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This Week's Lectures

m Search and Discrepancies
m Parallel Constraint Programming

m Parallel Search

m Embarrassingly Parallel Search
m Work stealing
m Confidence Based Work Stealing
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What We Need

m We need a large parallelisable portion of the algorithm, and
good work balance, or we don’t get much of an improvement.
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Embarrassingly Parallel Search

m If we create n subproblems, chances are we'll get poor balance.

m We can't tell beforehand where the really hard subproblems will
be.

m What if we create lots of subproblems, and distribute them
dynamically?
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Embarrassingly Parallel Search

Embarrassingly Parallel Search*

Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert

Université Nice-Sophia Antipolis, I3S UMR 6070, CNRS, France

Abstract. We propose the Embarrassingly Parallel Search, a simple and efficient
method for solving constraint programming problems in parallel. We split the
initial problem into a huge number of independent subproblems and solve them
with available workers, for instance cores of machines. The decomposition into
subproblems is computed by selecting a subset of variables and by enumerating
the combinations of values of these variables that are not detected inconsistent
by the propagation mechanism of a CP Solver. The experiments on satisfaction
problems and optimization problems suggest that generating between thirty and
one hundred subproblems per worker leads to a good scalability. We show that
our method is quite competitive with the work stealing approach and able to solve
some classical problems at the maximum capacity of the multi-core machines.
Thanks to it, a user can parallelize the resolution of its problem without modifying
the solver or writing any parallel source code and can easily replay the resolution
of a problem.
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Embarrassingly Parallel Search

‘When we want to use k£ machines for solving a problem, we can split the initial prob-
lem into & disjoint subproblems and give one subproblem to each machine. Then, we
gather the different intermediate results in order to produce the results corresponding to
the whole problem. We will call this method: simple static decomposition method. The
advantage of this method is its simplicity. Unfortunately, it suffers from several draw-
backs that arise frequently in practice: the times spent to solve subproblems are rarely
well balanced and the communication of the objective value is not good when solving
an optimization problem (the workers are independent). In order to balance the sub-
problems that have to be solved some works have been done about the decomposition
of the search tree based on its size [8[3]7]. However, the tree size is only approximated
and is not strictly correlated with the resolution time. Thus, as mentioned by Bordeaux
et al. [1], it is quite difficult to ensure that each worker will receive the same amount
of work. Hence, this method lacks scalability, because the resolution time is the maxi-
mum of the resolution time of each worker. In order to remedy for these issues, another
approach has been proposed and is currently more popular: the work stealing idea.
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Embarrassingly Parallel Search

‘When we have k workers, instead of trying to split the problem into & equivalent sub-
parts, we propose to split the problem into a huge number of subproblems, for instance
30k subproblems, and then we give successively and dynamically these subproblems to
the workers when they need work. Instead of expecting to have equivalent subproblems,
we expect that for each worker the sum of the resolution time of its subproblems will
be equivalent. Thus, the idea is not to decompose a priory the initial problem into a set
of equivalent problems, but to decompose the initial problem into a set of subproblems
whose resolution time can be shared in an equivalent way by a set of workers. Note that
we do not know in advance the subproblems that will be solved by a worker, because
this is dynamically determined. All the subproblems are put in a queue and a worker
takes one when it needs some work.

The decomposition into subproblems must be carefully done. We must avoid sub-
problems that would have been eliminated by the propagation mechanism of the solver
in a sequential search. Thus, we consider only problems that are not detected inconsis-
tent by the solver.
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Embarrassingly Parallel Search

Not Detected Inconsistent (NDI) Subproblems. We propose to generate only sub-
problems that are not detected inconsistent by the propagation. The generation of ¢
such subproblems becomes more complex because the number of NDI subproblems
may be not related to the Cartesian product of some domains. A simple algorithm could
be to perform a Breadth First Search (BFS) in the search tree, until the desired number
of NDI subproblems is reached. Unfortunately, it is not easy to perform efficiently a
BFS mainly because a BFS is not an incremental algorithm like a Depth First Search
(DFS). Therefore, we propose to use a process similar to an iterative deepening depth-
first search [9]: we repeat a Depth-bounded Depth First Search (DBDFS), in other words
a DFS which never visits nodes located at a depth greater than a given value, increasing
the bound until generating the right number of subproblems.
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Embarrassingly Parallel Search

