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The paper describes a simple heuristic approach to solving large-scale constraint satisfaction 
and scheduling problems. In this approach one starts with an inconsistent assignment for a 
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by a value-ordering heuristic, the min-conflicts heuristic, that attempts to minimize the 
number of constraint violations after each step. The heuristic can be used with a variety of 
different search strategies. 

We demonstrate empirically that on the n-queens problem, a technique based on this 
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1. Introduction 

One of the most promising general approaches for solving combinatorial 
search problems is to generate an initial, suboptimal solution and then to apply 
local repair heuristics [19, 28, 30, 32, 36, 38, 44]. Techniques based on this 
approach have met with empirical success on many combinatorial problems, 
including the traveling salesman and graph partitioning problems [20]. Such 
techniques also have a long tradition in AI, most notably in problem-solving 
systems that operate by debugging initial solutions [37, 40]. In this paper, we 
describe how this idea can be extended to constraint satisfaction problems 
(CSPs) in a natural manner. 

Most of the previous work on CSP algorithms has assumed a "constructive" 
bracktracking approach in which a partial assignment to the variables is 
incrementally extended. In contrast, our method creates a complete, but 
inconsistent assignment and then repairs constraint violations until a consistent 
assignment is achieved. The method is guided by a simple ordering heuristic for 
repairing constraint violations: identify a variable that is currently in conflict 
and select a new value that minimizes the number of outstanding constraint 
violations. 

We present empirical evidence showing that on some standard problems our 
approach is considerably more efficient than traditional constructive backtrack- 
ing methods. For example, on the n-queens problem, our method quickly finds 
solutions to the one million queens problem [30]. We argue that the reason that 
repair-based methods can outperform constructive methods is because a com- 
plete assignment can be more informative in guiding search than a partial 
assignment. However, the utility of the extra information is domain dependent. 
To help clarify the nature of this potential advantage, we present a theoretical 
analysis that describes how various problem characteristics may affect the 
performance of the method. This analysis shows, for example, how the 
"distance" between the current assignment and solution (in terms of the 
minimum number of repairs that are required) affects the expected utility of 
the heuristic. 

The work described in this paper was inspired by a surprisingly effective 
neural network developed by Adorf and Johnston [2, 22] for scheduling 
astronomical observations on the Hubble Space Telescope. Our heuristic CSP 
method was distilled from an analysis of the network. In the process of carrying 
out the analysis, we discovered that the effectiveness of the network has little 
to do with its connectionist implementation. Furthermore, the ideas employed 
in the network can be implemented very efficiently within a symbolic CSP 
framework. The symbolic implementation is extremely simple. It also has the 
advantage that several different search strategies can be employed, although 
we have found that hill-climbing methods are particularly well-suited for the 
applications that we have investigated. 

We begin the paper with a brief review of Adorf and Johnston's neural 
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network, and then describe our symbolic method for heuristic repair. Follow- 
ing this, we describe empirical results with the n-queens problem, graph- 
colorability problems and the Hubble Space Telescope scheduling application. 
Finally, we consider a theoretical model identifying general problem charac- 
teristics that influence the performance of the method. 

2. Previous work: the GDS network 

By almost any measure, the Hubble Space Telescope scheduling problem is a 
complex task [21, 34,43]. Between ten thousand and thirty thousand as- 
tronomical observations per year must be scheduled, subject to a great variety 
of constraints including power restrictions, observation priorities, time-depen- 
dent orbital characteristics, movement of astronomical bodies, stray light 
sources, etc. Because the telescope is an extremely valuable resource with a 
limited lifetime, efficient scheduling is a critical concern. An initial scheduling 
system, developed using traditional programming methods, highlighted the 
difficulty of the problem; it was estimated that it would take over three weeks 
for the system to schedule one week of observations. As described in Section 
4.2, this problem was remedied by the development of a successful constraint- 
based system to augment the initial system. At the heart of the constraint- 
based system is a neural network developed by Adorf and Johnston, the 
guarded discrete stochastic (GDS) network, which searches for a schedule 
[2, 22]. 

From a computational point of view the network is interesting because Adorf 
and Johnston found that it performs well on a variety of tasks, in addition to 
the space telescope scheduling problem. For example, the network performs 
significantly better on the n-queens problem than methods that were previously 
developed. The n-queens problem requires placing n queens on an n × n 
chessboard so that no two queens share a row, column or diagonal. The 
network has been used to solve problems of up to 1024 queens, whereas most 
heuristic backtracking methods encounter difficulties with problems one-tenth 
that size [39]. 

The GDS network is a modified Hopfield network [18]. In a standard 
Hopfield network, all connections between neurons are symmetric. In the GDS 
network, the main network is coupled asymmetrically to an auxiliary network 
of guard neurons which restrict the configurations that the network can assume. 
This modification enables the network to rapidly find a solution for many 
problems, even when the network is simulated on a serial machine. Unfortu- 
nately, convergence to a stable configuration is no longer guaranteed. Thus the 
network can fall into a local minimum involving a group of unstable states 
among which it will oscillate. In practice, however, if the network fails to 
converge after some number of neuron state transitions, it can simply be 
stopped and started over. 
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To illustrate the network architecture and updating scheme, let us consider 

how the network is used to solve binary constraint satisfaction problems. A 

problem consists of n variables, X 1 . . . . .  X,,, with domains D~ . . . . .  D,,, and a 

set of binary constraints. Each constraint C (Xj, X~) is a subset of D / x D k 

specifying incompatible values for a pair of variables. The goal is to find an 

assignment for each of the variables which satisfies the constraints. (In this 

paper  we only consider the task of finding a single solution, rather than that of 

finding all solutions.) To solve a CSP using the network, each variable is 
represented by a separate set of neurons, one neuron for each of the variable's 

possible values. Each neuron is either "on"  or "off"  and in a solution state, 

every variable will have exactly one of its corresponding neurons "on" ,  

representing the value of that variable. Constraints are represented by inhibi- 

tory (i.e.,  negatively weighted) connections between the neurons. To insure 
that every variable is assigned a value, there is a guard neuron for each set of 

neurons representing a variable; if no neuron in the set is on, the guard neuron 

will provide an excitatory input that is large enough to turn one on. (Because 
of the way the connection weights are set up, it is unlikely that the guard 

neuron will turn on more  than one neuron.) The network is updated on each 
cycle by randomly picking a set of neurons that represents a variable, and 

flipping the state of the neuron in that set whose input is most  inconsistent with 
its current output (if any). When all neurons'  states are consistent with their 

input, a solution is achieved. 

To solve the n-queens problem,  for example,  each of the n x n board 
positions is represented by a neuron whose output is either one or zero 
depending on whether  a queen is currently placed in that position or not. 

(Note  that this is a local representat ion rather than a distributed representation 
of the board.)  If two board positions are inconsistent, then an inhibiting 

connection exists between the corresponding two neurons. For example,  all the 
neurons in a column will inhibit each other,  representing the constraint that 

two queens cannot be in the same column. For each row, there is a guard 
neuron connected to each of the neurons in that row which gives the neurons in 
the row a large excitatory input, enough so that at least one neuron in the row 

will turn on. The guard neurons thus enforce the constraint that one queen in 
each row must be on. As described above, the network is updated on each 

cycle by randomly picking a row and flipping the state of the neuron in that 
row whose input is most inconsistent with its current output. A solution is 
realized when the output of every neuron is consistent with its input. 

3. Why does the GDS network perform so well? 

Our analysis of the GDS network was motivated by the following question: 
" 'Why does the network perform so much better  than traditional backtracking 
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methods on certain tasks"? In particular, we were intrigued by the results on 
the n-queens problem, since this problem has received considerable attention 
from previous researchers. For n-queens, Adorf and Johnston found empirical- 
ly that the network requires a linear number of transitions to converge. Since 
each transition requires linear time, the expected (empirical) time for the 
network to find a solution is O(n2). To check this behavior, Johnston and 
Adorf ran experiments with n as high as 1024, at which point memory 
limitations became a problem. 1 

3.1. Nonsystematic search hypothesis 

Initially, we hypothesized that the network's advantage came from the 
nonsystematie nature of its search, as compared to the systematic organization 
inherent in depth-first backtracking. There are two potential problems associ- 
ated with systematic depth-first search. First, the search space may be organ- 
ized in such a way that poorer choices are explored first at each branch point. 
For instance, in the n-queens problem, depth-first search tends to find a 
solution more quickly when the first queen is placed in the center of the first 
row rather than in the corner; apparently this occurs because there are more 
solutions with the queen in the center than with the queen in the corner [39]. 
Nevertheless, most naive algorithms tend to start in the corner simply because 
humans find it more natural to program that way. However, this fact by itself 
does not explain why nonsystematic search would work so well for n-queens. A 
backtracking program that randomly orders rows (and columns within rows) 
performs much better than the naive method, but still performs poorly relative 
to the GDS network. 

The second potential problem with depth-first search is more significant and 
more subtle. As illustrated by Fig. 1, a depth-first search can be a disadvantage 
when solutions are not evenly distributed throughout the search space. In the 
tree at the left of the figure, the solutions are clustered together. In the tree on 
the right, the solutions are more evenly distributed. Thus, the average distance 
between solutions is greater in the left tree. In a depth-first search, the average 
time to find the first solution increases with the average distance between 
solutions. Consequently depth-first search performs relatively poorly in a tree 
where the solutions are clustered, such as that on the left [13,29]. In 
comparison, a search strategy which examines the leaves of the tree in random 
order is unaffected by solution clustering. 

We investigated whether this phenomenon explained the relatively poor 
performance of depth-first search on n-queens by experimenting with a ran- 

J The network, which is programmed in LISP, requires approximately 11 minutes to solve the 
1024 queens problem on a TI Explorer II. For larger problems, memory becomes a limiting factor 
because the network requires approximately O(n 2) space. (Although the number of connections is 
actually O(n3), some connections are computed dynamically rather than stored.) 
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0 = solution 

Fig. i. Solutions clustered vs. solutions evenly distributed. 

domized search algorithm, called a Las Vegas algorithm [5]. The algorithm 
begins by selecting a path from the root to a leaf. To select a path, the 
algorithm starts at the root node and chooses one of its children with equal 
probability. This process continues recursively until a leaf is encountered.  If 
the leaf is a solution the algorithm terminates, if not, it starts over again at the 
root and selects a path. The same path may be examined more than once, since 
no memory is maintained between successive trials. 

The Las Vegas algorithm does, in fact, perform better than simple depth-first 
search on n-queens. In fact, this result was already known [5]. However,  the 
performance of the Las Vegas algorithm is still not nearly as good as that of the 
GDS network, and so we concluded that the systematicity hypothesis alone 
cannot explain the network's behavior. 

