
Artificial Intelligence 58 (1992) 161-205 161
Elsevier

ARTINT 952

Minimizing conflicts: a heuristic
repair method for constraint
satisfaction and scheduling
problems

Steven Minton
Sterling Federal Systems, NASA Ames Research Center, AI Research Branch,
Mail Stop: 269-2, Moffett Field, CA 94035, USA

Mark D. Johnston
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

Andrew B. Philips
Sterling Federal Systems, NASA Ames Research Center, AI Research Branch,
Mail Stop: 269-2, Moffett Field, CA 94035, USA

Philip Laird
NASA Ames Research Center, AI Research Branch, Mail Stop: 269-2, Moffett Field,
CA 94035, USA

Abstract

Minton, S., M.D. Johnston, A.B. Philips and P. Laird, Minimizing conflicts: a heuristic
repair method for constraint satisfaction and scheduling problems, Artificial Intelligence 58
(1992) 161-205.

The paper describes a simple heuristic approach to solving large-scale constraint satisfaction
and scheduling problems. In this approach one starts with an inconsistent assignment for a
set of variables and searches through the space of possible repairs. The search can be guided
by a value-ordering heuristic, the min-conflicts heuristic, that attempts to minimize the
number of constraint violations after each step. The heuristic can be used with a variety of
different search strategies.

We demonstrate empirically that on the n-queens problem, a technique based on this
approach performs orders of magnitude better than traditional backtracking techniques. We
also describe a scheduling application where the approach has been used successfully. A
theoretical analysis is presented both to explain why this method works well on certain types
of problems and to predict when it is likely to be most effective.

Correspondence to: S. Minton, Sterling Federal Systems, NASA Ames Research Center, AI
Research Branch, Mail Stop: 269-2, Moffett Field, CA 94035, USA.

0004-3702/92/$05.00 © 1992--Elsevier Science Publishers B.V. All rights reserved

162 S. Minion et al.

1. Introduction

One of the most promising general approaches for solving combinatorial
search problems is to generate an initial, suboptimal solution and then to apply
local repair heuristics [19, 28, 30, 32, 36, 38, 44]. Techniques based on this
approach have met with empirical success on many combinatorial problems,
including the traveling salesman and graph partitioning problems [20]. Such
techniques also have a long tradition in AI, most notably in problem-solving
systems that operate by debugging initial solutions [37, 40]. In this paper, we
describe how this idea can be extended to constraint satisfaction problems
(CSPs) in a natural manner.

Most of the previous work on CSP algorithms has assumed a "constructive"
bracktracking approach in which a partial assignment to the variables is
incrementally extended. In contrast, our method creates a complete, but
inconsistent assignment and then repairs constraint violations until a consistent
assignment is achieved. The method is guided by a simple ordering heuristic for
repairing constraint violations: identify a variable that is currently in conflict
and select a new value that minimizes the number of outstanding constraint
violations.

We present empirical evidence showing that on some standard problems our
approach is considerably more efficient than traditional constructive backtrack-
ing methods. For example, on the n-queens problem, our method quickly finds
solutions to the one million queens problem [30]. We argue that the reason that
repair-based methods can outperform constructive methods is because a com-
plete assignment can be more informative in guiding search than a partial
assignment. However, the utility of the extra information is domain dependent.
To help clarify the nature of this potential advantage, we present a theoretical
analysis that describes how various problem characteristics may affect the
performance of the method. This analysis shows, for example, how the
"distance" between the current assignment and solution (in terms of the
minimum number of repairs that are required) affects the expected utility of
the heuristic.

The work described in this paper was inspired by a surprisingly effective
neural network developed by Adorf and Johnston [2, 22] for scheduling
astronomical observations on the Hubble Space Telescope. Our heuristic CSP
method was distilled from an analysis of the network. In the process of carrying
out the analysis, we discovered that the effectiveness of the network has little
to do with its connectionist implementation. Furthermore, the ideas employed
in the network can be implemented very efficiently within a symbolic CSP
framework. The symbolic implementation is extremely simple. It also has the
advantage that several different search strategies can be employed, although
we have found that hill-climbing methods are particularly well-suited for the
applications that we have investigated.

We begin the paper with a brief review of Adorf and Johnston's neural

Minimizing conflicts: a heuristic repair method 163

network, and then describe our symbolic method for heuristic repair. Follow-
ing this, we describe empirical results with the n-queens problem, graph-
colorability problems and the Hubble Space Telescope scheduling application.
Finally, we consider a theoretical model identifying general problem charac-
teristics that influence the performance of the method.

2. Previous work: the GDS network

By almost any measure, the Hubble Space Telescope scheduling problem is a
complex task [21, 34,43]. Between ten thousand and thirty thousand as-
tronomical observations per year must be scheduled, subject to a great variety
of constraints including power restrictions, observation priorities, time-depen-
dent orbital characteristics, movement of astronomical bodies, stray light
sources, etc. Because the telescope is an extremely valuable resource with a
limited lifetime, efficient scheduling is a critical concern. An initial scheduling
system, developed using traditional programming methods, highlighted the
difficulty of the problem; it was estimated that it would take over three weeks
for the system to schedule one week of observations. As described in Section
4.2, this problem was remedied by the development of a successful constraint-
based system to augment the initial system. At the heart of the constraint-
based system is a neural network developed by Adorf and Johnston, the
guarded discrete stochastic (GDS) network, which searches for a schedule
[2, 22].

From a computational point of view the network is interesting because Adorf
and Johnston found that it performs well on a variety of tasks, in addition to
the space telescope scheduling problem. For example, the network performs
significantly better on the n-queens problem than methods that were previously
developed. The n-queens problem requires placing n queens on an n × n
chessboard so that no two queens share a row, column or diagonal. The
network has been used to solve problems of up to 1024 queens, whereas most
heuristic backtracking methods encounter difficulties with problems one-tenth
that size [39].

The GDS network is a modified Hopfield network [18]. In a standard
Hopfield network, all connections between neurons are symmetric. In the GDS
network, the main network is coupled asymmetrically to an auxiliary network
of guard neurons which restrict the configurations that the network can assume.
This modification enables the network to rapidly find a solution for many
problems, even when the network is simulated on a serial machine. Unfortu-
nately, convergence to a stable configuration is no longer guaranteed. Thus the
network can fall into a local minimum involving a group of unstable states
among which it will oscillate. In practice, however, if the network fails to
converge after some number of neuron state transitions, it can simply be
stopped and started over.

164 S. Min ton et al.

To illustrate the network architecture and updating scheme, let us consider

how the network is used to solve binary constraint satisfaction problems. A

problem consists of n variables, X 1 X,,, with domains D~ D,,, and a

set of binary constraints. Each constraint C (Xj, X~) is a subset of D / x D k

specifying incompatible values for a pair of variables. The goal is to find an

assignment for each of the variables which satisfies the constraints. (In this

paper we only consider the task of finding a single solution, rather than that of

finding all solutions.) To solve a CSP using the network, each variable is
represented by a separate set of neurons, one neuron for each of the variable's

possible values. Each neuron is either "on" or "off" and in a solution state,

every variable will have exactly one of its corresponding neurons "on" ,

representing the value of that variable. Constraints are represented by inhibi-

tory (i.e., negatively weighted) connections between the neurons. To insure
that every variable is assigned a value, there is a guard neuron for each set of

neurons representing a variable; if no neuron in the set is on, the guard neuron

will provide an excitatory input that is large enough to turn one on. (Because
of the way the connection weights are set up, it is unlikely that the guard

neuron will turn on more than one neuron.) The network is updated on each
cycle by randomly picking a set of neurons that represents a variable, and

flipping the state of the neuron in that set whose input is most inconsistent with
its current output (if any). When all neurons' states are consistent with their

input, a solution is achieved.

To solve the n-queens problem, for example, each of the n x n board
positions is represented by a neuron whose output is either one or zero
depending on whether a queen is currently placed in that position or not.

(Note that this is a local representat ion rather than a distributed representation
of the board.) If two board positions are inconsistent, then an inhibiting

connection exists between the corresponding two neurons. For example, all the
neurons in a column will inhibit each other, representing the constraint that

two queens cannot be in the same column. For each row, there is a guard
neuron connected to each of the neurons in that row which gives the neurons in
the row a large excitatory input, enough so that at least one neuron in the row

will turn on. The guard neurons thus enforce the constraint that one queen in
each row must be on. As described above, the network is updated on each

cycle by randomly picking a row and flipping the state of the neuron in that
row whose input is most inconsistent with its current output. A solution is
realized when the output of every neuron is consistent with its input.

3. Why does the GDS network perform so well?

Our analysis of the GDS network was motivated by the following question:
" 'Why does the network perform so much better than traditional backtracking

Minimizing conflicts: a heuristic repair method 165

methods on certain tasks"? In particular, we were intrigued by the results on
the n-queens problem, since this problem has received considerable attention
from previous researchers. For n-queens, Adorf and Johnston found empirical-
ly that the network requires a linear number of transitions to converge. Since
each transition requires linear time, the expected (empirical) time for the
network to find a solution is O(n2). To check this behavior, Johnston and
Adorf ran experiments with n as high as 1024, at which point memory
limitations became a problem. 1

3.1. Nonsystematic search hypothesis

Initially, we hypothesized that the network's advantage came from the
nonsystematie nature of its search, as compared to the systematic organization
inherent in depth-first backtracking. There are two potential problems associ-
ated with systematic depth-first search. First, the search space may be organ-
ized in such a way that poorer choices are explored first at each branch point.
For instance, in the n-queens problem, depth-first search tends to find a
solution more quickly when the first queen is placed in the center of the first
row rather than in the corner; apparently this occurs because there are more
solutions with the queen in the center than with the queen in the corner [39].
Nevertheless, most naive algorithms tend to start in the corner simply because
humans find it more natural to program that way. However, this fact by itself
does not explain why nonsystematic search would work so well for n-queens. A
backtracking program that randomly orders rows (and columns within rows)
performs much better than the naive method, but still performs poorly relative
to the GDS network.

The second potential problem with depth-first search is more significant and
more subtle. As illustrated by Fig. 1, a depth-first search can be a disadvantage
when solutions are not evenly distributed throughout the search space. In the
tree at the left of the figure, the solutions are clustered together. In the tree on
the right, the solutions are more evenly distributed. Thus, the average distance
between solutions is greater in the left tree. In a depth-first search, the average
time to find the first solution increases with the average distance between
solutions. Consequently depth-first search performs relatively poorly in a tree
where the solutions are clustered, such as that on the left [13,29]. In
comparison, a search strategy which examines the leaves of the tree in random
order is unaffected by solution clustering.

We investigated whether this phenomenon explained the relatively poor
performance of depth-first search on n-queens by experimenting with a ran-

J The network, which is programmed in LISP, requires approximately 11 minutes to solve the
1024 queens problem on a TI Explorer II. For larger problems, memory becomes a limiting factor
because the network requires approximately O(n 2) space. (Although the number of connections is
actually O(n3), some connections are computed dynamically rather than stored.)

166 S. Min ton et al.

0 = solution

Fig. i. Solutions clustered vs. solutions evenly distributed.

domized search algorithm, called a Las Vegas algorithm [5]. The algorithm
begins by selecting a path from the root to a leaf. To select a path, the
algorithm starts at the root node and chooses one of its children with equal
probability. This process continues recursively until a leaf is encountered. If
the leaf is a solution the algorithm terminates, if not, it starts over again at the
root and selects a path. The same path may be examined more than once, since
no memory is maintained between successive trials.

The Las Vegas algorithm does, in fact, perform better than simple depth-first
search on n-queens. In fact, this result was already known [5]. However, the
performance of the Las Vegas algorithm is still not nearly as good as that of the
GDS network, and so we concluded that the systematicity hypothesis alone
cannot explain the network's behavior.

