general problem solving techniques, since many special- 
purpose methods have been developed in this area and different approaches 
can be compared, using widely available benchmarks. CLP in general, and 
CHIP in particular, have been applied to a number of problems from 
digital circuit design, including formal verification [65], diagnosis [63], 
synthesis [64] as well as simulation of hybrid circuits [31]. The use of 
CLP for test generation has been discussed before [59,60,62]. The method 
described here is based on [61]. We show that cc(FD) allows a simple 
and declarative formulation of test generation as a constraint satisfaction 
problem. Moreover, by using the implication operator to define demons, it is 
possible to design an efficicnt test generation algorithm that requires only a 
fraction of the development effort necessary with conventional approaches. 

3.1. Problem statement 

VLSI chips are produced by complex processes in which errors can arise, 
hence only a certain percentage of chips will be error free. This yield varies 
with different circuit types and processes, but can be as low as a few percent 
for a new fabrication process. The manufacturer, on the other hand, wants 
to sell chips with a low defect level, i.e. a low percentage of faulty chips 
passing quality control. Test generation is the process of defining the tests 
to apply to a circuit in order to detects faults. Williams [78] has presented 
a model expressing the defect level as a function of yield and fault coverage, 
the percentage of all faults detected by testing. This model makes clear the 
necessity of finding a very high percentage of all faults in order to obtain a 
low defect level for a process with a low yield. 

3These constraints need not be considered primitive constraints in the language, since they 
can be defined at the language level. 
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7.1.1. Fault models 
Since many different physical failures can occur in a circuit, the only 

way to test for all possible faults is to test all circuit behaviors over time, 
which is clearly impractical. The principal idea of structural testing is to use 
knowledge about the structure of a circuit and the underlying technology 
to limit the number of cases we have to consider. There have been many 
attempts to describe what types of faults can occur in different technologies 
[1]. One of the earliest and still widely used fault models is the "stuck-at" 
model. This assumes that all faults lead to the situation where some signal 
in a circuit is permanently set to "1" or "0". The signal is then said to 
be "stuck-at 1" (sal) or "stuck-at 0" (sa0). This fault model covers many, 
though not all, device faults inside a VLSI circuit. It has been shown that 
a test set that detects all single stuck-at faults also covers many other faults 
(with the exception of  time-sensitive faults). Most test generation systems 
restrict themselves to the detection of  single stuck-at faults at the logical gate 
level. We will use this model and, in the rest of  the section, fault coverage 
should be understood as the percentage of all detected single stuck-at errors. 

Note also that testing for stuck-at faults in a circuit does not require 
generating tests for each fault, as some faults are covered by other faults 
[51]. For instance, testing the output of an and-gate for saO automatically 
tests the gate inputs for sa0. We can easily generate this more interesting 
collapsed fault set in a preprocessing step. 

3.1.2. Test generation and fault simulation 
The ATPG problem is conceptually split into two subproblems: test gener- 

ation and fault simulation. Test generation entails finding a test that detects 
a certain fault for some component inside the circuit; fault simulation de- 
tects which faults are covered by a particular pattern. Often the two parts 
are intertwined and the whole process terminates when either a preset fault 
coverage is obtained or a time limit is exceeded. The presentation here is 
restricted to the test generation phase, which typically consists of  three steps 
[3]: 

• Setup: To test a fault at the output of a certain gate, it is necessary to 
ensure different behavior for the good and faulty circuits for this signal. 
This can be achieved by controlling the gate, i.e. by applying certain 
signals to the inputs of  the gate. For instance, testing an and-gate for 
a stuck-at-zero fault requires us to set both inputs of  the gate to 1. 

• Propagation: It is clearly not enough to create an internal difference 
between the behavior of the good and the faulty circuit. This difference 
must be observable at some output of  the circuit. The propagation step 
creates a sensitized path from the gate under test to some circuit 
output. In general, one or several symbolic values are introduced and 
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the propagation step amounts to propagating these symbolic values 
towards the primary outputs. The symbolic values represent the value 
or the negation of the value at the gate under test and indicate where 
the result of the test can be observed. 
Justification: The last step assigns values to all signals in the circuit in 
order to satisfy the conditions enforced by the setup and propagation 
steps. Generating a test basically amounts to finding an assignment 
of values for each of the primary inputs, that satisfies the constraints 
imposed by the setup and propagation steps on the signals throughout 
the circuit. 

How these steps are implemented makes the difference between the various 
test generation algorithms. 

3.2. Problem solution 

In this section, we present the test generation program in cc(FD). We 
proceed in several steps. Section 3.2.1 discusses how circuits can be repre- 
sented in logic programming. Section 3.2.2 shows how ATPG can be seen 
as a constraint satisfaction problem. Section 3.2.3 shows how to implement 
the basic elements as demons using the implication operator. Section 3.2.4 
presents the basic test generation program, and Section 3.2.5 shows how 
heuristics can improve the algorithm efficiency. 

3.2. I. Circuit description 
Logic programming can be considered as a simple but powerful hardware 

description language. It supports in a natural way top-down development 
and mixing of various hierarchical levels of circuit description. In logic 
programming, a circuit can be specified by means of clauses that describe 
components and modules and the interactions between them. A general 
description of a full-adder can be given as follows: 

fa(M,N,X,Y,Z,S,C) :- 

and(M, [I iN] ,X,Y,Cl), 

xor (M, [21N] ,X,Y,SI), 

fanout (M, [SIN] ,SI,SII,S12), 

and(M, [4iN] ,Z,SII,C2), 

xor(M, [5IN] ,Z,St2,S), 
or(M, [6IN] ,Cl,C2,C). 

For simulation, the definition of the basic elements and, xor, and or can be 
given by a set of ground clauses (the truth table definition). For instance, 
an and-gate can be expressed as 

and(simul,N,O,O,O). 
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and(simul,N,O,l,O). 
and(simul,N,l,O,O). 
and(simul,N,l,l ,1). 

Here the first argument contains the operation mode (for instance, "test" 
for test generation, "simul" for circuit simulation or "time" for delay time 
computation) to distinguish between several user-defined operation modes. 
The second argument assigns a unique identifier to each part (module or 
basic component) of the circuit. Thus a hierarchical naming convention can 
be easily implemented. The other arguments are the inputs and outputs of  
the components. Note that no distinction is necessary between inputs and 
outputs. Multiple internal connections between components are represented 
by fanout points, since they are of special interest in test generation. In 
previous examples (see Section 2.5), connections were represented by shared 
logical variables. 

The full-adder can now be used in other circuit descriptions and parame- 
terized libraries of  modules can be generated using hierarchical descriptions. 
This kind of hierarchical description of circuits follows the style of logic 
programming in top-clown development: one can replace the description 
of a lower-level component without affecting the higher-level circuit def- 
inition. The same circuit description can be used in various applications 
including simulation, formal verification and fault diagnosis (see [62]). 
Similar ways of describing hardware in logic programming are reported in 
[11,22,32,33,68]. 