3.2. Informedness hypothesis 

Our second hypothesis was that the network's search process uses informa- 
tion about the current assignment that is not available to a constructive 
backtracking program. We now believe this hypothesis is correct, in that it 
explains why the network works so well. In particular, the key to the network's 
performance appears to be that state transitions are made so as to reduce the 
number  of outstanding inconsistencies in the network; specifically, each state 
transition involves flipping the neuron whose output is most inconsistent with 
its current input. From a constraint satisfaction perspective, it is as if the 
network reassigns a value for a variable by choosing the value that violates the 
fewest constraints. This idea is captured by the following heuristic: 

Min-Conflicts heuristic: 
Given: A set of variables, a set of binary constraints, and an 
assignment specifying a value for each variable. Two variables 
conflict if their values violate a constraint. 
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Procedure: Select a variable that is in conflict, and assign it a value 
that minimizes the number of conflicts. 2 (Break ties randomly.) 

We have found that the network's behavior can be approximated by a 
symbolic system that uses the min-conflicts heuristic for hill climbing. The 
hill-climbing system starts with an initial assignment generated in a preprocess- 
ing phase. At each choice point, the heuristic chooses a variable that is 
currently in conflict and reassigns its value, until a solution is found. The 
system thus searches the space of possible assignments, favoring assignments 
with fewer total conflicts. Of course, the hill-climbing system can become 
"stuck" in a local maximum, in the same way that the network may become 
"stuck" in a local minimum. In the next section we present empirical evidence 
to support our claim that the min-conflicts approach can account for the 
network's effectiveness. 

There are two aspects of the min-conflicts hill-climbing method that dis- 
tinguish it from standard CSP algorithms. First, instead of incrementally 
constructing a consistent partial assignment, the min-conflicts method repairs a 

complete but inconsistent assignment by reducing inconsistencies. Thus, it uses 
information about the current assignment to guide its search that is not 
available to a standard backtracking algorithm. Second, the use of a hill- 
climbing strategy rather than a backtracking strategy produces a different style 
of search. 

Extracting the method from the network enables us to tease apart and 
experiment with its different components. In particular, the idea of repairing 
an inconsistent assignment can be used with a variety of different search 
strategies in addition to hill climbing. For example, we can backtrack through 
the space of possible repairs, rather than using a hill-climbing strategy, as 
follows. Given an initial assignment generated in a preprocessing phase, we can 
employ the rain-conflicts heuristic to order the choice of variables and values to 
consider, as described in Fig. 2. Initially, the variables are all on a list of 
VARS-LEFT, and as they are repaired, they are pushed onto a list of VARS-DONE. 
The algorithm attempts to find a sequence of repairs, such that no variable is 
repaired more than once. If there is no way to repair a variable in VARS-LEFT 
without violating a previously repaired variable (a variable in VARS-DONE), the 
algorithm backtracks. 

Notice that this algorithm is simply a standard backtracking algorithm 

2 In general, the heuristic attempts to minimize the number of other variables that will need to 
be repaired. For binary CSPs, this corresponds to minimizing the number of conflicting variables. 
For general CSPs, where a single constraint may involve several variables, the exact method of 
counting the number of variables that will need to be repaired depends on the particular constraint. 
The space telescope scheduling problem is a general CSP, whereas the other tasks described in this 
paper are binary CSPs. 
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Procedure INFORMED-BACKTRACK (VARS-LEFT VARS-DONE) 

If all variables are consistent, then solution found, STOP. 

Let VAR = a variable in VARS-LEFT that is in conflict. 

Remove VAR from VARS-LEFT. 

Push VAR onto VARS-DONE. 

Let VALUES = list of possible values for VAR ordered in ascending order 

according to number of conflicts with variables in VARS- 

LEFT. 

For each VALUE in VALUES, until solution found: 

If VALUE does not conflict with any variable that is in VARS-DONE, 

then Assign VALUE to VAR. 

Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE) 

end if 

end for 

end procedure 

Begin program 

Let VARS-LEFT = list of all variables, each assigned an initial value. 

Let VARS-DONE = nil 

Call INFORMED-BACKTRACK(VARS-LEFT VARS-DONE) 

End program 

Fig. 2. Informed backtracking using the min-conflicts heuristic. 

augmented with the min-conflicts heuristic to order its choice of which variable 
and value to attend to. This illustrates an important point. The backtracking 
repair algorithm incrementally extends a consistent partial assignment (i.e., 
VARS-DONE), as does a constructive backtracking program, but in addition, 
uses information from the initial assignment (i.e., VARS-LEFF) tO bias its 
search. Thus, it is a type of in formed backtracking. We still characterize it as 
repair-based method since its search is guided by a complete, inconsistent 
assignment. 

4. Experimental results 

In this section we evaluate the performance of the min-conflicts heuristic on 
some standard tasks. These experiments identify problems on which min- 
conflicts performs well, as well as problems on which it performs poorly. The 
experiments also show the extent to which the min-conflicts approach approxi- 
mates the behavior of the GDS network. 

Our experiments focus on the two search strategies described in the previous 
section, the hill-climbing repair strategy and the backtracking repair strategy. 
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These strategies provide a starting point for our analysis, although many more 
sophisticated search strategies exist. In general, these two strategies have the 
following advantages and disadvantages: 

(1) Hill climbing. This strategy most closely replicates the behavior of the 
GDS network. The disadvantage is that a hill-climbing program can get 
caught in local maxima, in which case it will not terminate. 

(2) Informed backtracking. As described earlier, this strategy is a standard 
backtracking strategy augmented with the min-conflicts heuristic for 
ordering the assignment of variables and values; this can be viewed as 
backtracking in the space of possible repairs. The advantage of this 
strategy is that it is complete--if there is a solution, it will eventually be 
found; if not, failure will be reported. Unfortunately, this is of limited 
significance for large-scale problems because terminating in a failure can 
take a very long time. 

4.1. The n-queens problem 

The n-queens problem, originally posed in the 19th century, has become a 
standard benchmark for testing CSP algorithms. In a sense, the problem of 
finding a single solution has been solved, since there are a number of analytic 
methods which yield a solution in linear time [1]. For example, there are 
certain well-known patterns that can be instantiated to produce a solution. 
Nevertheless, the problem has been perceived as relatively "hard" for heuristic 
search methods. Several studies of the n-queens problem [15, 25, 39] have 
compared heuristic backtracking methods such as search rearrangement back- 
tracking (e.g., most-constrained first), forward checking, dependency-directed 
backtracking, etc. To the best of our knowledge, the GDS network was the 
first search method which could consistently solve problems involving hundreds 
of queens in several minutes. 

On the n-queens problem, Adorf and Johnston [2] reported that the 
probability of the GDS network converging increases with the size of the 
problem. For large problems, e.g., n > 100 (where n is the number of queens), 
they observed that the network almost always converges. Moreover, the 
median number of transitions required for convergence is only about 1.16n. 
Since it takes O(n) time to execute a transition (i.e., picking a neuron and 
updating its connections), the expected time to solve a problem is (empirically) 
O(n2). 

To compare the network with our min-conflicts approach, we constructed a 
hill-climbing program that operates as follows. A preprocessing phase creates 
an initial assignment using a greedy algorithm that iterates through the rows, 
placing each queen on the column where it conflicts with the fewest previously 
placed queens (breaking ties randomly). In the subsequent repair phase the 
program keeps repairing the assignment until a solution is found. To make a 
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repair, the program selects a queen that is in conflict and moves it to the 
column (within the same row) where it conflicts with the fewest other queens 
(breaking ties randomly).  A repair can be accomplished in O(n) time by 
maintaining a list of the queens currently in conflict and an array of counters 

indicating the number of queens in each column and diagonal. 
Interestingly, in our initial experiments we found that the hill-climbing 

program performs significantly better than the network. For n ~> 100 the 
program has never failed to find a solution. Moreover,  the required number of 
repairs appears to remain constant as n increases. For comparison, recall that 
the required number of repairs for the network increases linearly with n. After 
further  analysis, we found that this discrepancy can be accounted for by the 
network's  and the hill-climbing program's different initialization processes. In 
particular, whereas the network starts with no queens assigned in the initial 
state, the hill-climbing program's preprocessing phase invariably produces an 
initial assignment that is "close" to a solution. As shown in Table 1, the 
number  of conflicting queens in the initial assignment grows extremely slowly, 
from a mean of 3.1 for n = 10 to a mean of 12.8 for n = 10 ~. We found that if 
we start the network in an initial state produced by our preprocessing 
algorithm, the network and the hill-climbing program perform comparably. 
(We note,  however, that the network requires O(n 2) space, as compared to the 
O(n) space required by the hill-climbing program, which prevented us from 
running very large problems on the network.) On the other hand, if we start 
the hill-climbing program with a random initial assignment, the required 
number  of repairs tends to grow linearly. This is not surprising, since the 
number  of conflicts in a random finitialization also tends to grow linearly. 

Table 2 compares the efficiency of our hill-climbing program and several 
backtracking programs. Each program was run one hundred times for n 
increasing from ten to one million. Each entry in the table shows the mean 
number  of queens moved, where each move is either a backtrack or a repair, 
depending on the program. A bound of n x 100 queen movements was 
employed so that the experiments could be conducted in a reasonable amount 
of time; if the program did not find a solution after moving n x 100 queens, it 
was terminated and credited with n x 100 queen movements. For the cases 

T a b l e  1 

N u m b e r  o f  c o n f l i c t s  a f t e r  i n i t i a l i z a t i o n .  

C o n f l i c t s  a f t e r  

n i n i t i a l i z a t i o n  

n = 10 ~ 3 ,11  

n = 102 7 ,35  

n = 10 ~ 9 .75  

n = 1 0  4 10,96  

n = 105 12,02 

n = 10" 12 .80  
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Table 2 
Number  of backt racks / repai rs  for n-queens algorithms. 