3.2. Informedness hypothesis

Our second hypothesis was that the network's search process uses informa-
tion about the current assignment that is not available to a constructive
backtracking program. We now believe this hypothesis is correct, in that it
explains why the network works so well. In particular, the key to the network's
performance appears to be that state transitions are made so as to reduce the
number of outstanding inconsistencies in the network; specifically, each state
transition involves flipping the neuron whose output is most inconsistent with
its current input. From a constraint satisfaction perspective, it is as if the
network reassigns a value for a variable by choosing the value that violates the
fewest constraints. This idea is captured by the following heuristic:

Min-Conflicts heuristic:
Given: A set of variables, a set of binary constraints, and an
assignment specifying a value for each variable. Two variables
conflict if their values violate a constraint.

Minimizing conflicts: a heuristic repair method 167

Procedure: Select a variable that is in conflict, and assign it a value
that minimizes the number of conflicts. 2 (Break ties randomly.)

We have found that the network's behavior can be approximated by a
symbolic system that uses the min-conflicts heuristic for hill climbing. The
hill-climbing system starts with an initial assignment generated in a preprocess-
ing phase. At each choice point, the heuristic chooses a variable that is
currently in conflict and reassigns its value, until a solution is found. The
system thus searches the space of possible assignments, favoring assignments
with fewer total conflicts. Of course, the hill-climbing system can become
"stuck" in a local maximum, in the same way that the network may become
"stuck" in a local minimum. In the next section we present empirical evidence
to support our claim that the min-conflicts approach can account for the
network's effectiveness.

There are two aspects of the min-conflicts hill-climbing method that dis-
tinguish it from standard CSP algorithms. First, instead of incrementally
constructing a consistent partial assignment, the min-conflicts method repairs a

complete but inconsistent assignment by reducing inconsistencies. Thus, it uses
information about the current assignment to guide its search that is not
available to a standard backtracking algorithm. Second, the use of a hill-
climbing strategy rather than a backtracking strategy produces a different style
of search.

Extracting the method from the network enables us to tease apart and
experiment with its different components. In particular, the idea of repairing
an inconsistent assignment can be used with a variety of different search
strategies in addition to hill climbing. For example, we can backtrack through
the space of possible repairs, rather than using a hill-climbing strategy, as
follows. Given an initial assignment generated in a preprocessing phase, we can
employ the rain-conflicts heuristic to order the choice of variables and values to
consider, as described in Fig. 2. Initially, the variables are all on a list of
VARS-LEFT, and as they are repaired, they are pushed onto a list of VARS-DONE.
The algorithm attempts to find a sequence of repairs, such that no variable is
repaired more than once. If there is no way to repair a variable in VARS-LEFT
without violating a previously repaired variable (a variable in VARS-DONE), the
algorithm backtracks.

Notice that this algorithm is simply a standard backtracking algorithm

2 In general, the heuristic attempts to minimize the number of other variables that will need to
be repaired. For binary CSPs, this corresponds to minimizing the number of conflicting variables.
For general CSPs, where a single constraint may involve several variables, the exact method of
counting the number of variables that will need to be repaired depends on the particular constraint.
The space telescope scheduling problem is a general CSP, whereas the other tasks described in this
paper are binary CSPs.

168 S. Minton et al.

Procedure INFORMED-BACKTRACK (VARS-LEFT VARS-DONE)

If all variables are consistent, then solution found, STOP.

Let VAR = a variable in VARS-LEFT that is in conflict.

Remove VAR from VARS-LEFT.

Push VAR onto VARS-DONE.

Let VALUES = list of possible values for VAR ordered in ascending order

according to number of conflicts with variables in VARS-

LEFT.

For each VALUE in VALUES, until solution found:

If VALUE does not conflict with any variable that is in VARS-DONE,

then Assign VALUE to VAR.

Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)

end if

end for

end procedure

Begin program

Let VARS-LEFT = list of all variables, each assigned an initial value.

Let VARS-DONE = nil

Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE)

End program

Fig. 2. Informed backtracking using the min-conflicts heuristic.

augmented with the min-conflicts heuristic to order its choice of which variable
and value to attend to. This illustrates an important point. The backtracking
repair algorithm incrementally extends a consistent partial assignment (i.e.,
VARS-DONE), as does a constructive backtracking program, but in addition,
uses information from the initial assignment (i.e., VARS-LEFF) tO bias its
search. Thus, it is a type of in formed backtracking. We still characterize it as
repair-based method since its search is guided by a complete, inconsistent
assignment.

4. Experimental results

In this section we evaluate the performance of the min-conflicts heuristic on
some standard tasks. These experiments identify problems on which min-
conflicts performs well, as well as problems on which it performs poorly. The
experiments also show the extent to which the min-conflicts approach approxi-
mates the behavior of the GDS network.

Our experiments focus on the two search strategies described in the previous
section, the hill-climbing repair strategy and the backtracking repair strategy.

Minimizing conflicts: a heuristic repair method 169

These strategies provide a starting point for our analysis, although many more
sophisticated search strategies exist. In general, these two strategies have the
following advantages and disadvantages:

(1) Hill climbing. This strategy most closely replicates the behavior of the
GDS network. The disadvantage is that a hill-climbing program can get
caught in local maxima, in which case it will not terminate.

(2) Informed backtracking. As described earlier, this strategy is a standard
backtracking strategy augmented with the min-conflicts heuristic for
ordering the assignment of variables and values; this can be viewed as
backtracking in the space of possible repairs. The advantage of this
strategy is that it is complete--if there is a solution, it will eventually be
found; if not, failure will be reported. Unfortunately, this is of limited
significance for large-scale problems because terminating in a failure can
take a very long time.

4.1. The n-queens problem

The n-queens problem, originally posed in the 19th century, has become a
standard benchmark for testing CSP algorithms. In a sense, the problem of
finding a single solution has been solved, since there are a number of analytic
methods which yield a solution in linear time [1]. For example, there are
certain well-known patterns that can be instantiated to produce a solution.
Nevertheless, the problem has been perceived as relatively "hard" for heuristic
search methods. Several studies of the n-queens problem [15, 25, 39] have
compared heuristic backtracking methods such as search rearrangement back-
tracking (e.g., most-constrained first), forward checking, dependency-directed
backtracking, etc. To the best of our knowledge, the GDS network was the
first search method which could consistently solve problems involving hundreds
of queens in several minutes.

On the n-queens problem, Adorf and Johnston [2] reported that the
probability of the GDS network converging increases with the size of the
problem. For large problems, e.g., n > 100 (where n is the number of queens),
they observed that the network almost always converges. Moreover, the
median number of transitions required for convergence is only about 1.16n.
Since it takes O(n) time to execute a transition (i.e., picking a neuron and
updating its connections), the expected time to solve a problem is (empirically)
O(n2).

To compare the network with our min-conflicts approach, we constructed a
hill-climbing program that operates as follows. A preprocessing phase creates
an initial assignment using a greedy algorithm that iterates through the rows,
placing each queen on the column where it conflicts with the fewest previously
placed queens (breaking ties randomly). In the subsequent repair phase the
program keeps repairing the assignment until a solution is found. To make a

170 S. Min ton et al.

repair, the program selects a queen that is in conflict and moves it to the
column (within the same row) where it conflicts with the fewest other queens
(breaking ties randomly). A repair can be accomplished in O(n) time by
maintaining a list of the queens currently in conflict and an array of counters

indicating the number of queens in each column and diagonal.
Interestingly, in our initial experiments we found that the hill-climbing

program performs significantly better than the network. For n ~> 100 the
program has never failed to find a solution. Moreover, the required number of
repairs appears to remain constant as n increases. For comparison, recall that
the required number of repairs for the network increases linearly with n. After
further analysis, we found that this discrepancy can be accounted for by the
network's and the hill-climbing program's different initialization processes. In
particular, whereas the network starts with no queens assigned in the initial
state, the hill-climbing program's preprocessing phase invariably produces an
initial assignment that is "close" to a solution. As shown in Table 1, the
number of conflicting queens in the initial assignment grows extremely slowly,
from a mean of 3.1 for n = 10 to a mean of 12.8 for n = 10 ~. We found that if
we start the network in an initial state produced by our preprocessing
algorithm, the network and the hill-climbing program perform comparably.
(We note, however, that the network requires O(n 2) space, as compared to the
O(n) space required by the hill-climbing program, which prevented us from
running very large problems on the network.) On the other hand, if we start
the hill-climbing program with a random initial assignment, the required
number of repairs tends to grow linearly. This is not surprising, since the
number of conflicts in a random finitialization also tends to grow linearly.

Table 2 compares the efficiency of our hill-climbing program and several
backtracking programs. Each program was run one hundred times for n
increasing from ten to one million. Each entry in the table shows the mean
number of queens moved, where each move is either a backtrack or a repair,
depending on the program. A bound of n x 100 queen movements was
employed so that the experiments could be conducted in a reasonable amount
of time; if the program did not find a solution after moving n x 100 queens, it
was terminated and credited with n x 100 queen movements. For the cases

T a b l e 1

N u m b e r o f c o n f l i c t s a f t e r i n i t i a l i z a t i o n .

C o n f l i c t s a f t e r

n i n i t i a l i z a t i o n

n = 10 ~ 3 ,11

n = 102 7 ,35

n = 10 ~ 9 .75

n = 1 0 4 10,96

n = 105 12,02

n = 10" 12 .80

Minimizing conflicts: a heuristic repair method

Table 2
Number of backt racks / repai rs for n-queens algorithms.

171

Constructive Repair-based

Standard Most constrained Min-conflicts Min-conflicts

backtrack backtrack hill climbing backtrack

n = 101 53.8 17.4 57.0 46.8

n = 102 4473 (70%) 687 (96%) 55.6 25.0

n = 103 88650 (13%) 22150 (81%) 48.8 30.7
n = 104 * * 48.5 27.5

n = 105 * * 52.8 27.8

n = 106 * * 48.3 26.4

* = exceeded computat ional resources.

when this occurred, the corresponding table entry indicates in parentheses the
percentage of times the program completed successfully. The first column
shows the results for a standard constructive backtracking program. For
n/> 1000, the program was ineffective. The second column in the table shows
the results for informed backtracking using the "most-constrained first" heuris-
tic. This program is a constructive backtracking program that selects the row
that is most constrained when choosing the next row on which to place a
queen. In an empirical study of the n-queens problem, Stone and Stone [39]
found that this was by far the most powerful heuristic for the n-queens problem
out of several described earlier by Bitner and Reingold [4]. The program
exhibited highly variable behavior. At n -- 1000, the program found a solution
on only 81% of the runs, but three-quarters of these successful runs required
fewer than 100 backtracks. Unfortunately, for n > 1000, one hundred runs of
the program required considerably more than 12 hours on a SPARCstationl,
both because the mean number of backtracks grows rapidly and because the
"most-constrained first" heuristic takes O(n) time to select the next row after
each backtrack. Thus we were prevented from generating sufficient data for
n > 1000. The next column in the table shows the results for hill climbing using
the min-conflicts heuristic. As discussed above, this algorithm performed
extremely well, requiring only about 50 repairs irrespective of problem size.
The final column shows the results for an informed backtracking program that
uses the min-conflicts heuristic, backtracking within the space of possible
repairs as described in the previous section. We augmented this program with a
pruning heuristic that would prune a path when the number of constraint
violations began to increase significantly. However, this proved unnecessary for
large n. For n/> 100, this program never backtracked (i.e., no queen had to be
repaired more than once). This last program performs better than the hill-
climbing program (although there is little room for improvement) primarily
because the hill-climbing program may move the same queen repeatedly, which
degrades its performance.

A disadvantage of the min-conflicts heuristic is that the time to accomplish a

172 S. Min ton et al.

repair grows with the size of the problem. For n-queens, as noted above, each
repair requires O(n) time in the worst case. Of course, most heuristic methods
require time to determine the best alternative at a choice point. For example,
the "most-constrained" heuristic also requires O(n) time at each choice point•
However, with min-conflicts the tradeoff is clearly cost effective, at least for
n-queens. Since the number of repairs remains approximately constant as n
grows, the program's runtime is approximately linear• This is illustrated by Fig.
3, which shows the average runtime for the hill-climbing program. In terms of
realtime performance, this program solves the million queens problem in less
than four minutes on a SPARCstationl.

