
cbj

What’s a csp?

• a set of variables
• each with a domain of values
• a collection of constraints (I’m going to assume binary for the present)
• assign each variable a value from its domain to satisfy the constraint

<V,D,C>

Consider the following problem (csp5)

• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

How will search proceed?

Demo csp5 with bt4 with system.verbose := 3

A solution is 3--3--2--1

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2
V3
V4
V5
V6
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3
V4
V5
V6
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4
V5
V6
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5
V6
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 1
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 1
V7 = 1
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 1
V7 = 2
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 1
V7 = 3
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 2
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 2
V7 = 1
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 2
V7 = 2
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 2
V7 = 3
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 3
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 3
V7 = 1
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 3
V7 = 2
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 1
V6 = 3
V7 = 3
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 1
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 1
V7 = 1
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 1
V7 = 2
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 1
V7 = 3
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 2
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 2
V7 = 1
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 2
V7 = 2
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 2
V7 = 3
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 3
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 3
V7 = 1
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 3
V7 = 2
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 2
V6 = 3
V7 = 3
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 3
V6
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 3
V6 = 1
V7
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 3
V6 = 1
V7 = 1
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 3
V6 = 1
V7 = 2
V8
V9
V10

Consider the following problem (csp5)
• variables V[1] to V[10]
• uniform domains D[1] to D[10] = {1,2,3}
• constraints

• V[1] = V[4]
• V[4] > V[7]
• V[7] = V[10] + 1

V1 = 1
V2 = 1
V3 = 1
V4 = 1
V5 = 3
V6 = 1
V7 = 3
V8
V9
V10

BT Thrashes!

conflict with v[h]

past variable v[h]

future variable

v[j]

Thrashing:

 Slavishly repeating the same set of actions
 with the same set of outcomes.

Can we minimise thrashing?

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10

Cause for conflict in csp5

• When we hit a dead end on V[7] we should jump back to V4
• the deepest conflicting variable for V[7] is V[4]
• if there are no more values for V[4] jump back to V[1]

• the deepest conflicting variable for V[4] or V[7], (excluding V[4])
• and so on

Recording conflicts

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10

Cause for conflict in some other csp Recording conflicts

CS1 = {0}
CS2 = {0}
CS3 = {0}
CS4 = {0,1}
CS5 = {0}
CS6 = {0}
CS7 = {0,4}
CS8 = {0}
CS9 = {0}
CS10 = {0,6,7}

Conflict Sets

Assume search proceeded as follows
• V1, V2, and V3 were instantiated without failures
• First value tried for V4 conflicted with V1
• Second value tried for V4 was compatible with V1, V2, and V3
• V5 and V6 were instantiated without failures
• First and second value tried for V7 failed against V4
• Third value tried for V7 was compatible with all past variables V1 to V6
• V8 and V9 were instantiated without failure
• First value tried for V10 failed against V6
• Second and Third values tried for V10 failed against V7
• V10 has no more values