171 

Constructive Repair-based 

Standard Most constrained Min-conflicts Min-conflicts 

backtrack backtrack hill climbing backtrack 

n = 101 53.8 17.4 57.0 46.8 

n = 102 4473 (70%) 687 (96%) 55.6 25.0 

n = 103 88650 (13%) 22150 (81%) 48.8 30.7 
n = 104 * * 48.5 27.5 

n = 105 * * 52.8 27.8 

n = 106 * * 48.3 26.4 

* = exceeded computat ional  resources. 

when this occurred, the corresponding table entry indicates in parentheses the 
percentage of times the program completed successfully. The first column 
shows the results for a standard constructive backtracking program. For 
n/> 1000, the program was ineffective. The second column in the table shows 
the results for informed backtracking using the "most-constrained first" heuris- 
tic. This program is a constructive backtracking program that selects the row 
that is most constrained when choosing the next row on which to place a 
queen. In an empirical study of the n-queens problem, Stone and Stone [39] 
found that this was by far the most powerful heuristic for the n-queens problem 
out of several described earlier by Bitner and Reingold [4]. The program 
exhibited highly variable behavior. At n -- 1000, the program found a solution 
on only 81% of the runs, but three-quarters of these successful runs required 
fewer than 100 backtracks. Unfortunately, for n > 1000, one hundred runs of 
the program required considerably more than 12 hours on a SPARCstationl, 
both because the mean number of backtracks grows rapidly and because the 
"most-constrained first" heuristic takes O(n) time to select the next row after 
each backtrack. Thus we were prevented from generating sufficient data for 
n > 1000. The next column in the table shows the results for hill climbing using 
the min-conflicts heuristic. As discussed above, this algorithm performed 
extremely well, requiring only about 50 repairs irrespective of problem size. 
The final column shows the results for an informed backtracking program that 
uses the min-conflicts heuristic, backtracking within the space of possible 
repairs as described in the previous section. We augmented this program with a 
pruning heuristic that would prune a path when the number of constraint 
violations began to increase significantly. However, this proved unnecessary for 
large n. For n/> 100, this program never backtracked (i.e., no queen had to be 
repaired more than once). This last program performs better than the hill- 
climbing program (although there is little room for improvement) primarily 
because the hill-climbing program may move the same queen repeatedly, which 
degrades its performance. 

A disadvantage of the min-conflicts heuristic is that the time to accomplish a 
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repair grows with the size of the problem. For n-queens, as noted above, each 
repair requires O(n) time in the worst case. Of course, most heuristic methods 
require time to determine the best alternative at a choice point. For example, 
the "most-constrained" heuristic also requires O(n) time at each choice point• 
However, with min-conflicts the tradeoff is clearly cost effective, at least for 
n-queens. Since the number of repairs remains approximately constant as n 
grows, the program's runtime is approximately linear• This is illustrated by Fig. 
3, which shows the average runtime for the hill-climbing program. In terms of 
realtime performance, this program solves the million queens problem in less 
than four minutes on a SPARCstationl. 

The cost of making a repair can be optimized for large problems, in which 
case the average solution time for the million-queens problem is reduced to less 
than a minute and a half. The program maintains a list of queens that are in 
conflict, as well as three arrays of counters indicating the number of queens in 
each column, row and diagonal• Rather than scanning a row for the position 
with the fewest conflicts, the optimized program maintains a list of empty 
columns (which tends to be quite small); it first checks for a zero-conflict 
position by looking for an empty column with no conflicts along the diagonals. 
If there is no zero-conflict position, the program repeatedly looks for a position 
with one conflict by randomly selecting a position and checking the number of 
conflicts in that position. Since there tend to be many positions with one 
conflict, this technique tends to succeed after just a few tries, so the total 
number of positions examined is generally very low. 

One obvious conclusion from these results is that n-queens is actually a very 
easy problem given the right method. Interesting, two other heuristic methods 
that can quickly solve n-queens problems have also recently been invented. 
(These two other methods and our method were all developed and published 
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Fig. 3. Mean solution time for hill-climbing program on n-queens  problem. 
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independently.) While both methods are specific to n-queens, one method is a 
repair-based method that is similar to ours in spirit [38], whereas the other 
employs a constructive backtracking approach [23]. This latter method uses a 
combination of variable and value-ordering heuristics which take advantage of 
the particular structure inherent in n-queens. This shows that one can solve 
n-queens problems quickly with a traditional, constructive backtracking meth- 
od. Nevertheless, given the comparative simplicity of our method, it would 
seem that n-queens is more naturally solved using a repair-based approach. 

4.2. Scheduling applications 

Whereas the n-queens problem is only of theoretical interest, scheduling 
algorithms have many practical applications. A scheduling problem involves 
placing a set of tasks on a time line, subject to temporal constraints, resource 
constraints, preferences, etc. The Hubble Space Telescope scheduling problem 
can be considered a constrained optimization problem [10, 12] where we must 
maximize both the number and the importance of the constraints that are 
satisfied. As noted earlier, the initial scheduling system developed for this 
application had difficulty producing schedules efficiently. The constraint-based 
system, SPIKE, that was developed to augment (and partially replace) the 
initial system has performed quite well using a relatively simple approach. 

In part, the HST scheduling problem was made more tractable by dividing it 
into two parts, a long-term scheduling problem and a short-term scheduling 
problem. Currently SPIKE handles only the long-term problem. The long-term 
problem involves assigning approximately one year's worth of exposures to a 
set of "bins" or time segments of several days length. (The short-term problem 
involves deriving a detailed series of commands for the telescope and is 
addressed using different techniques [34].) The input to SPIKE is a set of 
detailed specifications for exposure that are to be scheduled on the telescope. 
The constraints relevant to the long-term problem are primarily temporal 
constraints. As outlined in [21[, some exposures are designed as calibrations or 
target acquisitions for others, and so must proceed them. Some must be 
executed at specific times, or at specific phases in the case of periodic 
phenomena. Some observations must be made at regular intervals, or grouped 
within a specified time span. The constraints vary in their importance; they 
range from "hard" constraints that cannot be violated under any circum- 
stances, to "soft" constraints that represent good operating practices and 
scheduling goals. 

SPIKE operates by taking the exposure specifications prepared by astronom- 
ers and compiling them into a set of tasks to be scheduled and a set of 
constraints on those tasks. Among other things, the compilation process takes 
the transitive closure of temporal constraints and explicitly represents each 
inferred constraint. For example, if task A must be before task B, and task B 
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must be before task C, then the system will explicitly represent the fact that 
task A must be before task C as well. This explicit representation enables the 
scheduler to obtain a more accurate assessment of the number of conflicts in a 
given schedule. 

In searching for a schedule, the GDS network follows the constraint 
satisfaction approach outlined in Section 2. In effect, if a task is currently in 
conflict then it is removed from the schedule, and if a task is currently 
unscheduled then the network schedules it for the time segment that has the 
fewest constraint violations. However,  the network uses only the hard con- 

straints in determining the time segment with the fewest violations. Soft 
constraints are consulted when there are two or more "least conflicted" places 
to move a task. 

The min-conflicts hill-climbing method has been shown to be as effective as 
the GDS network on representative data sets used for testing SPIKE, and it 
was recently incorporated into the SPIKE system. One advantage in using the 
min-conflicts method,  as compared to the GDS network, is that much of the 
overhead of using the network can be eliminated (particularly the space 
overhead).  Moreover,  because the min-conflicts heuristic is so simple, the 
min-conflicts module was quickly coded in C and is extremely efficient. (The 
min-conflicts scheduler runs about an order of magnitude faster than the 
network, although some of the improvement is due to factors such as program- 
ming language differences, making a precise comparison difficult.) While this 
may be regarded as just an implementation issue, we believe that the clear and 
simple formulation of the method was a significant enabling factor. In addition, 
the simplicity of the method makes it easy to experiment with various 
modifications to the heuristic and the search strategy. This has significant 
practical importance, since SPIKE is currently being used on other types of 
telescope scheduling problems where a certain amount of modification and 

tuning is required. 
In general, scheduling appears to be an excellent application area for 

repair-based methods. Supporting evidence comes from recent work on other 
real-world scheduling applications by Zweben [44], Biefeld and Cooper [3] and 
Kurtzmann [27]. Each of these projects use iterative improvement methods 
which can be characterized as repair-based. There are several reasons why 
repair-based methods are well-suited to scheduling applications. First, as 
Zweben et al. [45] have pointed out, unexpected events may require schedule 
revision, in which case dynamic rescheduling is an important issue. Repair- 
based methods can be used for rescheduling in a natural manner. Second, most 
scheduling applications involve optimization, at least to some degree, and 
repair-based methods are also naturally extended to deal with such issues. For 
example,  in scheduling the Hubble Space Telescope, the goal is to maximize 
the amount  of observing time and the priority of the chosen observations. The 
telescope is expected to remain highly over-subscribed, in that many more 
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proposals will be submitted than can be accommodated by any schedule. On 
such problems, repair-based methods offer an alternative to traditional branch- 
and-bound techniques. Finally, as Biefeld and Cooper [3] have pointed out, 
there are real-world scheduling problems where humans find repair-based 
methods very natural. For example, human schedulers at JPL employ repair- 
based methods when constructing mission schedules for robotic spacecraft. For 
such problems, it may be relatively easy for people using a repair-based system 
to understand the system's solution and how it was arrived at. 

4.3. Graph coloring 

In addition to n-queens problem and HST scheduling, Adorf and Johnston 
also tested the GDS network on graph 3-colorability problems. A graph 
3-colorability problem consists of an undirected graph with n vertices. Each 
vertex must be assigned one of three colors subject to the constraint that no 
neighboring vertex is assigned the same color. Graph 3-colorability is a 
well-studied NP-complete problem that is used to model certain types of 
scheduling and resource allocation problems, such as examination scheduling 
and register allocation. 

Adorf and Johnston found that the performance of the network depended 
greatly on the connectivity of the graph. On densely-connected graphs the 
network converged rapidly to a solution, while on sparsely-connected graphs 
the network performed much more poorly. We have repeated Adorf and 
Johnston's experiments using the min-conflicts approach, and found similar 
results. We have also found that there is a simple, well-known backtracking 
algorithm for coloring graphs that performs much better than either the 
network or any of our min-conflicts algorithms on sparsely-connected graphs. 
This provides a useful case for comparative analysis. 

We used the same procedure for generating test problems as Adorf and 
Johnston. Solvable problems with n nodes and m arcs are generated as follows: 

(1) Create three groups of nodes, each with n / 3  nodes. 
(2) Randomly create m arcs between nodes in different groups. 
(3) Accept the graph if it has no unconnected components. 

Johnston and Adorf experimented with two classes of problem instances; one 
set with m =2n  (i.e., average vertex degree of 4) and another with 
m = n(n - 1)/4. We will refer to the former as the sparsely-connected graphs, 
and the latter as the densely-connected graphs. 

Figure 4 compares the results published by Adorf and Johnston with our 
results. In Adorf and Johnston's experiments, graphs were tested in the range 
from n = 30 to n = 180. For each of the two types of graphs, three different 
instances of each size were generated, and the network was run 3000 times per 
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graph. Our experiments with the min-conflicts hill-climbing algorithm em- 
ployed the same experimental design. 