Our approach relies on the assumption that the resolution time of disjoint subproblems
is equivalent to the resolution time of the union of these subproblems. If this condition
is not met, then the parallelization of the search of a solver (not necessarily a CP Solver)
based on any decomposition method, like simple static decomposition, work stealing or
embarrassingly parallel methods may be unfavorably impacted.

This assumption does not seem too strong because the experiments we performed do
not show such a poor behavior with a CP Solver. However, we have observed it in some
cases with a MIP Solver.
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Embarrassingly Parallel Search

Optimization Problems
In case of optimization problems we have to manage the best value of the objective
function computed so far. Thus, the operations are slightly modified.

— The TaskDefinition operation consists of computing a partition of the initial problem
P into a set S of subproblems.

— The TaskAssignment operation is implemented by using a queue. Each time a sub-
problem is defined it is added to the back of the queue. The queue is also associated
with the best objective value computed so far. When a worker needs some work,
the master gives it a subproblem from the queue. It also gives it the best objective
value computed so far.

— The TaskResultGathering operation manages the optimal value found by the worker
and the associated solution.

Note that there is no other communication, that is when a worker finds a better solution,
the other workers that are running cannot use it for improving their current resolution.
So, if the absence of communication may increase our performance, this aspect may
also lead to a decrease of performance. Fortunately, we do not observe this bad behavior
in practice.
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Embarrassingly Parallel Search

Table 1. Resolution with 40 workers, and #sspw=30 using Gecode 4.0.0

Instance Seq. Work stealing  EPS
t t s t s
allinterval.l5 262.5 9.7 270 88299
magicsequence 40000 328.2| 592.6 0.6| 37.3 88
sportsleague.10 172.4 76 225 68254
sb_sb_13.13.6.4 1357 92 147 78175
quasigroup7-10 292.6| 145 20.1| 10.527.8
nonnon-fast_6 602.2| 271.3 2.2| 56.8 10.6
golombruler_13 13552 549 24.7| 44.3 30.6
warehouses 148.0| 259 57| 21.1 7.0
setcovering 94.4| 16.1 59 1.1 85
2DLevelPacking.Class5.20.6 226 138 1.6| 0.7 30.2
depot.placement.att48.5 12521 19.1 6.6/ 10.2 12.3
depot_placement rat99.5 21.6| 64  34) 26 83
fastfood f£58 231 45 51| 38 60
open._stacks.0l problem 15.15 102.8 6.1 169 58178
open_stacks_01 wbp_30.15_1 185.7| 154 12.1| 11.2 16.6
sugiyama2.g5.7-7.7.7_2 286.5| 22.8 12.6] 10.8 26.6
patternsetminingkl german-credit| 113.7| 22.3 5.1( 13.8 8.3
radiation. 03 129.1) 335 39| 256 5.0
bacp-7 227.2| 156 14.5| 9.5239
talent_scheduling.alt filml16 2543| 135 188|356 7.1
total (t) or geometric mean (s) | 488.2|11748  7.7|334.2 138
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Embarrassingly Parallel Search

In this paper we have presented the Embarrassingly Parallel Search (EPS) a simple
method for solving CP problems in parallel. It proposes to decompose the initial prob-
lem into a set of £ subproblems that are not detected inconsistent and then to send them
to workers in order to be solved. After some experiments, it appears that splitting the
initial problem into 30 such subproblems per worker gives an average factor of gain
equals to 21.3 with or-tools and 13.8 with Gecode while searching for all the solu-
tions or while finding and proving the optimality, on a machine having 40 cores. This is
competitive with the work stealing approach.
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Randomised Work Stealing

m What if we split work entirely dynamically?

m Whenever a worker is idle, have it steal a subproblem from
another randomly selected worker.
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Randomised Work Stealing

Parallel search has but one motivation: try to make search more efficient by employing
several threads (or workers) to explore different parts of the search tree in parallel.

