cbj

What's a csp?

<V,D,C>

- a set of variables

- each with a domain of values

» a collection of constraints (I'm going to assume binary for the present)
- assign each variable a value from its domain to satisfy the constraint

Consider the following problem (cspb)

- variables V[1] to V[10]
* uniform domains D[1] to D[10] ={1,2,3}
- constraints

- V[1] = V[4]

- V[4]> V[7]

- V[7]=V[10] +1

How will search proceed?

Demo csp5 with bt4 with system.verbose := 3

A solution is 3--3--2--1

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

* uniform domains D[1] to D[10] ={1,2,3}
- constraints

* V[1] = V[4]

- V[4]> V[7]

- V[7]=V[10] +1

Vi =1
V2

V3

V4

V5

')

V7

V8

V9
V10

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

* uniform domains D[1] to D[10] ={1,2,3}
- constraints

* V[1] = V[4]

- V[4]> V[7]

- V[7]=V[10] +1

Vi =1
ve =1
V3
V4
V5
')
V7
V8
V9
V10

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

* uniform domains D[1] to D[10] ={1,2,3}
- constraints

* V[1] = V[4]

- V[4]> V[7]

- V[7]=V[10] +1

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

* uniform domains D[1] to D[10] ={1,2,3}
- constraints

* V[1] = V[4]

- V[4]> V[7]

- V[7]=V[10] +1

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6

V7

V8

V9

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 1

V7

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 1

V7= 1

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 1

V7 = 2

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 1

V7= 3

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 2

V7

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 2

V7= 1

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 2

V7 = 2

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 2

V7= 3

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 3

V7

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 3

V7= 1

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 3

V7 = 2

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 1

V6 = 3

V7= 3

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6

V7

V8

V9

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 1

V7

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 1

V7= 1

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 1

V7 = 2

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 1

V7= 3

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 2

V7

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 2

V7= 1

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 2

V7 = 2

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 2

V7= 3

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 3

V7

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 3

V7= 1

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 3

V7 = 2

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 2

V6 = 3

V7= 3

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 3

V6

V7

V8

V9

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 3

V6 = 1

V7

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 3

V6 = 1

V7= 1

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 3

V6 = 1

V7 = 2

V8

V9

<<
—
o

Consider the followi blem (csp5
onsider the following problem (csp5) - variables V[1] to V[10]

» uniform domains D[1] to D[10] = {1,2,3}
- constraints

* V[1] = V[4]
" V[4]> V[7]
+ V[7]1= V[10] + 1

Vi =1

V2 =1

V3= 1

V4= 1

V5= 3

V6 = 1

V7= 3

V8

V9

<<
—
o

BT Thrashes!

e LU
- =

past variable v[h]

|

- » R

conflict with v[h]

current variable v[i]

future variable

vijl

-

Thrashing:

Slavishly repeating the same set of actions
with the same set of outcomes.

Can we minimise thrashing?

Recording conflicts

Cause for conflict in csp5

Vo —-

* When we hit a dead end on V[7] we should jump back to V4
* the deepest conflicting variable for V[7] is V[4]
- if there are no more values for V[4] jump back to V[1]
* the deepest conflicting variable for V[4] or V[7], (excluding V[4])
* and so on

Recording conflicts Conflict Sets Cause for conflict in some other csp
Vi] cs1 = {0}
V2 cS2 ={0}
V3 CS3 ={0}
V4 <— cs4 ={0,1}
V5 CS5 = {0}
V6 < CS6 = {0}
V7 — CS7 ={0,4}
V8 CS8 ={0}
V9 CS9 = {0}
Current variable — y10 — €510 ={0,6,7}

Assume search proceeded as follows

- V1, V2, and V3 were instantiated without failures

* First value tried for V4 conflicted with V1

- Second value tried for V4 was compatible with V1, V2, and V3
* V5 and V6 were instantiated without failures

* First and second value tried for V7 failed against V4

* Third value tried for V7 was compatible with all past variables V1 to V6
- V8 and V9 were instantiated without failure