The cost of making a repair can be optimized for large problems, in which
case the average solution time for the million-queens problem is reduced to less
than a minute and a half. The program maintains a list of queens that are in
conflict, as well as three arrays of counters indicating the number of queens in
each column, row and diagonal• Rather than scanning a row for the position
with the fewest conflicts, the optimized program maintains a list of empty
columns (which tends to be quite small); it first checks for a zero-conflict
position by looking for an empty column with no conflicts along the diagonals.
If there is no zero-conflict position, the program repeatedly looks for a position
with one conflict by randomly selecting a position and checking the number of
conflicts in that position. Since there tend to be many positions with one
conflict, this technique tends to succeed after just a few tries, so the total
number of positions examined is generally very low.

One obvious conclusion from these results is that n-queens is actually a very
easy problem given the right method. Interesting, two other heuristic methods
that can quickly solve n-queens problems have also recently been invented.
(These two other methods and our method were all developed and published

100

-~ 10
r,-.
o
o
03
O3 1

0.1

0.01

°o•

°

°°•"

oo•o°°
• ° ° '

L° o, '"
1 -~ 3 4

10 10 10 10
Problem Size

.•
.t

°°"

°•'
,o

o"

5
10 10

Fig. 3. Mean solution time for hill-climbing program on n-queens problem.

Minimizing conflicts: a heuristic repair method 173

independently.) While both methods are specific to n-queens, one method is a
repair-based method that is similar to ours in spirit [38], whereas the other
employs a constructive backtracking approach [23]. This latter method uses a
combination of variable and value-ordering heuristics which take advantage of
the particular structure inherent in n-queens. This shows that one can solve
n-queens problems quickly with a traditional, constructive backtracking meth-
od. Nevertheless, given the comparative simplicity of our method, it would
seem that n-queens is more naturally solved using a repair-based approach.

4.2. Scheduling applications

Whereas the n-queens problem is only of theoretical interest, scheduling
algorithms have many practical applications. A scheduling problem involves
placing a set of tasks on a time line, subject to temporal constraints, resource
constraints, preferences, etc. The Hubble Space Telescope scheduling problem
can be considered a constrained optimization problem [10, 12] where we must
maximize both the number and the importance of the constraints that are
satisfied. As noted earlier, the initial scheduling system developed for this
application had difficulty producing schedules efficiently. The constraint-based
system, SPIKE, that was developed to augment (and partially replace) the
initial system has performed quite well using a relatively simple approach.

In part, the HST scheduling problem was made more tractable by dividing it
into two parts, a long-term scheduling problem and a short-term scheduling
problem. Currently SPIKE handles only the long-term problem. The long-term
problem involves assigning approximately one year's worth of exposures to a
set of "bins" or time segments of several days length. (The short-term problem
involves deriving a detailed series of commands for the telescope and is
addressed using different techniques [34].) The input to SPIKE is a set of
detailed specifications for exposure that are to be scheduled on the telescope.
The constraints relevant to the long-term problem are primarily temporal
constraints. As outlined in [21[, some exposures are designed as calibrations or
target acquisitions for others, and so must proceed them. Some must be
executed at specific times, or at specific phases in the case of periodic
phenomena. Some observations must be made at regular intervals, or grouped
within a specified time span. The constraints vary in their importance; they
range from "hard" constraints that cannot be violated under any circum-
stances, to "soft" constraints that represent good operating practices and
scheduling goals.

SPIKE operates by taking the exposure specifications prepared by astronom-
ers and compiling them into a set of tasks to be scheduled and a set of
constraints on those tasks. Among other things, the compilation process takes
the transitive closure of temporal constraints and explicitly represents each
inferred constraint. For example, if task A must be before task B, and task B

174 S. Minton et al.

must be before task C, then the system will explicitly represent the fact that
task A must be before task C as well. This explicit representation enables the
scheduler to obtain a more accurate assessment of the number of conflicts in a
given schedule.

In searching for a schedule, the GDS network follows the constraint
satisfaction approach outlined in Section 2. In effect, if a task is currently in
conflict then it is removed from the schedule, and if a task is currently
unscheduled then the network schedules it for the time segment that has the
fewest constraint violations. However, the network uses only the hard con-

straints in determining the time segment with the fewest violations. Soft
constraints are consulted when there are two or more "least conflicted" places
to move a task.

The min-conflicts hill-climbing method has been shown to be as effective as
the GDS network on representative data sets used for testing SPIKE, and it
was recently incorporated into the SPIKE system. One advantage in using the
min-conflicts method, as compared to the GDS network, is that much of the
overhead of using the network can be eliminated (particularly the space
overhead). Moreover, because the min-conflicts heuristic is so simple, the
min-conflicts module was quickly coded in C and is extremely efficient. (The
min-conflicts scheduler runs about an order of magnitude faster than the
network, although some of the improvement is due to factors such as program-
ming language differences, making a precise comparison difficult.) While this
may be regarded as just an implementation issue, we believe that the clear and
simple formulation of the method was a significant enabling factor. In addition,
the simplicity of the method makes it easy to experiment with various
modifications to the heuristic and the search strategy. This has significant
practical importance, since SPIKE is currently being used on other types of
telescope scheduling problems where a certain amount of modification and

tuning is required.
In general, scheduling appears to be an excellent application area for

repair-based methods. Supporting evidence comes from recent work on other
real-world scheduling applications by Zweben [44], Biefeld and Cooper [3] and
Kurtzmann [27]. Each of these projects use iterative improvement methods
which can be characterized as repair-based. There are several reasons why
repair-based methods are well-suited to scheduling applications. First, as
Zweben et al. [45] have pointed out, unexpected events may require schedule
revision, in which case dynamic rescheduling is an important issue. Repair-
based methods can be used for rescheduling in a natural manner. Second, most
scheduling applications involve optimization, at least to some degree, and
repair-based methods are also naturally extended to deal with such issues. For
example, in scheduling the Hubble Space Telescope, the goal is to maximize
the amount of observing time and the priority of the chosen observations. The
telescope is expected to remain highly over-subscribed, in that many more

Minimizing conflicts: a heuristic repair method 175

proposals will be submitted than can be accommodated by any schedule. On
such problems, repair-based methods offer an alternative to traditional branch-
and-bound techniques. Finally, as Biefeld and Cooper [3] have pointed out,
there are real-world scheduling problems where humans find repair-based
methods very natural. For example, human schedulers at JPL employ repair-
based methods when constructing mission schedules for robotic spacecraft. For
such problems, it may be relatively easy for people using a repair-based system
to understand the system's solution and how it was arrived at.

4.3. Graph coloring

In addition to n-queens problem and HST scheduling, Adorf and Johnston
also tested the GDS network on graph 3-colorability problems. A graph
3-colorability problem consists of an undirected graph with n vertices. Each
vertex must be assigned one of three colors subject to the constraint that no
neighboring vertex is assigned the same color. Graph 3-colorability is a
well-studied NP-complete problem that is used to model certain types of
scheduling and resource allocation problems, such as examination scheduling
and register allocation.

Adorf and Johnston found that the performance of the network depended
greatly on the connectivity of the graph. On densely-connected graphs the
network converged rapidly to a solution, while on sparsely-connected graphs
the network performed much more poorly. We have repeated Adorf and
Johnston's experiments using the min-conflicts approach, and found similar
results. We have also found that there is a simple, well-known backtracking
algorithm for coloring graphs that performs much better than either the
network or any of our min-conflicts algorithms on sparsely-connected graphs.
This provides a useful case for comparative analysis.

We used the same procedure for generating test problems as Adorf and
Johnston. Solvable problems with n nodes and m arcs are generated as follows:

(1) Create three groups of nodes, each with n / 3 nodes.
(2) Randomly create m arcs between nodes in different groups.
(3) Accept the graph if it has no unconnected components.

Johnston and Adorf experimented with two classes of problem instances; one
set with m =2n (i.e., average vertex degree of 4) and another with
m = n(n - 1)/4. We will refer to the former as the sparsely-connected graphs,
and the latter as the densely-connected graphs.

Figure 4 compares the results published by Adorf and Johnston with our
results. In Adorf and Johnston's experiments, graphs were tested in the range
from n = 30 to n = 180. For each of the two types of graphs, three different
instances of each size were generated, and the network was run 3000 times per

176 S. Minton et al.

graph. Our experiments with the min-conflicts hill-climbing algorithm em-
ployed the same experimental design.

Because the network is started with all nodes "uncolored", we employed a
similar approach with the hill-climbing program so that the comparison would
be fair. Thus, in the initialization phase, each vertex is labeled as "uncolored".
An uncolored node is defined to conflict with each of its neighbors, regardless
of their color.

The results demonstrate that the hill-climbing algorithm behaves similarly to
the GDS network on both types of problems. This supports our hypothesis that
the hill-climbing algorithm captures the essential characteristics of the network.
As shown in Fig. 4(a), the densely-connected graphs are easy to solve. Both
methods tend to converge rather quickly on average. Specifically, the mean
number of transitions required for convergence appears to grow linearly with
n. The sparsely-connected graphs are much harder. In these experiments, the
network was given a bound of 9n transitions, after which the run was
terminated. (The bound was chosen arbitrarily, but means in principle that
each of the 3n neurons in the main network can transition three times.) The
hill-climbing algorithm was therefore given a bound of 9n repairs. As illus-
trated in Fig. 4(b), for both methods, the probability of success appears to
decline exponentially with n.3 Adorf and Johnston observed that as the number
of nodes increases, it is highly likely that the network will become caught in a
local minimum in which a small number of neurons transition repeatedly. That
is, the network becomes trapped, vacillating between several states. The
hill-climbing algorithm behaves in a similar manner.

To determine whether the min-conflicts approach would be practical for
graph-coloring applications, we compared our min-conflicts hill-climbing algo-
rithm to a simple constructive backtracking algorithm that is known to perform
well on graph-coloring problems. The algorithm, originally proposed by Brelaz
[6, 41], can be described as the repeated application of the following rule for

choosing a node to color:

Find the uncolored node that has the fewest consistent colorings
with its neighbors. If there is more than one, then choose one that
has the maximum degree in the uncolored subgraph. Break ties

randomly.

The use of an identical bound for both programs may give the hill-climbing algorithm a slight
advantage. The GDS network requires separate transitions to deassign a variable and to assign a
new value. In the hill-climbing program a single repair, in effect, simulates two transitions by the
network (unless an initial "uncolored" value is being repaired). Additional experimentation has
revealed that this advantage is relatively small, however. In fact, Fig. 4(b) shows that on the sparse
graphs, the hill-climbing program performed a bit worse than the network for small n, although the
significance of this is unclear due to the relatively large statistical variation in the difficulty of the
smaller problems. Unfortunately, the network is no longer running, so additional experiments
cannot be run.

Minimizing conflicts: a heuristic repair method 177

.2
t , , -

I-
r-
m

, m

(a)

200

lOO

o

Dense

Net ~ . . " " Neural ~

Hill Climbing

, , I , , I , , I , , I , , I , , I , ,
0 30 60 90 120 150 180

N

(b) Sparse

0 r-

1.0

~ 0.8

>
C
o 0.6
0
0
~, 0.4

0 ~

.Q
t~ 0.2
2

Hill Climbing

Neura Net

, , I , , ' ~ ' ~ ~ • I J , ,

0 30 60 90 120 150 180

N

Fig. 4. Compar ing the GDS network to min-conflicts hill climbing on dense and sparse graph-
coloring problems.

Essentially, this is a variable order rule consisting of two criteria. The first
criterion is a preference for the "most-constrained" variable. The tie-breaking
criterion is a preference for the "most-constraining" variable. Thus, this rule is
composed of two generic variable-ordering heuristics. No value-ordering
heuristic is required.

