Arc consistency (ac)

Simple algorithm: ac3 (1977)

@ V4 < V3

V4+V2:=5H

Vi<v4 -1

(W)
\@

Vi< V2

V2+V3>6

Di={1,2,3,45}

infer?
AR33 figure 18, page 35 What can you infer:

Was that easy?

Vi<va- V4+V2=5

@ V2+V3>6
R

Vi< V2

Di={12,3,45}

D1={1,2}
D2 ={2,3}
D3 ={45}
D4 = {2,3}

Do you agree?

Here's the reasoning Vi< V2

V4 < V3
V1<V2 D1={12,345} D2=-{12,3,45} D1:={1,2,3,4} V2 +V3>6
V2 > Vi D1={1234} D2-=-{12,3/45} D2:={2,3,4,5} V1< V41
V4>V1i+1 D4={12,345} D1={1,2,3,4} D4 :={2,3,4,5} -
Vi<V4-1 D1={12,34 D4={2,3,45} no change V4+V2=5
V2+V3>6 D2={2345} D3={12,3/4,5} no change _
V3+V256 D3:={12345} D2={2345) D3 := {2.3 .4 5) bi={1.2345)
V2+V4:=5 D2={2345} V4={2,3,45} D2 = {2,3}
V1<V2 D1={1,2,3,4} D2 ={2,3} D1={1,2}
V2 > V1 D2 ={2,3} D1={1,2} no change
V4>V1+1 D4-=-{2,345} D1:={12} ho change
V3+V2>6 D3={2,345} D2={2,3} D3 ={45}
V2+V3>6 D2:={2,3} D3 = {4,5} ho change
V4+V2=5 D4={2345} D2={2,3} D4 = {2,3}
Vi¢V4-1 D1 ={1,2} D4 = {2,3} no change
V2+V4=5 D2={2,3} D4 = {2,3} ho change
V4 < V3 D4 ={2,3} D3 ={4,5} no change

V3> V4 D3 = {4,5} D4 ={2,3} ho change

Arc consistency: so what's that then?

A constraint Cij is arc consistent if

- for every value x in Di there exists a value y in Dj that supports x
- i.e. if v[i] = x and v[j] = y then Cij holds
* note: we are assuming Cij is a binary constraint

A csp (V,D.C) is arc consistent if nsistency

This is also called 2-co
- every constraint is arc consistent

If (V,D,C) is arc consistent then

* I can choose any variable v[i]

- assign it a value x from its domain Di

* T can now choose any other variable v[j]

» I can find a consistent instantiation for v[j] from Dj

NOTE: this is in isolation, where T have only 2 variables that I instantiate

A constraint Cij is arc consistent if

- for every value x in Di there exists a value y in Dj that supports x
- i.e. if v[i] = x and v[j] = y then Cij holds
* note: we are assuming Cij is a binary constraint

AC(C, ;) =Vxe D3y e D;[C; ; (X, y)]

A csp (V,D.C) is arc consistent if

- every constraint is arc consistent

AC(V,D,C)=VC,, eC[AC(C,,)]

D. e{1,2}
Just because a problem (V,D,C) is arc consistent does
not mean that it has a solution! Vl . V2

V, #V,
V, #V,

Arc-consistency processes a problem and removes
from the domains of variables values that CANNOT
occur in any solution

Arguably, it makes the resultant problem easier.
Why?

The arc-consistent problem has the same set of solutions as
the original problem

Note: if constraint graph is a tree, AC is a decision procedure

AC is not a decision procedure

How dumb can it get?

(Kyle Simpson's problem)

if

Jf Eyle Simpson's problem

i

import
import
import
import
import
import

public

org.
org.
org.
org.
org.
org.

chocosolver.
chocosolver.
chocosolver.
chocosolver.
chocosolver.
chocosolver.

cla=s=s Evle {

solver.
solver.
solver.
solver.

(how dumb i= ac?)
golwver.S5olwver;
solver.variakbles. ®;

constraints.*;

search.strategy.*;
trace.Chatterbox;
exception.ContradictionException;

public =ztatic void main(5tring args[]) throws ContradictionException {
new Solver ("Eyle's problem™);

Bolver
IntVar
IntVar

zolver.
solver.