* First value tried for V10 failed against V6

» Second and Third values tried for V10 failed against V7

* V10 has no more values

Recording conflicts Conflict Sets Cause for conflict in some other csp

Vi] cs1 = {0}
V2 cs2 = {0}
V3 CS3 ={0}
V4 <— cs4 ={0,1}
V5 CS5 = {0}
V6 < CS6 = {0}
V7 — CS7 ={0,4)
V8 €S8 = {0}
V9 CS9 = {0}
Current variable — y10 — €510 ={0,6,7}

» Jump back from V10 to V7
* update CS7 to be CS7 U CS10 - {7}
* the set of variables conflicting with V10 or V7, excluding V7

Recording conflicts Conflict Sets Cause for conflict in some other csp

Vi Ccs1 = {0}
V2 cs2 ={0}
V3 CS3 = {0}
V4 —— cs4 ={0,1}
V5 CcsS5 = {0}
V6 cs6 ={0}
Current variable — V7 CS7 ={04,6}
V8 cs8 ={0}
V9 CS9 = {0}
V10 CS10 = {0}

 Assume V7 now has no values remaining
- jump back to V[6] and update CS6

Recording conflicts Conflict Sets Cause for conflict in some other csp

Vi Ccs1 = {0}
V2 cs2 ={0}
V3 CS3 = {0}
V4 —— cs4 ={0,1}
V5 CcsS5 = {0}
Current variable — V6 CS6 ={0,4}
V7 CS7 ={0}
V8 cs8 ={0}
V9 CS9 = {0}
V10 CS10 = {0}

- Assume V6 now has no values remaining
- jump back to V[4] and update CS4

Recording conflicts Conflict Sets Cause for conflict in some other csp

Vi Ccs1 = {0}
V2 cs2 ={0}
V3 CS3 ={0}
Current variable — 4 — cs4 ={0,1}
V5 Ccs5 ={0}
Vé6 CsS6 = {0}
V7 Ccs7 ={0}
V8 CS8 = {0}
V9 CS9 = {0}
V10 CS10 = {0}

- Assume V4 now has no values remaining
- jump back to V[1] and update CS1

Recording conflicts Conflict Sets Cause for conflict in some other csp

Current variable — V1 CcSs1 = {0}
V2 cs2 ={0}
V3 CS3 ={0}
V4 CS4 = {0}
V5 Ccs5 ={0}
Vé6 CsS6 = {0}
V7 Ccs7 ={0}
V8 CS8 = {0}
V9 CS9 = {0}
V10 CS10 = {0}

- Assume V1 now has no values remaining
- jump back to the zeroth variablel No solution!

cbj

* Associate with each variable V[i] a conflict set CSJ[i]
* Initially CS[i] = {0}, for all i

* when labeling a variable V[i]
* If a consistency check fails between V[i] and V[h]
* add h to CS[i]

* when unlabeling a variable V[i]
- jump back to V[h]
* h is the largest value in CS[i]
- update conflict set CS[h]
» CS[h]:= ¢cS[h]u CSJi] - {h}
- reset all variables V[j]
*h>j>i

See source code
clairExamples/cbj.cl

CBJ Remember your conflicts, and when you have used them forget them.

When we instantiate v[i] := x and
check(v[i],v[h]) and
it fails

* v[i]is in conflict with v[h]
- add h to the set confSet]i]

confSet[i] is then the set of past variables that conflict

with values in the domain of v[i]

CBJ Conflict-directed backjumping, exploits failures within the search process

If there are no values remaining for v[i]
Jump back to v[h], where v[h] is the deepest variable in conflict with v[i]
The hope: re-instantiate v[h] will allow us to find a good value for v[i]

If there are no values remaining for v[h]

Jump back to v[g], where v[g] is the deepest variable in conflict with v[i] or v[h]

The hope: re-instantiate v[g] will allow us to find a good value for v[i] or a
good value for v[h] that will be good for v[i]

If there are no values remaining for v[g]
Jump back to v[f], where v[f] is the deepest variable in conflict with v[i] or v[h] or v[g]
The hope: re-instantiate v[f] will allow us to find a good value for v[i] or a

good value for v[h] that will be good for v[i] or a

good value for v[g] that will be good for v[h] and v[i]

What happens if: constraint graph is dense, tight, or highly consistent?