3.2.2. ATPG as a constraint satisfaction problem 
Our strategy is based on treating the test generation problem as a consistent 

labeling problem. We use six symbolic values, 0, 1, d, ~o t ,  e, and enot. The 
values d and e represent the value at the gate under test while dnot and enot 
represent their negations. The basic difference between d, dnot, and e, enot 
is in the way these values are propagated, d is assigned to the gate under 
test and the goal of test generation is to propagate d or dnot to a primary 
output so that the gate can be observed. Once a test has been found, it is 
sufficient to run the circuit with the test and to observe the value of  the 
gate at a suitable primary output. The values e and enot are introduced 
because of fanout points: without the values e and enot, a fanout point 
would need to propagate a d or dnot value to all outputs. Since the values d 
and dnot impose severe constraints on the gates in order to propagate them 
towards the primary outputs, the algorithm may be unable to find a test in 
some cases. With the values e and enot, a fanout point propagates a d (or 
a dnot) on one output and an e (or an enot) on the other outputs. Since 
it devotes no effort to propagating e and enot, the algorithm avoids the 
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and 0 1 d d e i 

0 0 0 .... 0 0 

1 0 1 d d e 

d -- d .... d -- 

e 0 e d -- e 0 

i oi-- ~ o i 

Fig. 3. Definition of an and-gate in six-value logic. 

xor 
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1 

d 
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0 i d d e 

0 1 d d e 

1 0 d d i e 

dd ........ 

~d ........ 

e ~ .... 0 1 

~ e . . . .  1 0 

Fig. 4. Definition of an xor-gate in six-value logic. 

not lO I d d e i 

I 1 0 d d~ e 

Fig. 5. Definition of a not-gate in six-value logic. 

above-mentioned drawback. The resulting algorithm is complete (it finds a 
test if one exists), which is not the case for the algorithm using a five-value 
logic. 

Figures 3-5 give the definitions of some gates (dnot and enot are repre- 
sented by d and V). These definitions are intended to propagate the values d 
and dnot towards the primary outputs and hence some input combinations 
are prohibited. Consider for example the and-gate. If an input is a value 
d, then the other input must be either 1 or e in order to propagate d to 
the output. The handling of the value dnot is similar. Note also that the 
values e and enot are not necessarily propagated to the output of  the gate; 
this illustrates the main difference between the values e, enot and the values 
d, dnot. The xor-gate is also interesting to analyze. As soon as an input is d 
or dnot, the other input must be 0 or 1 respectively. Note that a value d can 
thus be propagated as a dnot on the output. The not-gate is straightforward. 

The possible values for a fanout point are given by the predicate definition 
in Fig. 6. Note especially how the value d is propagated: only one of the 
outputs is assigned to d, the other being given the value e. There are 
of course two possible ways of propagating d depending upon the output 
chosen. 

Test generation is then performed by the following method. Variables 
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~, f anout (Mode, Label, Stem, Branch i, Branch2) 

fanout (M,N,O,O,O). 

fanout(M,N,l,1,1). 

fanout (M,N,d,d,e). 

fanout (M,N,d,e,d). 

f anout (M, N, dnot, d_not, enot). 

f anout (M, N, dnot, enot, dnot ). 

fanout (M,N,e,e,e). 

f anout (M, N, enot, ShOt, enot ). 

Fig. 6. Definition of a fanout in the six-value logic. 

throughout the circuit are required to take one of the six signal values. In 
addition, the primary inputs can only take values 0 or 1. One primary output 
will have a d or dnot value and some others can have e or enot values. 
The circuit gates impose local constraints between their inputs and outputs 
(defined by the truth tables above). The gate under test will have a d as 
output and suitable inputs to control the gate. The key advantage of this 
description is that all constraints can be expressed just as local constraints. 
The existence of a d-path from the gate under test to a primary output is 
guaranteed by the constraints. This is the main difference from the classical 
ATPG algorithms [26,29,53], which use a five-value logic and rely on a 
global control strategy to create the d-path and choose between alternatives. 
Note also that the solution is not described algorithmically by changes to 
be applied to an empty assignment, but rather as a constraint satisfaction 
problem. 

3.2. 3. Gates as demons 
A simple definition of the gates as truth tables would lead to an ex- 

tremely inefficient program. For a better approach, we exploit two features 
of cc(FD): domain constraints and the implication operator. Each line in 
the circuit is associated with a variable constrained to take one of the six 
possible values. In addition, the primary inputs are constrained to be 0 or 
1. The implication operator is then used to define a demon for each type 
of gate. The demons make sure that the gates propagate values as soon 
as possible and reduce the search space whenever possible by removing 
values from the variables. The demon definition is a generalization of that 
presented in the description of the implication operator. For instance, the 
demon for an and-gate is depicted in Fig. 7. 

Note that the implications use both equations and non-membership and 
domain constraints to reduce the search space by removing variable values. 
Also, each implication solves the constraint, i.e. if an implication has been 
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and_demon(X,Y,Z):- 

x = o -~ (z = o, Y ~ {d,dnot}), 

Y -- 0 ~ (z = 0, x ¢ { d , ~ o t } ) ,  
Z -- 1 --~ (X = 1 ,  Y -- 1 ) ,  

X = 1 "--~ Y = Z ,  

Y=I-~X=Z, 

X = Y ---+ (X = Z, X ~ {d,dno%}), 

X = d --+ (Y E <l,e}, Z = d), 

Y = d ~ (Y 6 {i,e}, Z = d), 

X = d.no% ---+ (Y E {1,enot}, Z = dnot), 

Y = dnot --+ (Y E {1,enot}, Z = dnot), 

X = e ---+ Y = enot -+ Z = O, 

X = enot -~ Y = e -~ Z = O. 

Fig.  7. Implementation of an and-gate in the six-value logic. 

and(test(Gatel,Fault),Gate,X,Y,d) :- 

Gatel = Gate, 

inverse(FaulZ,Setup), 

and(X,Y,Setup). 

and(test(Gate1,Fault),Gate,X,Y,Z):- 

Gatel ~ GaZe, 

Z E { O , l , d , d n o t , e , e n o t } ,  

a n d _ d e m o n ( X , Y , Z ) .  

this is the g.u.t. 

to test the fault 

setup opposite value 

use the 0-1 demon 

it is not the g.u.t. 

domain constraint 

use the six-valued demon 

Fig.  8. The and-gate definition for A T P G .  

applied, then all remaining values for its variables are valid. Finally, note 
that we do not enforce an assignment of  the gate inputs in the case where 
the output takes the value 0. The constraint blocks until an assignment is 
made to an input either by propagation or by a labeling routine. 

3.2.4. The basic ATGP program 
We can now present the basic program. 
Each type of  gate is associated with a new procedure. Figure 8 illustrates 

the approach for an and-gate. Besides the inputs and output, the procedure 
receives two arguments: a term test(Gate,Fault), which is the same for 
all gates, and a unique identifier for the gate. The term test(aate,Fault)  
indicates which gate Gate is under test for a given fault Fault; for example, 
test([2]  ,1) is used for testing a sal fault at gate 2. 

