
Arc consistency (ac) 
 

Simple algorithm: ac3 (1977) 



Di = {1,2,3,4,5} 
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V4 + V2 = 5 

V1   V2 

V2  V3  6 

AR33 figure 18, page 35 
What can you infer? 



Di = {1,2,3,4,5} 

V1 

V3 

V2 

V4 

V4 + V2 = 5 

V1   V2 

V2  V3  6 

D1 = {1,2} 
D2 = {2,3} 
D3 = {4,5} 
D4 = {2,3} 

Do you agree? Was that easy? 



V1 < V2         D1 = {1,2,3,4,5}   D2 = {1,2,3,4,5}         D1 := {1,2,3,4} 
V2 > V1         D1 = {1,2,3,4}      D2 = {1,2,3,4,5}         D2 := {2,3,4,5} 
V4 ≥ V1 + 1    D4 = {1,2,3,4,5}  D1 = {1,2,3,4}            D4 := {2,3,4,5} 
V1 ≤ V4 - 1    D1 = {1,2,3,4}      D4 = {2,3,4,5}            no change 
V2 + V3 > 6   D2 = {2,3,4,5}     D3 = {1,2,3,4,5}          no change 
V3 + V2 > 6   D3 = {1,2,3,4,5}   D2 = {2,3,4,5}           D3 := {2,3,4,5} 
V2 + V4 = 5   D2 = {2,3,4,5}     V4 = {2,3,4,5}           D2 = {2,3} 
V1 < V2         D1 = {1,2,3,4}       D2 = {2,3}                 D1 = {1,2} 
V2 > V1         D2 = {2,3}           D1 = {1,2}                    no change 
V4 ≥ V1 + 1    D4 = {2,3,4,5}     D1 = {1,2}                    no change 
V3 + V2 > 6   D3 = {2,3,4,5}     D2 = {2,3}                 D3 = {4,5} 
V2 + V3 > 6   D2 = {2,3}           D3 = {4,5}                   no change 
V4 + V2 = 5   D4 = {2,3,4,5}     D2 = {2,3}                 D4 = {2,3} 
V1 ≤ V4 - 1    D1  = {1,2}           D4 = {2,3}                   no change 
V2 + V4 = 5   D2 = {2,3}           D4 = {2,3}                   no change 
V4 < V3         D4 = {2,3}           D3 = {4,5}                   no change 
V3 > V4         D3 = {4,5}           D4 = {2,3}                   no change 
 

Here’s the reasoning 

V4 + V2 = 5 

V1   V2 

V2  V3  6 

Di = {1,2,3,4,5} 



Arc consistency: so what’s that then? 



A constraint Cij is arc consistent if  
 
• for every value x in Di there exists a value y in Dj that supports x 

• i.e. if v[i] = x and v[j] = y then Cij holds 
• note: we are assuming Cij is a binary constraint 

A csp (V,D.C) is arc consistent if 
 
• every constraint is arc consistent  

If (V,D,C) is arc consistent then 
• I can choose any variable v[i]  
• assign it a value x from its domain Di 
• I can now choose any other variable v[j] 
• I can find a consistent instantiation for v[j] from Dj 
 

NOTE: this is in isolation, where I have only 2 variables that I instantiate 



A constraint Cij is arc consistent if  
 
• for every value x in Di there exists a value y in Dj that supports x 

• i.e. if v[i] = x and v[j] = y then Cij holds 
• note: we are assuming Cij is a binary constraint 

A csp (V,D.C) is arc consistent if 
 
• every constraint is arc consistent  
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Just because a problem (V,D,C) is arc consistent does 
not mean that it has a solution!  

Arc-consistency processes a problem and removes 
from the domains of variables values that CANNOT 
occur in any solution 

Arguably, it makes the resultant problem easier. 
Why? 

The arc-consistent problem has the same set of solutions as 
the original problem 
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Note: if constraint graph is a tree, AC is a decision procedure 



AC is not a decision procedure 



How dumb can it get? 
 

(Kyle Simpson’s problem) 





Dumb and dumber 





Okay … some respect please 



So, is there 1-consistency? 

Yip 
• when we have unary constraints 
• example odd(V[i]) 
• 1-consistency, we weed out all odd values from Di 
• also called node-consistency (NC) 

3-consistency? 
 Given constraints Cij and Cjk, disallow all pairs (x,z) in the constraint 
Cik where there is no value y in Dj  
 such that Cij(x,y) and Cjk(y,z) 
 
This adds nogood tuples to an existing constraints, or creates 
a new constraint! 
 
 sometimes called path-consistency (PC) 
 
 (Given 2 variables in isolation, we can instantiate those 
   consistently, and pick any third variable and …) 



Path-consistency (aka 3-consistency) 

Vi 

Vj 

Vk 

There might be no constraint Cik 
Therefore 3-consistency may create it! 
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It may create nogood tuples {(i/x,k/z),…} 
Therefore increases size of model/problem. 
May result in more constraints to check! 
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M. Singh, TAI-95 



ac3: Mackworth 1977 

Alan Mackworth presented ac1, ac2, and ac3 
in 1977. ac1 and ac2 were “straw men” 



ac3: revise a constraint (pseudo code) 

revise(i,j) 
    revised := false 
    for x in d[i]                                   // iterate over all values in d[i]                                
    do supported := false 
         for y in d[j] while ¬supported  // find first support in d[j] for x 
         do supported := check(i,x,j,y)  // is v[i]=x && v[j]=y consistent? 
         if ¬supported                          // if no support, delete x from d[i] 
         then d[i] := d[i] \ {x}            
                 revised := true                // and set revised to true 
    return revised                             // delivers true or false 
 

Given constraint C_ij remove from the domain d_i all values that have no support in d_j 
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The micro-structure of C23 
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revise searches for 1st support for a value Is it a bijection? What are implications of this? 