The rule can be incorporated in a standard backtracking algorithm in the
obvious manner. Turner [41] has shown that this algorithm will optimally color

178 s. Minton et al.

"almost all" random k-colorable graphs without backtracking. This result
actually says more about the distribution of random k-colorable graphs than
about the effectiveness of the algorithm, but nonetheless, the Brelaz algorithm
outperforms other algorithms we have tried.

For a fair comparison between the Brelaz algorithm and our rain-conflicts
algorithm, a good initialization method for the min-conflicts algorithm is
presumably required. We can use the Brelaz rule itself to arrive at an
initialization for our rain-conflicts algorithm. Specifically, the initialization
process makes one pass through the vertices of the graph, using the Brelaz
variable ordering rule to pick the next vertex to color. If no color consistent
with the node's neighbors is available, a color is chosen that minimizes the
number of conflicts. This process results in initial colorings with many fewer
conflicts than random colorings. Table 3 shows the percentage of times that the
initialization routine, by itself, finds a solution, for graphs of size n. Each entry
in the table is based on 100 runs of the initialization routine for eight problems
of size n to the sparsely-connected and densely-connected graphs described
computed problems.

Since the initialization process consistently finds solutions for the densely-
connected graphs (eliminating the need for a repair phase), we restricted our
experiments to the hard sparsely-connected graphs. Figure 5 compares the
performance of the Brelaz algorithm with min-conflicts hill climbing. For
completeness, the figure also shows a third algorithm, an informed backtrack-
ing problem that uses rain-conflicts to search through the space of repairs. For
each method, we tested eight randomly generated problems of size n, for 100
runs per problem. The graph shows the probability of finding a solution within
9n repairs/backtracks. (The results do not include trials where no repairs were
required, or where Brelaz found the solution without backtracking. This is fair
since the two repair-based methods use the Brelaz rule for initialization.)

The conclusion from this experiment is that the Brelaz backtracking algo-
rithm obviously outperforms both of the min-conflicts methods. Of the two
latter methods, informed backtracking performs slightly better. In addition,
comparing the performance of hill climbing with and without the Brelaz

Table 3
Probability that initialization alone will solve
the problem.

n Sparse graphs Dense graphs

30 63.19% 100.00%
60 50.13% 100.00%
90 40.37% 100.00%

120 32.75% 100.00%
150 32.87% 100.00%
180 23.75% 100.00%

Minimizing conflicts: a heuristic repair method 179

1.0
G)

~ 0 . 8

t -
O 0.6
O
"6
~ 0.4

.la 0.2
2

. \
Brelaz Backtrack

MC Backtrack -/
"... MC Hill Climb

".~,~,, %°"%...°Oo .,o % °%mll ~° %%
%% °°%

, , I , , I , , ' r ' , " ; - T ' ; ' . I ~"

0 30 60 90 120 150 180

N

Fig. 5. Comparing Brelaz backtracking with two min-conflicts methods.

initialization method (Fig. 5 and Fig. 4) shows that the initialization method
improves performance, but not dramatically. 4

The experiments also demonstrate clearly that sparse graphs are much
harder to color than dense graphs, for both the Brelaz method as well as for
the min-conflicts methods. Intuitively, the reason that dense graphs are easy to
color is that they are so overconstrained that a mistake is both unlikely and
easily corrected. For min-conflicts, a mistake is easily corrected because the
choice of color at a vertex is greatly influenced by the colors of all of its
neighbors. For the Brelaz backtracking method, a mistake is easily corrected
since the subsequent choices will be pruned quickly due to the overconstrained
nature of the problem. In a study motivated in part by these experiments,
Cheeseman et al. [7] have shown that as the average connectivity of a
(connected) graph increases, a "phase transition" occurs, and it is at this point
that most of the hard graph colorability problems are found. In other words,
sine a constraint satisfaction problem is easy if it is either underconstrained or
overconstrained, hard problems can be expected to lie within the boundary
between underconstrained and overconstrained problems. Our sparsely-
connected graphs lie within this boundary area.

Figure 6 illustrates how the difficulty of sparsely-connected connected graphs
manifests itself for min-conflicts. The group of nodes on the left of the graph
represents one consistent coloring, and the group on the right represents a
different consistent coloring. But the two colorings are inconsistent with each
other. This situation frequently arises as a result of the initialization process.
On the surface, the assignment would appear to be a good one, since there are

4
Interestingly, the Brelaz initialization method actually degrades performance of the smallest

graphs (where n = 30), This is an anomaly which we cannot as yet explain.

180 S, Min ton et al.

Fig. 6. An unlucky initialization.

at most three pairs of nodes in conflict. However, to achieve a solution, the
boundary between the consistent colorings must be "pushed" completely to the
left or right during the repair phase. Unfortunately, in this situation, there is
not enough information locally available to direct min-conflicts. We have
observed, in animations of the hill-climbing program, that the boundary tends
to vacillate back and forth with little overall progress being made.

The excellent performance of the Brelaz algorithm led us to experiment with
backtracking repair algorithms that are a hybrid of Brelaz and min-conflicts.
The best hybrid algorithm we found first employs the Brelaz initialization
routine described above. Then a modified version of the Brelaz variable
selection rule is used:

Of the nodes that have not yet been repaired, find the node that has
the fewest consistent colorings with its already-repaired neighbors.
If there is more than one, then choose one that is in conflict with a
previously repaired node. If there is still more than one candidate,
choose the one with the maximum degree in the unrepaired sub-
graph.

The hybrid algorithm uses this rule for variable ordering and rain-conflicts
heuristic for value ordering. Interestingly, once the initial assignment is made,
this algorithm has a higher probability of finding a solution without backtrack-
ing than Brelaz. On the other hand, when the algorithm does backtrack, it
tends to require more backtracking on average than Brelaz, probably because
it does not make as effective use of the "most constraining" criteria for
variable selection. Unfortunately, the total time required by the hybrid al-
gorithm tends to increase faster than the total time required by Brelaz, and
thus the hybrid method appears to be primarily of academic interest.

4.4. Summary of experimental results

For each of the three tasks we have examined in detail, n-queens, HST
scheduling and graph 3-colorability, we have found that the GDS network's
behavior can be approximated by the min-conflicts hill-climbing algorithm. To
this extent, we have a theory that explains the network's behavior. Obviously,

Minimizing conflicts: a heuristic repair method 181

there are certain practical advantages to having "extracted" this method from
the network. First, the method is very simple, and so can be programmed
extremely efficiently, especially if done in a task-specific manner. Second, the
heuristic we have identified, that is, choosing the repair which minimizes the
number of conflicts, is very general. It can be used in combination with
different search strategies and task-specific heuristics, an important factor for
most practical applications.

For example, the min-conflicts heuristic can be used in combination with a
variety of variable ordering heuristics. In the previous section, for instance, we
described a hybrid program in which the Brelaz variable ordering heuristic is
adapted for use with min-conflicts value-ordering heuristic. We have also
experimented with a hill-climbing program that uses "max-conflicts" as a
variable ordering heuristic in conjunction with the rain-conflicts value ordering
heuristic. On graph-coloring problems, the resulting program tends to out-
perform min-conflicts alone, although performance is still not as good as the
Brelaz algorithm.

Insofar as the power of our approach is concerned, our experimental results
are encouraging. We have identified two tasks, n-queens and HST scheduling,
which appear more amenable to our repair-based approach than the traditional
constructive approach that incrementally extends a consistent partial assign-
ment. This is not to say that a repair-based approach will do better than any

constructive approach on these tasks, but merely that our simple, repair-based
approach has done relatively well in comparison to the obvious constructive
strategies we tried. We also note that repair-based methods have a special
advantage for scheduling tasks, since they can be used for overconstrained
problems and for rescheduling problems in a natural manner. Thus it seems
likely that there are other applications for which our approach will prove
useful.

5. Analysis

The previous section showed that, compared to constructive approaches, our
repair-based approach is extremely effective on some tasks, such as placing
queens on a chessboard, and less effective on other tasks, such as coloring
sparsely-connected graphs. We claimed that the min-conflicts heuristic takes
advantage of information in the complete assignment to guide its search; this
information is not available to a constructive backtracking algorithm that
incrementally extends a partial assignment. Thus the advantage of the min-
conflicts heuristic over constructive approaches depends on how "useful" this
information is. In this section we formalize this intuition. Specifically, we
investigate how the use of a complete assignment informs the choice of which
value to pick. The analysis reveals how the effectiveness of the min-conflicts

182 S. Min ton et al.

heuristic is influenced by various characteristics of a task domain. The analysis
is independent of any particular search strategy, such as hill climbing or

backtracking.

5.1. Modeling the min-conflicts heuristic

Consider a constraint satisfaction problem with n variables, where each

variable has k possible values. We restrict our consideration to a simplified
model where every variable is subject to exactly c binary constraints, and we

assume that there is only a single solution to the problem, that is, exactly one

satisfying assignment. We address the following question: What is the prob-

ability that the rain-conflicts heuristic will make a mistake when it assigns a

value to a variable that is in conflict? We define a mistake as choosing an
incorrect value that will have to be changed before the solution is found. We

note that for our informed backtracking program a mistake of this sort may

prove quite costly, since an entire subtree must be explored before another

value can be assigned.
For any assignment of values to the variables, there is a set of d variables

whose values must be changed to convert the assignment into the solution. We
can regard d as a measure of distance to the solution. The key to our analysis is

the following observation. Given a variable V to be repaired, only one of its k
possible values will be correct s and the other k - 1 values will be incorrect

(i .e. , mistakes). Whereas the correct value may conflict with at most d other

variables in the assignment, an incorrect value may conflict with as many as c
other variables. Thus, as d shrinks, the min-conflicts heuristic should be less

likely to make a mistake when it repairs V. In fact, if each of the k - 1
incorrect values has more than d conflicts, then the min-conflicts heuristic

cannot make a mis take- - i t will select the correct value when it repairs this
variable, since the correct value will have fewer conflicts than any incorrect

value.
We can use this idea to bound the probability that the min-conflicts heuristic

will make a mistake when repairing variable V. Let V' be a variable related to
V by a constraint. We assume that an incorrect value for V conflicts with an
arbitrary value for V' with probability p, independent of the variables V and

V'. Consider an arbitrary incorrect value for V. Let N b be the total number of

conflicts between this incorrect value and the assigned values for the other
variables. Given the above assumptions, the expected value of N h is pc,
because there are exactly c variables that share a constraint with V, and the
probabil i ty of a conflict is p. As mentioned above, the min-conflicts heuristic

Although a variable is in conflict, its assigned value may actually be the correct valuc. This can
happen when the variable with which it conflicts has an incorrect value. In this paper we have
defined the min-conflicts heuristic so that it can choose any possible value for the variable,

including the variable's current value.

M i n i m i z i n g conflicts: a heurist ic repair m e t h o d 183

will not make a mistake if the number of conflicts N b for each incorrect value is
greater than d. We can, therefore, bound the probability of making a mistake
by bounding the probability that N b is less than or equal to d.

To bound N b, we use Hoeffding's inequality, which states that the sum N of
n independent , identically distributed random variables is less than the expec-

-2s2n
ted value ~ /by more than sn only with probability at most e , for any s >i 0.
In our model, N b is the sum of c potential conflicts, each of which is either 1 or
0, depending on whether there is a conflict. The expected value of N b is pc .

Thus:

-2s2c
Pr(N b ~< p c - sc) <<- e

Since we are interested in the behavior of the min-conflicts heuristic as d
shrinks, let us suppose that d is less than pc . Then, with s = (p c - d) / c , we
obtain:

Pr(N b <~ d) <~ e 2 (p c - d) 2 / c .

To account for the fact that a mistake can occur if any of the k - 1 incorrect
values has d or fewer conflicts, we bound the probability of making a mistake
on any of them by multiplying by k - 1:

P r (m i s t a k e) <~ (k - 1) e - 2 (pc -d) z / c .