CBJ

When jumping back from v[i] to v[h] update conflict sets

confSet[h] := confSet[h] U confSet[i] \ {h}

confSet[i] := {0}

That is, when we jump back from v[h] jump back to a
variable that is in conflict with v[h] or with v[i]

Throw away everything you new on v[i]

Reset all variables from v[h+1] to v[i] (i.e. domain and confSet)

1 PROCEDURE cbj-label (i)

2 BEGIN
3 IFi>n
4 THEN print("solution")
5 ELSE BEGIN
6 consistent « false;
7 FOR v[i] « EACH ELEMENT OF curmrent-domain(i]
WHILE not consistent
8 DO BEGIN
9 consistent < true;
10 FOR h « 1 TO i-1 WHILE consistent
11 DO BEGIN
12 consistent < check(i,h)
13 END;
14 IF not consistent
15 THEN BEGIN
16 current-domain(i]
«— remove(Vv[i],current-domain(i]);
17 pushnew(h,conf-set[i])
18 END
19 END
20 IF consistent
21 THEN cbj-label(i+1)
22 ELSE cbj-unlabel(i)
23 END
24 END;

CBJ

Looks like bt?

1 PROCEDURE cbj-unlabel (i)

2 BEGIN

3 [Fi=0

4 THEN print("impossible™)

5 ELSE BEGIN

6 h « max-list(conf-set[i]);

7} conf-set[h] < remove(h,union(conf-set[h],conf-set[i]));
8 FOR j « h+1 TO i

9 DO BEGIN

10 conf-set(j] « {0};

11 current-domain(j] « domain(j]

12 END;

13 current-domain[h] « remove(v[h],current-domain[h}]);
14 IF current-domain[h] # nil;

15 THEN cbj-label(h)

16 ELSE cbj-unlabel(h)

17 END

18 END;

1 PROCEDURE cbj-label (i)

2 BEGIN

3 IFi>n

4 THEN print("solution")

5 ELSE BEGIN

6 consistent < false;

7 FOR v[i] « EACH ELEMENT OF curmrent-domain(i]
WHILE not consistent

8 DO BEGIN

9 consistent < true;

10 FOR h « 1 TO i-1 WHILE consistent

11 DO BEGIN

12 consistent < check(i,h)

13 END;

14 IF not consistent

15 THEN BEGIN

16 current-domain(i]

’—1—_mmnin(ul.l.cun' rent-domain(i]);

17 pushnew(h,conf-set[i])

18 END

19 END

20 IF consistent

21 THEN cbj-label(i+1)

22 ELSE cbj-unlabel(i)

23 END

24 END;

CBJ

A simple modification

record a

conflict

BEGIN
IFi=
THEN
ELSE

00 NN e W -

Pk e e e et e e -
N oOWAEWLN—~OWY

18 END;

PROCEDURE cbj-unlabel (i)

0
print("impossible")
BEGIN
h « max-list(conf-set[i]);
conf-set[h] < remove(h,union(conf-set[h],conf-set[i]));
FOR j « h+1 TO i
DO BEGIN
conf-set(j] « {0};
current-domain(j] < domain(j]
END;
current-domain[h] « remove(v[h],current-domainfh]);
IF current-domain[h] # nil;
THEN cbj-label(h)
ELSE cbj-unlabel(h)
END

1 PROCEDURE cbj-label (i)
2 BEGIN

3 IFi>n

4 THEN print("solution")

5 ELSE BEGIN

24 END;

consistent < false;

FOR v[i] « EACH ELEMENT OF current-domain(i]

