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This Week’s Lectures

Search and Discrepancies

Parallel Constraint Programming

Why?
Some failed attempts
A little bit of theory and some very simple maths
Some partial successes

Parallel Search
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Parallelism and Concurrency

Concurrent: lots of stuff happening at once (GUIs, operating
systems, networking).

Parallel: our hardware can do more than one thing at once
(multi-core, multi-machine, vector processing, GPUs).
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Why Care?

Make your programs run 100 times faster overnight! All you
need is this simple £2000 card. Doctors (of Philosophy) are
astonished!
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Goals

1 Make slow things run faster.

If “today’s list of parcels to be delivered” isn’t available until
5am, and producing “today’s delivery schedule” takes twelve
hours, we’re in trouble. If it takes one hour, we’re OK.
If it takes one second, we don’t care if we can reduce it to one
tenth of a second. (Or maybe we do. What if we’re producing
results interactively?)

2 Deal with bigger or harder problems in “the amount of time we
have”.

We have a fixed amount of time (say, a week) to produce exam
timetables. If the University offers more courses, or more
flexibility in course choices, we need to solve a larger and harder
problem in the same amount of time.
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Unfortunately. . .

Parallel constraint programming is hard.

Most of this lecture is about techniques that don’t usually work
very well in practice. The goal is to understand why these
techniques fail.

Tomorrow we’ll see some techniques that usually work fairly
well, most of the time, if you don’t investigate too closely.
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Parallel Optimisation via Decision Problems?

An optimisation problem can be solved as a sequence of
decision problems.

What happens if we solve each decision problem in parallel?
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Parallel Optimisation via Decision Problems?

Solver solver = new Solver("colouring");

try (Scanner sc = new Scanner(new File(args [0]))) {

int nVertices = sc.nextInt ();

int nColours = Integer.parseInt(args [1]);

IntVar [] v = enumeratedArray(

"vertex", nVertices , 0, nColours - 1, solver );

while (sc.hasNext ()) {

int from = sc.nextInt ();

int to = sc.nextInt ();

solver.post(arithm(v[from - 1], "!=", v[to - 1]));

}

}

System.out.println(solver.findSolution ());

System.out.println(solver.getMeasures (). getTimeCount ());
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Parallel Optimisation via Decision Problems?
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Parallel Optimisation via Decision Problems?
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Parallel Optimisation via Decision Problems?
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Parallel Optimisation via Decision Problems?
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Measuring Parallel Improvements

Speedup is sequential runtime divided by parallel runtime.

Ideally, over a good sequential algorithm, not a parallel
algorithm run with one thread. This is sometimes called
absolute speedup.
This may not be practical if using special hardware.

A linear speedup is a speedup of n using n processors.

This is not a realistic expectation on modern hardware. Of
particular concern for CP is that more cores does not mean
more memory bandwidth.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 7 / 14



Measuring Parallel Improvements

Balance is whether every compute unit is kept busy doing
useful work.

A regular problem is one which can easily be split into equally
sized units of work. Irregular problems are hard to balance.

Often only a small number of the decision problems are “really
hard”, so we get poor balance.
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Measuring Parallel Improvements

Most parallel algorithms contain a “sequential” part which
cannot be parallelised, and a “parallel” part.

Amdahl’s law says that if the sequential portion is fixed and we
divide the parallel portion perfectly among n processors, and if
k is the fraction of the work we cannot parallelise, then

best speedup =
1

k + 1
n (1− k)

For CP algorithms, things get much more complicated, so it is
important to understand where the formula comes from (using
primary school maths), rather than memorising it.

Gustafson’s law deals with using more processors to tackle
larger problems.
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Measuring Parallel Improvements

We need a large parallelisable portion of the algorithm, and
good work balance, or we don’t get much of an improvement.
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Fixed Parallel Tree Search?
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Fixed Parallel Tree Search?
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Parallel Portfolios?

Irregularity seems to be a problem. . . How about a different
approach? We may have many choices available:

Models
Heuristics
Search algorithms
Levels of consistency
Solvers

What if we try lots of different combinations in parallel?

Now our runtimes are determined by whoever finishes first, not
whoever finishes last.
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Parallel Consistency?

Partition the variables between processors.

Run AC3 independently on each processor, but when deleting a
value, also send a message to other processors telling them to
re-add the relevant variables to their stack.

Maybe only a few variables are involved, and we spend all our
time bouncing around between a small number of processors. . .
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Parallel Constraint Programming 10 / 14



Parallel Consistency?

Partition the variables between processors.

Run AC3 independently on each processor, but when deleting a
value, also send a message to other processors telling them to
re-add the relevant variables to their stack.

Maybe only a few variables are involved, and we spend all our
time bouncing around between a small number of processors. . .

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 14



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 14



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 14



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 14



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 14



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 14



Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 10 / 14



A Little Bit of Heresy
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A Little Bit of Heresy

“I want to buy a polynomial number of processors.”
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Representing Domains

A variable’s domain contains a set of values.

How should we implement this this?

A list.
An array.
A tree.
A purely functional tree.
A hash set.
Just a pair of values, if we’re doing bounds consistency.
. . .
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Bitsets and Bit Parallelism

Domains are sometimes small and compact.

If domains have no more than 64 values, we can store them in
(long unsigned) integers. We have one bit per value. 0 means
“not in the set” and 1 means “in the set”.

We can use arrays of integers for larger domains. (And we can
go up to 512 bit integers on some Intel CPUs.)
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Bitsets and Bit Parallelism

This is hardware-friendly: the entire model might fit in cache.

Setting a domain to take exactly one value:

d ← 1� v

Testing whether or not a value is present in a domain:

d & (1� v) 6= 0

Turning a single bit off:

d ← d & ˜(1� v)

There are dedicated hardware instructions for all of these in
recent CPUs. We can also count the number of set bits (how
many values are left in our domain?), and find the first set bit
(pick a value from the domain) in hardware.
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Bitsets and Bit Parallelism

Some constraints are similarly bitset friendly.

Extensional constraints (a list of all “allowed pairs”) can be
represented as a “compatibility” bitset for each value in each
variable’s domain. Now forward checking is just a bitwise “and”
operation.

Uses a lot of memory, but if our model is reasonably small and
dense that’s fine.

Less than, greater than, and certain arithmetic constraints work
nicely with bitsets.

Fun exercise: figure this out.

Some constraints are probably not bitset friendly.
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This is Not The Exam Question

A constraint model takes 10 seconds to solve using one processor.
Suppose 80% of that time is spent doing propagation. What is the
best possible speedup that could be obtained if 4 processors are
used to do parallel propagation, and the rest of the program remains
unchanged?

Give three reasons that the achieved speedup is likely to be worse
than this in practice.

What if we had an unlimited number of processors?

What about if we used the four processors for a portfolio of different
solvers?
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