Parallel Constraint Programming

(and why it is hard. . .) UHIVCI'SIty

of Glasgow

Ciaran McCreesh and Patrick Prosser

This Week's Lectures

m Search and Discrepancies

m Parallel Constraint Programming
m Why?
m Some failed attempts

m A little bit of theory and some very simple maths
m Some partial successes

m Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallelism and Concurrency

m Concurrent: lots of stuff happening at once (GUIs, operating
systems, networking).

m Parallel: our hardware can do more than one thing at once
(multi-core, multi-machine, vector processing, GPUs).

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Yeon PR Copratessot

m Make your programs run 100 times faster overnight! All you
need is this simple £2000 card. Doctors (of Philosophy) are
astonished!

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Goals

Make slow things run faster.

m If “today’s list of parcels to be delivered” isn't available until
5am, and producing “today’s delivery schedule” takes twelve
hours, we're in trouble. If it takes one hour, we're OK.

m If it takes one second, we don't care if we can reduce it to one
tenth of a second. (Or maybe we do. What if we're producing
results interactively?)

Deal with bigger or harder problems in “the amount of time we
have".

m We have a fixed amount of time (say, a week) to produce exam
timetables. If the University offers more courses, or more
flexibility in course choices, we need to solve a larger and harder
problem in the same amount of time.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Unfortunately. ..

m Parallel constraint programming is hard.

m Most of this lecture is about techniques that don’t usually work
very well in practice. The goal is to understand why these

techniques fail.

m Tomorrow we'll see some techniques that usually work fairly
well, most of the time, if you don't investigate too closely.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Optimisation via Decision Problems?

m An optimisation problem can be solved as a sequence of
decision problems.

m What happens if we solve each decision problem in parallel?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Optimisation via Decision Problems?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Optimisation via Decision Problems?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Optimisation via Decision Problems?

Solver solver = new Solver("colouring");

try (Scanner sc = new Scanner(new File(args[0]1))) {
int nVertices = sc.nextInt();
int nColours = Integer.parselnt(args([1]);

IntVar[] v = enumeratedArray (
"vertex", nVertices, 0O, nColours - 1, solver);

while (sc.hasNext()) {
int from = sc.nextInt();
int to = sc.nextInt();
solver.post(arithm(v[from - 1], "!=", v[to - 1]));

}

System.out.println(solver.findSolution());
System.out.println(solver.getMeasures ().getTimeCount ());

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programmi

Parallel Optimisation via Decision Problems?

o

B == O 00 NNOOOgs D WN
o

= © © 000N O WWNNRF =
= O

o

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Optimisation via Decision Problems?

12

10

1 5 10

Number of Colours

Runtime (ms)
£ o o

[N]

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programmin

Parallel Optimisation via Decision

I e e T T e S O e e e S S e L =)

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

o

0 o 01 W

13
15
16
17
20
21
22
23
24
25
26
27
28

Problems?

‘!W N Nk
\XARE
)

P

Parallel Optimisation via Decision Problems?

0.9
0.8
0.7
0.6

0.5

Runtime (s)

0.4
0.3
0.2

0.1
0 L---.I lﬁ----ﬁ----ﬁ----ﬁ----ﬁ
1 5 10 15 20 25 30

Number of Colours

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programmin

. K
i W
2 %
(]
0
| -
c
[%2]
o)
a -
T
>
c
-+ .
(g o
wn @
. — 2 w
£ K
B £
._u .mm
o o
©
o 5 =
o o
=
NMLWOOODLWRDO e
(D) 8 s
—_— FOMNMNWOWOO A A A A A A A ANANNNM WO QM
— o o
T N A A A A A A A A A A A A A H A A NN N WC
= °
c =
© § 5
DI 8 5
O o

Parallel Optimisation via Decision Problems?

Runtime (s)

o Lo __or_WB_ 0 a1
1 5 10 15 20 25 30

Number of Colours

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programm

Measuring Parallel Improvements

m Speedup is sequential runtime divided by parallel runtime.

m lIdeally, over a good sequential algorithm, not a parallel
algorithm run with one thread. This is sometimes called

absolute speedup.
m This may not be practical if using special hardware.

m A linear speedup is a speedup of n using n processors.
m This is not a realistic expectation on modern hardware. Of
particular concern for CP is that more cores does not mean
more memory bandwidth.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Measuring Parallel Improvements

m Balance is whether every compute unit is kept busy doing
useful work.

m A regular problem is one which can easily be split into equally
sized units of work. Irregular problems are hard to balance.

m Often only a small number of the decision problems are “really
hard”, so we get poor balance.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Measuring Parallel Improvements

m Most parallel algorithms contain a “sequential” part which
cannot be parallelised, and a “parallel” part.