WHILE not consistent
DO BEGIN
consistent < true;
FOR h <« 1 TO i-1 WHILE consistent
DO BEGIN
consistent < check(i,h)
END;
IF not consistent
THEN BEGIN
current-domain(i]

« remove(v[i],current-domain(i]);

pushnew(h,conf-set[i])
END
END
IF consistent
THEN cbj-label(i+1)
ELSE cbj-unlabel(i)
END

CBJ

A simple modification

get back jumping point

e

1

3

5

11
12
13
14
15
16
17

SX\I (o))

PROCEDURE cbj-unlabel (i)
2 BEGIN

IF i

4 THEN print("impossible")

ELS

=0

E BEGIN

h « max-list(conf-set[i]);

18 END;

conf-set[h] « remove(h,union(conf-set[h],conf-set[i]));
FOR j « h+1 TO i
DO BEGIN
conf-set(j] « {0};
current-domain(j] < domain(j]
END;
current-domain[h] « remove(v[h],current-domain[h]);
IF current-domain[h] # nil;
THEN cbj-label(h)
ELSE cbj-unlabel(h)
END

1 PROCEDURE cbj-label (i)
2 BEGIN
3 IFi>n
4 THEN print("solution")
5 ELSE BEGIN
6 consistent « false;
7 FOR v[i] « EACH ELEMENT OF curmrent-domain(i]
WHILE not consistent
8 DO BEGIN
9 consistent < true;
10 FOR h < 1 TO i-1 WHILE consistent
11 DO BEGIN
12 consistent < check(i,h)
13 END;
14 IF not consistent
15 THEN BEGIN
16 current-domain(i]
«— remove(Vv[i],current-domain(i]);
17 pushnew(h,conf-set[i])
18 END
19 END
20 IF consistent
21 THEN cbj-label(i+1)
22 ELSE cbj-unlabel(i)
23 END
24 END;

CBJ

A simple modification

e

update conflict set of backjumping point

(aka “culprit”)

1
2
3
4
5

10
11
12
13
14
15
16
17

18

I

PROCEDURE cbj-unlabel (i)
BEGIN

[Fi=0

THEN print("impossible™)
ELSE BEGIN

-li -set[il):
conf-set[h] < remove(h,union(conf-set[h],conf-set[i]));

FOR j « h+1 TO i
DO BEGIN
conf-set(j] « {0};
current-domain(j] < domain(j]
END;
current-domain[h] « remove(v[h],current-domainfh]);
IF current-domain[h] # nil;
THEN cbj-label(h)
ELSE cbj-unlabel(h)
END

END;

1 PROCEDURE cbj-label (i)
2 BEGIN

3 IFi>n

4 THEN print("solution")

5 ELSE BEGIN

24 END;

consistent < false;
FOR v[i] « EACH ELEMENT OF curmrent-domain(i]
WHILE not consistent
DO BEGIN
consistent < true;
FOR h <« 1 TO i-1 WHILE consistent
DO BEGIN
consistent < check(i,h)
END;
IF not consistent
THEN BEGIN
current-domain(i]
«— remove(Vv[i],current-domain(i]);
pushnew(h,conf-set[i])
END
END
IF consistent
THEN cbj-label(i+1)
ELSE cbj-unlabel(i)
END

CBJ

A simple modification

reset variables we jump over

1 PROCEDURE cbj-unlabel (i)
2 BEGIN
3 IFi=0
4 THEN print("impossible")
5 ELSE BEGIN
6 h « max-list(conf-set[i]);
7} conf-set[h] < remove(h,union(conf-set[h],conf-set[i]));
8 FOR j « h+1 TO i
9 DO BEGIN
10 conf-set(j] « {0};
/H/v current-domain(j] < domain(j]
12 END;
13 current-domain[h] « remove(v[h],current-domain[h]);
14 IF current-domain[h] # nil;
15 THEN cbj-label(h)
16 ELSE cbj-unlabel(h)
17 END
18 END;