The procedure for each type of  gate is defined by two clauses. The first 
clause handles the case of  the gate under test (g.u.t.), recognized by the 
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test(+,+,+,-): generate test for output of Gate at Fault saO or sal 

the third arg is a list of inputvars of the circuit 

test(Gate,Fault,Inputlist,Output):- 

domain_constraints(Inputlist,O,1), 

circuit(test(Gate,Fault),[],Inputlist,Output), 

labeling(Inputlist). 

labeling(+): assign 0 or i to all inputs of the circuit 

labeling([]). 

labeling([XlT]):- 

member(X,[O,l]), 

labeling(T). 

Fig. 9. A T P G  program.  

equality Gate1 = Gate, where Gatel is the unique identifier of the gate under 
test and Gate is the gate currently considered. The clause simply assigns the 
value d to the output. In addition, the clause controls the gate by stating a 
constraint on the inputs to produce the desired output. The desired output is 
obtained from the type of fault by the procedure inverse and the constraint 
is enforced using the 0-1 definition of the and-gate as described in Section 
2.4. For example, an sa0 fault for the and-gate would produce 1 as the 
desired output (i.e. Setup is l) and the 0-1 and-gate is called with x, Y, 
and Setup as arguments. In this case, the 0-1 definition assigns x and Y 
to 1. The second clause handles the general case, i.e. when the gate under 
consideration is not the gate under test. The clause simply enforces a domain 
constraint for the output and calls the six-value definition. 

The complete program for test generation is shown in Fig. 9. It uses a 
circuit description and the predicate definitions above. The first argument 
of test is the label of the gate to test, the second argument is the fault type 
to test, and the third argument must be instantiated to the list of variables 
for the primary inputs of the circuits (this list is assigned 0-1 values by 
the labeling routine). The predicate domain_constraints generates suitable 
domain constraints for the primary inputs to guarantee that they are given 
a 0-1 value. The second goal enforces the constraints associated with each 
gate relating its inputs to outputs. The last goal simply assigns values to the 
primary inputs. As usual in constraint programming, the generation phase is 
interleaved with the constraint propagation part at run time, although they 
are separated in the problem statement. 

The algorithm described so far is complete, i.e. it finds a test pattern if 
one exists and fails otherwise. We now explore several ways of improving 
its efficiency. 
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3.2.5. Heuristics 
The basic procedure described so far requires making many possible 

choices. To obtain an efficient system, it is necessary to develop heuristics 
that avoid making the wrong choices. In this section we describe some 
of the heuristics used in our test generation program. We show that this 
information can easily be added into the program. 

Controllability and observability 
When propagating a d-value from the fault to a primary output, no choices 

are needed as long as there is a unique path. When a d-value reaches 
a fanout stem however, the d-path can continue along any of the stems 
and we have to decide which one to follow. Several measures have been 
proposed to estimate the difficulty of finding a path from some point inside 
the circuit to an output [4]. This value, called an observability measure, can 
be precomputed in a preprocessing step. For each fanout point, we obtain 
an ordering for the fanout stems, and try to propagate the d-value along the 
path with highest observability first. 

A similar measure estimates how difficult it is to set a point inside the 
circuit to a particular value, 0 or 1. This controllability is used to decide 
which values to assign to controlling inputs of xor-gates in the d-path. If it 
is easy to set a point to 0, we use this value; if not, we set it to 1. 

Both controllability and observability are heuristic values. Since they are 
obtained by simple computations, for example ignoring reconvergent fanout, 
they give only hints on which values to test first, and do not eliminate the 
need for backtracking completely. 

Labeling 
The choice of an appropriate labeling routine is crucial for many constraint 

satisfaction problems but turns out not to be as important for test generation. 
We use a routine that assigns the variables in the order given, but chooses 
randomly between 0 and 1 for the first assignment. For most of  the example 
circuits tested below, the labeling is done without any deep backtracking. 

Limiting backtracking 
Some faults in circuits can be untestable; they are redundant. The program 

may not be able to detect this in reasonable time. Tests for other faults can 
be very difficult to obtain. To avoid spending too long trying to find a test, 
we have to limit the search performed on any one fault. This can be done 
in two ways: one is to limit the number of backtrack steps performed in 
the search, the other is to limit the execution time spent on each case. Both 
methods are rather simple to add to the program. 
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Z X C1 Cout 

Fig. 10. Test generation example. 

X : ~  ~ "  C1 r--,,, x ~  c1 [ ~ u t  

y ~  C2 

Fig. 11. Test generation example (continued). 

3.3. Example 

We use the full-adder circuit described above to illustrate the behavior 
of  the program. We explain the steps required to generate a test for an sal 
fault at the output of xor-gate 2 (see Fig. 10). 

The query to execute is 

?- test([2],l,[X,Y,Z],[S,Cout]). 

The program enforces all constraints imposed by the circuit. To control 
gate 2, sl is assigned the value d. In addition, since the test is an sal fault, 
the variable Setup is assigned to o. The xor-demon for the gate is then 
executed with the output equal to 0. This assignment entails, by definition 
of  the xor-gate, the equality of both inputs of  gate 2 (see Fig. 10 where 
the equality is shown as a double arrow), which is the weakest constraint 
necessary to make sure that the output is 0. All other gates use the six-value 
definitions; their purpose is to propagate the value d (or dnot) towards the 
primary outputs. Let us review how this is done. 

The equality between x and Y enables one of  the implications of  the and- 
gate to be reduced (shown in the picture as a dotted arrow), leading to the 
equality of  x with ¢1 and the removal of  d and dnot from Cl (see Fig. 11 ). 
Then the rule for fanout point 3 is executed, creating the constraints Sll = 
d and s12 = e (see Fig. 11 ). This triggers another implication for and-gate 
4, binding z to 1 and c2 to d, which in turn triggers an implication for gate 
5, binding s to enog (see Fig. 12). The rule for gate 6 now binds Cout to d 
and cl to 0 and, by unification, x to 0 and Y to o (see Fig. 12). 
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y ~  C2 

z - . . . . . . .  

y o ~ Y "  

Fig. 12. Test generation example (continued). 

x ~ l  ~ c10~dOU t 

y ~  C2 

, ,  s 

Fig. 13. Test generation example (continued). 

The final solution is then 

X = Y = CI = O, $1 = d, 

S11 = d, $12 = e, 

C2 = d, Cout = d, 

Z = 1, S ---- enot 

(as shown in Fig. 13). The test pattern generated for the sal fault at the 
output of  gate 2 is [0,0,1 ]. 

This example is unusual in that all constraints are ultimately solved, i.e. 
all variables are instantiated to values. No generation of values for the 
primary inputs is thus necessary. For more complex examples however, this 
will not be the case: some constraints will block and wait until variables are 
instantiated by the labeling procedure in the test predicate. 

3.4. Computation results 

An evaluation of a test generation method must include experiments 
with large, realistic circuits. We use the ISCAS benchmark set [35] to test 
our method. The results show that a constraint-based ATPG system, while 
currently not as fast as specialized programs, finds test sets even in large 
circuits in a reasonable time with a high fault coverage. 