Note that as c (the number of constraints per variable) becomes large, the
probability of a mistake approaches zero if all other parameters remain fixed.
This analysis thus offers an explanation as to why 3-coloring densely-connected
graphs is relatively easy. We also see that as d becomes small, a mistake is also
less likely, explaining our empirical observation that a "good" initial assign-
ment can be important. (Of course, an assignment with few conflicts does not
necessarily imply small d, as was illustrated by the 3-colorability problem in
Fig. 6.) In a recent paper, Musick and Russell [35] present an analysis which
supports this result. They model heuristic repair algorithms as Markov pro-
cesses, and show that under this model the choice of initial state can have a
significant impact on the expected solution time.

Finally, we note that the probability of a mistake also depends on p, the
probability that an incorrect value conflicts with another variable's value, and
k, the number of values per variable. The probability of a mistake shrinks as p
increases or k decreases.

5.2. A stat is t ical m o d e l f o r C S P repair

The simple model presented in the previous section shows, in a qualitative
way, how various problem characteristics influence the effectiveness of the
min-conflicts heuristic. While the analysis is helpful for understanding how the
min-conflicts heuristic works, it is not quantitatively useful, since only very

184 S. Min ton et al.

gross characteristics of the problem are considered. In this section we augment
the model with statistical assumptions about the task domain, assumptions that
enable us to analyze the heuristic's behavior quantitatively on particular
problems. Specifically, we discard the assumptions that there is a uniform
probability of a conflict between an erroneous value for a variable and an
arbitrary value for any related variable and instead assume that conflicts
between variables can be characterized by independent probability distribution
functions determined by the problem. We retain the assumption that there is a
unique solution. While these assumptions are seldom met in practice on any
particular CSP, the augmented model turns out to be a surprisingly accurate
predictor of the performance of several heuristics, including min-conflicts, on
some interesting classes of problems.

We continue to assume a binary CSP with n variables and k possible values
per variable; for a given assignment, the distance d is the number of variables
that must be corrected to obtain a solution. As a measure of heuristic
performance, we use the probability that, after a particular repair step, the

d i s tance d is decreased. This only occurs when the heuristic selects a variable
that is assigned an incorrect (non-solution) value and changes it to the unique
correct (solution) value. This probability is given by

Pd~d 1 = P~P,.Is ,

where P~ is the probability that the variable selection heuristic chooses a
variable currently assigned an incorrect (non-solution) value, and P~I~ is the
probability that the value selection heuristic chooses the correct value given
that the selected variable has an incorrect value currently assigned. (Subscripts
s and ~ indicate variables assigned solution and non-solution values, respective-
ly. For a given variable, the subscripts c and ~ refer to correct and incorrect

values, respectively.)
Similarly, the probability of increasing the distance from the solution is

P . _ , , + , = p ~ (1 - P,~s),

where P~ = 1 - P ~ is the probability that the variable selection heuristic will
choose a variable currently assigned a correct value, and Pcl.,, is the probability
that the value selection heuristic will choose the correct value given that the
chosen variable already has the correct value assigned. The third possibility,
that d will remain unchanged, has probability

P.~ , l = 1 - P . - . - I - P ~ d + ~ •

The ratio P d ~ . 1/Pd~,~+l is of particular interest, since as long as it is greater
than 1 a heuristic is more likely to move t owards the solution than a w a y from
it.

Minimizing conflicts: a heuristic repair method 185

5.3. Conflict probability distributions

An expression for the performance measures Pd~d,d+-~ can be derived for
variable and value selection heuristics given the probability distributions for
conflicts. Four such distributions are required:

For variables currently assigned the correct value:

[Probability that the correct value has
Oc,(V)

kO~v<~d

0cs(v) = [
Probability that

[0 < ~ v ~ < n - 1

v conflicts,],

an incorrect value has v conflicts,].

For variables currently assigned

oct(v) = [
Probability that

[0 ~ < v ~ < d - 1

O,=&) = [
Probability that

[0 ~ < v ~ < n - 1

an incorrect value:

the correct value has v conflicts,],

an incorrect value has v conflicts,].

For the cumulative distributions we use the following notation:

= Z
w > o

In the remainder of this section we discuss the derivation of these conflict
probability distributions 0 for two classes of CSPs: those with random in-
dependent constraints, and those with more structured constraints. For the
readers convenience, Table 4 summarizes the notation we employ.

5.3.1. Random CSPs
Random CSPs can be characterized by two probabilities as follows:

• Pc~e =-Pe~c is the probability that a correct value for variable V conflicts
with an incorrect value for variable V', and

• Pete is the probability that an incorrect value for variable V conflicts with
an incorrect value for variable V',

Note that, by definition, Pc,c = 0 (there can be no conflicts between correct
values).

Consider a state in which there are d variables assigned incorrect values. If a
variable is assigned the correct value, then it can conflict with at most the d
variables assigned incorrect values. Assuming that the probability of each
conflict is independent, the total number of conflicts follows a binomial
distribution:

186 S. Minion et al.

Table 4
Summary of notation.

r/

k
C

d
Pd ~d I
Pd~d+ I

Pd ~d
P~

P,i~

O (v)

Pc~¢

Number of variables
Values per variable
Binary constraints per variable
Distance to solution (number of variables with incorrect values)
Probability that after a repair step d decreases
Probability that after a repair step d increases
Probability that after a repair step d is unchanged
Probability that the variable chosen is currently assigned a
non-solution (i.e., incorrect) value
Probability of choosing a correct value, given that a non-solution
value is currently assigned
For a variable currently assigned a solution value, probability that an
incorrect value has v conflicts
Probability that a correct value for variable V conflicts with an incorrect
value for variable V'

In general, subscripts s and £ indicate variables assigned solution and non-solution values,
respectively. For a given variable, the subscripts c and 6 refer to correct and incorrect values,
respectively.

where x is the n u m b e r of "successes", p is the probabi l i ty of success in a single

" t r i a l " , and N is the n u m b e r of trials. Thus

¢s(V) = B(v, P~.c, d) .

Incor rec t values can conflict with the d incorrect ly assigned variables, each with

probabi l i ty p ~ , and with the other n - d - 1 correctly assigned variables,

each with probabi l i ty Pc~,~. The dis t r ibut ion is:

Oes(V) = ~ B (k , P c ~ , d) B (v - k , p~>,., n - d - 1).
k = O

This is the d is t r ibut ion for the sum of two b inomia l ly-d is t r ibu ted variables with

d i f ferent values for N and p. In the case where P ~ c = Pc~c = P,., this reduces

to Oc.~(v) = B (v , Pc, n - 1).

For var iables current ly assigned incorrect values, the correct value can

conflict with at most the d - 1 o ther variables assigned incorrect values, each

with probabi l i ty Pc~c:

O~(v) = B (v , p , . ~ , d - 1) .

Incor rec t values can conflict with the other d - 1 incorrect variables, each with

probabi l i ty p~ ,~ , and with the n - d correct variables, each with probabi l i ty

P c ~ . The d is t r ibut ion funct ion is:

Minimizing conflicts: a heuristic repair method 187

Oe~(v) = ~ B(k , Pe te , d - 1)B(v - k, P~ .e , n - d) .
k=O

In the case where Pete and Pc.e = Pc, this reduces to Oee(v) = B(v , Pc, n -

1) = G (v) .
To calculate Pe~c and p ~ e , suppose that each variable constrains on average

c other variables, and, if there is a constraint between any two variables V and
V', then each value for V conflicts with an average k' values for V'. Then the
probability that V constrains V' is c / (n - 1) , and the probability that the
correct value for V conflicts with an incorrect value for V' is k ' / (k - 1), where
k is the domain size. Thus we have

c k '
P e t e - n - 1 k - 1 "

A similar a rgumen t for incorrect values yields

c k ' k - 2 k - 2
P e # e = n - 1 k - 1 k - 1 k - 1 Pc~e.

Values for P c . e and Pe.e are given in Table 5 for some illustrative problem
types, including sparse and dense graph 3-colorability problems. For com-
parison, the table also shows the corresponding values for the random problem
described by Dechter and Pearl [8].

Table 5
Probabilities of conflicts between solution and non-solution values Pc,e, and between non-solution
and non-solut ion values Pe ,e , for some CSPs that can be treated as " r andom" . For graph
3-colorability problems the mean vertex degree (VD) of the problem graph is indicated. T h e

Dech te r -Pea r l problem, shown for comparison, has probability p~ of a constraint between
variables, and P2 that a constraint permits any specific pair of values, c is the mean number of
variables constrained by any variable, k ' is the mean number of values prohibited by a constraint
be tween two variables and k is the domain size.

Problem c k' k Pc.e Pete

Sparse graph
3-colorability 4 1
VD = 4

Dense graph 2
3-colorability ~ - n 1
VD = 2n/3

Dech te r -P ea r l
general case p~n

Dech te r -Pea r l
k = 5 1
p I = 0 . 5 , p ~ = 0 . 6 ~ . n 2

(1 -pE)k k

2 1
3

n - 1 n - 1

1 n l n
3

3 n - 1 6 " n - 1

p , (1 - pz)kn

(k - 1)(n - 1)

1 n

U n - a

p, (1 - pz)k(k - 2)n

(k - l)2(n - 1)

3 n
16 n - 1

188 S. Minton et al.

5.3.2. Highly-structured CSPs
The conflict distribution functions for random CSPs derived above predict

significant variance in conflict counts in the solution state. For example, when

d = 0 the distribution 0,:,.(v) reduces to B(v, p,~,., n - 1) which has mean
(n - 1)p,,~ and variance (n - 1)pc~,(1 -p,.:~,:). For some CSPs, the variance

in the solution state is demonstrably much less than this, and can be essentially

zero for problems with sufficiently strong regularities. For example, treating

n-queens as random would predict that many incorrect values would have zero

conflicts for large n, but in fact, in the solution state, each incorrect value has
at least one conflict. This structure can be incorporated into the calculation of

0, as illustrated in Appendix A for a simplified n-queens model which assumes

that exactly three other queens conflict with each incorrect value.

5. 4. Value selection heuristics

In this section we derive expressions for the probability of choosing a correct
value (P+, and P,+) based on the conflict probability distributions defined in

Section 5.3. It is important to note that the derived probabilities depend only

on the existence of the 0 distributions, and not on their specific form.

5.4.1. Min-conflicts value selection
The min-conflicts value selection heuristic can be stated as:

Choose a value which has the minimum number of conflicts with

the assigned values for the other variables. If there is more than

one such value, select one at random.

Note that with this rule there need be no change in the assignment.

Pcl.~: variable with correct value assigned
Conflicts on the correct value must be due to one or more of the d variables

which have incorrect assignments. Suppose there are v > 0 conflicts on the
correct value (if there are v = 0 conflicts, the variable would not have been
selected for repair). Wc seek the probability of leaving the assigned value
unchanged, which is the right decision in this case. If any of the k - 1 incorrect
values has less than v conflicts, then the min-conflicts heuristic will choose one

of these values. The correct value will be chosen only if all k - 1 incorrect
values have at least v conflicts. Of the k - 1 incorrect values, let m be the
number which have exactly v conflicts, while the remaining k - 1 - m have > v

conflicts. The probabili ty of such a configuration is:

0 ~(v),,,0, ~ (> v) k - ' ,,,

while the total number of such configurations is (k ~). Since, in this configura-
tion, there are m values other than the correct value with an equal number v of

Minimizing conflicts: a heuristic repair method 189

conflicts, the probability of choosing the correct value is 1/(m + 1). Thus the
total probability of choosing the correct value, given that it has v conflicts, is:

psO,(v) = Z k - 1 m k - l - m]
m = 0 m Oes(V) O,.~(>v) m + 1 "

The probability of v conflicts on the correct value, given that it has >0
conflicts, is O,,~(v)/[1 - 0c~(0)]. Combining these yields the total probability that
the heuristic will leave the assignment unchanged:

= o~.~(~)

P,he: variable with incorrect value assigned
Suppose the number of conflicts on the correct value is v, and that there are

w conflicts on the current (incorrect) assigned value. Let P~°~(v, w) denote the
probability of choosing the correct value in this situation. There are three
cases:

(1) o > w. The correct value will not be chosen since the current value has

fewer conflicts, so P~°'(v, w)lv> w = 0.
(2) v = w. In this case we have to consider the other k - 2 incorrect values.