CBJ

conflict set

/

{2,0}

|

v v

{4,1,0}

CBJ

conflict set

/

{2,1,0}

v v

CBJ (reduce thrashing)

v

v

{2,1,0}

Jump back to deepest past variable
in confSet (call it h) and then
combine confSet[i] with confSet[h]

*History:
*Konkrat and V Beek,
*Gent and Underwood

/= http:/hwww. dcs.gla.ac. uk/publications/PAPERS/8349/hs005. pdf - Windows Internet Explorer

@a\:;; v ’_ http: /v, des.gla. ac.ukfpublications/PAPERS/8349/hs00S. pdf

w & BB

V' 21| X 1&&3:»

duh v |:bPage v (FToos v @~ & B

8 08 -

‘4 Start

& #9517

O ® o - g K [fd -

“-'

The algorithms were applied to 450 instances of the
zebra problem, described in [Dechter 1990 and Smith
1992]. That is, 450 different instantiation orders of the
sebra were created, and each algorithm was applied to
those problems in tumn. Table 1 shows the average number
of consistency checks performed by an algorithm, the
standard deviation, the minimum number of consistency
checks performed, and the maximum number performed
over the 450 problems. Table 2 shows the same informa-

—gy—

tion but with respect to nodes visited.

Algorithm) o min max
BT 6357,703 | 15,024,056 | 8,755 |[172,074472
BJ 940,248 2321478 | 1,393 24,393,906
GBJ 1,120,336 2,745411 | 1,563 27,475,100
CBJ 132,492 319,107 538 3,991,581
BM 681,802 1,750,022 | 1,144 18,439,620
FC 66,386 95,855 432 903,400
BJ-D2C 473 437 1,203,653 | 1219 18,156,213
CBJ-DkC 61,681 120,009 538 988,049
FC-D2C 47492 74414 396 885,786
Table 1. Consistency Checks
Algoritm T__ Bl L
BT 1,249,087 | 2,845,631 | 1,893 |29,942330
BJ 173,620 397,502 274 4,056,985
GBJ 207,848 481,350 364 | 4,413,676)
CBJ 24,178 55,954 111 632,847
BM 1,249,087 |2,845631 | 1,893 |29,942330
FC 7,092 9,922 33 76,405
BJ-D2C 87,858 215,807 229 3,077,572
CBJ-DkC 11,317 21,790 111 205,774
FC-D2C 5422 7,793 33 75,541
CEC T ok ELDUNO % slides

FC-D2C | 3 |
Table 3. CPU Time

Although BT performed on average 8 times as many con-
sistency checks as BM (Table 1) BT took only 20%
longer to run than BM (Table 3). This is due to the poor
“checking rate" of BM (and this is explained more fully in
[Prosser 1991 and 1993]). CBJ has a higher checking rate
than BJ. Therefore, not only does CBJ perform less
checks than BJ, it performs these checks with less over-
heads (these tests used the more efficient version of BJ
described in [Prosser 1991], rather than the derived ver-
sion here). This is because CBJ updates conf-set[i] condi-
tionally, and BJ updates max-check[i] unconditionally.
Generally, there is an insignificant overhead associated
with the modifications performed to BJ (to give us BJ-
D2C), CBJ (giving CBJ-DkC), and FC (to FC-D2C).
These modifications resulted in a reduction in consistency
checks performed, nodes visited, and a reduction in run
time. Therefore, with respect to run time the algorithms
may be ranked: FC-D2C, CBJ-DkC, FC, CBIJ, BJ-D2C,
BJ, BM. With the exception of BM, this ranking agrees
with those above, and in fact there is little to choose
between CBJ-DkC wud FC-D2C.