The benchmark set was defined in 1985 to compare different test genera- 
tion systems [35]. The results on a Sun 3/260 are given in Table 1, which 
shows the name of the circuit, the number of gates, the size of the collapsed 
fault set, and the number of primary inputs and outputs. For each circuit, 
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Table 1 
Benchmark results. 

Name Gates Faults In Out Red Ab % # Time 
432 160 524 36 7 1 3 99.24 68 34.0 
499 202 758 41 32 8 0 98.94 62 32.6 
880 383 942 60 26 0 0 100 74 68.3 

1355 546 1574 41 32 8 2 99.36 92 126.7 
1908 880 1879 33 25 5 5 99.47 124 245.2 
2670 1193 2747 233 140 97 41 94.98 105 433.2 
3540 1669 3428 50 22 127 25 95.57 175 703.9 
5315 2307  5350 178 123 59 22 98.49 141 819.3 
6288 2406  7744 32 32 34 0 99.56 37 265.5 
7552 3512  7550 207 108 88 122 97.22 281 2223.6 

we show the number  o f  redundant  faults detected (Red),  the number  o f  

aborted faults (Ab),  for which the procedure did not find a test or could not 

detect redundancy,  the fault coverage (%), and the number  o f  test patterns 

( # )  generated. Execution times are shown for test generation only (Time).  

The program obtains quite high fault coverage for all test examples. The 

first test patterns detect many  new faults and then the number  decreases 

slowly. The same behavior  can be observed for the other systems. This 

shows a t radeo f f  between fault coverage and execution time. By investing 

more time, a slightly better fault coverage can be obtained. 

The average t ime needed to find one test pattern for each of  the example 

circuits grows nearly linearly with the size of  the circuit. This is to be 

expected since, with our  program, the whole circuit must  be simulated to 

find a test pattern. 

Table 2 shows the results o f  several special-purpose systems. It is very 

hard to compare  two different test generation algorithms in a fair way. 

Fault coverage can be compared  relatively easily since most  systems use 

the same fault set. Execution times vary widely. Systems are implemented 

Table 2 
Benchmark comparison. 

Name Socrates FAN D-Alg  AIDSTG 

% sec % % % sec 
432 99.24 5.3 94.7 97.4 99.05 70 
499 98.94 24.9 93.5 68.5 99.29 101 
880 100 5.7 100 100 100 107 

1355 99.49 34.3 93.5 58.2 99.64 301 
1908 99.52 63.1 94.6 95.0 99.59 533 
2670 95.49 61.1 93.2 95.3 96.25 809 
3540 95.95 89.0 92.0 94.4 95.90 1398 
5315 98.88 45.4 98.2 98.5 99.21 934 
6288 99.56 32.8 98.5 99.1 99.48 892 
7552 98.25 243.5 93.7 96.3 98.26 2121 
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on different machines in different languages. For some systems, only total 
time is given, for others only test generation time. However, we can observe 
two main points. First, the fault coverage of our approach is quite good, in 
some cases exceeding some of the specialized programs. This means that the 
model and the propagation mechanisms used are quite powerful, finding a 
test pattern even in difficult cases. Second the experimental results indicate 
that the performance of the program is within a constant factor of the best 
specialized algorithms. This is encouraging given the effort spent in the 
development of these hand-crafted programs, the specialized nature of the 
problem, and the room left for optimization in constraint languages. It shows 
that a general and flexible programming language like cc(FD), especially 
designed for short development time and rapid prototyping, enables us to 
design a small declarative program whose efficiency is within a constant 
factor of the best special-purpose algorithms. 

4. The car sequencing problem 

The second application we consider is the so-called car sequencing prob- 
lem. This was motivated by an article published in A I  Expert  [48] which 
posed the problem as a challenge for AI technology. We describe a solution 
using cc (FD). 

4. I. Problem statement  

Cars in production are placed on an assembly line that moves through 
various production units responsible for installing such options as air- 
conditioning, radios, etc. The assembly line can be viewed as composed 
of slots, and each car must be allocated to a single slot. However, the cars 
cannot be allocated arbitrarily: the production units have limited capacity 

9V 10V (M) ATWlG Brglez FAN 
% sec % % % % sec 

99.1 8.1 98.9 95.9 99.24 93.7 3.6 
98.9 18.1 98.9 88.0 98.94 99.4 16.2 

100 26.3 100 99.2 100 100 1.3 
99.5 72.6 98.7 86.7 97.27 99.5 13.5 
99.6 143.2 99.4 81.9 99.52 99.5 13.5 
95.4 517 93.7 81.1 95.34 95.7 49.4 
96.1 452 94.7 90.0 95.71 96.0 42.9 
98.9 844 98.6 96.4 98.82 98.9 19.7 
99.6 1039 69.9 99 99.56 99.5 31.7 
98.1 1446 96.6 92.2 98.19 98.2 118.6 
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Table 3 

A car sequencing example. 

Classes 
Option 1 
Option 2 
Option 3 
Option 4 
Option 5 

1 2 3 4 5 6  

Y Y Y  
- - y y - y  

y Y -  
y Y - y  

Y 
Cars 1 1 2 2 2 2 

Capacity 
1/2 
2/3 
1/3 
2/5 
1/5 

Table 4 
Car sequencing: a solution. 

Class 1 
Class 2 
Class 3 
Class 4 
Class 5 
Class 6 

S 1 8 2 8 3 8 4 8 5 8 6 8 7 $8 8 9 S10 
+ 
- -  . . [ -  

+ + - 

+ + 
+ + 

+ + 

and they need time to set up the options on the cars as the assembly line is 
moving in front of the unit. These capacity constraints are formalized using 
constraints of the form r outof  s, which indicate that the unit is able to 
produce at most r cars with the option out of each sequence of s cars. The 
car sequencing problem amounts to finding an assignment of cars to the 
slots that satisfies the capacity constraints. 

We illustrate the problem on a simple example. In the example and the 
algorithm below, cars requiring the same set of options are clustered into 
classes, since they cannot be distinguished for any useful purpose in the 
algorithm. Table 3 presents a problem with five options, six classes, and ten 
cars. Here "y" means that a particular option is required by the class, " -"  
means that it is not required. The capacity constraint r/s should be read 
as r outof s. For example, two cars of class 6 need to be produced. They 
require options 1 and 2. The capacity unit for option 1 has a constraint 
"1 outof 2", indicating that no two consecutive cars can require the option 
since the unit cannot set up the option on the two consecutive cars while 
the line is moving. 

The search space in this problem is made up by the possible values for 
the slots of the assembly line. Tables 4 and 5 depict a solution to the simple 
example, where " - "  denotes an inconsistent value and " + "  an assigned 
value; the assembly line itself is best described by the options selected for 
each slot. 
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Table 5 
Car sequencing: the assembly line in a solution. 