Current variable

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10

Cause for conflict in some other csp Recording conflicts

CS1 = {0}
CS2 = {0}
CS3 = {0}
CS4 = {0,1}
CS5 = {0}
CS6 = {0}
CS7 = {0,4}
CS8 = {0}
CS9 = {0}
CS10 = {0,6,7}

Conflict Sets

• Jump back from V10 to V7
• update CS7 to be CS7  CS10  {7}

• the set of variables conflicting with V10 or V7, excluding V7

Current variable

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10

Cause for conflict in some other csp Recording conflicts

CS1 = {0}
CS2 = {0}
CS3 = {0}
CS4 = {0,1}
CS5 = {0}
CS6 = {0}
CS7 = {0,4,6}
CS8 = {0}
CS9 = {0}
CS10 = {0}

Conflict Sets

• Assume V7 now has no values remaining
• jump back to V[6] and update CS6

Current variable

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10

Cause for conflict in some other csp Recording conflicts

CS1 = {0}
CS2 = {0}
CS3 = {0}
CS4 = {0,1}
CS5 = {0}
CS6 = {0,4}
CS7 = {0}
CS8 = {0}
CS9 = {0}
CS10 = {0}

Conflict Sets

• Assume V6 now has no values remaining
• jump back to V[4] and update CS4

Current variable

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10

Cause for conflict in some other csp Recording conflicts

CS1 = {0}
CS2 = {0}
CS3 = {0}
CS4 = {0,1}
CS5 = {0}
CS6 = {0}
CS7 = {0}
CS8 = {0}
CS9 = {0}
CS10 = {0}

Conflict Sets

• Assume V4 now has no values remaining
• jump back to V[1] and update CS1

Current variable

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10

Cause for conflict in some other csp Recording conflicts

CS1 = {0}
CS2 = {0}
CS3 = {0}
CS4 = {0}
CS5 = {0}
CS6 = {0}
CS7 = {0}
CS8 = {0}
CS9 = {0}
CS10 = {0}

Conflict Sets

• Assume V1 now has no values remaining
• jump back to the zeroth variable! No solution!

Current variable

cbj

• Associate with each variable V[i] a conflict set CS[i]
• Initially CS[i] = {0}, for all i

• when labeling a variable V[i]
• If a consistency check fails between V[i] and V[h]

• add h to CS[i]

• when unlabeling a variable V[i]
• jump back to V[h]

• h is the largest value in CS[i]
• update conflict set CS[h]

• CS[h] := CS[h]  CS[i]  {h}
• reset all variables V[j]

• h  j  i

See source code
clairExamples/cbj.cl

CBJ Remember your conflicts, and when you have used them forget them.

When we instantiate v[i] := x and
check(v[i],v[h]) and
it fails

• v[i] is in conflict with v[h]
• add h to the set confSet[i]

confSet[i] is then the set of past variables that conflict
with values in the domain of v[i]

CBJ

 If there are no values remaining for v[i]
Jump back to v[h], where v[h] is the deepest variable in conflict with v[i]
The hope: re-instantiate v[h] will allow us to find a good value for v[i]

Conflict-directed backjumping, exploits failures within the search process

What happens if: constraint graph is dense, tight, or highly consistent?

 If there are no values remaining for v[h]
Jump back to v[g], where v[g] is the deepest variable in conflict with v[i] or v[h]
The hope: re-instantiate v[g] will allow us to find a good value for v[i] or a
 good value for v[h] that will be good for v[i]

 If there are no values remaining for v[g]
Jump back to v[f], where v[f] is the deepest variable in conflict with v[i] or v[h] or v[g]
The hope: re-instantiate v[f] will allow us to find a good value for v[i] or a
 good value for v[h] that will be good for v[i] or a
 good value for v[g] that will be good for v[h] and v[i]

CBJ

When jumping back from v[i] to v[h] update conflict sets

confSet[h] := confSet[h]  confSet[i] \ {h}
confSet[i] := {0}

That is, when we jump back from v[h] jump back to a
variable that is in conflict with v[h] or with v[i]

Throw away everything you new on v[i]

Reset all variables from v[h+1] to v[i] (i.e. domain and confSet)

CBJ

Looks like bt?

CBJ

A simple modification

record a conflict

CBJ

A simple modification

get back jumping point

CBJ

A simple modification

update conflict set of backjumping point
(aka “culprit”)

CBJ

A simple modification

reset variables we jump over

CBJ

1

2

3

4

5

6 {4,1,0}

{2,0}

conflict set

CBJ

1

2

3

4

5

6

{2,1,0}

conflict set

CBJ (reduce thrashing)

1

2

3

4

5

6

{2,1,0}

Jump back to deepest past variable
in confSet (call it h) and then
combine confSet[i] with confSet[h]

•History:

•Konkrat and V Beek,

•Gent and Underwood

CBJ Variants

BM-CBJ, FC-CBJ, MAC-CBJ

CBJ DkC

If we jump from v[i] to v[h] and confSet[i] = {0,h}
then remove value(v[h]) from domain(h)
value(v[h]) is 2-inconsistent wrt v[i]