7,588 |

5. The Bridge (and the Long Jump)

It was expected that CBJ-DkC would always perform at
least as well as CBJ. However, on analysing the experi-
mental results it was discovered that out of the 450 prob-
lem instances there were 2 cases where CBJ performed
better than CBJ-DkC. This was a surprise. One of these
problems was then examined in detail. This was the prob-
lem with the instantiation order: <Water, Tea, Coffee,

apanese, Kools, Blue, Ukranian, Chesterfield, Old-Gold,

@ 2 Microsoft Office P... ~ ﬂ; http:/fwww. des.ala.a. .. Q =" [‘* .‘. 4 A 15:01

/= http:/hwww. dcs.gla.ac. uk/publications/PAPERS/8349/hs005. pdf - Windows Internet Explorer

—

& A ’ http: /. des.gla. ac.ukfpublications/PAPERS[8349/hs005. pdf vi 9! X IJ le \ e
W 2B e v |:bPage v { Tools ~ @)~ g 3
BB & S %" (@@= -5 [F e -
IF EIN QO ST T (O 7
)]

instantiated(j] « false;

ally, since FC and BJ only reason over failures
between pairs of variables we can only detect
inconsistencies (1st order leaming). On the
since CBJ reasons over failures within a set of
it can detect directed k-inconsistencies (nth

ng).

mental Evaluation

ing algorithms were compared against each
(naive/chronological backtracking), BJ
5 backjumping routine), GBJ (Dechter’s graph-
jumping routine), CBJ (described here), BM
s backmarking routine), FC (Haralick and
hrward checking routine), BJ-D2C, CBJ-DkC,
C (again, described here).

algorithms were applied to 450 instances of the
hlem, described in [Dechter 1990 and Smith
at is, 450 different instantiation orders of the
> created, and each algorithm was applied to
ems in tumn. Table 1 shows the average number
ency checks performed by an algorithm, the
Slleviation, the minimum number of consistency
ormed, and the maximum number performed

L ECT - EUNO % contrib

The algorithms were then applied again to 100
instances of the zebra problem, and the cpu time was
measured. Table 3 below shows the average cpu time used
(on a SPARCstation IPC, with 24 mega-bytes of memory,
using Sun Common Lisp 4.0) by the algorithms for solv-
ing an instance of the problem, and the average number of

consistency checks performed in a second.

Algorithm | seconds | checks/sec
BT 123 12,221
BJ 32 8,771
GBJ 29 10,311
CBJ 6 8,953
BM 102 1,659
FC 5 7,707
BJ-D2C 13 7,682
CBJ-DkC 3 8,769
FC-D2C 3 7,588

Although BT performed on average 8 times as many con-
sistency checks as BM (Table 1) BT took only 20%
longer to run than BM (Table 3). This is due to the poor
"checking rate” of BM (and this is explained more fully in
[Prosser 1991 and 1993]). CBJ has a higher checking rate
than BJ. Therefore, not only does CBJ perform less
rhacke than RT it nerforms these checks with less over-

B3 2 Microsoft ...

Table 3. CPU Time

v /2 2 InternetE...

+ | ¥ emacs@BIAK

"",)f* @ "am 1508

CBJ Variants

BM-CBJ, FC-CBJ, MAC-CBJ

CBJ DkC

If we jump from v[i] to v[h] and confSet[i] = {O,h}
then remove value(v[h]) from domain(h)
value(v[h]) is 2-inconsistent wrt v[i]

If we jump from v[h] to v[g] and confSet[h] = {0,g}
then remove value(v[g]) from domain(g)
value(v[g]) is 3-inconsistent wrt v[i] and v[h]

If we jump from v[g] to v[f]and confSet[g] = {O,f}
then remove value(v[f]) from domain(f)
value(v[f]) is 4-inconsistent wrt v[i] and v[h] and v[qg]

What happens if the problem is highly consistent?