Option 1 
Option 2 
Option 3 
Option 4 
Option 5 

S1 $2 $3 $4 $5 $6 $7 $8 $9 SlO 
+ - + - + + - + 

+ + - + + - + + 

+ + + 

+ + + + 

+ + - 

4.2. Problem solution 

As is typical of finite-domain programs, the program contains two pans: a 
constraint part that generates the problem constraints and a choice part that 
assigns values to some of the problem variables. In this section we describe 
the variables used in modeling the problem, the constraints expressed in 
terms of these variables as well as short programs describing how these 
constraints may be generated, and the way choices are performed. We then 
describe the basic program and show how to improve its efficiency. 

Conventions. We assume that we are given n classes of cars. Each class i 
contains ni cars (ni >/0) such that the total numbers of cars is ns = ~,'~=1 ni. 
We also assume m different options. For each class i and option j ,  we have 
a Boolean o 0 which is true if class i requires option j and false otherwise. 
For convenience, we represent true by 1 and false by 0. 

4.2.1. Problem variables 
The first step towards the solution is to identify the problem variables 

in terms of which the constraints are stated. To each slot i (1 <~ i <~ ns), 
we associate a variable Si denoting the class of cars assigned to the slot. 
These variables, called the slot variables, represent the main output of the 
program. 

Each slot i is also associated with m variables, one for each option denoted 
0 1 , 0 2 , . . . , 0  m. O~i (1 <<. i <~ ns and 1 ~ j ~< m) is equal to 1 if the class 
Si (the class assigned to slot i) requires option j and 0 otherwise. These 
variables are called the option variables. There are O (ns) slot variables and 
0 (ns x m ) option variables. In the above example, there are 10 slot variables 
(S1 . . . . .  S10) and 50 option variables O~,. . . ,  O~ . . . .  , O~0,... , O150 . 

4.2.2. Domain constraints 
We now turn to the problem constraints. The first constraints are the 

domain constraints for the slot and option variables. Each slot variable Si 
has a constraint Si 6 { 1 . . . . .  n} and each option variable ~ has a constraint 
O: 6 {0, 1}. In other words, each slot variable can be assigned a class of 
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cars while each slot variable is assigned a Boolean value. A simple recursive 
program can be used to generate these constraints: 

st ate_domains ( [], Low, High).  

state_domains ( [F I T], Low, High) : - 

F E Low..High, 

state_domains (T, Low, High). 

The goal state_domains (L,0,1) imposcs a Boolean domain to all variables in 
the list r. 

Thc domain constraints gcnerated for the example in Table 3 are as 
follows: 

$1 E {1 . . . . .  6} . . . .  , Sxo E {1 . . . .  ,6}, 
O~ E {0, 1} . . . . .  O15 E {0, 1} . . . . .  O~o E {0, 1} . . . . .  O15o E {0, 1}. 

4.2.3. Capaci ty  constraints  
The capacity constraints are stated in terms of the slot variables. If  the 

capacity constraint for option j (1 ~< j ~ m)  is of the form r o u t o f  s, 
constraints must be generated of the form 

6 (  + . . .  + O{+s_ l <~ r, 1 <~ i <~ n s -  s + 1. 

For instance, option 1 (1 outof  2) generates the constraints 

O ( + O ~  ~< 1, 

O91 +O~0 ~< 1, 

while option 2 (2 outof 3) generates the constraints 

O2 + O2 + O~ ~< 2, 

O2 + O32 + O2 ~ 2, 

A program can 
s". Specialized to 

atmost lout of 2 ( [ ]  ). 

atmost loutof2 ( [O] ) .  
atmostloutof2([O1,02[Os]) :- 

Ol + 02 ~< 1, 

atmost loutof 2 ( [0210s] ). 

The above program generates linear inequalities for the variables. Overall 
there are O ( n s  x m )  capacity constraints. 

+ 0~o ~< 2. 

be written to generate all constraints of the form "r outof 
a constraint of the type "1 outof 2", it looks like 
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4.2.4. Demand constraints 
It is also necessary to make sure that the cars requested are produced. For 

each class i (1 ~< i ~< n), a constraint 

exactly( ni, [ S1 . . . . .  Sns ], i) 

has to be generated, where $1,. . . ,Sns are the slot variables and ni is the 
number of cars in class i. The constraint exaetly(N,L,M) holds iff there are 
exactly N variables in the list i whose values are equal to M. 

In fact, since there are ns slot variables and each of them will be assigned 
to a class (and thus a car), it is only necessary to make sure that the 
assignment produces no more cars from a class than are actually necessary. 
Hence the above constraints reduce to atmoat constraints, 

atmost(ni,  [$1 . . . . .  Sns ], i). 

A constraint atmost (N,L,M) holds iff there are at most N variables in the list 
L whose values are equal to ~l. 

To express the atmost constraint, we make use of the cardinality combi- 
nator. The idea is that a constraint 

atmost(ni,  [Sl . . . . .  Sns ], i) 

corresponds to the cardinality formula 

# ( , , h i ,  [S1 = i , . . . , Sns  = i]).  

In other words, the cardinality formula makes sure that at most ni constraints 
in [$1 = i . . . . .  Sns = i] hold, and hence that at most ni slots are assigned a 
car from class i. There are n demand constraints. The following constraints 
are generated for our example: 

~(* ,1 , [S l  = 1 . . . . .  Slo = 1]),  
o . .  

# ( * , 2 , [ $ 1  = 6 . . . . .  SlO = 6 ] ) .  

These cardinality formulas can be generated in a simple way by the 
following program which, given a list L and two integers N and x, makes sure 
that at most N elements of the list L are assigned to M. 

atmost (N,L,M) :- 

colle ct_equalit lea (L ,M, Eqs), 

#(*,N,Eqs) ° 

collect_equalities( [] ,M, [] ). 

collect_equalities([FIT],M, IF = M i Eqs]) :- 

colle ct_equalit ie s (T, M, Eqs). 
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The first goal in the atmost predicate collects equalities between the value M 
and the elements of  the list L, while the cardinality combinator makes sure 
that at most r~ of  them are true. 

4.2.5. Link  constraints 
Although all constraints seem to have been enforced at this point, an 

important step is still missing. The option variables and slot variables have 
been left completely unconnected so that a slot variable can be assigned a 
value without influencing its corresponding option variables and vice versa. 
To ensure correctness and to perform effective pruning, it is necessary to link 
the slot and option variables. The link is achieved by generating constraints 
of the form eZement(I,L,V) which hold iff element I of the list i is equal to 
v. Each option j will be connected with slot i by the constraint 

element(Si, [ e l i , . . . ,  o~j], ~ ), 

where e l i , . . . ,  onj are the 0-1 values specifying which classes require option 
j .  In the example, the connection between the slots and options is enforced 
by the constraints 

element (Sl, [ 1 , 0 , 0 , 0 , 1 , 1 ]  ,Oil), 

element(Sl,[O,O,1,0,O,O],O~), 

element(Slo,[1,0,0,0,1,1],Olo), 

element (Slo, [0, O, I, O, O, O] , 0~o). 

