
Parallel Search

Ciaran McCreesh and Patrick Prosser



This Week’s Lectures

Search and Discrepancies

Parallel Constraint Programming

Parallel Search

Embarrassingly Parallel Search
Work stealing
Confidence Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 1 / 12



Fixed Parallel Tree Search, Again

Ciaran McCreesh and Patrick Prosser

Parallel Search 2 / 12



Fixed Parallel Tree Search, Again

Ciaran McCreesh and Patrick Prosser

Parallel Search 2 / 12



Fixed Parallel Tree Search, Again

Ciaran McCreesh and Patrick Prosser

Parallel Search 2 / 12



What We Need

We need a large parallelisable portion of the algorithm, and
good work balance, or we don’t get much of an improvement.

Ciaran McCreesh and Patrick Prosser

Parallel Search 3 / 12



Embarrassingly Parallel Search

If we create n subproblems, chances are we’ll get poor balance.

We can’t tell beforehand where the really hard subproblems will
be.

What if we create lots of subproblems, and distribute them
dynamically?

Ciaran McCreesh and Patrick Prosser

Parallel Search 4 / 12



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search 4 / 12



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search 4 / 12



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search 4 / 12



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search 4 / 12



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search 4 / 12



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search 4 / 12



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search 4 / 12



Embarrassingly Parallel Search

Ciaran McCreesh and Patrick Prosser

Parallel Search 4 / 12



Randomised Work Stealing

What if we split work entirely dynamically?

Whenever a worker is idle, have it steal a subproblem from
another randomly selected worker.

Ciaran McCreesh and Patrick Prosser

Parallel Search 5 / 12



Randomised Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 5 / 12



Randomised Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 5 / 12



Randomised Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 5 / 12



Randomised Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 5 / 12



Randomised Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 5 / 12



Randomised Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 5 / 12



Speedups from Parallel Tree Search

If a decision problem is satisfiable, or for an optimisation
problem, our speedups could be arbitrary: one worker might
find a feasible or strong solution very quickly. In particular,
superlinear speedups are possible, as are no speedups at all.

For an unsatisfiable decision problem, or for an enumeration
problem, our speedups can be at best linear (assuming we do
not change the search tree): we are dividing up a fixed amount
of work.

If we do not communicate bounds, or if we do not preserve
sequential ordering, we could get an absolute slowdown.

Ciaran McCreesh and Patrick Prosser

Parallel Search 6 / 12



Work Splitting Affects Search

Ciaran McCreesh and Patrick Prosser

Parallel Search 7 / 12



Work Splitting Affects Search

?

Ciaran McCreesh and Patrick Prosser

Parallel Search 7 / 12



Work Splitting Affects Search

?

Ciaran McCreesh and Patrick Prosser

Parallel Search 7 / 12



Work Splitting Affects Search

For satisfiable instances and optimisation problems, where you
split the work doesn’t just affect balance. It also affects the
amount of work to do. We just saw an example where better
work balance gave worse performance, because it took longer
to find a solution.

Remember Harvey and Ginsberg’s Limited Discrepancy Search?

2 Value-ordering heuristics are most likely to wrong higher up in
the tree (there is least information available when no or few
choices have been made).

Stealing early or splitting high introduces diversity against early
heuristic choices. Stealing late gives a close-to-sequential
ordering.

Ciaran McCreesh and Patrick Prosser

Parallel Search 7 / 12



Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 8 / 12



Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 8 / 12



Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 8 / 12



Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 8 / 12



Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 8 / 12



Using Confidence-Based Work Stealing

I would like to be able to tell you that all you need to do to get
excellent speedups from parallelism, and all of the benefits of
discrepancy searches with none of the costs, is to annotate your
model and your heuristics a little bit and then use
Confidence-Based Work Stealing.

But the implementations aren’t quite at that stage yet.

Ciaran McCreesh and Patrick Prosser

Parallel Search 9 / 12



Using Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 9 / 12



Using Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 9 / 12



Using Confidence-Based Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 9 / 12



Early Diversity Work Stealing

Confidence seems hard. What if we just steal as early as
possible, and subject to that, as far left as possible?

We’ll get reproducible runtimes, can guarantee we’ll never get
a substantial slowdown, and adding more processors will never
make things worse.

Added bonus: we can parallelise conflict-directed backjumping
this way too (although we no longer expect a linear speedup for
unsatisfiable instances).

Ciaran McCreesh and Patrick Prosser

Parallel Search 10 / 12



Early Diversity Work Stealing

Ciaran McCreesh and Patrick Prosser

Parallel Search 10 / 12



Early Diversity Work Stealing

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

P
ar
a
ll
el

R
u
n
ti
m
e
(m

s)

Sequential Runtime (ms)

LV (sat)

LV (unsat)

BVG / BVGm

M4D / M4Dr

SF (sat)

SF (unsat)

r

football

images (sat)

images (unsat)

meshes (sat)

meshes (unsat)



Early Diversity Work Stealing

0

500

1000

1500

2000

2500

100 101 102 103 104 105 106 107 108

In
st
a
n
ce
s
so
lv
ed

Sequential Runtime (ms)

Sequential
Threaded



This is Not The Exam Question

What is balance, and why is it a problem if we try to parallelise a
tree-search by creating n sub-trees for n processors? Suggest two
potential remedies.

Why does Amdahl’s law not apply to parallel tree-search? Why are
super-linear speedups possible?

Suppose we are solving a decision problem which has a sequential
part taking one second to run, and a parallelisable part which takes
twenty seconds to run on one processor. What is the best possible
runtime we might see when using ten processors to solve this
problem with a parallel tree-search, if the instance is satisfiable?
What if it is unsatisfiable?

Ciaran McCreesh and Patrick Prosser

Parallel Search 12 / 12