If we jump from v[h] to v[g] and confSet[h] = {0,g}
then remove value(v[g]) from domain(g)
value(v[g]) is 3-inconsistent wrt v[i] and v[h]

If we jump from v[g] to v[f] and confSet[g] = {0,f}
then remove value(v[f]) from domain(f)
value(v[f]) is 4-inconsistent wrt v[i] and v[h] and v[g]

What happens if the problem is highly consistent?
See JAIR 14 2001, Xinguang Chen & Peter van Beek

CBJ DkC

CBJ ATMS

If we jump from v[i], over v[h], to v[g] and confSet[h]  {0 .. g-1}
then do NOT reset domain(h) and
 do NOT reset confSet(h)

Consider the past variables as assumptions and confSet[i] as an explanation

Down side, we have more work to do.
This is a kind of learning (what kind?)

• v[h] is in conflict only with variables “above” v[g]
• none of those conflicting variables have been re-instantiated
• consequently confSet[h] and currentDomain[h] remains valid!

CBJ ~ DB

confSet[x,i] gives the past variable in conflict with v[i] := x

Finer grained:
on jumping back we can deduce better what values to return to domains

Down side, we have more work to do.
This is an algorithm between CBJ and DB

The bridge and the long jump Funny things about cbj (part 1)

Maybe too subtle for part of a lecture

Funny things about cbj (part 2)

Value ordering on insoluble problems can have an effect

But never with BT!

Funny things about cbj Value ordering on insoluble problems can have an effect

Problem: V1 to V7, each with domain {A,B}
 nogoods {(1A,7A),(3A,7B),(5A,7B),(6A,7A),(6A,7B),(6B,7A),(6B,7B)}

Var Val confSet
V1 A
V2 A
V3 A
V4 A
V5 A
V6 A
V7 A/B {1,3}

Var Val confSet
V1 A
V2 A
V3 B
V4 A
V5 A
V6 A
V7 A/B {1,5}

Var Val confSet
V1 A
V2 A
V3 B
V4 A
V5 B
V6 A
V7 A/B {1,6}

Var Val confSet
V1 A
V2 A
V3 B
V4 A
V5 B
V6 B
V7 A/B {1,6}

Finally V6 has no values and cbj jumps to V1

Insoluble because nogoods {(6A,7A),(6A,7B),(6B,7A),(6B,7B)}

Funny things about cbj Value ordering on insoluble problems can have an effect

Problem: V1 to V7, each with domain {A,B}
 nogoods {(1A,7A),(3A,7B),(5A,7B),(6A,7A),(6A,7B),(6B,7A),(6B,7B)}

Var Val confSet
V1 B
V2 B
V3 B
V4 B
V5 B
V6 B
V7 A/B {6}

Var Val confSet
V1 B
V2 B
V3 B
V4 B
V5 B
V6 A
V7 A/B {6}

Finally V6 has no values and cbj jumps to V0

We now order domains and choose B then A!

Value ordering made a difference to an insoluble problem!

Conflicting claims

Bessier & Regin CP96:
 CBJ is nothing but an overhead
 random problems as evidence

Smith & Grant IJCAI95:
 CBJ helps minimise occurrence of EHP’s
 random problems as evidence

Chen & van Beek JAIR 2001:
 CBJ is a tiny overhead
 When it makes a difference it is a HUGE difference
 random & real problems as evidence

New CBJ

I believe all state of the art sat solvers are using cbj
(or have rediscovered cbj but don’t know it)

CBJ for QSAT: see recent AIJ
conflict and solution directed!

Who is not using cbj?

Constraint programming!

We don’t jump and we don’t learn

Is speed everything?

No

How about explanations and retraction?

Why is cbj not in CP?

Need to propagate laterally (see MAC-CBJ tech report)
but this is no big deal

Need to get explanations out of constraints!

Not just writing a good constraint propagator
but a good constraint explainer!

Maybe there is not yet the demand for retraction and explanation
(but I don’t believe that)