Because the network is started with all nodes "uncolored", we employed a 
similar approach with the hill-climbing program so that the comparison would 
be fair. Thus, in the initialization phase, each vertex is labeled as "uncolored". 
An uncolored node is defined to conflict with each of its neighbors, regardless 
of their color. 

The results demonstrate that the hill-climbing algorithm behaves similarly to 
the GDS network on both types of problems. This supports our hypothesis that 
the hill-climbing algorithm captures the essential characteristics of the network. 
As shown in Fig. 4(a), the densely-connected graphs are easy to solve. Both 
methods tend to converge rather quickly on average. Specifically, the mean 
number of transitions required for convergence appears to grow linearly with 
n. The sparsely-connected graphs are much harder. In these experiments, the 
network was given a bound of 9n transitions, after which the run was 
terminated. (The bound was chosen arbitrarily, but means in principle that 
each of the 3n neurons in the main network can transition three times.) The 
hill-climbing algorithm was therefore given a bound of 9n repairs. As illus- 
trated in Fig. 4(b), for both methods, the probability of success appears to 
decline exponentially with n.3 Adorf and Johnston observed that as the number 
of nodes increases, it is highly likely that the network will become caught in a 
local minimum in which a small number of neurons transition repeatedly. That 
is, the network becomes trapped, vacillating between several states. The 
hill-climbing algorithm behaves in a similar manner. 

To determine whether the min-conflicts approach would be practical for 
graph-coloring applications, we compared our min-conflicts hill-climbing algo- 
rithm to a simple constructive backtracking algorithm that is known to perform 
well on graph-coloring problems. The algorithm, originally proposed by Brelaz 
[6, 41], can be described as the repeated application of the following rule for 

choosing a node to color: 

Find the uncolored node that has the fewest consistent colorings 
with its neighbors. If there is more than one, then choose one that 
has the maximum degree in the uncolored subgraph. Break ties 

randomly. 

The use of an identical bound for both programs may give the hill-climbing algorithm a slight 
advantage. The GDS network requires separate transitions to deassign a variable and to assign a 
new value. In the hill-climbing program a single repair, in effect, simulates two transitions by the 
network (unless an initial "uncolored" value is being repaired). Additional experimentation has 
revealed that this advantage is relatively small, however. In fact, Fig. 4(b) shows that on the sparse 
graphs, the hill-climbing program performed a bit worse than the network for small n, although the 
significance of this is unclear due to the relatively large statistical variation in the difficulty of the 
smaller problems. Unfortunately, the network is no longer running, so additional experiments 
cannot be run. 
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Fig. 4. Compar ing  the GDS network to min-conflicts hill climbing on dense and sparse graph- 
coloring problems. 

Essentially, this is a variable order rule consisting of two criteria. The first 
criterion is a preference for the "most-constrained" variable. The tie-breaking 
criterion is a preference for the "most-constraining" variable. Thus, this rule is 
composed of two generic variable-ordering heuristics. No value-ordering 
heuristic is required. 

The rule can be incorporated in a standard backtracking algorithm in the 
obvious manner. Turner [41] has shown that this algorithm will optimally color 
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"almost all" random k-colorable graphs without backtracking. This result 
actually says more about the distribution of random k-colorable graphs than 
about the effectiveness of the algorithm, but nonetheless, the Brelaz algorithm 
outperforms other algorithms we have tried. 

For a fair comparison between the Brelaz algorithm and our rain-conflicts 
algorithm, a good initialization method for the min-conflicts algorithm is 
presumably required. We can use the Brelaz rule itself to arrive at an 
initialization for our rain-conflicts algorithm. Specifically, the initialization 
process makes one pass through the vertices of the graph, using the Brelaz 
variable ordering rule to pick the next vertex to color. If no color consistent 
with the node's neighbors is available, a color is chosen that minimizes the 
number of conflicts. This process results in initial colorings with many fewer 
conflicts than random colorings. Table 3 shows the percentage of times that the 
initialization routine, by itself, finds a solution, for graphs of size n. Each entry 
in the table is based on 100 runs of the initialization routine for eight problems 
of size n to the sparsely-connected and densely-connected graphs described 
computed problems. 

Since the initialization process consistently finds solutions for the densely- 
connected graphs (eliminating the need for a repair phase), we restricted our 
experiments to the hard sparsely-connected graphs. Figure 5 compares the 
performance of the Brelaz algorithm with min-conflicts hill climbing. For 
completeness, the figure also shows a third algorithm, an informed backtrack- 
ing problem that uses rain-conflicts to search through the space of repairs. For 
each method, we tested eight randomly generated problems of size n, for 100 
runs per problem. The graph shows the probability of finding a solution within 
9n repairs/backtracks. (The results do not include trials where no repairs were 
required, or where Brelaz found the solution without backtracking. This is fair 
since the two repair-based methods use the Brelaz rule for initialization.) 

The conclusion from this experiment is that the Brelaz backtracking algo- 
rithm obviously outperforms both of the min-conflicts methods. Of the two 
latter methods, informed backtracking performs slightly better. In addition, 
comparing the performance of hill climbing with and without the Brelaz 

Table 3 
Probability that initialization alone will solve 
the problem. 

n Sparse graphs Dense graphs 

30 63.19% 100.00% 
60 50.13% 100.00% 
90 40.37% 100.00% 

120 32.75% 100.00% 
150 32.87% 100.00% 
180 23.75% 100.00% 
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Fig. 5. Comparing Brelaz backtracking with two min-conflicts methods. 

initialization method (Fig. 5 and Fig. 4) shows that the initialization method 
improves performance, but not dramatically. 4 

The experiments also demonstrate clearly that sparse graphs are much 
harder to color than dense graphs, for both the Brelaz method as well as for 
the min-conflicts methods. Intuitively, the reason that dense graphs are easy to 
color is that they are so overconstrained that a mistake is both unlikely and 
easily corrected. For min-conflicts, a mistake is easily corrected because the 
choice of color at a vertex is greatly influenced by the colors of all of its 
neighbors. For the Brelaz backtracking method, a mistake is easily corrected 
since the subsequent choices will be pruned quickly due to the overconstrained 
nature of the problem. In a study motivated in part by these experiments, 
Cheeseman et al. [7] have shown that as the average connectivity of a 
(connected) graph increases, a "phase transition" occurs, and it is at this point 
that most of the hard graph colorability problems are found. In other words, 
sine a constraint satisfaction problem is easy if it is either underconstrained or 
overconstrained, hard problems can be expected to lie within the boundary 
between underconstrained and overconstrained problems. Our sparsely- 
connected graphs lie within this boundary area. 

Figure 6 illustrates how the difficulty of sparsely-connected connected graphs 
manifests itself for min-conflicts. The group of nodes on the left of the graph 
represents one consistent coloring, and the group on the right represents a 
different consistent coloring. But the two colorings are inconsistent with each 
other. This situation frequently arises as a result of the initialization process. 
On the surface, the assignment would appear to be a good one, since there are 

4 
Interestingly, the Brelaz initialization method actually degrades performance of the smallest 

graphs (where n = 30), This is an anomaly which we cannot as yet explain. 
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Fig. 6. An unlucky initialization. 

at most three pairs of nodes in conflict. However, to achieve a solution, the 
boundary between the consistent colorings must be "pushed" completely to the 
left or right during the repair phase. Unfortunately, in this situation, there is 
not enough information locally available to direct min-conflicts. We have 
observed, in animations of the hill-climbing program, that the boundary tends 
to vacillate back and forth with little overall progress being made. 

The excellent performance of the Brelaz algorithm led us to experiment with 
backtracking repair algorithms that are a hybrid of Brelaz and min-conflicts. 
The best hybrid algorithm we found first employs the Brelaz initialization 
routine described above. Then a modified version of the Brelaz variable 
selection rule is used: 

Of the nodes that have not yet been repaired, find the node that has 
the fewest consistent colorings with its already-repaired neighbors. 
If there is more than one, then choose one that is in conflict with a 
previously repaired node. If there is still more than one candidate, 
choose the one with the maximum degree in the unrepaired sub- 
graph. 

The hybrid algorithm uses this rule for variable ordering and rain-conflicts 
heuristic for value ordering. Interestingly, once the initial assignment is made, 
this algorithm has a higher probability of finding a solution without backtrack- 
ing than Brelaz. On the other hand, when the algorithm does backtrack, it 
tends to require more backtracking on average than Brelaz, probably because 
it does not make as effective use of the "most constraining" criteria for 
variable selection. Unfortunately, the total time required by the hybrid al- 
gorithm tends to increase faster than the total time required by Brelaz, and 
thus the hybrid method appears to be primarily of academic interest. 

4.4. Summary of experimental results 

For each of the three tasks we have examined in detail, n-queens, HST 
scheduling and graph 3-colorability, we have found that the GDS network's 
behavior can be approximated by the min-conflicts hill-climbing algorithm. To 
this extent, we have a theory that explains the network's behavior. Obviously, 
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there are certain practical advantages to having "extracted" this method from 
the network. First, the method is very simple, and so can be programmed 
extremely efficiently, especially if done in a task-specific manner. Second, the 
heuristic we have identified, that is, choosing the repair which minimizes the 
number of conflicts, is very general. It can be used in combination with 
different search strategies and task-specific heuristics, an important factor for 
most practical applications. 

For example, the min-conflicts heuristic can be used in combination with a 
variety of variable ordering heuristics. In the previous section, for instance, we 
described a hybrid program in which the Brelaz variable ordering heuristic is 
adapted for use with min-conflicts value-ordering heuristic. We have also 
experimented with a hill-climbing program that uses "max-conflicts" as a 
variable ordering heuristic in conjunction with the rain-conflicts value ordering 
heuristic. On graph-coloring problems, the resulting program tends to out- 
perform min-conflicts alone, although performance is still not as good as the 
Brelaz algorithm. 

Insofar as the power of our approach is concerned, our experimental results 
are encouraging. We have identified two tasks, n-queens and HST scheduling, 
which appear more amenable to our repair-based approach than the traditional 
constructive approach that incrementally extends a consistent partial assign- 
ment. This is not to say that a repair-based approach will do better than any 

constructive approach on these tasks, but merely that our simple, repair-based 
approach has done relatively well in comparison to the obvious constructive 
strategies we tried. We also note that repair-based methods have a special 
advantage for scheduling tasks, since they can be used for overconstrained 
problems and for rescheduling problems in a natural manner. Thus it seems 
likely that there are other applications for which our approach will prove 
useful. 