m Amdahl’s law says that if the sequential portion is fixed and we
divide the parallel portion perfectly among n processors, and if
k is the fraction of the work we cannot parallelise, then

best speedup = ————
k+1(1-k)
m For CP algorithms, things get much more complicated, so it is
important to understand where the formula comes from (using
primary school maths), rather than memorising it.

m Gustafson’s law deals with using more processors to tackle
larger problems.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Measuring Parallel Improvements

m We need a large parallelisable portion of the algorithm, and
good work balance, or we don’t get much of an improvement.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Fixed Parallel Tree Search?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Fixed Parallel Tree Search?

-

s s s sssssese e

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programmin

Fixed Parallel Tree Search?

-

D ML \mmssmssmam=

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programmin

Parallel Portfolios?

m Irregularity seems to be a problem. .. How about a different
approach? We may have many choices available:

m Models

Heuristics

Search algorithms
Levels of consistency
Solvers

m What if we try lots of different combinations in parallel?

m Now our runtimes are determined by whoever finishes first, not
whoever finishes last.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Consistency?

m Partition the variables between processors.

m Run AC3 independently on each processor, but when deleting a
value, also send a message to other processors telling them to
re-add the relevant variables to their stack.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Consistency?

m Partition the variables between processors.

m Run AC3 independently on each processor, but when deleting a
value, also send a message to other processors telling them to
re-add the relevant variables to their stack.

m Maybe only a few variables are involved, and we spend all our
time bouncing around between a small number of processors. . .

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Consistency?

A distributed arc-consistency algorithm

T. Nguyen, Y. Deville*

Université catholique de Louvain, Département d Ingénierie Informatique,
Place Ste Barbe 2, B-1343 Louvain-la-Neuve, Belgium

A Preliminary Review of Literature on Parallel
Constraint Solving

Tan P. Gent, Chris Jefferson, Tan Miguel, Neil C.A. Moore, Peter Nightingale,

atrick Prosser, Chris Unsworth

Computing Science,
Glasgow and St. Andrews Univers
patedes. gla.ac.uk

, Scotland

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Experimental results show a linear speedup.

The DisAC-4 algorithm is not intended to be massively parallel.

In 1995 Nguyen and Deville presented a distributed AC-4 algorithm DisAC-4
[24]. A journal version of this work was published in 1998 [25]. The algorithm is
ased on message passing. The variables are partitioned among the workers, and
cach worker essentially maintains the AC4 data structures for its set of variables.
When a worker deduces a domain deletion, this is broadcast to all other workers.
Each worker maintains a list of domain deletions to process (some generated
locally and others received from another worker). The worker reaches a fixpoint
itself before broadcasting any domain deletions, and waiting for new messages
from other workers. The whole system reaches a fixpoint when every worker
has processed every domain deletion.

It may be a difficult problem to partition
the variables such that the work is evenly distributed. The experimental results
are mixed, with some experiments showing close to linear speedup, while others
show only 1.5 times speedup with 8 processors.

Parallel Consistency?
Experimental results show a linear speedup.

It may be a difficult problem to partition
the variables such that the work is evenly distributed. The experimental results
are mixed, with some experiments showing close to linear speedup, while others
show only 1.5 times speedup with 8 processors.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programm

Parallel Consistency?

The DisAC-4 algorithm is not intended to be massively parallel.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Consistency?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

On the Parallel Complexity of Discrete
Relaxation in Constraint Satisfaction
Networks

Simon Kasif
Department of Computer Science, The Johns Hopkins
University, Baltimore, MD 21218, USA

Our analysis suggests that a parallel solution is unlikely to improve the known sequential

Solutions by much. Specifically, we prove that the problem solved by discrete relaxation (arc

consistency) is log-space complete for P (the class of polynomial-time deterministic sequential

algorithms). Inuitively, this implies that discrete relaxation is inherently sequential and it is unlikely

that we can solve the polynomial-time version of the consistent labeling problem in logarithmic time

by using only a polynomial number of processors. Some practical implications of our result are
iscussed.

‘This negative worst-case result needs to be quantified. Essentially,
it suggests that the application of massive parallelism will not change signifi-
cantly the worst-case complexity of discrete relaxation (unless one has an
exponential number of processors). However, this result does not preclude
research in the direction of applying parallelism in a more controlled fashion.
For instance, we can casily obtain speedups when the constraint graph is very
dense (the number of edges is large).

Parallel Consistency?