There are O(ns  × m)  relation constraints. 
How should a constraint element(I,L,V) be defined? Obviously, it is desir- 

able that, as soon as x is given a value, v is assigned its corresponding value 
(for instance, in the above first constraint, if sl is assigned to 3, 01 must 
be assigned to 0). On the other hand, much more pruning can be achieved. 
In particular, as soon as s~ is restricted to the values 1, 4, and 5, 01 must 
be given the value 1. In the same way, as soon as 01 is assigned the value 
1, s, is restricted to take values in {1,4,5}. In other words, we would like 
element ( I , L , V )  tO be arc consistent. 

To enforce arc-consistency on element (I,L,V), it is sufficient to generate 
cardinality constraints of the form 

V = e ¢~ I 6 {ii . . . . .  ip} 

where e is a value in L and i~ . . . . .  ip are all the positions in list L whose 
value is e. In general, a constraint must be generated for each value in L, 
although this is not necessary in the car sequencing application (since only 
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Boolean values are used). For instance, the first element constraint of  our 
example generates the constraint 

ol = 1 ,~  sl • ~ 1 , s , 6 } .  

A simple program can be written to generate the above constraints. The 
equivalence ~ should be understood as an abbreviation for a cardinality 
formula and illustrates the fact that the cardinality operator can be used to 
enforce arc-consistency of any constraint (preserving the complexity bounds 
of the optimal algorithm of [44]). 

4.2.6. Basic program 
We now present the basic program, which amounts to stating the con- 

straints and generating values for the slots variables. 

sequencing(Line, InstanceData) ~- 

state_constraints (Line, InstanceData), 

generate_values (Line). 

state_constraints (Line, 

[NbSlot s, NbOpt ions, NbClasse s, 

Opt ionInfo, CarInfo] ) : - 

generate_slots (Line, NbSlot s), 

generate_option_variables (Options, NbSlot s, NbOpt ions), 

state_domain_constraints (Line, 1, NbClasse s), 

state_domain_constraints (Opt ions, O, I ), 

state_demand_constraints (Line, CarInfo), 

state_capacity_constraints (Options, OptionInf o), 

state_link_constraints (Line, Options, Opt ionInf o). 

The arguments of the predicate are the list of slots variables and the data 
characterizing the instance. The generation of constraints creates as many 
variables as there are slots in the assembly line, creates the option variables, 
and states all the above-mentioned constraints. Generating the constraints 
can be done by simple recursive programs (as has been shown in the above 
presentation) and poses no particular difficulty. Assigning a value to the 
slot variables produces a solution satisfying the constraints. The generation 
of values simply assigns to each of the slot variables a value between 1 and 
n, that is, a class of cars. 

4.2.7. Improving efficiency 
The above program provides us with a reasonably efficient solution to the 

car sequencing problem. It is possible, however, to speed up the program 
significantly by exploiting properties of the solutions and making choices 
wisely. 
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R e d u n d a n t  ( su r roga te )  cons t ra in t s  

A traditional technique in operations research amounts to generating 
surroga te  constraints:  constraints which are not strictly necessary to guarantee 
correctness of  the application but perform pruning by exploiting properties 
that must be satisfied by the solutions. In other words, the constraints are 
redundant semantically but not operationally. 

The car sequencing problem has a surrogate constraint worth exploiting. 
Assume that option j has a capacity constraint r outof  s. We know that 
the last s slots contain only r cars, so the other slots must contain all the 
remaining cars having that option. I fp  cars require option j ,  we can generate 
a constraint 

O~l + . . .  + O~ns_ s >_. p - r .  

More generally, the last k x s (k = 1 , 2 , . . . , n s / s )  slots can contain only 
k × r cars and hence the constraints 

+oJ ns-k×s >>" p - k x r 

can be generated. 
In our example, for instance, option 1 is requested by five cars and has 

capacity "l  outof  2". Since only one car can be scheduled in the last two 
slots, four cars must be sequenced in the first eight slots. Pursuing the 
reasoning, we can generate the following constraints: 

ol ÷ . . .  + ,> 4 ,  

o', + . . .  + ol  ,> 2.  

The effect of these constraints is to prune the search space early and to 
escape deep backtracking and thrashing by recognizing and avoiding failures 
as soon as possible. It is not difficult to write a recursive program generating 
the above constraints. 

Firs t - fa i l  p r inc ip le  
Following [34], we make use of  the first-fail principle in the choice pro- 

cess: that is we try to choose the most constrained variable to be instantiated 
next. In the car sequencing, this is done by choosing the variable with the 
smallest domain (i.e. the one that can be given the smallest number of  
values) and, in case of  equality, the more demanding one in terms of the 
options. 
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Table 6 
Car sequencing: search space after one choice. 

Class 1 
Class 2 
Class 3 
Class 4 
Class 5 
Class 6 

SI $2 $3 $4 $5 $6 $7 $8 $9 SI 0 
+ 

Table 7 
Car sequencing: the assembly line after one choice. 

$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 
Option 1 
Option 2 
Option 3 
Option 4 
Option 5 

m 
+ 
+ 

4.3. Example 

The above program first states the constraints and then makes choices. 
After the first choice (i.e. $1 = 1), the search space and the assembly 
line are depicted in Tables 6 and 7. Now, giving to $2 its first possible 
value, i.e. 2, leads directly to the solution presented at the beginning of the 
example. Indeed, this choice immediately removes the value 2 for all other 
slot variables and prevents variables $3, $4, and $5 from taking the value 4 
because of option 4. This intermediate state is depicted in Tables 8 and 9. 

But the surrogate constraints for option 2 require that $3 and $4 be 
assigned a class including option 2, since six cars with option 2 must be 
produced. The effect of these assignments is to fix all option variables 
concerning option 2 and to remove possible values from the slot variables. 
The search space and assembly line at that stage are depicted in Tables 10 
and 11. 

At this point, the demand constraints for class 5 come into play. Two cars 
of class 5 must be produced; since only two places are left for them, they 

Table 8 
Car sequencing: search space after two choices (part I). 

Class 1 
Class 2 
Class 3 
Class 4 
Class 5 
Class 6 

S1 S 2 S 3 S 4 S 5 S 6 S 7 $8 S 9 SlO 
+ 
- + 
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T a b l e  9 

C a r  sequencing: the a s s e m b l y  l ine  a f t e r  t w o  c h o i c e s  ( p a r t  I ) .  

Option 1 

Option 2 

Option 3 

Option 4 

Option 5 

sl s2 
+ - 

+ - 

+ + 

S3 84 S5 86 S7 58 $9 S l 0 

T a b l e  10 

C a r  s e q u e n c i n g :  s e a r c h  s p a c e  a f t e r  t w o  c h o i c e s  ( p a r t  I I ) .  

C l a s s  1 

C l a s s  2 

C las s  3 

C l a s s  4 

C l a s s  5 

C l a s s  6 

sl s2 
+ - 
- + 

$3 $4 $5 $6 $7 $8 $9 $10 

are assigned immediately. This leads to the search space and assembly line 
depicted in Tables 12 and 13. The final step amounts to using the surrogate 
constraints for option 1. These constraints fix all options concerning option 
1 and lead to the solution depicted earlier in this paper. Note that here a 
solution was found in two choices without any backtracking. 