Summing over configurations where m have exactly v conflicts, and the
remaining k - 2 - m have >v conflicts, yields:

PS°'(v, w)lo=w RV=W(v) Z k - 2 ,~ > k-2-m 1 = - = o~(v) o~(v) .
m=0 m m + 2

(3) v < w. Similar to case (2) except that in this case the heuristic will
certainly not leave the assignment unchanged, so the probability of
choosing the correct value increases from 1/(m + 2) to l / (m + 1):

k - 2

= - =

,,=0 m + 1 "

The total probability of choosing the correct value is

,,-, a-, O~(w) p~O,(v ' P,b~ = ~ ~ O,=,.(v) w) ,
~=1 o=,1 1 - 0 0)

using the fact that the probability of v conflicts on an incorrect value, given that
the value has >0 conflicts, is Oe~(v)/[1- 0cs(0)].

5.4.2. Random-conflicts value selection
The rain-conflicts heuristic examines the number of conflicts on each value to

determine which to assign. A less-informed heuristic could simply check

190 S. Min ton et al.

whether or not there are any conflicts on values. This approach is captured by
the "random-confl icts" rule:

If one or more values has no conflicts, select one of these values (at
random). If all values have conflicts, select one at random.

The assignment is not required to change (although it must change if at least
one value has zero conflicts).

The derivation of P + and PcIs follows the same argument as above, with the
results:

P,ls = 0,-~(>0) k i 1
~ k

and

where

0 / 0 ~' n s ° l / (v, w)fv>,,, P + = c~ j r tv, w) l v = 0 + [1 - ~o~

k - 2

=,, m 0,~(0) 0cs (0) m + 1 '

= 0 (>0) k-2 1
, s , .

pso lz £v, w) is the probabili ty of choosing the correct value for a variable with v
conflicts on the correct value and w > 0 conflicts on an incorrect value.

5.4.3. R a n d o m value selection

This is the "least-possible-informed" value selection rule:

Select and value at random, regardless of conflicts.

With this rule, the probabili ty of choosing the correct value is independent of

the variable 's currently assigned value:

P,I~ = P,~I.~ = 1 / k .

5.5. Variable selection

In this section we develop expressions for the probability of selecting a
variable to be repaired (Ps or Ps) based on the following simple rule:

Select for repair a variable at random from the set of all variables

that are currently in conflict.

Consider first a variable that is assigned an incorrect value. The probabili ty
that there are one or more conflicts on its assigned value is 1 - 0ee(0). Since
there are a total of d such variables, the expected number with conflicts is

N~ f = d [1 - Oe~(O)].

Minimizing conflicts: a heuristic repair method 191

Now consider a variable that is assigned a correct value. The probability that
there are one or more conflicts on its assigned value is 1 - 0c~(0). Since there
are a total of n - d such variables, the expected number with conflicts is

Us f = (n - d)[1 - 0c~(0)].

Thus, for a variable with conflicts that is picked at random, the probability
that is currently assigned a correct value is:

Ns.conf
P" = N~ f + N~ f '

while the probability that is currently assigned an incorrect value is:

N~,conf
pC = 1 - P~ = Ns f -[" N f

5.6. Evaluation o f the statistical model

We have numerically evaluated the expressions above for Pd~d.d±l, P,I~'
P~ps, etc. on two random CSP problem types, and on the simplified n-queens
model, in order to compare the predicted performance of the three value
selection heuristics discussed above. For the random CSPs we have also
generated sample problems and computed the probabilities empirically for
comparison with the model. These results are described in this section.

5.6. I. Random CSPs

We have taken two graph 3-colorability problems for comparison of the
heuristics:

• H3C. " H a r d " 3-colorability, random sparsely-connected graph, mean
vertex degree = 4. In the solution state the expected number of conflicts on
incorrect values is 2, approximately independent of problem size n.

• E3C. "Easy" 3-colorability, random densely-connected graph, mean ver-
tex degree = 2n/3. In the solution state the expected number of conflicts
on incorrect values is n/3, i.e. increasing linearly with problem size

The relevant conflict probabilities for these two problems are given in Table 5.
Probabilities were calculated for both problem types for n = 90. Value selection
heuristics are labelled as follows in Figs. 8-10: MC rain-conflicts (Section
5.4.1); RC random-conflicts (Section 5.4.2); and R random (Section 5.4.3).

Variable selection

Figure 7 shows P~ vs, d/n, the probability that a variable currently assigned
an incorrect value will be chosen for repair. The probability is lower for the
densely-connected E3C problem, since even a small number of incorrectly
assigned variables can introduce a large number of conflicts.

192 S. Minton et al.

: : . ~ 0 . 8 1 ~ ! i ' : , , ' i -~ . . . 1

i , . ' \ 0.2 >;T E3C .

.J
.*.

o 0.2 0.4 0.6 0.8
d/N

Fig. 7. Probability of selecting a variable that is assigned an incorrect value for H3C and E3C
random problems.

Value selection
Figure 8 compares value selection for the two problems. Here it is desirable

that both P,+ (Figs. 8(a), (b)) and P, is (Figs. 8(c), (d)) be as large as possible.
1 Random value selection (labelled R in the figures) has uniform probability 3

making the correct choice in both problems. For H3C variables with correct
values assigned (Fig. 8(a)), RC does worse than random, and MC does better
only for small d/n. In contrast, for variables that have incorrect values (Fig.
8(c)), the probability is fairly high for both MC and RC that the correct value
will be selected, with MC showing slightly better performance. For E3C (Figs.
8(b), (d)), MC has probability near unity of choosing the correct value,
whether or not the current value is correct. RC does no better than random
except for variables currently assigned incorrect values and d/n <0.2 (Fig.
8(d)).

Combined variable and value selection
Figure 9 shows the probabilities of moving towards (Paid-t, Figs. 9(a), (b))

or away from (Pd~J+~, Figs. 9(c), (d)) the solution for the variable selection
method combined with each of the three value selection methods. For H3C
(Figs. 9(a), (c)), all three value selection methods have higher probability of
worsening the state than of improving it. MC shows the best performance, with
the largest values for Pa~J 1 and the smallest for P ~ a + J in the range d/n < 3.
For E3C (Figs. 9(b), (d)), both RC and R tend to worsen the state, while MC
has a much higher probability of improving it.

The ratio P , ~ j ~/Pd~+ ~ provides a useful comparison of combined variable
and value selection performance: it is greater than unity when a heuristic is

Minimizing conflicts: a heuristic repair method 193

(a) H3C
1

Pc1"
o.8~ .

I

1
o.s4 i ...

~MC i
o, ::::::::::::::::::::::::::::

• . c . , ~ ~
0.2 - 1 - - - ~ - I - ~

I

o:
0.2 0.4 0.6 0.8

diN

(b) E3C
1 ' -"m "

o.. I I Z . .o !,,,
0.0 ..

Re, R

0
o.2 0.4 o:6 ole 1'

diN

(c) H3C

1 [',~., i Pcli

o,, i.c i i

! i ' " , , : , i i

R 4k~ - . . e - ~ , - - e - - - . ~

0.2 ...

1

0.8.

0.6.

0.4.

0.2.

0 0
0 0.2 0.4 0.6 0.8

diN din

(d) E3C
A I • I

'- i ~ ÷

i M e i

.... • ' - - ' - ~ m - ~ - - - o - - ' : ' - ~ - - - - ~ - *

0.2 0.4 0.6 0.8 1

Fig. 8. Probability of choosing correct values for variables currently assigned correct or incorrect
values.

more likely to improve the state than to worsen it. Figure 10 plots this ratio on
a logarithmic scale vs. d/n for each of the three value selection methods. For
H3C (Fig. 10(a)), MC is best (for d ~ n), followed by RC and R, but in all
cases the ratio is <1. For E3C (Fig. 10(b)) the results are very different: MC
shows a much higher chance of improving the state, while both RC and R
worsen it. RC is significantly better than R only for very small d/n.

Comparison with empirical results

To see how well the model captures features of the heuristics when applied
to actual problems, we have generated random problem instances with known
solutions, 6 then assigned incorrect values to some of the variables and calcu-

The random problem instances were not guaranteed to have unique solutions; simple relabel-
ling of colors will yield several.

194 S. Minton et al.

(a) H3C
1 !

!Pd~d. l i
0.8 .

0 . 0 . i .

0.4 , ~ ' ;'

ol i i I
0 0.2 0.4 0.6 0.0 1

d/N

(b) E3C

0.8 ~ i ~ d:!

o.8 i i i i

0,4'

0.2,

0

MC

"LAI°" l

0.2 0.4 0.6 0.8 1

d/N

(c) H3C

o.8 i i i ~ + !

o , i i i i

RC

0 . 4 ' ~ ' R ~ : - . . :

0 . 2 . ~

o I
0 0.2 0.4 0.6 0.8

diN

(d) E3C

1 i !

Pd->d+1:
0.8 .

0.6- " " ~ "~ : :~ :~! : i i ! ! ,~

" t ~
i 0.4-

i i " . , t , i i
0.2 : - - ~ ~ - - - - - -

. ~ ~ . - \
0

0 0.2 "0:4 0:6 0:8

diN

Fig. 9. Probabi l i ty of mov ing towards (P,~_a ~) or away f rom (P,~-a, ~) the solut ion.

(a) H3C

lOOO t ! !

,ool

o.1 : ' . : ~ i i

i

0.01] i
0 0,2 0.4 0.6 0.8

d/N

(b)
1000

IO0

10-

1-

0.1.

0.01

E3C

\i ' / '
MC :

............. "i i N . i i / :

i ~c,~ i \ _ . . . i "
............. RC ~ ~ ~ i ~ ~ T

,.,." i i i
. ' " R i i i

I I I
0.2 0.4 0.6 0.8

d/N

Fig. 10. P,-,i J/P,~ ~,~+ ~ for the three value select ion heuris t ics .

Minimizing conflicts: a heuristic repair method 195

lated empirically the same probabilities that are predicted by the statistical
model. Fig. 11 shows the comparison for MC value selection: the empirical
data points, indicated by the + and × symbols, show the results of averaging
200 states for each value of d. The agreement with the model probability
calculations is excellent.

5.6.2. n-queens
We have evaluated the simplified n-queens model of Section 5.3.2 and

Appendix A for min-conflicts value selection. Figure 12 shows the quantities
Pd-~d-1, Pd~d+], and the ratio Pd-u]/Pd~d+1 for small d for n = 64, 96, 128,
and 256. As n increases, the relative probability of moving towards the solution
increases as well. While this is in accordance with the experimental results, the

I

0.8,

0.0,

0.4,

0.2,

o:

(a) H3C

P,~,+li
~ : i

".4 . IN
. : ' ' ' 1 ' ' ' I ' ' 0.2 0,4 0.6 0.8

d/N

(b) E3C

1 i :r"

0.0 ~- =- ,.- ,.-

i i i i
0, ! ~ L i +

I" i d-,'d.1
0 . 4 ~

0.2

0
0 0.2 0,4 0.6 0.8

diN

Fig. 11. Comparison of predicted results with empirical results for min-conflicts value selection.

10

(a)

~ ,~--256 Pd_~d.i/Pd_>d+1 '

10

(b)

I I

0.I. ! p d ~ - . - . ~

,256
0.01 ... ,

. m 1

I0
d

Fig. 12. Performance probabilities for the n-queens model.

256
i128
'96
.64

196 S. Minton et al.

model does not permit more quantitative comparison due to the simplifying
assumption that the mean conflicts on incorrect values is 3 (instead of the
actual ~2.5) . The situation for n-queens is further complicated by the fact that
solutions appear to be relatively numerous, violating the model assumption
that there is a unique solution.