5. Analysis 

The previous section showed that, compared to constructive approaches, our 
repair-based approach is extremely effective on some tasks, such as placing 
queens on a chessboard, and less effective on other tasks, such as coloring 
sparsely-connected graphs. We claimed that the min-conflicts heuristic takes 
advantage of information in the complete assignment to guide its search; this 
information is not available to a constructive backtracking algorithm that 
incrementally extends a partial assignment. Thus the advantage of the min- 
conflicts heuristic over constructive approaches depends on how "useful" this 
information is. In this section we formalize this intuition. Specifically, we 
investigate how the use of a complete assignment informs the choice of which 
value to pick. The analysis reveals how the effectiveness of the min-conflicts 
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heuristic is influenced by various characteristics of a task domain. The analysis 
is independent  of any particular search strategy, such as hill climbing or 

backtracking. 

5.1. Modeling the min-conflicts heuristic 

Consider a constraint satisfaction problem with n variables, where each 

variable has k possible values. We restrict our consideration to a simplified 
model  where every variable is subject to exactly c binary constraints, and we 

assume that there is only a single solution to the problem, that is, exactly one 

satisfying assignment. We address the following question: What  is the prob- 

ability that the rain-conflicts heuristic will make a mistake when it assigns a 

value to a variable that is in conflict? We define a mistake as choosing an 
incorrect value that will have to be changed before the solution is found. We 

note that for our informed backtracking program a mistake of this sort may 

prove  quite costly, since an entire subtree must be explored before another  

value can be assigned. 
For any assignment of values to the variables, there is a set of d variables 

whose values must be changed to convert the assignment into the solution. We 
can regard d as a measure of distance to the solution. The key to our analysis is 

the following observation. Given a variable V to be repaired, only one of its k 
possible values will be correct s and the other k -  1 values will be incorrect 

(i .e. ,  mistakes). Whereas the correct value may conflict with at most d other 

variables in the assignment, an incorrect value may conflict with as many as c 
other  variables. Thus, as d shrinks, the min-conflicts heuristic should be less 

likely to make a mistake when it repairs V. In fact, if each of the k -  1 
incorrect values has more than d conflicts, then the min-conflicts heuristic 

cannot  make a mis take- - i t  will select the correct value when it repairs this 
variable,  since the correct value will have fewer conflicts than any incorrect 

value. 
We can use this idea to bound the probability that the min-conflicts heuristic 

will make  a mistake when repairing variable V. Let V' be a variable related to 
V by a constraint. We assume that an incorrect value for V conflicts with an 
arbitrary value for V' with probability p, independent of the variables V and 

V'. Consider an arbitrary incorrect value for V. Let N b be the total number  of 

conflicts between this incorrect value and the assigned values for the other 
variables. Given the above assumptions, the expected value of N h is pc, 
because there are exactly c variables that share a constraint with V, and the 
probabil i ty of a conflict is p. As mentioned above, the min-conflicts heuristic 

Although a variable is in conflict, its assigned value may actually be the correct valuc. This can 
happen when the variable with which it conflicts has an incorrect value. In this paper we have 
defined the min-conflicts heuristic so that it can choose any possible value for the variable, 

including the variable's current value. 
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will not make a mistake if the number of conflicts N b for each incorrect value is 
greater than d. We can, therefore,  bound the probability of making a mistake 
by bounding the probability that N b is less than or equal to d. 

To bound N b, we use Hoeffding's inequality, which states that the sum N of 
n independent ,  identically distributed random variables is less than the expec- 

-2s2n 
ted value ~ /by  more than sn  only with probability at most e , for any s >i 0. 
In our  model,  N b is the sum of c potential conflicts, each of which is either 1 or 
0, depending on whether there is a conflict. The expected value of N b is pc .  

Thus: 

-2s2c 
Pr(N b ~< p c  - sc)  <<- e 

Since we are interested in the behavior of the min-conflicts heuristic as d 
shrinks, let us suppose that d is less than pc .  Then, with s = ( p c  - d ) / c ,  we 
obtain: 

Pr(N b <~ d)  <~ e 2 ( p c - d ) 2 / c  . 

To account for the fact that a mistake can occur if any  of the k - 1 incorrect 
values has d or fewer conflicts, we bound the probability of making a mistake 
on any of them by multiplying by k - 1: 

P r ( m i s t a k e )  <~ ( k  - 1) e - 2 (pc -d ) z / c  . 

Note that as c (the number of constraints per variable) becomes large, the 
probability of a mistake approaches zero if all other parameters remain fixed. 
This analysis thus offers an explanation as to why 3-coloring densely-connected 
graphs is relatively easy. We also see that as d becomes small, a mistake is also 
less likely, explaining our empirical observation that a "good"  initial assign- 
ment  can be important. (Of  course, an assignment with few conflicts does not 
necessarily imply small d, as was illustrated by the 3-colorability problem in 
Fig. 6.) In a recent paper, Musick and Russell [35] present an analysis which 
supports this result. They model heuristic repair algorithms as Markov pro- 
cesses, and show that under this model the choice of initial state can have a 
significant impact on the expected solution time. 

Finally, we note that the probability of a mistake also depends on p, the 
probability that an incorrect value conflicts with another variable's value, and 
k, the number  of values per variable. The probability of a mistake shrinks as p 
increases or k decreases. 

5.2.  A stat is t ical  m o d e l  f o r  C S P  repair  

The simple model presented in the previous section shows, in a qualitative 
way, how various problem characteristics influence the effectiveness of the 
min-conflicts heuristic. While the analysis is helpful for understanding how the 
min-conflicts heuristic works, it is not quantitatively useful, since only very 
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gross characteristics of the problem are considered. In this section we augment 
the model with statistical assumptions about the task domain, assumptions that 
enable us to analyze the heuristic's behavior quantitatively on particular 
problems. Specifically, we discard the assumptions that there is a uniform 
probability of a conflict between an erroneous value for a variable and an 
arbitrary value for any related variable and instead assume that conflicts 
between variables can be characterized by independent probability distribution 
functions determined by the problem. We retain the assumption that there is a 
unique solution. While these assumptions are seldom met in practice on any 
particular CSP, the augmented model turns out to be a surprisingly accurate 
predictor of the performance of several heuristics, including min-conflicts, on 
some interesting classes of problems. 

We continue to assume a binary CSP with n variables and k possible values 
per variable; for a given assignment, the distance d is the number of variables 
that must be corrected to obtain a solution. As a measure of heuristic 
performance, we use the probability that, after a particular repair step, the 

d i s tance  d is decreased.  This only occurs when the heuristic selects a variable 
that is assigned an incorrect (non-solution) value and changes it to the unique 
correct (solution) value. This probability is given by 

Pd~d 1 = P~P,.Is , 

where P~ is the probability that the variable selection heuristic chooses a 
variable currently assigned an incorrect (non-solution) value, and P~I~ is the 
probability that the value selection heuristic chooses the correct value given 
that the selected variable has an incorrect value currently assigned. (Subscripts 
s and ~ indicate variables assigned solution and non-solution values, respective- 
ly. For a given variable, the subscripts c and ~ refer to correct and incorrect 

values, respectively.) 
Similarly, the probability of increasing the distance from the solution is 

P . _ , , + ,  = p ~ ( 1  - P,~s), 

where P~ = 1 - P ~  is the probability that the variable selection heuristic will 
choose a variable currently assigned a correct value, and Pcl.,, is the probability 
that the value selection heuristic will choose the correct value given that the 
chosen variable already has the correct value assigned. The third possibility, 
that d will remain unchanged, has probability 

P.~ , l  = 1 - P . - . - I  - P ~ d + ~  • 

The ratio P d ~ .  1/Pd~,~+l is of particular interest, since as long as it is greater 
than 1 a heuristic is more likely to move t owards  the solution than a w a y  from 
it. 
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5.3. Conflict probability distributions 

An expression for the performance measures Pd~d,d+-~ can be derived for 
variable and value selection heuristics given the probability distributions for 
conflicts. Four such distributions are required: 

For variables currently assigned the correct value: 

[ Probability that the correct value has 
Oc,(V) 

kO~v<~d  

0cs(v) = [ 
Probability that 

[ 0 < ~ v ~ < n - 1  

v conflicts,], 

an incorrect value has v conflicts,]. 

For variables currently assigned 

oct(v) = [ 
Probability that 

[ 0 ~ < v ~ < d - 1  

O,=&) = [ 
Probability that 

[ 0 ~ < v ~ < n - 1  

an incorrect value: 

the correct value has v conflicts,], 

an incorrect value has v conflicts,]. 

For the cumulative distributions we use the following notation: 

= Z 
w > o  

In the remainder of this section we discuss the derivation of these conflict 
probability distributions 0 for two classes of CSPs: those with random in- 
dependent constraints, and those with more structured constraints. For the 
readers convenience, Table 4 summarizes the notation we employ. 

5.3.1. Random CSPs 
Random CSPs can be characterized by two probabilities as follows: 

• Pc~e =-Pe~c is the probability that a correct value for variable V conflicts 
with an incorrect value for variable V', and 

• Pete is the probability that an incorrect value for variable V conflicts with 
an incorrect value for variable V', 

Note that, by definition, Pc,c = 0 (there can be no conflicts between correct 
values). 

Consider a state in which there are d variables assigned incorrect values. If a 
variable is assigned the correct value, then it can conflict with at most the d 
variables assigned incorrect values. Assuming that the probability of each 
conflict is independent, the total number of conflicts follows a binomial 
distribution: 
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Table 4 
Summary of notation. 

r/  

k 
C 

d 
Pd ~d I 
Pd~d+ I 

Pd ~d 
P~ 

P,i~ 

O (v) 

Pc~¢ 

Number of variables 
Values per variable 
Binary constraints per variable 
Distance to solution (number of variables with incorrect values) 
Probability that after a repair step d decreases 
Probability that after a repair step d increases 
Probability that after a repair step d is unchanged 
Probability that the variable chosen is currently assigned a 
non-solution (i.e., incorrect) value 
Probability of choosing a correct value, given that a non-solution 
value is currently assigned 
For a variable currently assigned a solution value, probability that an 
incorrect value has v conflicts 
Probability that a correct value for variable V conflicts with an incorrect 
value for variable V' 

In general, subscripts s and £ indicate variables assigned solution and non-solution values, 
respectively. For a given variable, the subscripts c and 6 refer to correct and incorrect values, 
respectively. 

where  x is the n u m b e r  of "successes",  p is the probabi l i ty  of success in a single 

" t r i a l " ,  and  N is the n u m b e r  of trials. Thus  

¢s(V) = B(v, P~.c, d) .  

Incor rec t  values  can conflict with the d incorrect ly assigned variables,  each with 

probabi l i ty  p ~ ,  and with the other  n -  d - 1  correctly assigned variables,  

each with probabi l i ty  Pc~,~. The  dis t r ibut ion is: 

Oes(V ) = ~ B ( k ,  P c ~ ,  d ) B ( v  - k ,  p~>,., n - d - 1). 
k = O  

This is the d is t r ibut ion  for the sum of two b inomia l ly-d is t r ibu ted  variables  with 

d i f ferent  values for N and p.  In the case where P ~ c  = Pc~c  = P,., this reduces  

to Oc.~(v) = B ( v ,  Pc,  n - 1). 