T a b l e  11 

C a r  sequencing: the a s s e m b l y  l ine  a f t e r  t w o  c h o i c e s  ( p a r t  I I ) .  

Sl Sz $3 $4 $5 $6 $7 $8 $9 Slo 
Option 1 + - 

O p t i o n  2 - - + + - + + - + + 

Option 3 + - - 

O p t i o n  4 + + - - - 

O p t i o n  5 

T a b l e  12 

C a r  s e q u e n c i n g :  s e a r c h  s p a c e  a f t e r  t w o  c h o i c e s  ( p a r t  I I I ) .  

S 1 S 2 S 3 S 4 S 5 S 6 S 7 $8 S 9 Slo 
C l a s s  1 + . . . . . . .  

C l a s s  2 - + . . . . . .  

C l a s s  3 . . . .  

C l a s s  4 . . . .  

C l a s s  5 . . . .  + - - + - - 
C l a s s  6 . . . .  
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Table 13 
Car sequencing: the assembly line after two choices (part III). 

Option 1 
Option 2 
Option 3 
Option 4 
Option 5 

Sl 82 83 84 S5 86 87 88 89 Sl0 
+ - _ + + 
_ _ + + - + + - + 

+ - _ + + 
+ + . . . .  

4.4. Compu t a t i on  results 

A large number  of experiments have been run to evaluate the efficiency 
of the algorithm on various problem instances. Remember  that, since the 
problem is NP-complete, it is always possible to construct an instance that 
will require exponential t ime (whatever the proposed program). 

The basic assumption in our experiments was that the assembly line 
supported five different options with the following capacity constraints: 1 
outof 2, 2 outof 3, 1 outof 3, 2 outof 5, and 1 outof 5. Given this assumption, 
several parameters were still left free: the number  of cars ns, the particular 
requirements for the cars, and the utilization of each production unit. In our 
experiments, ns varied from 5 to 200 and random data were generated for 
the utilization percentage and the options required by the cars. This random 
generation guarantees an overall percentage of utilization of the resources. 
Typically, we would ask for 70% or 80% but experiments have shown that it 
is possible to make this percentage even higher. For each experiment, large 
data samples (around 100) were generated. 

When ns  < 50, the program finds a solution in a few seconds, generally 
with very little if any backtracking. When ns = 50, the scheduling time 
is around 15 seconds on a Sun 3/160. Once again, little backtracking was 
needed to reach a solution. 

When ns = 100, the average scheduling time is less than a minute with 

Table 14 
100 cars sequencing with about 70% of option utilization. 

ns n %-1 %-2 %-3 %-4 %-5 CPU time 
100 24 72 72 72 67 70 52 sec. 
100 24 74 75 100 90 60 58 sec. 
100 21 84 68 75 60 75 56 sec. 

Table 15 
100 cars sequencing with about 80% of option utilization. 

ns n %-1 %-2 %-3 %-4 %-5 CPU time 
100 25 88 84 72 77 75 62 sec. 
100 22 78 80 84 90 70 58 sec. 
100 21 80 81 75 72 75 59 sec. 
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Table 16 
100 cars sequencing with about 70% of option utilization. 

ns n %-1 %-2 %-3 %-4 %-5 CPU time 
200 29 86 77 89 85 85 336 sec. 
200 29 89 82 83 83 95 340 sec. 
200 31 84 81 95 82 100 345 see. 

a utilization percentage around 70%. Table 14 reports some typical results. 
The first column n s  is the number of cars, the second column n indicates the 
number of  different classes, the next five columns indicate the utilization 
percentage of each option and the last column shows the CPU time required 
to generate the constraints and find a schedule. Increasing the utilization 
percentage to 80% increases the CPU time by only a few seconds. Typical 
results are shown in Table 15. 

When n s  = 200, the average scheduling time is around 5 minutes for 
an overall utilization percentage of  70% and thus scheduling time does not 
change when we increase the percentage to 80%. Table 16 reports some 
typical results. 

Note that the potential search space to explore in the last example is 20031 . 
The program must generate 200 slots variables, 1000 option variables, more 
than 1000 cardinality constraints, and about 3000 numerical constraints. 
Only the slot variables, however, need to be instantiated to give a solution 
however, whereas an integer programming solution would require more 
than 7000 variables, of  which 6000 would need to be instantiated to find a 
solution. 

In the experiments, the execution time was found to increase quadratically 
in the average. No instance was found that could not be solved (even when 
n s  = 400) although such instance could be constructed since the problem 
is NP-complete. 

5. Conclusion 

We have shown how to solve two practical combinatorial search problems 
using cc(FD),  a successor to CHIP using consistency techniques on finite 
domains. The test generation problem is a well-known problem in digital 
circuit design and we have presented an original and complete algorithm for 
the task based on constraint satisfaction. The car sequencing problem was 
posed as a challenge for AI technology and a constraint-based solution has 
also been presented. 

Both problems can be expressed concisely and declaratively in cc(FD) 
and require a small fraction of the development necessary to obtain "equiv- 
alent" procedural programs. The resulting programs can be easily extended, 
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modified, and specialized due to the declarative nature of the language. 
In addition, the resulting algorithms can solve large instances of the prob- 
lems in reasonable time and are competitive with procedural programs to a 
constant factor. 

Current and future research is devoted to (1) design aspects in order 
to capture more abstractions useful in combinatorial search problems and 
(2) to implementation issues (to reduce the constant factor with respect to 
procedural languages). 

Appendix A. Formalization of the semantics of cc(FD) 

Here we formalize, following [54], the operational semantics of cc(FD) 
using a structural operational semantics [50]. Those interested in a broader 
and more rigorous handling of the semantics can refer to [36] and [55,56]; 
[36] contains a complete description of the CLP scheme while [55,56] 
respectively describe the operational and denotational semantics (in terms 
of information systems and closure operators) of the cc framework. 

A.I. The CLP scheme 

The operational semantics makes use of a transition system. 

Definition A.1. A transition system is a triple ( F, T, ~ ) where F is a set of 
configurations, T c_ F is the set of terminal configurations and ~ c_ F x F 
is the transition relation satisfying 

VTET, VY'EF, 7~/ ~7'. 

The configurations of the transition system are the computation states 
( G [] a ). When the goal part is empty, we represent the configuration 
by the constraint part only; when the constraint part is empty, we represent 
the configuration by the goal part only. Terminal configurations are simply 
successful computation states (i.e. constraint stores) or the terminal block 
to denote blocking. 

A transition ?, ,7 '  can be read as "configuration ~ nondeterministically 
reduces to 7'". The transition rules in this paper are presented using the 
format 

( condition 1 ) 
. , .  

(condition n) 

7~----~71 
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expressing the fact that a transition from 7 to y' can take place if the 
conditions are fulfilled. We are now ready to present the various transition 
rules. 