5. 7. Limiting behavior ~br random CSPs

There are two interesting limiting cases of the model for random CSPs,
corresponding to limiting forms of the conflict probability distribution functions
0 (see Section 5.3.1). These limits are discussed in this section.

5. 7.1. Poisson limit
In the case n-->2, p ~ , ~ p ~ . c = P,,, and np, ~ c o n s t a n t , the conflict

distribution functions approach the Poisson distribution: Oc.,(v)~O~(v)-~
Ppoi (U, dp,) , and O,(v)~-Oe~(v)~-Pvo i (v, np,.), where Ppoi (o , /z) =

e ~S/v ! . If we let d = fn , i.e. f is the fraction of variables assigned incorrect
values we can write the distributions for O,.s(V) and O,(v) as:

(e - ") / (f / z) v
o~, , (v) ~ o ,~(v) ~-

v!

he re /x = np,. The result is independent of n, and thus we have the important

conclusion that the performance of value selection heuristics depends only on
d /n in the Poisson limit Pc ~ 1/n for small npc. This is also true of the variable
selection method used in the model (which depends only on 0 , (0) and 0,,(0)).
Figure 13(a) illustrates this dependence on d/n for the H3C problem for
n = 30, 60, and 90: the differences are already nearly indistinguishable.

0.5.

0.4.

0.3-

0.2.

0.1.

O.

(a) H3C (b) E3C
0 . 5 ~

. o.4 ~ 9o.. i i

°"t il! i ! i .~" i
............

~ .4:" ~ . ' , 6 0 ~ I . \ ..~

....

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.0 0.8

d/N d/N
Fig. 13. Scaling behavior with n for variable selection method.

Minimiz ing conflicts: a heuristic repair method 197

5.7.2. Gaussian limit
At the other extreme, consider the case when the mean number of conflicts

increases with n, e.g. when p,.ae is approximately constant, and nPcae, the

expected number of conflicts for an incorrect value for a variable when in the

solution state, increases linearly with n. In this case, for sufficiently large n, the

distributions can be approximated by Gaussian distributions with mean np~e
and variance o -2= npc>e(1- p,~e). We can derive the dominant behavior of

min-conflicts value selection in the limit n > d > 1 by approximating the sums

in the expressions for P,l~ and P<, by integrals over the Gaussian distribution.
Only values near the peak of the Gaussian make significant contributions, and

in the limit P,I~ ~" P,I~ ~ 1. The probability of choosing a variable with an

incorrect value becomes P~ ~ d/n since N~ f ~ d and N f ~ n - d. From

this it follows that P ~ a ~ d / n and Pa~a+~ ~0 . This linear dependence of
P j+a ~ on d for large n is evident in Fig. 13(b), which shows Pd~a-~ and

Pj_+a+~ for n = 30, 60, and 90 for MC value selection.

5. 7.3. Global performance of min-conflicts hill-climbing repair
The simple limiting forms above permit some general statements to be made

about the behavior of hill-climbing repair methods based on min-conflicts value
selection. Hill-climbing repair can be modelled as a random (Markovian) walk

described by the probabilities Pd~d.d+-~ of moving towards or away from an
"absorbing barr ier" at d = 0.

In the Gaussian limit where Pj~j+~ ~(), Pa+a-~ ~ d/n (cf. Fig. 9(b)), the

expected number of hill-climbing steps to transition from d to d - 1 is

1/P,~+d ~ = n/d. From an initial distance d 0' the expected number of steps t to
reach d = 0 is thus

d 0

tct°~° = = t

where 7 = 0 . 5 7 7 . . . is Euler 's constant. Thus the expected number of steps to
reach the solution is linear in the problem size n and depends only logarith-
mically on how far away the initial guess is from the solution.

In the Poisson limit where Pd~d+ I > Pa~d-~ but both are nearly constant (cf.
Fig. 9(a)), the distance from the solution after t steps can be written as

d(t) = d 0 + 21_1 ~:i where ~i is a random variable representing the change in d
with each step. The probability distribution for s c has mean p. = Pd~d+~-
Pd~d-~ and variance o-2 = Pd--d+l + Pa~a-~ - (Pd~d+l -- P a + a - l) 2. After a
sufficiently large number of steps, the distribution for d(t) is approximately
Gaussian with mean tza = do + t> and variance o- 3 = to -2. The mean t*a repre-
sents a drift of the expected value of d(t) away from the solution d = 0. The
probabil i ty of reaching the solution after t steps is approximately given by the
tail of the Gaussian distribution for d <~ 0, which approaches

198 S. Minto~l et al.

/ . t V ~ exp -

for large t. The important point is the predicted exponential decline in the
probability of reaching the solution as the number of hill-climbing steps in-
creases. This result provides an explanation for the observed behavior of the
GDS network and of min-conflicts hill climbing on sparse 3-colorable graphs as
described above in Section 4.3: when the number of steps is limited to t ~ n,
there is an exponential decline with problem size n of the probability of finding
the solution.

5.8. Summary and caveats

The statistical model of CSP repair described here is a surprisingly good
predictor of "conflict-informed" value selection performance for random CSPs.
The model has both theoretical and practical benefits. It permits average-case
comparisons of different variable and value selection heuristics, from which can
be drawn general conclusions about their relative effectiveness. For particular
problem types, limiting behavior for large n can be derived, including general
statements as to whether heuristics will show better or worse performance as
problem size increases. For random CSPs discussed in detail above, these
conclusions include:

• min-conflicts is the most effective value selection method among those

considered;
• min-conflicts performs relatively better as n increases, particularly when

p , ~ increases with n or remains constant;
• if the Gaussian limit applies, then hill climbing with min-conflicts is an

effective repair strategy, showing only weak dependence on the initial
guess and O(n) dependence on problem size n;

• if the Poisson limit applies, then the probability of reaching the solution
declines exponentially with the number of hill-climbing steps.

Application of the model to other problem types is the subject of future
research.

There are, however, several factors that limit the applicability of the model.
The most important are that conflicts are assumed to be independent, and that
a single solution state is assumed. The presence of multiple solutions may not
be a serious limitation so long as the model is applied in the vicinity of a
solution, and that solutions are not so dense as to render this meaningless.
Conflict independence is more significant, since highly structured problems
which occur in practice may violate this assumption. Nevertheless, to the
extent that the statistical properties of classes of problems can be established, it
may still be possible to use the model to perform average-case analysis of
heuristics.

Minimizing conflicts: a heuristic repair method 199

Two other limitations are worth noting, since we have analyzed the min-
conflicts heuristic independent of the initialization process and search strategy.
First, the model permits no conclusions about the assignment being repaired,
yet the construction of a good initial guess (i.e. an assignment such that d is
small) is a key problem for repair methods. Second, since the model ignores all
fine structure in the problem, the possibility of pathological configurations is
not considered. This can manifest itself in hill-climbing techniques as "cycles",
where the same variables are repaired again and again, but no progress is made
towards the solution. To model the performance of the min-conflicts heuristic
in conjunction with a particular search strategy, such as hill-climbing a more
detailed analysis is required. For example, in a recent paper, Morris [33]
examines the structure of the n-queens problem, and shows analytically that,
for min-conflicts hill-climbing, almost all local minima are solutions.

6. Discussion

The heuristic hill-climbing method described in this paper can be character-
ized as a local search method [20], in that each repair minimizes the number of
conflicts for an individual variable. Local search methods have been applied to
a variety of important problems, often with impressive results. For example,
the Kernighan-Lin method, perhaps the most successful algorithm for solving
graph-partitioning problems, repeatedly improves a partitioning by swapping
the two vertices that yield the greatest cost differential. The much-publicized
simulated annealing method can also be characterized as a form of local search
[19]. However, it is well known that the effectiveness of local search methods
depends greatly on the particular task.

In fact, it is easy to imagine problems on which the min-conflicts heuristic
will fail. The heuristic is poorly suited to problems with a few highly critical
constraints and a large number of less important constraints. For example,
consider the problem of constructing a four-year course schedule for a universi-
ty student. We may have an initial schedule which satisfies almost all of the
constraints, except that a course scheduled for the first year is not actually
offered that year. If this course is a prerequisite for subsequent courses, then
many significant changes to the schedule may be required before it is fixed. In
general, if repairing a constraint violation requires completely revising the
current assignment, then the min-conflicts heuristic will offer little guidance.
This intuition is partially captured by the analysis presented in the previous
section, which shows that the effectiveness of the heuristic is inversely related
to the distance to a solution.

The problems investigated in this paper, especially the HST and n-queens
problem, tend to be relatively uniform in that critical constraints rarely occur.

200 S. Min ton et al.

In part, this is due to the way the problems are represented. For example, in
the HST problem, as described earlier, the transitive closure of temporal
constraints is explicitly represented. For example, if task A must precede task
B, then all tasks that precede A must also precede B, and all such constraints
are explicitly represented. This improves performance because the min-
conflicts heuristic is less likely to violate a set of constraints than a single
constraint. In some cases, we expect that more sophisticated techniques will be
necessary to identify critical constraints [11]. To this end, we arc currently
evaluating explanation-based learning techniques [9] as a method for identify-
ing critical constraints.

The algorithms described in this paper also have an important relation to
previous work in AI. In particular, there is a long history of AI programs that
use repair or debugging strategies to solve problems, primarily in the areas of
planning and design [37, 40]. This approach has recently had a renaissance with
the emergence of case-based [14,26] and analogical [17, 24,42] problem
solving. To solve a problem, a case-based system will retrieve the solution from
a previous, similar problem and repair the old solution so that it solves the new
problem.

The fact that the min-conflicts approach performs well on n-queens, a
well-studied, "s tandard" constraint-satisfaction problem, suggests that AI re-
pair-based approaches may be more generally useful than previously thought.
Additional evidence also comes from a very recent study by Selman, Levesque
and Mitchell [36], in which they showed that a repair-based algorithm (very
similar to the hill-climbing algorithms investigated here) performs well on hard
satisfiability problems. However, as we have pointed out, in some cases it can
be more time-consuming to repair a solution than to construct a new one from
scratch. It may be that our analysis of min-conflicts for CSP problems can be
extended to repair methods for other tasks, such as case-based planning
methods. We conjecture that for each of the factors affecting the performance
of min-conflicts, such as the expected "distance" from the initial assignment to
the solution and the degree that each variable is constrained, there are
analogous factors for other tasks.

There are many possible extensions to the work reported here, but three are
particularly worth mentioning. First, we expect that there are other applica-
tions for which the min-conflicts approach will prove useful. Conjunctive
matching, for example, is an area where preliminary results appear promising.
This is particularly true for matching problems that require only that a good
partial-match be computed. Second, we expect that there are interesting ways
in which the min-conflicts heuristic could be combined with other heuristics.
For example, as mentioned earlier, when a "most-conflicted" variable ordering
strategy is used together with min-conflicts, the resulting program outperforms
min-conflicts alone on graph 3-colorability problems. Finally, there is the
possibility of employing the min-conflicts heuristics with other search tech-

Minimizing conflicts: a heuristic repair method 201

niques. In this paper, we only considered two very basic methods, hill climbing
and backtracking. However, more sophisticated techniques such as best-first
search are obvious candidates for investigation, since the number of conflicts in
an assignment can serve as a heuristic evaluation function. Another possibility
is Tabu search [16], a hill-climbing technique that maintains a list of forbidden
moves in order to avoid cycles. Morris [31,32] has also proposed a hill-
climbing method which can break out of local maxima by systematically
altering the cost function. The work by Morris and much of the work on Tabu
search bears a close relation to our approach.

7. Conclusions

In this paper we have analyzed a very successful neural network algorithm
and shown that a simple heuristic search method behaves similarly. Specifical-
ly, we carried out extensive experiments in three task domains in which the
min-conflicts hill-climbing algorithm and the GDS network exhibited similar
performance. Based on our experience with both programs, we conclude that
the min-conflicts heuristic captures the critical aspects of the GDS network. In
this sense, we have explained why the network is so effective.