For  var iables  current ly  assigned incorrect  values,  the correct  value can 

conflict with at most  the d - 1 o ther  variables  assigned incorrect  values,  each 

with probabi l i ty  Pc~c: 

O~(v) = B ( v ,  p , . ~ ,  d - 1 ) .  

Incor rec t  values can conflict with the other  d - 1 incorrect  variables,  each with 

probabi l i ty  p~ ,~ ,  and with the n - d correct  variables,  each with probabi l i ty  

P c ~ .  The  d is t r ibut ion  funct ion  is: 
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Oe~(v ) = ~ B(k ,  Pe te ,  d - 1)B(v - k, P~ .e ,  n - d ) .  
k=O 

In  the case where  Pete  and Pc.e  = Pc, this reduces to Oee(v) = B(v ,  Pc, n - 

1) = G ( v ) .  
To calculate Pe~c and p ~ e ,  suppose that each variable constrains on average 

c other variables, and, if there is a constraint between any two variables V and 
V', then each value for V conflicts with an average k' values for V'. Then the 
probability that V constrains V' is c / ( n - 1 ) ,  and the probability that the 
correct value for V conflicts with an incorrect value for V' is k ' / ( k  - 1), where 
k is the domain size. Thus we have 

c k '  
P e t e -  n - 1  k - 1  " 

A similar  a rgumen t  for incorrect  values yields 

c k '  k - 2  k - 2  
P e # e =  n - 1  k - 1  k - 1  k - 1  Pc~e.  

Values for P c . e  and Pe.e  are given in Table 5 for some illustrative problem 
types, including sparse and dense graph 3-colorability problems. For com- 
parison, the table also shows the corresponding values for the random problem 
described by Dechter and Pearl [8]. 

Table 5 
Probabilities of  conflicts between solution and non-solution values Pc,e,  and between non-solution 
and non-solut ion values Pe ,e ,  for some CSPs that can be treated as " r andom" .  For graph 
3-colorability problems the mean  vertex degree (VD) of the problem graph is indicated. T h e  

Dech te r -Pea r l  problem, shown for comparison,  has probability p~ of a constraint between 
variables,  and P2 that a constraint  permits  any specific pair of values, c is the mean  number  of 
variables constrained by any variable, k '  is the mean  number  of  values prohibited by a constraint 
be tween two variables and k is the domain size. 

Problem c k' k Pc.e Pete 

Sparse graph 
3-colorability 4 1 
VD = 4 

Dense  graph 2 
3-colorability ~ - n 1 
VD = 2n/3 

Dech te r -P ea r l  
general  case p~n 

Dech te r -Pea r l  
k = 5  1 
p I = 0 . 5 ,  p ~ = 0 . 6  ~ . n  2 

(1 -pE)k  k 

2 1 
3 

n - 1  n - 1  

1 n l n 
3 

3 n - 1  6 " n - 1  

p , (1  - pz)kn 

(k - 1)(n - 1) 

1 n 

U n - a 

p, (1  - pz)k(k - 2)n 

(k - l)2(n - 1) 

3 n 
16 n - 1  
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5.3.2. Highly-structured CSPs 
The conflict distribution functions for random CSPs derived above predict 

significant variance in conflict counts in the solution state. For example,  when 

d = 0  the distribution 0,:,.(v) reduces to B(v, p,~,.,  n -  1) which has mean 
(n - 1)p,,~ and variance (n - 1)pc~,(1 -p,.:~,:). For some CSPs, the variance 

in the solution state is demonstrably much less than this, and can be essentially 

zero for problems with sufficiently strong regularities. For example,  treating 

n-queens  as random would predict that many incorrect values would have zero 

conflicts for large n, but in fact, in the solution state, each incorrect value has 
at least one conflict. This structure can be incorporated into the calculation of 

0, as illustrated in Appendix  A for a simplified n-queens model which assumes 

that exactly three other queens conflict with each incorrect value. 

5. 4. Value selection heuristics 

In this section we derive expressions for the probability of choosing a correct 
value (P+, and P,+) based on the conflict probability distributions defined in 

Section 5.3. It is important  to note that the derived probabilities depend only 

on the existence of the 0 distributions, and not on their specific form. 

5.4.1. Min-conflicts value selection 
The min-conflicts value selection heuristic can be stated as: 

Choose a value which has the minimum number  of conflicts with 

the assigned values for the other variables. If there is more than 

one such value, select one at random. 

Note  that with this rule there need be no change in the assignment. 

Pcl.~: variable with correct value assigned 
Conflicts on the correct value must be due to one or more of the d variables 

which have incorrect assignments. Suppose there are v > 0  conflicts on the 
correct value (if there are v = 0 conflicts, the variable would not have been 
selected for repair). Wc seek the probability of leaving the assigned value 
unchanged,  which is the right decision in this case. If any of the k - 1 incorrect 
values has less than v conflicts, then the min-conflicts heuristic will choose one 

of these values. The correct value will be chosen only if all k - 1 incorrect 
values have at least v conflicts. Of  the k - 1 incorrect values, let m be the 
number  which have exactly v conflicts, while the remaining k - 1 - m have > v 

conflicts. The probabili ty of such a configuration is: 

0 ~(v),,,0, ~ ( > v ) k - '  ,,, 

while the total number  of such configurations is ( k ~ ). Since, in this configura- 
tion, there are m values other than the correct value with an equal number  v of 
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conflicts, the probability of choosing the correct value is 1/(m + 1). Thus the 
total probability of choosing the correct value, given that it has v conflicts, is: 

psO,(v) = Z k - 1  m k - l - m  ] 
m = 0  m Oes(V ) O,.~(>v) m + 1 " 

The probability of v conflicts on the correct value, given that it has >0 
conflicts, is O,,~(v)/[1 - 0c~(0)]. Combining these yields the total probability that 
the heuristic will leave the assignment unchanged: 

= o~.~(~) 

P,he: variable with incorrect value assigned 
Suppose the number of conflicts on the correct value is v, and that there are 

w conflicts on the current (incorrect) assigned value. Let  P~°~(v, w) denote the 
probability of choosing the correct value in this situation. There  are three 
cases: 

(1) o > w. The correct value will not be chosen since the current value has 

fewer conflicts, so P~°'(v, w)lv> w = 0. 
(2) v = w. In this case we have to consider the other k - 2 incorrect values. 

Summing over configurations where m have exactly v conflicts, and the 
remaining k - 2 - m have >v  conflicts, yields: 

PS°'(v, w)lo=w RV=W(v) Z k -  2 ,~ > k-2-m 1 = -  = o~(v )  o~(  v)  . 
m=0 m m + 2  

(3) v < w. Similar to case (2) except that in this case the heuristic will 
certainly not leave the assignment unchanged, so the probability of 
choosing the correct value increases from 1/(m + 2) to l / ( m  + 1): 

k - 2  

= -  = 

,,=0 m + 1 " 

The total probability of choosing the correct value is 

,,-, a-, O~(w) p~O,(v ' P,b~ = ~ ~ O,=,.(v) w) ,  
~=1 o=,1 1 - 0 0 )  

using the fact that the probability of v conflicts on an incorrect value, given that 
the value has >0 conflicts, is Oe~(v)/[1- 0cs(0)]. 

5.4.2. Random-conflicts value selection 
The rain-conflicts heuristic examines the number of conflicts on each value to 

determine which to assign. A less-informed heuristic could simply check 
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whether  or not  there are any conflicts on values. This approach is captured by 
the "random-confl icts"  rule: 

If one or more values has no conflicts, select one of these values (at 
random).  If all values have conflicts, select one at random. 

The assignment is not required to change (although it must change if at least 
one value has zero conflicts). 

The derivation of P +  and PcIs follows the same argument  as above,  with the 
results: 

P,ls = 0,-~(>0) k i 1 
~ k 

and 

where 

0 / 0  ~' n s ° l /  (v, w)fv>,,, P + =  c~ j r  tv, w ) l v = 0 + [ 1 -  ~o~ 

k - 2  

=,, m 0,~(0) 0cs ( 0 )  m + 1 ' 

= 0 (>0 )  k-2 1 
, s ,  . 

pso lz  £v, w) is the probabili ty of choosing the correct value for a variable with v 
conflicts on the correct value and w > 0 conflicts on an incorrect value. 

5.4.3. R a n d o m  value selection 

This is the "least-possible-informed" value selection rule: 

Select and value at random, regardless of conflicts. 

With this rule, the probabili ty of choosing the correct value is independent  of 

the variable 's  currently assigned value: 

P,I~ = P,~I.~ = 1 / k .  

5.5. Variable selection 

In this section we develop expressions for the probability of selecting a 
variable to be repaired (Ps or Ps) based on the following simple rule: 

Select for repair a variable at random from the set of all variables 

that are currently in conflict. 

Consider first a variable that is assigned an incorrect value. The probabili ty 
that there are one or more  conflicts on its assigned value is 1 - 0ee(0 ). Since 
there are a total of d such variables, the expected number  with conflicts is 

N~ ..... f =  d [ 1 -  Oe~(O)]. 
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Now consider a variable that is assigned a correct value. The probability that 
there are one or more conflicts on its assigned value is 1 - 0c~(0). Since there 
are a total of n - d such variables, the expected number with conflicts is 

Us .... f = (n - d)[1 - 0c~(0)]. 

Thus, for a variable with conflicts that is picked at random, the probability 
that is currently assigned a correct value is: 

Ns.conf 
P" = N~ .... f + N~ ... .  f ' 

while the probability that is currently assigned an incorrect value is: 

N~,conf 
pC = 1 - P~ = Ns . . . .  f -[" N . . . . .  f 

5.6. Evaluation o f  the statistical model 

We have numerically evaluated the expressions above for Pd~d.d±l, P,I~' 
P~ps, etc. on two random CSP problem types, and on the simplified n-queens 
model,  in order to compare the predicted performance of the three value 
selection heuristics discussed above. For the random CSPs we have also 
generated sample problems and computed the probabilities empirically for 
comparison with the model. These results are described in this section. 

5.6. I. Random CSPs 

We have taken two graph 3-colorability problems for comparison of the 
heuristics: 

• H3C.  " H a r d "  3-colorability, random sparsely-connected graph, mean 
vertex degree = 4. In the solution state the expected number of conflicts on 
incorrect values is 2, approximately independent of problem size n. 