System.

golver

2k

2k

post (ICF.arithm(vl, "!=",v2));
post (ICF.arithm(vl, "=",v2)):

nodes=s:
cpu:

vl = VF.enumerated ("v1",0,989, s0lver) ;
ve = VF.enumerated ("vw2",0,988, 20lver) ;

5wl
5wl

I= 2
e

out.println(solver.findSolution() +

" 4+ solwver.getMeasures () .getHodeCount () +

" + solwver.getMeasures () .getTimeCount(}))

Dumb and dumber

i

/{ how dumb can it get?

ff

import org.chocosolver.solver.Solver;

import org.chocosolver.solver.variables.,*;

import org.chocosolver.solver.constraints.*;

import org.chocosolver.solver.search.strategy.®;

import org.chocosolver.solver.trace.Chatterbox;

import org.chocosolver.solver.exception.ContradictionException;

public clas=s Dumb {

public =tatic wvolid main({5String args[]) throws ContradictionException f{

Solver =olver = new Solver("Eyle's problem™):
IntVar vl = VF.enumerated("v1",0,1,30lver):;
solver.post (ICF.arithm(vl,"'=",w1)); // w1 '= w1

solver.propagate () ;

Syvstem.out.println(vl) ;

Okay ... some respect please

So, is there 1-consistency?

Yip
- when we have unary constraints

- example odd(V[i])

- 1-consistency, we weed out all odd values from Di
* also called node-consistency (NC)

3-consistency?

Given constraints Cij and Cjk, disallow all pairs (x,z) in the constraint
Cik where there is no value y in D
such that Cij(x,y) and Cjk(y,z)

This adds nogood tuples to an existing constraints, or creates
a new constraint!

sometimes called path-consistency (PC)

(Given 2 variables in isolation, we can instantiate those
consistently, and pick any third variable and ...)

Path-consistency (aka 3-consistency)

3Con(i, j,k): Vxe D,vVze D 3y € D{[C, ;(X,Y) AC; (X, 2) AC; (Y, 2)]

0(n’d?)

M. Singh, TAI-95

It may create nogood tuples {(i/x,k/z),..}
Therefore increases size of model/problem.
May result in more constraints to check!

There might be no constraint Cik
Therefore 3-consistency may create it!

ac3: Mackworth 1977

Alan Mackworth presented acl, ac2, and ac3
in 1977. acl and ac2 were "straw men"

ac3: revise a constraint (pseudo code)

Given constraint C_ij remove from the domain d_i all values that have no support in d_j

revise(i,j)
revised := false
for x in d[i] // iterate over all values in d[i]

do supported := false
fory in d[j] while -supported // find first support in d[j] for x
do supported := check(i,x,jy) // is v[i]=x && v[j]=y consistent?

if -supported // if no support, delete x from d[i]
then d[i] := d[i] \ {x}
revised := true // and set revised to true

return revised // delivers true or false

The micro-structure of €23

- support

C,;=V,+V;>6

revise searches for 1st support for a value Is it a bijection? What are implications of this?

A Bijection - Wikipedia, the free encyclopedia - Microsoft Internet Explorer

File Edit Miew Favorites Tools Help

@Back - _/l |ﬂ @ _;j /:__\J Search ‘*E::(Favorites @

x>

Address |@ http:)fen. wikipedia,orgfwiki/Bijection V| G0
}) ':r-?,tx “:i Vou cah stpport Wikipedia by making a tax-deductible donation, ES Sign in / create account ~
_ H\;U : article dizcussion edit this page histary
-] ni, y - . . = G oot soe about ravigaling Mivpedia and Sedieg Avmiadion -
2 s 1 Bijection
TR {ﬂ's“!
r From Wikipedia, the free encyclopedia
N e
e In mathematics, a bijection, or 3 bijective function is 3 function ffrom a set % to a set ¥ with the

WIKIPEDIA e e e U

The Free Encyclopedia property that, for every win ¥, there 15 exactly one xn & such that X Y
navigation fa=v. I D
= hiain page Alternatively, fis bijective if it is 2 oneto-one correspondence between those sets; i.e., both one- B
= Contents to-one (injective) and onto (surjectivej.m (=ee also Bijection, injection and surjection.)) 'B
= Featured content For example, consider the function suce, defined fram the set of integers 7, to 7, that to each integer
" ;urrdent E”iptlg ¥ associates the integer succ(y¥) = % + 1. For another example, consider the function sumdif that to 3 I
= mananm arcle each pair (x4 of real numbers associates the pair sumdifix 1) = (x + ¥, x— 1.
Ll) A bijective function is also called a permutation. This iz mare commonly used when X'= % It should 4 A
= About W|k.|ped|a be noted that one-to-one function means one-to-one correspondence (e, biection) to some authors,
= Community portal but injection to othars. The set of all bijections from X to ¥ is denoted as Xea¥ — -
= Recent changes o _ . _ _ _ B 2 hijective function. &
= Contact Wikipedia Bijective functions play a fundamental role in many areas of mathematics, for instance in the definition
= Donate toWikipedia of isomarphism (and related concepts such as homeamarphism and diffecmorphism), permotatian
= Help graup, projective map, and many others.
search Contents [hide]
| | 1 Campasition and inverses

2 Bijections and cardinality

3 Examples and counterexamples

tonlbox 4 Properties
= What links here 5 References
= Related changes f Bijections and categorny theory
= Lpload file 7 See alzo
= Special pages

Printabl i o : -
© rimemE vEreien Composition and inverses [edit]
= Permanent link =

&) & Internet

Ac3 (pseudo code)

ac3(v,d,c)
consistent := true;
q:=c // enqueue all constraints
while q #z {} & consistent
do (i,j) := dequeue(q) // get a constraint
if revise(i,j) // if d_i has values removed

thenq:=q U {(k,i) | Cy inC} // need to revise all constraints C_ki
consistent := d[i]z {} // stop if domain wipe out
return consistent

ac3

if revise(i,j)
then q := q U {(k,i) | (k,i) inc}

What?