We have also demonstrated that the min-conflicts heuristic can be employed
in conjunction with other types of symbolic search methods besides hill-
climbing. In particular, we showed that it can be used as a value-ordering
heuristic by an informed backtracking algorithm. This is an important consid-
eration, since we expect that in many applications the choice of search strategy
may be critical to producing satisfactory solutions.

By isolating the rain-conflicts heuristic from the search strategy, we dis-
tinguished the idea of a repair-based CSP method from the particular strategy
employed to search within the space of repairs. This enabled us to carry out a
strategy-independent analysis of the heuristic. The analysis identified several
factors that effected the utility of the min-conflicts heuristic, such as the
expected distance between the initial assignment and the solution. We believe
that this analysis may be relevant to repair-based problem solving methods in
general.

There are also several practical implications of this work. First, the schedul-
ing system for the Hubble Space Telescope, SPIKE, now employs our symbolic
method, rather than the network, reducing the overhead necessary to arrive at
a schedule. Perhaps even more importantly, it is easy to experiment with
variations of the symbolic method, which should facilitate transferring SPIKE
to other scheduling applications, Finally, by demonstrating that repair-based
methods are applicable to standard constraint satisfaction problems, such as
N-queens, we have provided a new tool for solving CSP problems.

202 S. Minton et al.

8. Acknowledgement

T h e au thors wish to thank Hans -Mar t in Ador f , D o n Rosen tha l , Richard

Franier , Pe te r C h e e s e m a n and Mon te Z w e b e n for their assistance and advice.

We also thank R o n Rusick and our a n o n y m o u s reviewers for their c o m m e n t s .

T h e Space Te lescope Science Inst i tute is ope ra t ed by the Associa t ion of

Univers i t ies for Resea rch in A s t r o n o m y for N A S A .

Appendix A. n-queens conflict probability distributions

In this append ix we der ive conflict dis t r ibut ion funct ions for the simplified

n -queens mode l discussed in Sect ion 5.3.2, which assumes that in the solut ion

s tate exact ly th ree queens conflict with non-solu t ion queen p lacements .
n o~ for a queen in row R. In the Cons ide r first a non-solut ion value ~R

. ~" deno te this so lu t ion s tate there are th ree o ther queens which constra in ~R •
set by q. Le t the n u m b e r of queens o the r than R which have non-solu t ion

ass ignments be i. If R has a solut ion ass ignment , then i = d; and if R has a

non-so lu t ion ass ignment , then i = d - 1 . The probabi l i ty of a conflict on
Q ~ due to a queen in q is: R

C Probability conflict] [- Probability queen l [Probability non-]
pq = /on Q; from J = / i n q has non-solution I X]solution value]

kqucen in q I_value J Lconflicts with Q~ ~J

C Probability queen 7 F Probability solution]
+ |in q has] ×]value conflicts [.

I_solution value J Lwith Q~ J

N o w the probabi l i ty that a queen in q has a non-solut ion value is i / (n - 1), and
n non-sol

the probabi l i ty that a non-solu t ion value for a queen in q conflicts with ~ n
is 2 / (n - 1) (i.e. two o ther p lacements would be e i ther on the same row or

non-sol diagonal as QR). The probabi l i ty that a solution value for a queen in q

conflicts with o ~is one by definition. Thus: ~ R

p , [_ i 2 + (1 i) i (n - 3)
n - 1 n - 1 n - 1 = 1 (n _ l) 2 .

A similar a rgumen t leads to the probabi l i ty of conflict with the n - 4 queens

n o t in q:

pq _ 3i
(n - 1) 2 "

I") ~ is the sum of two binomial ly- T h e probabi l i ty of v conflicts on ~R
dis t r ibuted var iables

Minimizing conflicts: a heuristic repair method 203

non-sol ~ P(u conflicts on Qn) = B(x, pq, 3)B(u - x, pq, n - 4) ,
x-0

assuming that the conflicts are independent . W h e n there are no e r roneous

assignments , this distribution has a mean value of 3 and variance of zero,

captur ing the assumpt ion that, in the solution state, each non-solut ion value

has exactly three conflicts.
For a solution value ¢3s°~ for a queen in row R, conflicts can arise only f rom ~R

non-so lu t ion assignments of the n - 1 o ther queens. Assuming independence ,

the distr ibution of conflicts is

soJ - 1) , P(v conflicts on QR) = B(v, P2, n

where P2 = 3i(n - 1) 2.

R e f e r e n c e s

[1] B. Abramson and M. Yung, Divide and conquer under global constraints: a solution to the
n-queens problem, J. Parallel Distrib. Comput. 61 (1989) 649-662.

[2] H.M. Adorf and M.D. Johnston, A discrete stochastic neural network algorithm for con-
straint satisfaction problems, in: Proceedings International Joint Conference on Neural Net-
works, San Diego, CA (1990).

[3] E. Biefeld and L. Cooper, Bottleneck identification using process chronologies, in: Proceed-
ings IJCAI-91, Sydney, Australia (1991).

[4] J. Bitner and E.M. Reingold, Backtrack programming techniques, Commun. ACM 18 (1975)
651-655.

[5] G. Brassard and P. Bratley, Algorithmics--Theory and Practice (Prentice Hall, Englewood
Cliffs, N J, 1988).

[6] D. Brelaz, New methods to color the vertices of a graph, Commun. ACM 22 (1979) 251-256.
[7] P. Cheeseman, B. Kanefsky and W.M. Taylor, Where the really hard problems are, in:

Proceedings IJCAI-91, Sydney, Australia (1991).
[8] R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction problems, Artif.

Intell. 34 (1988) 1-38.
[9] M. Eskey and M. Zweben, Learning search control for constraint-based scheduling, in:

Proceedings AAAI-90, Boston, MA (1990).
[10] M.S. Fox, Constraint-Directed Search: A Case Study of Job-Shop Scheduling (Morgan

Kaufmann, San Mateo, CA, 1987).
[11] M.S. Fox, N. Sadeh and C. Baykan, Constrained heuristic search, in: Proceedings IJCAI-89,

Detroit, MI (1989).
[12] E.C. Freuder, Partial constraint satisfaction, in: Proceedings IJCAI-89, Detroit, MI (1989);

also: Artif. Intell. 58 (1992) 21-70 (this volume).
[13] M.L. Ginsberg and W.D. Harvey, Iterative broadening, in: Proceedings AAA1-90, Boston,

MA (1990).
[14] K.J. Hammond, Case-based planning: an integrated theory of planning, learning and mem-

ory, Ph.D. Thesis, Yale University, Department of Computer Science, New Haven, CT
(1986).

[15] R.M. Haralick and G.L. Elliot, Increasing tree search efficiency for constraint satisfaction
problems, Artif. Intell. 14 (1980) 263-313.

[16] A. Hertz and D. de Werra, Using tabu search techniques for graph coloring, Computing 39
(1987) 345-351.

[17] A.K. Hickman and M.C. Loven, Partial match and search control via internal analogy, in:

204 S. Minton et al.

Proceedings Thirteenth Annual Conference of the Cognitive Science Society, Chicago, 1L
(1991).

[18] J.J. Hopfield, Neural networks and physical systems with emergent collective computational
abilities, Proc. Nat. Acad. Sci. 79 (1982).

[19] D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, Optimization by simulated
annealing: an experimental evaluation, Part lI, J. Oper. Res. 39 (3) (1991) 378-4//6.

[20] D.S. Johnson, C.H. Papadimitrou and M. Yannakakis, How easy is local search?, J. Comput.
Syst. Sci. 37 (1988) 79-100.

[21] M.D. Johnston, Automated telescope scheduling, in: Proceedings Symposium on Coordina-
tion of Observational Projects (Cambridge University Press, Cambridge, UK, 1987).

[22] M.D. Johnston and H.M. Adorf, Learning in stochastic neural networks for constraint
satisfaction problems, in: Proceedings NASA Conference on Space Telerobotics, Pasadena,
CA (1989).

[23] L.V. Kale, An almost perfect heuristic for the n nonattacking queens problem, hlf. Process.
Lett. 34 (1990) 173-178.

[24] S. Kambhampati, Supporting flexible plan reuse, in: S. Minton, ed., Machine Learning
Methods" for Planning and Scheduling (Morgan Kaufmann, San Mateo, CA, 1992).

[25] N. Keng and D.Y.Y. Yun, A planning/scheduling methodology for the constrained resource
problem, in: Proceedings IJCAI-89, Detroit, MI (1989).

[26] J.L. Kolodner, R.L. Simpson Jr and K. Sycara-Cyranski, A process model of case-based
reasoning in problem solving, in: Proceedings IJCAI-85, Los Angeles, CA (19851.

[27] C.R. Kurtzman, Time and resource constrained scheduling, with applications to space station
planning, Ph.D. Thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA
(1988).

[28] C.R. Kurtzman and D.L. Aiken, The Mfive space station crew activity scheduler and stowage
logistics clerk, in: Proceedings A I A A Computers" in Aerospace VII Conference, Monterey, CA
(1989).

[29] P. Langley, Systematic and nonsystematic search strategies, in: Proceedings AAA1-92, San
Jose, CA (1992).

[3//] S. Minton, M. Johnston, A.B. Philips and P. Laird, Solving large scale constraint sastisfaction
and scheduling problems using a heuristic repair method, in: Proceedings AAAI-90, Boston,
MA (1990).

[31] P. Morris, Solutions without exhaustive search: an iterative descent method for binary
constraint satisfaction problems, in: Proceedings AAAI-90 Workshop on Constraint-Directed
Reasoning, Boston, MA (1990).

[32] P. Morris, An iterative improvement algorithm with guaranteed convergence, Tech. Rept.
TR-M-91-1, Intellicorp Technical Note (1991).

[33] P. Morris, On the density of solutions in equilibrium points for the queens problem, in:
Proceedings AAAI-92, San Jose, CA (1992).

[34] N. Muscettola, S.F. Smith, G. Amiri and D. Pathak, Generating space telescope observation
schedules, Tech. Rept. CMU-RI-TR-89-28, Carnegie Mellon University, Robotics Institute,
Pittsburgh, PA (1989).

[35] R. Musick and S. Russell, How long will it take?, in: Proceedings AAAI-92, San Jose, CA
(1992).

[36] B. Selman, H.J. Levesque and D. Mitchell, A new method for solving hard satisfiability
problems, in: Proceedings AAAI-92, San Jose, CA (1992).

[37] R.G. Simmons, A theory of debugging plans and interpretations, in: Proceedings AAAI-88,
St. Paul, MN (1988).

[38] R. Sosic and J. Gu, A polynomial time algorithm for the n-queens problem, SIGART i (3)
(1990).

[39] H.S. Stone and J.M. Stone, Efficient search techniques--an cmpirical study of the n-queens
problem, IBM J. Res. Dev. 31 (1987) 464-474.

[40] G.J. Sussman, A Computer Model of Skill Acquisition (American Elsevier, New York, 1975).
[41] J.S. Turner, Almost all k-colorable graphs are easy to color, J. Algorithms 9 (1988) 63-82.
[42] M.M. Veloso and J.G. Carbonell, Towards scaling up machine learning: a case study with

Minimizing conflicts: a heuristic repair method 205

derivation analogy in prodigy, in: S. Minton, ed., Machine Learning Methods for Planning
and Scheduling (Morgan Kaufmann, San Mateo, CA, 1992).

[43] M. Waldrop, Will the Hubble space telescope compute?, Science 243 (1989) 1437-1439.
[44] M. Zweben, A framework for iterative improvement search algorithms suited for constraint

satisfaction problems, Tech. Rept. RIA-90-05-03-1, NASA Ames Research Center, AI
Research Branch (1990).

[45] M. Zweben, M. Deale and R. Gargan, Anytime rescheduling, in: Proceedings Workshop on
Innovative Approaches to Planning, Scheduling and Control (Morgan Kaufmann, San Mateo,
CA, 1990).