• E3C.  "Easy"  3-colorability, random densely-connected graph, mean ver- 
tex degree = 2n/3.  In the solution state the expected number of conflicts 
on incorrect values is n/3,  i.e. increasing linearly with problem size 

The relevant conflict probabilities for these two problems are given in Table 5. 
Probabilities were calculated for both problem types for n = 90. Value selection 
heuristics are labelled as follows in Figs. 8-10: MC rain-conflicts (Section 
5.4.1); RC random-conflicts (Section 5.4.2); and R random (Section 5.4.3). 

Variable selection 

Figure 7 shows P~ vs, d/n,  the probability that a variable currently assigned 
an incorrect value will be chosen for repair. The probability is lower for the 
densely-connected E3C problem, since even a small number of incorrectly 
assigned variables can introduce a large number of conflicts. 
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: : . ~ 0 . 8 1  ............. ~ .............. ! ........... i ' : , , ' i -~ . . .  1 
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Fig. 7. Probability of selecting a variable that is assigned an incorrect value for H3C and E3C 
random problems. 

Value selection 
Figure 8 compares value selection for the two problems. Here it is desirable 

that both P,+ (Figs. 8(a), (b)) and P, is (Figs. 8(c), (d)) be as large as possible. 
1 Random value selection (labelled R in the figures) has uniform probability 3 

making the correct choice in both problems. For H3C variables with correct 
values assigned (Fig. 8(a)), RC does worse than random, and MC does better 
only for small d/n. In contrast, for variables that have incorrect values (Fig. 
8(c)), the probability is fairly high for both MC and RC that the correct value 
will be selected, with MC showing slightly better performance. For E3C (Figs. 
8(b), (d)), MC has probability near unity of choosing the correct value, 
whether or not the current value is correct. RC does no better than random 
except for variables currently assigned incorrect values and d/n <0.2  (Fig. 
8(d)). 

Combined variable and value selection 
Figure 9 shows the probabilities of moving towards (Paid-t, Figs. 9(a), (b)) 

or away from (Pd~J+~, Figs. 9(c), (d)) the solution for the variable selection 
method combined with each of the three value selection methods. For H3C 
(Figs. 9(a), (c)), all three value selection methods have higher probability of 
worsening the state than of improving it. MC shows the best performance, with 
the largest values for Pa~J 1 and the smallest for P ~ a  + J in the range d/n < 3. 
For E3C (Figs. 9(b), (d)), both RC and R tend to worsen the state, while MC 
has a much higher probability of improving it. 

The ratio P , ~ j  ~/Pd~+ ~ provides a useful comparison of combined variable 
and value selection performance: it is greater than unity when a heuristic is 
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Fig. 8. Probability of choosing correct values for variables currently assigned correct or incorrect 
values. 

more  likely to improve the state than to worsen it. Figure 10 plots this ratio on 
a logarithmic scale vs. d/n for each of the three value selection methods. For 
H3C (Fig. 10(a)), MC is best (for d ~ n), followed by RC and R, but in all 
cases the ratio is <1.  For E3C (Fig. 10(b)) the results are very different: MC 
shows a much higher chance of improving the state, while both RC and R 
worsen it. RC is significantly better  than R only for very small d/n. 

Comparison with empirical results 

To see how well the model captures features of the heuristics when applied 
to actual problems, we have generated random problem instances with known 
solutions, 6 then assigned incorrect values to some of the variables and calcu- 

The random problem instances were not guaranteed to have unique solutions; simple relabel- 
ling of colors will yield several. 
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Fig. 9. Probabi l i ty  of  mov ing  towards  (P,~_a ~) or away f rom (P,~-a, ~) the  solut ion.  
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Fig. 10. P,-,i J/P,~ ~,~+ ~ for the three  value  select ion heuris t ics .  
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lated empirically the same probabilities that are predicted by the statistical 
model. Fig. 11 shows the comparison for MC value selection: the empirical 
data points, indicated by the + and × symbols, show the results of averaging 
200 states for each value of d. The agreement with the model probability 
calculations is excellent. 

5.6.2. n-queens 
We have evaluated the simplified n-queens model of Section 5.3.2 and 

Appendix A for min-conflicts value selection. Figure 12 shows the quantities 
Pd-~d-1, Pd~d+], and the ratio Pd-u ]/Pd~d+1 for small d for n = 64, 96, 128, 
and 256. As n increases, the relative probability of moving towards the solution 
increases as well. While this is in accordance with the experimental results, the 
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Fig. 11. Comparison of predicted results with empirical results for min-conflicts value selection. 
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model does not permit more quantitative comparison due to the simplifying 
assumption that the mean conflicts on incorrect values is 3 (instead of the 
actual ~2.5) .  The situation for n-queens is further complicated by the fact that 
solutions appear to be relatively numerous, violating the model assumption 
that there is a unique solution. 

5. 7. Limiting behavior ~br random CSPs 

There  are two interesting limiting cases of the model for random CSPs, 
corresponding to limiting forms of the conflict probability distribution functions 
0 (see Section 5.3.1). These limits are discussed in this section. 

5. 7.1. Poisson limit 
In the case n-->2,  p ~ ,  ~ p ~ . c  = P,,, and np, ~ c o n s t a n t ,  the conflict 

distribution functions approach the Poisson distribution: Oc.,(v)~O~(v)-~ 
Ppoi . . . .  (U, dp,) ,  and O,(v)~-Oe~(v)~-Pvo i ..... (v, np,.), where Ppoi . . . .  ( o ,  /z)  = 

e ~S/v ! .  If we let d = fn ,  i.e. f is the fraction of variables assigned incorrect 
values we can write the distributions for O,.s(V ) and O,(v) as: 

( e - " ) / ( f / z )  v 
o~, , (v)  ~ o ,~(v )  ~- 

v! 

he re /x  = np,. The result is independent of n, and thus we have the important 

conclusion that the performance of  value selection heuristics depends only on 
d /n  in the Poisson limit Pc ~ 1/n for small npc. This is also true of the variable 
selection method used in the model (which depends only on 0 , (0)  and 0,,(0)). 
Figure 13(a) illustrates this dependence on d/n for the H3C problem for 
n = 30, 60, and 90: the differences are already nearly indistinguishable. 
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Fig. 13. Scaling behavior with n for variable selection method. 
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5.7.2. Gaussian limit 
At the other extreme,  consider the case when the mean number  of conflicts 

increases with n, e.g. when p,.ae is approximately constant, and nPcae, the 

expected number  of conflicts for an incorrect value for a variable when in the 

solution state, increases linearly with n. In this case, for sufficiently large n, the 

distributions can be approximated by Gaussian distributions with mean np~e  
and variance o -2= npc>e(1- p,~e). We can derive the dominant behavior  of 

min-conflicts value selection in the limit n > d > 1 by approximating the sums 

in the expressions for P,l~ and P<, by integrals over the Gaussian distribution. 
Only values near  the peak of the Gaussian make significant contributions, and 

in the limit P,I~ ~" P,I~ ~ 1. The probability of choosing a variable with an 

incorrect value becomes P~ ~ d/n since N~ ..... f ~ d and N .... .  f ~ n - d. From 

this it follows that P ~ a  ~ d / n  and Pa~a+~ ~0 .  This linear dependence of 
P j+a  ~ on d for large n is evident in Fig. 13(b), which shows Pd~a-~ and 

Pj_+a+~ for n = 30, 60, and 90 for MC value selection. 

5. 7.3. Global performance of  min-conflicts hill-climbing repair 
The simple limiting forms above permit  some general statements to be made 

about  the behavior  of hill-climbing repair methods based on min-conflicts value 
selection. Hill-climbing repair  can be modelled as a random (Markovian) walk 

described by the probabilities Pd~d.d+-~ of moving towards or away from an 
"absorbing barr ier"  at d = 0. 

In the Gaussian limit where Pj~j+~ ~(),  Pa+a-~ ~ d/n (cf. Fig. 9(b)), the 

expected number  of hill-climbing steps to transition from d to d - 1  is 

1/P,~+d ~ = n/d. From an initial distance d 0' the expected number  of steps t to 
reach d = 0 is thus 

d 0 

tct°~° = = t 

where 7 = 0 . 5 7 7 . . .  is Euler 's  constant. Thus the expected number of  steps to 
reach the solution is linear in the problem size n and depends only logarith- 
mically on how far away the initial guess is from the solution. 

In the Poisson limit where Pd~d+ I > Pa~d-~ but both are nearly constant (cf. 
Fig. 9(a)), the distance from the solution after t steps can be written as 

d(t) = d 0 + 21_1 ~:i where ~i is a random variable representing the change in d 
with each step. The probability distribution for s c has mean p. = Pd~d+~- 
Pd~d-~ and variance o-2 = Pd--d+l + Pa~a-~ - (Pd~d+l -- P a + a - l )  2. After  a 
sufficiently large number  of steps, the distribution for d(t) is approximately 
Gaussian with mean tza = do + t> and variance o- 3 = to -2. The mean t*a repre- 
sents a drift of the expected value of d(t) away from the solution d = 0. The 
probabil i ty of  reaching the solution after t steps is approximately given by the 
tail of the Gaussian distribution for d <~ 0, which approaches 



198 S. Minto~l et al. 

/ . t V ~  exp - 

for large t. The important point is the predicted exponential decline in the 
probability of reaching the solution as the number of hill-climbing steps in- 
creases. This result provides an explanation for the observed behavior of the 
GDS network and of min-conflicts hill climbing on sparse 3-colorable graphs as 
described above in Section 4.3: when the number of steps is limited to t ~ n, 
there is an exponential decline with problem size n of the probability of finding 
the solution. 

5.8. Summary and caveats 

The statistical model of CSP repair described here is a surprisingly good 
predictor of "conflict-informed" value selection performance for random CSPs. 
The model has both theoretical and practical benefits. It permits average-case 
comparisons of different variable and value selection heuristics, from which can 
be drawn general conclusions about their relative effectiveness. For particular 
problem types, limiting behavior for large n can be derived, including general 
statements as to whether heuristics will show better or worse performance as 
problem size increases. For random CSPs discussed in detail above, these 
conclusions include: 

• min-conflicts is the most effective value selection method among those 

considered; 
• min-conflicts performs relatively better as n increases, particularly when 

p , ~  increases with n or remains constant; 
• if the Gaussian limit applies, then hill climbing with min-conflicts is an 

effective repair strategy, showing only weak dependence on the initial 
guess and O(n) dependence on problem size n; 

• if the Poisson limit applies, then the probability of reaching the solution 
declines exponentially with the number of hill-climbing steps. 

Application of the model to other problem types is the subject of future 
research. 

