Variable & Value Ordering Heuristics

Heuristics for backtracking
algorithms

 Variable ordering
— what variable to branch on next

* Value ordering

— given a choice of variable, what order to try
values

» Constraint ordering
— what order to propagate constraints
— most likely to fail or cheapest propagated first

Variable ordering

Domain dependent heuristics
Domain independent heuristics

Static variable ordering
— fixed before search starts

Dynamic variable ordering
— chosen during search

Basic idea

» Assign a heuristic value to a variable that
estimates how difficult/easy it is to find a
satisfying value for that variable

SVO

Static variable orderings

- based on constraint graph topology
* minimum width
* minimum induced width
 max degree ordering
* minimum bandwidth ordering

* based on something else

Usually for backward checking algorithms

* why?

Static variable orderings “order” the constraint graph in a certain way

ORO.

Minimum width ordering

- width of a node is number of adjacent predecessors
- width of an ordering is maximum width of the nodes
- width of a graph is minimal width of all orderings

Max degree ordering (shown)

* in non-decreasing degree sequence Why should this work?
Is there anything bad bout it?

Minimum width aka degeneracy ordering

Minimum width aka degeneracy ordering

1. Select vertex v of maximum degree
2. Remove v from graph

- reduce degree of vertices adjacent to v
3. If vertices remain, go to 1

Minimum Bandwidth Ordering (MBO)

What is that?

What's its complexity?

Do we need it if we can jump?

- Bandwidth of a variable is the “"distance” between variables in the ordered
constraint graph
» Bandwidth of ordering is max bandwidth of varaibles/vertices

Minimum Bandwidth Ordering (MBO)

Measuring backwards

©
G Q bw(A) =1

Q e bw(C) =1

Bandwidth of ordering is 4

MBO is minimum of all orderings
NP-hard to find ®

Bandwidth is the “"distance"” between variables in the ordered
constraint graph

DVO

Dynamic variable ordering (dvo) Domain Indepentent

* Mainly based on the FF principle

* Mainly used by MAC and FC (why?)
- smallest domain first
* brelaz
» dom/deg

Regret
For each variable measure it's regret as (best value - next best value)
Chose variable with maximum regret

Fail First Principle: "To succeed, try first
where you are most likely to fail” Haralick

& Elliott 1980

“? user_guide-4.0.5.pdf - Adobe Acrobat Reader DC — O X
Eile Edit View Window Help

Home Tools user_guide-4.0.5.pdf X @ Sign In

@@EQ Q@ 23 erofan M @@@ 76.7% v ﬁ [---

3.2 Search Strategies

The search space induced by variable domains is equal to S = |dy| * |da| * ... ® |d,,| where d; is the domain of the
i'" variable. Most of the time (not to say always), constraint propagation is not sufficient to build a solution, that

22 Chapter 3. Solving

4 Choco Solver Documentation, Release 4.0.5

is, (o remove all values but one from variable domains. Thus, the search space needs to be explored using one or
more search strategies. A search strategy defines how to explore the search space by computing decisions. A decision
involves a variables, a value and an operator, e.g. = = 5, and triggers new constraint propagation. Decisions are
computed and applied until all the variables are instantiated, that 1s, a solution has been found, or a failure has been
detected (backtrack occurs). Choco 4.0.5 builds a binary search tree: each decision can be refuted (if z = 5 leads to
no solution, then z! = 5 is applied). The classical search is based on Depth First Search.

Note: There are many ways to explore the search space and this steps should not be overlooked. Search strategies
or heuristics have a strong impact on resolution performances. Thus, it is strongly recommended to adapt the search
space exploration to the problem treated.

File Edit View History Bookmarks Tools Help

SENTERRERCNEICTHTECI CIM Gl <% Scarch (Choco-4.0.6: an Open- X

< C @

All Classes

Packages

org.chocosolver.memory

org.chocosolver.memory.si
org.chocosolver.memory.ir
org.chocosolver.memory.tr

nra_ rhnrnenhrar mamanns tr

< >

~

v

Rules

RuleStore
S64BitSet
SafelntProcedure
SatConstraint
ScaleView
Search
SearchMonitorList
SearchState
SequenceNeighborhood
Set_BitSet
Set_Cstlnterval
Set_FixedArray
Set_LinkedList
Set_ReadOnly
Set_Std_BitSet
Set_Std_Swap
Set_Std_Swap2
Set_Swap
Set_Swap?2
SetDecision

P TS T

< >

® www.choco-solver.org/apidocs/inde e @ ¢ | Q Search

OVERVIEW PACKAGE |@®f.isi USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.chocosolver.solver.search.strategy

Class Search

java.lang.Object
org.chocosolver.solver.search.strategy.Search

public class Search
extends Object

Constructor Summary

Constructors
Constructor and Description

Search ()

Method Summary

solver.setSearch(Search.minDomLBSearch(q)); // fail-first

Dom over weighted degree (example)

When propagation of a constraint results in a dwo (domain wipe out)
Increment the weight of that constraint

For a variable v, sum up the weight of the constraints it is involved in
h(v) = card(dom(v))/weightedDegree(v)

Select variable with minimum h(v)

Some more recent dvo's

Conflict ordering search [cp2015]
Reasoning from last conflict(s) [ALJ 173, 2009]
Boosting systematic search by weighting constraints [ECAT2004]

Cutset decomposition

Cut set decomposition Domain Indepentent

If constraint graph is a tree then AC is a decision procedure
(result due to E.C. Freuder (Gene))

Select a variable that cuts the constraint graph

Value Ordering

Value ordering

 All solutions
— value ordering not important
— why?

* One solution

— If a solution exists, there exists a perfect value
ordering

* |Insoluble iInstance
— like all solutions
— why?

Value ordering: Intuition (promise)

« Goal: minimize size of search space
explored

* Principle:
— given that we have already chosen the next

variable to instantiate, choose first the values
that are most likely to succeed

— The most promising value

Promise Domain Indepentent

Measure promise of a value as follows

- count the number of supports in adjacent domain
* take the product of this value

* choose the value with the highest amount

* the most promising

A dual viewpoint (Geelen)
Choose the least promising variable
Assign it the most promising value

Microstructure & promise

domain values|a | b | c |e|f|g|h|i|]|k|]|m
promise 27121216|4]13|2(6]6]3(3|1

: 2 (2 [ql2]1]2 1
normalised == 15151511 5
discrepancy O%%O%%%OOOO%

Table 1. Promise of domain values, giving discrepancy values

Can FF show Promise?

Might FF actually be promising?

If FF is on path to a solution we would prefer promise to failure
But does FF actually do this?

Experiments using probing suggest FF shows promise

Domain Specific Heuristics

« Golomb ruler
* index order (1)

- Stable marriage (maybe not a heuristic)
- value ordering|

- Jobshop/Factory scheduling
- texture based heuristics
- slack based heuristics

- Car Sequencing Problem
- various (see literature)

» Bin packing
» first-fit decreasing

- ... the quest goes on

But remember, heuristic can play havoc with symmetry breaking

Domain Specific Heuristics

- Consider HC
- different models
- different heuristics?

AR33: section 5 (pages 27-29) and section 8 (pages 47-49)

Big question: why do heuristics work?

Is a heuristic similar to an umbrella lent to you by the bank?