See JAIR 14 2001, Xinguang Chen & Peter van Beek

CBJ‘ ch pla.ac. uk/publications/PAPERS/8349/hs005. pdf - Windows Internet Explorer
Wy (2 neep: f fwww, des.gla. ac.ukfpublications/PAPERS[8349/hs00S. pdf vl 9 | X lJ \ e
Wt - B - @ v [Zhrage v {FTods - @~ K 3
= & G 29[/ @[-G @[-

DZT: .
I} 6.2 IF length(conf-set[i]) = 2

6.3 THEN domain[h] « remove(v[h},domain[h]);

The above modification gives us CBJ-DkC, where DkC
stands for "directed k-consistency” [Dechter and Pearl
1988] (and is similar to nth order leaming [Dechter
1990]). The effect of this modification can be described
as follows. Let us assume that CBJ has successfully

264 Constraint Satisfaction Problems

(a) In cbj-label move line 17 to line 12.1

(b) In cbj-label replace line 21 with the fc
ment

21 THEN BEGIN
21.1 instantiated[i] « true;
21.2 cbj-label(i+1)

213 END

©) In cbj-unlabel add the following lines
¢ :

6.1 IF not(instantiated(i]) and length(conf-set[i]) = 2
6.2 THEN domain(h] « remove(v[h],domain[h]);
10.1 instantiated(j] « false;

vore generally, since FC anmo y ares

wn aan Aanlu Aatanrt

e alalan e

8.26 x 11.69in 4

‘4 Start FECT - ®EUNEO

&% slides

B 2 Microsoft Office P...

]

If we take consistency checks performed as a
search effort we may rank the algorithms as f¢
D2C, CBJ-DkC, FC, CBJ, BJ-D2C, BM, BJ.
With respect to nodes visited the algorithms

FC-D2C, FC, CBJ-DkC, CBJ, BJ-D2C, BJ, GB

BT).
The algorithms were then applied ag

instances of the zebra problem, and the cpt
meacnred Tahle 3 helow shows the average CpD.~
»

R L %@ " m 1451

w2 i o des.

CBJ ATMS

If we jump from v[i], over v[h], to v[g] and confSet[h] = {0 .. g-1}
then do NOT reset domain(h) and
do NOT reset confSet(h)

* v[h] is in conflict only with variables "above" v[g]
* none of those conflicting variables have been re-instantiated
- consequently confSet[h] and currentDomain[h] remains valid!

Consider the past variables as assumptions and confSeft[i] as an explanation

Down side, we have more work to do.

This is a kind of learning (what kind?)

CBJ ~ DB

confSet([x,i] gives the past variable in conflict with v[i] := x

Finer grained:
on jumping back we can deduce better what values to return to domains

Down side, we have more work to do.

This is an algorithm between CBJ and DB

Funny things about cbj (part 1) The bridge and the long jump

Maybe too subtle for part of a lecture

e http:/iwww.dcs.gla.ac. ukfpublications/PAPERS/8349/hs005. pdf - Windows Internet Explorer

—

v ’ http:/fwww. dcs.gla. ac.ukfpublications/PAPERS[8349/hs00S. pdf

vi 21| X la;cv:w;h,

3
w&R Q-8

s v :bPage v (FTooks - @~ B B

BB S e oo -G @

=

cess v[Z1] again becomes the current vanable and CBJ-
DkC considers the instantiation v[21] < 2. At the same
point in the search space CBJ considers the instantiation
v[21] « 1. The two search trees now differ significantly,
and in CBJ’s search tree it is possible to jump back to a
conflicting variable higher up in the search tree than
CRI-DkC

More generally, CBJ-DkC may remove an infeasible
value k from the domain of a variable v[i]. At some later
stage 1n the search process CBJ may move forwards from
v[i-1] to v[i], and be unable to re-instantiate v[i] with the
value k. CBJ-DkC may then jump back to v[h]. At the
same point in the search tree CBJ is allowed to make the
instantiation v[i] « k, and move forwards to v[j]. CBJ
may then jump back from v[j] to v[g], where g < h.
Therefore, the value k has acted as a bridge that allows
the search process to move from one area of the search
space to another, where it can then make a "long jump"
back to a conflicting vanable.

bridge has been masked by a reduction in tI-!
should now assume that increased consiste
removal of redundancies, can only guarantee
in search effort if that search is unintelliger
chronological backtracker). Conversely, we s
that we can improve the performance of g
backjumping algorithm by adding an infeasi
the domain of a vanable.