Goal Reduction. A goal can be reduced to the body of  a clause if the 
constraint store is consistent with the equality constraints. 

p ( s l , . . . , S n )  : -  B 1 , . . . , B m  E P 

C ~ (3)  (a  A tl = Sl A " "  A tn = Sn) 

( P ( t l  . . . . .  tn) [] a ) 
' ' ( B 1 , . . . , B m  [] a A t l = S l &  ' "  & t n = S n )  

In the above transition rule, p ( t l  . . . .  , tn) is the atom selected, P denotes 
the program, (3) (~u) represents the existential closure of ~, and the pro- 
gram clause has been renamed properly to avoid sharing any variable with 
the goal. 4 The rule expresses formally the first kind of computation step 
described in the informal presentation. If there exists a clause in the program 
with the same predicate name as the selected atom (condition 1 ) and if the 
equality constraints are consistent with the constraint store (condition 2), 
then a computation step is possible. The new computation state is obtained 
from the old one by replacing the selected atom by the clause body and 
adding the equality constraints to the constraint store. 

Constraint Solving. A constraint can be removed from the goal part iff it 
is consistent with the constraint store. 

C ~ (3) (a A c) 

(c [] a ) ~ - - * a & c  

This rules captures what was informally described by the second type of 
computation step. 

Conjunction. If any of  the goals in a conjunction can make a transition, the 
whole conjunction can make a transition as well and the constraint store is 
updated accordingly. This is the traditional interleaving rule. 

(G1 [] a ) ,  G' I [] a ' )  

(G1,  G2 [] a , (G '  1, G2 [] a ' )  

( G 2 , G I  [] a , ( G 2 ,  G' l [] a ' )  

4In recent work [56], Saraswat et al. give an operational semantics precluding the need for 
renaming. 
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' ' (G2 [ ]  0") 

' ' (G2 [ ]  o") 

These are the only rules necessary for the CLP scheme. 
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A.2. The implication combinator 

We now describe precisely the semantics of the implication combinator. 

Implication. An implication c ~ A never fails. If c is entailed by the 
constraint store, it reduces to the body A. If -,c is entailed by the constraint 
store, the implication terminates successfully. Otherwise, the implication 
blocks. 

c b (v) (a --, c) 

( c ~ A  [] a ) ,  , ( A , a )  

c b (v) (a ~ ~c) 

( c ~ A  [] a ) ,  , a  

c ~ ~(v) (a ~ c) 

c b -~(v) (a ~ -~c) 

( c ---+ A [] a ) , , b l o c k  

A.3. The cardinality combinator 

The precise behavior of the combinator can be described by the following 
transition rules taken from [73]. 

Trivial Satisfaction. If l < 0 and u is greater than or equal to the number 
of constraints q , . . . ,  Cn, then #( l ,  u, [q  . . . . .  c , ] )  is trivially satisfied: 

l ~ O A n < < . u  

( # ( l , u ,  [q  . . . . .  Cn]) [] a ) , , a 
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Positive Satisfaction. A formula # ( n , u ,  [Cl . . . . .  cn]) with n ~< u can be 
satisfied only if the conjunction c~ A.. .  A cn is consistent with the constraint 
store: 

l < ~ u A l = n  

C ~ (3) (aACl  A . . .ACn)  

( # ( l , u , [ q  . . . .  ,cn]) [] a ) ~ - - , a  & c l  & . . .  & cn  

Negative Satisfaction. A formula #( l ,  0, [cl . . . .  ,Cn]) with l ~< 0 can be 
satisfied only if the conjunction "~cl A.. "A,Cn is consistent with the constraint 
store: 

I < ~ u A u = O  

e ~ (3) (a A-~cl A... A-~cn) 

( # ( l , u ,  [cl . . . . .  Cn]) [] a ) ~--~ a & -wl & . . .  & -,Cn 

The above three rules make up the basic cases for the cardinality combi- 
nator. Two of them allow the inference of primitive constraints, and hence 
prune the search space with the help of the transition rules for conjunction. 

Positive Reduction. When a constraint ci is entailed by the constraint store, 
the cardinality formula can be simplified by dropping the constraint and 
decrementing the bounds. 

c ~ ( v ) ( a  ~ ci) 

O < / < n  A l < ~ u  V O < u < n  A l~<O 

( # ( I , u ,  [Cl , . . . ,C i  . . . .  ,Cn]) [] a )  

, , ( # ( l -  1,u - 1, [Cl, . . . ,Ci_l,Ci+ 1 . . . . .  Cn]) [] a ) 

The condition on l and u forces the rule to be mutually exclusive with 
the three satisfaction rules, 

Negative Reduction. When the negation of a constraint ci is entailed by the 
constraint store (i.e. ci inconsistent with a) ,  the cardinality formula can be 
simplified by dropping the constraint: 

c ~ ( v ) ( a  ~ -~c~) 

O < l < n  A l < ~ u  V O < u < n  A l<<.0 

( # ( l , u ,  [cl . . . . .  ci . . . .  ,Cn]) [] a )  

, ~ ( # ( l , u ,  [Cl , . . . ,Ci- l ,Ci+l  . . . .  ,Cn]) [] a )  
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The above two rules achieve progress towards the satisfaction rules by 
reducing the number of  constraints and (possibly) the bounds. But the 
computation with the cardinality combinator may now block as none of 
the constraints can be decided upon (for entailment) with respect to the 
constraint store. 

Blocking. The cardinality combinator blocks if there is no constraint ci 
such that either ci or its negation -~ci is entailed by the constraint store and 
none of  the satisfaction rules apply: 

C~ (V) (a~c j )  for all 1 ~<j ~< n 

C ~ ( V ) ( a - - . - ~ c j )  for all 1 ~<j ~< n 

0 < l < n  A l<~u V 0 < u < n  A l ~ < 0  

( #(l,u, [q,...,Cn]) [] a ) ,  , block 

We now reconsider our simple example and indicate the transition rules 
used in the derivation. 

(#(1,2,[x=4, Y=1o]) ~ x>6 [] e> 

(conjunction) 
(#(1,2,[x=4, Y=10]) [] x>s) 

(negative reduction) 
(#(I,2,[Y=IO]) [] X>6) 

(positive satisfaction) 
X>6 ~ Y=IO 

A. 4. Operational semantics 

The actual operational semantics of  the language can be defined in terms 
of  its success, divergence, and failure sets. We use the notation P F to 
denote the fact that the transition occurs in the context of  program P. We 
denote b y ,  *, the transitive closure of~ , and say that a configuration 7 
diverges in program P if there exists an infinite sequence of  transitions 

P t - T I  ,711 , . . . b  ' 7 i '  ~ ' " .  

The operational semantics is now given in terms of three sets: the success, 
divergence, and blocking sets: 

SS[P1 = { G I P F G , * , a } ,  
DS[P] = {GI G diverges in P),  
BS[P] = {GIP~- G, *, block}. 

The failure set can now be defined in terms of  the above three sets: 

FS[P] = {GIG ~ SS[P] UDS[P] UBS[P]}. 
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Another  semantic defini t ion can be given to capture the results of  the 

computat ion:  

RES[P,G] = {a [ P G, 0.} 

In order  to achieve the above semantics, the CLP language should be 
embedded  with a complete constraint  solver; this means that, given a con- 

straint 0., the constraint  solver should return irue i f  C D (3)(0") and fa l se  

otherwise. 
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