Our analysis suggests that a parallel solution is unlikely to improve the known sequential
solutions by much. Specifically, we prove that the problem solved by discrete relaxation (arc
consistency) is log-space complete for P (the class of polynomial-time deterministic sequential
algorithms). Intuitively, this implies that discrete relaxation is inherently sequential and it is unlikely
that we can solve the polynomial-time version of the consistent labeling problem in logarithmic time
by using only a polynomial number of processors. Some practical implications of our result are
discussed.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Parallel Consistency?

This negative worst-case result needs to be quantified. Essentially,
it suggests that the application of massive parallelism will not change signifi-
cantly the worst-case complexity of discrete relaxation (unless one has an
exponential number of processors). However, this result does not preclude
research in the direction of applying parallelism in a more controlled fashion.
For instance, we can easily obtain speedups when the constraint graph is very
dense (the number of edges is large).

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programm

A Little Bit of Heresy

a polynomial number of processors.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

A Little Bit of Heresy

“l want to buy a polynomial number of processors.”

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

A Little Bit of Heresy

Intel® Xeon® Processor E7-8890 v2

(37.5M Cache, 2.80 GHz)

#of Cores 15

of Threads 30
Processor Base Frequency 2.8 GHz
Max Turbo Freguency 3.4 GHz
Jop 155w

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programmin

A Little Bit of Heresy

ARCHER Hardware

The ARCHER hardware consists of the Cray XG30 MPP supercomputer, external login nodes and postprocessing nodes, and the
associated filesystems. There are 3008 compute nodes in ARCHER phase 1 and each compute node has two 12-core Intel Ivy
Bridge series processors giving a total of 72,192 processing cores. Each node has a total of 64 GB of memory with a subset of
large memory nodes having 128 GB.

A high-performance Lustre storage system is available to all compute nodes. There is no local disk on the compute nodes as they
are housed In 4-node blades (the image below shows an XC30 blade with 4 compute nodes).

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

A Little Bit of Heresy

Constants Matter: Implementing Minion, a fast
Constraint Solver

Chris Jefferson
Uversity of Oxford, Oford, UK, Chris.Jefferson@comlab.ox.ac.uk

This talk will deal with many of the practical matters of implementing am
efficient constraint solver using existing algorithms and methods. SAT solvers
have historically been able to solve much larger problems than CSP solvers
and search thousand of times more nodes per second. This talk will discuss the
implementation of constraint solver Minion, which is one of the fastest constraint
solvers available and has gone some way to reducing this gap. Most of Minion’s
speed come from better data structures and careful use templates in C++.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programmi

A Little Bit of Heresy

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming 11 / 14

Representing Domains

m A variable’s domain contains a set of values.
m How should we implement this this?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programm

Representing Domains

m A variable's domain contains a set of values.
m How should we implement this this?
m A list.
m An array.
A tree.
A purely functional tree.

A hash set.
Just a pair of values, if we're doing bounds consistency.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Bitsets and Bit Parallelism

m Domains are sometimes small and compact.

m If domains have no more than 64 values, we can store them in
(long unsigned) integers. We have one bit per value. 0 means
“not in the set” and 1 means “in the set”.

m We can use arrays of integers for larger domains. (And we can
go up to 512 bit integers on some Intel CPUs.)

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Bitsets and Bit Parallelism

This is hardware-friendly: the entire model might fit in cache.
Setting a domain to take exactly one value:

d+—1<Kv

Testing whether or not a value is present in a domain:
d& (1< v)#0
Turning a single bit off:
d+—d& " (1<v)

There are dedicated hardware instructions for all of these in
recent CPUs. We can also count the number of set bits (how
many values are left in our domain?), and find the first set bit
(pick a value from the domain) in hardware.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

Bitsets and Bit Parallelism

m Some constraints are similarly bitset friendly.

m Extensional constraints (a list of all “allowed pairs”) can be
represented as a “compatibility” bitset for each value in each
variable's domain. Now forward checking is just a bitwise “and”
operation.

m Uses a lot of memory, but if our model is reasonably small and
dense that’s fine.

m Less than, greater than, and certain arithmetic constraints work
nicely with bitsets.

m Fun exercise: figure this out.

m Some constraints are probably not bitset friendly.

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

This is Not The Exam Question

A constraint model takes 10 seconds to solve using one processor.
Suppose 80% of that time is spent doing propagation. What is the
best possible speedup that could be obtained if 4 processors are
used to do parallel propagation, and the rest of the program remains
unchanged?

Give three reasons that the achieved speedup is likely to be worse
than this in practice.

What if we had an unlimited number of processors?

What about if we used the four processors for a portfolio of different
solvers?

Ciaran McCreesh and Patrick Prosser

Parallel Constraint Programming