References

[Benson and Freuder 1992] B.W. Benson
Freuder, Interchangeability preprocessing can

ward checking search. Proceedings EC:
(1992)

[Bitner and Reingold 1975] J.R. Bitner and .
Backtrack programming techniques, Commu.
(1975) 651-656

[Dechter and Pearl 1988] R. Dechter and

Network-based heuristics for constraint-satisf

8.26 x 11.69in

I'o confirm thus analysis, the value 1 was removed
from domain[21], the problem was reset, and CBJ and
CBJ-DkC were re-run. It was expected that CBJ would be
unable to "cross the bridge" and unable to make "a long
jump"”. With the bridge in place CBJ performed 10,746
checks, and visited 1,974 nodes (and CBJ-DkC performed
13,097 checks, and visited 2,390 nodes). With the bridge

4

lems, Artif. Intell. 34(1) (1988) 1-38

[Dechter 1990] R. Dechter, Enhancement
constraint processing: backjumping, leaming
decomposition, Artif. Intell. 41 (3) (1990) 27

[Dechter 1992] R. Dechter, Constraint Ne
Encyclopedia of Artificial Intelligence, Secc~
»

‘4 Start £

€ 0T ElUmno @ contrib B3 2 Microsoft ...

v /2 2 InternetE...

< T emacs@BIAK

"",)f* @ "am 15:00

Funny things about cbj (part 2)

Value ordering on insoluble problems can have an effect

But never with BT!

Funny things about cbj

Problem: V1 to V7, each with domain {A,B}

Var Val confSet

V1
V2
V3
V4
V5
V6
V7

Value ordering on insoluble problems can have an effect

nogoods {(1A,7A),(3A,7B),(5A,7B),(6A,7A),(6A,7B),(6B,7A),(6B,7B)}

V1
V2
V3
V4
V5
V6
A/B {1,3} V7

Var Val confSet

A
A
B
A
A
A

A/B {155}

Var Val confSet

V1
V2
V3
V4
V5
V6
V7

A
A
B
A
B
A

A/B {1,6}

Finally V6 has no values and cbj jumps to V1

Var Val confSet

V1
V2
V3
V4
V5
V6
V7

Insoluble because nogoods {(6A,7A),(6A,7B),(6B,7A),(6B,7B)}

Funny things about cbj Value ordering on insoluble problems can have an effect

Problem: V1 to V7, each with domain {A,B}
nogoods {(1A,7A),(3A,7B),(5A,7B),(6A,7A),(6A,7B),(6B,7A),(6B,7B)}

We now order domains and choose B then Al

Var Val confSet Var Val confSet
Vi B Vi B

V2 B V2 B

V3 B V3 B

V4 B V4 B

V5 B V5 B

V6 B V6 A

V7 A/B {6} V7 A/B {6}

Finally V6 has no values and cbj jumps to VO

Value ordering made a difference to an insoluble problem!

Conflicting claims

Smith & Grant IJCAI95:
CBJ helps minimise occurrence of EHP's
random problems as evidence

Bessier & Regin CP96:
CBJ is nothing but an overhead
random problems as evidence

Chen & van Beek JAIR 2001:
CBJ is a tiny overhead
When it makes a difference it is a HUGE difference
random & real problems as evidence

New CBJ

I believe all state of the art sat solvers are using cbj
(or have rediscovered cbj but don't know it)

CBJ for QSAT: see recent AIJ
conflict and solution directed!

Who is not using cbj?

Constraint programming!

We don't jump and we don't learn

Is speed everything?

No

How about explanations and retraction?

Why is cbj not in CP?

Need to propagate laterally (see MAC-CBJ tech report)
but this is no big deal

Need to get explanations out of constraints!

Not just writing a good constraint propagator
but a good constraint explainer!

Maybe there is not yet the demand for retraction and explanation
(but I don't believe that)