Note: ac3 has a queue of constraints that need revision
because some values in the domains of the variables may
be unsupported.

Remember: ac3 processes a queue of constraints

But forgive me, the queue might be treated as just a set

acl and ac2 (the straw men) essentially revised
constraints over and over again,
until no change ... until reaching a fixed point

O(e.d?)

e is number of constraints
d is domain size

Complexity of ac3 proved in 1985 by Mackworth & Freuder (AIJ 25)

O(e.d?)

e is number of constraints
d is domain size

Prove it
Also look at paper by Zhang & Yap

The complexity of ac3 A beautiful proof

+ A constraint C_i,j is revised iff it enters the Q

+ C_i,j enters the Q iff some value in d[j] is deleted

- C_i,j can enter Q at most d times (the size of domain d[j])
* A constraint can be revised at most d times

 There are e constraints in C (the set of constraints)

* revise is therefore executed at most e.d times

* the complexity of revise is O(d?)

* the complexity of ac3 is then O(e.d3)

The order that we revise the constraints make no difference to the outcome
It reaches the same fixed point, the same set of arc-consistent domains

The order that we revise the constraints may make a difference to run time.

.. constraint ordering heuristic, anyone?

Revise ignored any semantics of the constraint

Is that dumb, or what?

Could we get round this?

- Use OOP?

* A class of constraint?

* revise as a specialised method?

AC4, AC6, ACT, ...

"Optimal” support counting algorithms

Associate with each value in Di
* a counter supportCount([X,i,j]

* the number of values in Dj that support x
- a boolean supports[x,y,j]

* true if x supportsy in Dj

1st stage of the algorithm builds up the supportCount and support flags

2nd stage

* if supportCount[x,i,jl1=0 (x has no support in Dj over constraint Cij)
* delete(Di, x)
- decrement supportCount[y k,i] (where supports[x,yk]is true)

- continue this till no change
* i.e. propagate

If x supports y in Dk and x is deleted from Di
Then support count for y in Dk over constraint Cki is decremented

AC4, AC6, ACT, ...

Best case and worst case performance of ac4 is the same
O(e.d?)

Ac6, 7, and 8 exploit symmetries, and lazy evaluation
- if x supports y over constraint Cij theny supports x over Cji
- find the 1st support for x, and only look for more when support is lost

Ac3 worst case performance rarely occurs
(experimental evidence due to Rick Wallace)

Why is best case and worst case performance of ac4

O(e.d?)

History Lesson

- acl/2/3 due to Alan Mackworth 1977

- ac4 Mohr & Henderson AIJ28 1986

- acb , 7, 8 due to Freuder, Bessiere, Regin, and others
- in ALJ, IJCATI, etc

Downside of ac4, acé, ac7, and ac8 algorithms is “hard to code”

ac3 is easy!

ACH

A generic arc-consistency algorithm and its specializations
AIJ 57 (2-3) October 1992
P. Van Hentenryck, Y. Deville, and C.M. Teng

ach

Acb is a "generic” ac algorithm and can be specialised for
special constraints (i.e. made more efficient when we know
something about the constraints)

Acb is at the heart of constraint programming

Constraint is an object with its own propagator

ach, the intuition

* take an OOP approach
- constraint is a class that can then be specialised
* have a method to revise a constraint object
- allow specialisation
* have basic methods such as
* revise when lwb increases
* revise when upb decreases
* revise when a value is lost
* revise when variable instantiated
* revise initially
* methods take as arguments
* the variable in the constraint that has changed
» possibly, what values have been lost

- arc-consistency is at the heart of constraint programming

- it is the inferencing step used inside search

* it has to be efficient

* data structures and algorithms are crucial to success

- ac is established possibly millions of times when solving
* it has to be efficient

- we have had an optimal algorithm many times

- ac4, acb, ac7, ac2001

- ease of implementation is an issue

- we like simple things

- but we might still resort to empirical study!

- modern approach is constraint as object with specialised propagator

MAC

What's that then

Maintain arc-consistency

Maintain arc-consistency

- why use instantiation?
* Domain splitting?
- resolve disjunctions first
» for example (V1< V2 OR V2 < V1)

You now know enough to go out and
build a reasonably efficient and useful CP toolkit

At least, we have an idea about what's under the hood.