Ac3 (pseudo code) 

ac3(v,d,c) 
 consistent := true; 
 q := c                                           // enqueue all constraints 
 while q ≠ {} & consistent 
 do (i,j) := dequeue(q)                   // get a constraint 
      if revise(i,j)                           // if d_i has values removed 
      then q := q U {(k,i) | Cik in C}  // need to revise all constraints C_ki 
              consistent := d[i] ≠ {}    // stop if domain wipe out 
  return consistent 



ac3 

What? 

    if revise(i,j) 
    then q := q U {(k,i) | (k,i) in c} 



Note: ac3 has a queue of constraints that need revision 
          because some values in the domains of the variables may 
          be unsupported. 

Remember: ac3 processes a queue of constraints 

But forgive me, the queue might be treated as just a  set 



ac1 and ac2 (the straw men) essentially revised 
constraints over and over again, 

until no change …  until reaching a fixed point 



Complexity of ac3 proved in 1985 by Mackworth & Freuder (AIJ 25) 
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e is number of constraints 
d is domain size 



Prove it! 
Also look at paper by Zhang & Yap 

).( 3deO

e is number of constraints 
d is domain size 



The complexity of ac3 A beautiful proof 

• A constraint C_i,j is revised iff it enters the Q 
• C_i,j enters the Q iff some value in d[j] is deleted 
• C_i,j can enter Q at most d times (the size of domain d[j]) 
• A constraint can be revised at most  d times 
• There are e constraints in C (the set of constraints) 
• revise is therefore executed at most e.d times 
• the complexity of revise is O(d2) 
• the complexity of ac3 is then O(e.d3) 



The order that we revise the constraints make no difference to the outcome 
It reaches the same fixed point, the same set of arc-consistent domains  

The order that we revise the constraints may make a difference to run time. 

… constraint ordering heuristic, anyone? 



Revise ignored any semantics of the constraint 

Is that dumb, or what? 

Could we get round this? 
• Use OOP? 
• A class of constraint? 
• revise as a specialised method? 



AC4, AC6, AC7, …. 

“Optimal” support counting algorithms 



AC4, AC6, AC7, ... 
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Associate with each value in Di  
• a counter supportCount[x,i,j]  

• the number of values in Dj that support x 
• a boolean supports[x,y,j]  

• true if x supports y in Dj 

1st stage of the algorithm builds up the supportCount and support flags 

2nd stage 
• if supportCount[x,i,j] = 0    (x has no support in Dj over constraint Cij) 

• delete(Di,x) 
• decrement supportCount[y,k,i]    (where supports[x,y,k] is true) 

• continue this till no change 
• i.e. propagate  

If x supports y in Dk and x is deleted from Di 
Then support count for y in Dk over constraint Cki is decremented 



Best case and worst case performance  of ac4 is the same  
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Ac6, 7, and 8 exploit symmetries, and lazy evaluation 
•  if x supports y over constraint Cij then y supports x over Cji 
• find the 1st support for x, and only look for more when support is lost 

Ac3 worst case performance rarely occurs 
(experimental evidence due to Rick Wallace) 



Why is best case and worst case performance  of ac4 
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? 



• ac1/2/3 due to Alan Mackworth 1977 
• ac4  Mohr & Henderson AIJ28 1986 
• ac6 , 7, 8 due to Freuder, Bessiere, Regin, and others 

• in AIJ, IJCAI, etc 

Downside of ac4, ac6, ac7, and ac8 algorithms is “hard to code” 

ac3 is easy! 

History Lesson 



AC5 

A generic arc-consistency algorithm and its specializations 
AIJ 57 (2-3) October 1992 

P. Van Hentenryck, Y. Deville, and C.M. Teng 



ac5 

Ac5 is a “generic” ac algorithm and can be specialised for 
special constraints (i.e. made more efficient when we know 
something about the constraints) 

Ac5 is at the heart of constraint programming 

Constraint is an object with its own propagator 



ac5, the intuition 

• take an OOP approach 
• constraint is a class that can then be specialised 
• have a method to revise a constraint object 
• allow specialisation 
• have basic methods such as 

• revise when lwb increases 
• revise when upb decreases 
• revise when a value is lost 
• revise when variable instantiated 
• revise initially 

• methods take as arguments 
• the variable in the constraint that has changed 
• possibly, what values have been lost 



• arc-consistency is at the heart of constraint programming 
• it is the inferencing step used inside search 
• it has to be efficient 
• data structures and algorithms are crucial to success 

• ac is established possibly millions of times when solving 
• it has to be efficient 

• we have had an optimal algorithm many times 
• ac4, ac6, ac7, ac2001 

• ease of implementation is an issue 
• we like simple things 

• but we might still resort to empirical study! 
• modern approach is constraint as object with specialised propagator 



MAC 

What’s that then 



Maintain arc-consistency 

• Instantiate a variable v[i] := x 
• impose unary constraint d[i] = {x} 
• make future problem ac 
• if domain wipe out 

• backtrack and impose constraint d[i]  x 
• make future ac 

• and so on 



Maintain arc-consistency 

• why use instantiation? 
• Domain splitting? 
• resolve disjunctions first  

• for example  (V1 < V2 OR V2 < V1)  



You now know enough to go out and 
build a reasonably efficient and useful CP toolkit 

 
At least, we have an idea about what’s under the hood. 