There  are, however, several factors that limit the applicability of the model. 
The most important are that conflicts are assumed to be independent,  and that 
a single solution state is assumed. The presence of multiple solutions may not 
be a serious limitation so long as the model is applied in the vicinity of a 
solution, and that solutions are not so dense as to render this meaningless. 
Conflict independence is more significant, since highly structured problems 
which occur in practice may violate this assumption. Nevertheless, to the 
extent that the statistical properties of classes of problems can be established, it 
may still be possible to use the model to perform average-case analysis of 
heuristics. 
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Two other limitations are worth noting, since we have analyzed the min- 
conflicts heuristic independent of the initialization process and search strategy. 
First, the model permits no conclusions about the assignment being repaired, 
yet the construction of a good initial guess (i.e. an assignment such that d is 
small) is a key problem for repair methods. Second, since the model ignores all 
fine structure in the problem, the possibility of pathological configurations is 
not considered. This can manifest itself in hill-climbing techniques as "cycles", 
where the same variables are repaired again and again, but no progress is made 
towards the solution. To model the performance of the min-conflicts heuristic 
in conjunction with a particular search strategy, such as hill-climbing a more 
detailed analysis is required. For example, in a recent paper, Morris [33] 
examines the structure of the n-queens problem, and shows analytically that, 
for min-conflicts hill-climbing, almost all local minima are solutions. 

6. Discussion 

The heuristic hill-climbing method described in this paper can be character- 
ized as a local search method [20], in that each repair minimizes the number of 
conflicts for an individual variable. Local search methods have been applied to 
a variety of important problems, often with impressive results. For example, 
the Kernighan-Lin method, perhaps the most successful algorithm for solving 
graph-partitioning problems, repeatedly improves a partitioning by swapping 
the two vertices that yield the greatest cost differential. The much-publicized 
simulated annealing method can also be characterized as a form of local search 
[19]. However, it is well known that the effectiveness of local search methods 
depends greatly on the particular task. 

In fact, it is easy to imagine problems on which the min-conflicts heuristic 
will fail. The heuristic is poorly suited to problems with a few highly critical 
constraints and a large number of less important constraints. For example, 
consider the problem of constructing a four-year course schedule for a universi- 
ty student. We may have an initial schedule which satisfies almost all of the 
constraints, except that a course scheduled for the first year is not actually 
offered that year. If this course is a prerequisite for subsequent courses, then 
many significant changes to the schedule may be required before it is fixed. In 
general, if repairing a constraint violation requires completely revising the 
current assignment, then the min-conflicts heuristic will offer little guidance. 
This intuition is partially captured by the analysis presented in the previous 
section, which shows that the effectiveness of the heuristic is inversely related 
to the distance to a solution. 

The problems investigated in this paper, especially the HST and n-queens 
problem, tend to be relatively uniform in that critical constraints rarely occur. 



200 S. Min ton  et al. 

In part, this is due to the way the problems are represented. For example, in 
the HST problem, as described earlier, the transitive closure of temporal 
constraints is explicitly represented. For example, if task A must precede task 
B, then all tasks that precede A must also precede B, and all such constraints 
are explicitly represented. This improves performance because the min- 
conflicts heuristic is less likely to violate a set of constraints than a single 
constraint. In some cases, we expect that more sophisticated techniques will be 
necessary to identify critical constraints [11]. To this end, we arc currently 
evaluating explanation-based learning techniques [9] as a method for identify- 
ing critical constraints. 

The algorithms described in this paper also have an important relation to 
previous work in AI. In particular, there is a long history of AI programs that 
use repair or debugging strategies to solve problems, primarily in the areas of 
planning and design [37, 40]. This approach has recently had a renaissance with 
the emergence of case-based [14,26] and analogical [17, 24,42] problem 
solving. To solve a problem, a case-based system will retrieve the solution from 
a previous, similar problem and repair the old solution so that it solves the new 
problem. 

The fact that the min-conflicts approach performs well on n-queens, a 
well-studied, "s tandard" constraint-satisfaction problem, suggests that AI re- 
pair-based approaches may be more generally useful than previously thought. 
Additional evidence also comes from a very recent study by Selman, Levesque 
and Mitchell [36], in which they showed that a repair-based algorithm (very 
similar to the hill-climbing algorithms investigated here) performs well on hard 
satisfiability problems. However, as we have pointed out, in some cases it can 
be more time-consuming to repair a solution than to construct a new one from 
scratch. It may be that our analysis of min-conflicts for CSP problems can be 
extended to repair methods for other tasks, such as case-based planning 
methods. We conjecture that for each of the factors affecting the performance 
of min-conflicts, such as the expected "distance" from the initial assignment to 
the solution and the degree that each variable is constrained, there are 
analogous factors for other tasks. 

There are many possible extensions to the work reported here, but three are 
particularly worth mentioning. First, we expect that there are other applica- 
tions for which the min-conflicts approach will prove useful. Conjunctive 
matching, for example, is an area where preliminary results appear promising. 
This is particularly true for matching problems that require only that a good 
partial-match be computed. Second, we expect that there are interesting ways 
in which the min-conflicts heuristic could be combined with other heuristics. 
For example, as mentioned earlier, when a "most-conflicted" variable ordering 
strategy is used together with min-conflicts, the resulting program outperforms 
min-conflicts alone on graph 3-colorability problems. Finally, there is the 
possibility of employing the min-conflicts heuristics with other search tech- 
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niques. In this paper, we only considered two very basic methods, hill climbing 
and backtracking. However, more sophisticated techniques such as best-first 
search are obvious candidates for investigation, since the number of conflicts in 
an assignment can serve as a heuristic evaluation function. Another possibility 
is Tabu search [16], a hill-climbing technique that maintains a list of forbidden 
moves in order to avoid cycles. Morris [31,32] has also proposed a hill- 
climbing method which can break out of local maxima by systematically 
altering the cost function. The work by Morris and much of the work on Tabu 
search bears a close relation to our approach. 

7. Conclusions 

In this paper we have analyzed a very successful neural network algorithm 
and shown that a simple heuristic search method behaves similarly. Specifical- 
ly, we carried out extensive experiments in three task domains in which the 
min-conflicts hill-climbing algorithm and the GDS network exhibited similar 
performance. Based on our experience with both programs, we conclude that 
the min-conflicts heuristic captures the critical aspects of the GDS network. In 
this sense, we have explained why the network is so effective. 

We have also demonstrated that the min-conflicts heuristic can be employed 
in conjunction with other types of symbolic search methods besides hill- 
climbing. In particular, we showed that it can be used as a value-ordering 
heuristic by an informed backtracking algorithm. This is an important consid- 
eration, since we expect that in many applications the choice of search strategy 
may be critical to producing satisfactory solutions. 

By isolating the rain-conflicts heuristic from the search strategy, we dis- 
tinguished the idea of a repair-based CSP method from the particular strategy 
employed to search within the space of repairs. This enabled us to carry out a 
strategy-independent analysis of the heuristic. The analysis identified several 
factors that effected the utility of the min-conflicts heuristic, such as the 
expected distance between the initial assignment and the solution. We believe 
that this analysis may be relevant to repair-based problem solving methods in 
general. 

There are also several practical implications of this work. First, the schedul- 
ing system for the Hubble Space Telescope, SPIKE, now employs our symbolic 
method, rather than the network, reducing the overhead necessary to arrive at 
a schedule. Perhaps even more importantly, it is easy to experiment with 
variations of the symbolic method, which should facilitate transferring SPIKE 
to other scheduling applications, Finally, by demonstrating that repair-based 
methods are applicable to standard constraint satisfaction problems, such as 
N-queens, we have provided a new tool for solving CSP problems. 
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Appendix A. n-queens conflict probability distributions 

In this append ix  we der ive  conflict dis t r ibut ion funct ions for  the simplified 

n -queens  mode l  discussed in Sect ion 5.3.2, which assumes  that  in the solut ion 

s tate  exact ly  th ree  queens  conflict with non-solu t ion  queen  p lacements .  
n . . . . .  o~ for  a queen  in row R. In the Cons ide r  first a non-solut ion value ~R 

. . . . . .  ~" deno te  this so lu t ion  s tate  there  are th ree  o ther  queens  which constra in  ~R • 
set  by q. Le t  the n u m b e r  of  queens  o the r  than R which have non-solu t ion  

ass ignments  be i. If  R has a solut ion ass ignment ,  then  i = d; and if R has a 

non-so lu t ion  ass ignment ,  then i = d - 1 .  The  probabi l i ty  of  a conflict on 
Q . . . . . .  ~ due to a queen  in q is: R 

C Probability conflict ] [- Probability queen l [ Probability non- ] 
pq = /on Q; ........ from J = / i n  q has non-solution I X ]solution value ] 

kqucen in q I_value J Lconflicts with Q~ ....... ~J 

C Probability queen 7 F Probability solution] 
+ |in q has ] × ]value conflicts [ .  

I_solution value J Lwith Q~ ......... J 

N o w  the probabi l i ty  that  a queen  in q has a non-solut ion value is i / ( n  - 1), and 
n non-sol  

the  probabi l i ty  that  a non-solu t ion  value for  a queen  in q conflicts with ~ n  
is 2 / ( n -  1) (i.e. two o ther  p lacements  would be e i ther  on the same  row or  

non-sol  diagonal  as QR ). The  probabi l i ty  that  a solution value for  a queen  in q 

conflicts with o .. . . . . .  ~is one  by definition. Thus:  ~ R  

p , [ _  i 2 + ( 1  i ) i ( n - 3 )  
n - 1  n - 1  n -  1 = 1  ( n _ l ) 2  . 

A similar  a rgumen t  leads to the probabi l i ty  of  conflict with the n - 4  queens  

n o t  in q: 

pq _ 3i 
(n - 1) 2 " 

I") ........ ~ is the sum of two binomial ly-  T h e  probabi l i ty  of  v conflicts on ~R 
dis t r ibuted  var iables  
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non-sol ~ P(u conflicts on Qn ) = B(x,  pq, 3)B(u  - x, pq,  n - 4) , 
x-0 

assuming that the conflicts are independent .  W h e n  there are no e r roneous  

assignments ,  this distribution has a mean  value of  3 and variance of  zero,  

captur ing  the assumpt ion that,  in the solution state, each non-solut ion value 

has exactly three conflicts. 
For  a solution value ¢3s°~ for  a queen  in row R, conflicts can arise only f rom ~R 

non-so lu t ion  assignments  of  the n - 1 o ther  queens.  Assuming  independence ,  

the distr ibution of  conflicts is 

soJ - 1 ) ,  P(v conflicts on QR ) = B(v,  P2, n 

where  P2 = 3i(n - 1) 2. 
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