Gecode uses a standard work-stealing architecture for parallel search: initially, all work
(the entire search tree to be explored) is given to a single worker for exploration, making the
worker busy. All other workers are initially idle, and try to steal work from a busy worker.
Stealing work means that part of the search tree is given from a busy worker to an idle
worker such that the idle worker can become busy itself. If a busy worker becomes idle, it
tries to steal new work from a busy worker.
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Randomised Work Stealing

When using parallel search one needs to take the following facts into account (note that
some facts are not particular to parallel search, check Tip 9.1: they are just more likely to
occur):

= The order in which solutions are found might be different compared to the order in
which sequential search finds solutions. Likewise, the order in which solutions are
found might differ from one parallel search to the next. This is just a direct conse-
quence of the indeterministic nature of parallel search.

Naturally, the amount of search needed to find a first solution might differ both from
sequential search and among different parallel searches. Note that this might actually
lead to super-linear speedup (for n workers, the time to find a first solution is less than
1/n the time of sequential search) or also to real slowdown.

For best solution search, the number of solutions until a best solution is found as well
as the solutions found are indeterministic. First, any better solution is legal (it does not
matter which one) and different runs will sometimes be lucky (or not so lucky) to find a
good solution rather quickly. Second, as a better solution prunes the remaining search
space the size of the search space depends crucially on how quickly good solutions are
found.
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Randomised Work Stealing

= As a corollary to the above items, the deviation in runtime and number of nodes ex-
plored for parallel search can be quite high for different runs of the same problem.

= Parallel search needs more memory. As a rule of thumb, the amount of memory needed
scales linearly with the number of workers used.

For parallel search to deliver some speedup, the search tree must be sufficiently large.
Otherwise, not all threads might be able to find work and idle threads might slow
down busy threads by the overhead of unsuccessful work-stealing.

From all the facts listed, it should be clear that for depth-first left-most search for just
a single solution it is notoriously difficult to obtain consistent speedup. If the heuristic
is very good (there are almost no failures), sequential left-most depth-first search is
optimal in exploring the single path to the first solution. Hence, all additional work
will be wasted and the work-stealing overhead might slow down the otherwise optimal
search.
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Randomised Work Stealing

Tip 9.3 (Be optimistic about parallel search). After reading the above list of facts you might
have come to the conclusion that parallel search is not worth it as it does not exploit the
parallelism of your computer very well. Well, why not turn the argument upside down: your
machine will almost for sure have more than a single processing unit and maybe quite some.
With sequential search, all units but one will be idle anyway.

The point of parallel search is to make search go faster. It is not to perfectly utilize your
parallel hardware. Parallel search makes good use (and very often excellent use for large
problems with large search trees) of the additional processing power your computer has

anyway.
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Randomised Work Stealing

GolombRuler

m[12] = {6, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122}

m[12]

{6, 1, 3, 7, 12, 20, 30, 44, 65, 90, 105, 121}

m[12] = {0, 1, 3, 7, 12, 20, 36, 45, 61, 82, 96, 118}
(additional solutions omitted)
m[12] = {0, 2, 6, 24, 29, 40, 43, 55, 68, 75, 76, 85}

Initial

propagators: 58

branchers:

Summary
runtime:
solutions:

propagations:

nodes:
failures:
restarts:
no-goods:
peak depth:
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1:47.316 (107316.000 ms)
16

692676452

5313357

2656663

0

0
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Randomised Work Stealing

GolombRuler

m[12] = {0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122}

m[12] = {0, 1, 3, 7, 12, 20, 30, 44, 65, 90, 105, 121}

m[12] = {0, 1, 3, 7, 12, 20, 30, 45, 61, 82, 96, 118}
(additional solutions omitted)

m[12] = {0, 2, 6, 24, 29, 40, 43, 55, 68, 75, 76, 85}

Initial

propagators: 58

branchers:

Summary
runtime:
solutions:

propagations:

nodes:
failures:
restarts:
no-goods:
peak depth:

14.866 (14866.000 ms)
17

519555681

3836351

1918148

0

0
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Speedups from Parallel Tree Search

m If a decision problem is satisfiable, or for an optimisation
problem, our speedups could be arbitrary: one worker might
find a feasible or strong solution very quickly. In particular,
superlinear speedups are possible, as are no speedups at all.

m For an unsatisfiable decision problem, or for an enumeration
problem, our speedups can be at best linear (assuming we do
not change the search tree): we are dividing up a fixed amount
of work.

m If we do not communicate bounds, or if we do not preserve
sequential ordering, we could get an absolute slowdown.
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Work Splitting Affects Search
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Work Splitting Affects Search

m For satisfiable instances and optimisation problems, where you
split the work doesn't just affect balance. It also affects the
amount of work to do. We just saw an example where better
work balance gave worse performance, because it took longer
to find a solution.

m Remember Harvey and Ginsberg's Limited Discrepancy Search?

Value-ordering heuristics are most likely to wrong higher up in
the tree (there is least information available when no or few
choices have been made).

m Stealing early or splitting high introduces diversity against early
heuristic choices. Stealing late gives a close-to-sequential
ordering.

Ciaran McCreesh and Patrick Prosser
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Confidence-Based Work Stealing

Confidence-Based Work Stealing in Parallel
Constraint Programming

Geoffrey Chu!, Christian Schulte?, and Peter J. Stuckey!

1 National ICT Australia, Victoria Laboratory,
Department of Computer Science and Software Engineering,
University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au
? KTH - Royal Institute of Technology, Sweden
cschulte@kth.se
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Confidence-Based Work Stealing

Abstract. The most popular architecture for parallel search is work
stealing: threads that have run out of work (nodes to be searched) steal
from threads that still have work. Work stealing not only allows for
dynamic load balancing, but also determines which parts of the search
tree are searched next. Thus the place from where work is stolen has a
dramatic effect on the efficiency of a parallel search algorithm.

This paper examines quantitatively how optimal work stealing can be
performed given an estimate of the relative solution densities of the sub-
trees at each search tree node and relates it to the branching heuristic
strength. An adaptive work stealing algorithm is presented that auto-
matically performs different work stealing strategies based on the confi-
dence of the branching heuristic at each node. Many parallel depth-first
search patterns arise naturally from this algorithm. The algorithm pro-
duces near perfect or super linear algorithmic efficiencies on all problems
tested. Real speedups using 8 threads range from 7 times to super linear.
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Confidence-Based Work Stealing

Ezample 2. Consider the n-Queens problem. The search tree is very deep and a
top level mistake in the branching will not be recovered from for hours.
Stealing low solves an instance within the time limit iff sequential depth first
search solves it within the time limit. This is the case when a solution is in the
very leftmost part of the search tree (only 4 instances out of 100, see Table[2).
Stealing high, in contrast, allows many areas of the search tree to be explored,
so a poor choice at the root of the search tree is not as important. Stealing high
results in solving 100 out of 100 instances tested. This is clearly far more robust
than stealing low, producing greatly super-linear speedup. O

Ciaran McCreesh and Patrick Prosser
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Confidence-Based Work Stealing

Although the analysis is done in the context of parallel search for constraint
programming, the analysis is actually about the relationship between branch-
ing heuristic strength and the optimal search order created by that branching
heuristic. Thus the analysis actually applies to all complete tree search algo-
rithms whether sequential or parallel. The paper shows that when the assump-
tions about branching heuristic strength that lie behind standard sequential
algorithms such as DFS, Interleaved Depth First Search (IDFS) [12], Limited
Discrepancy Search (LDS) or Depth-bounded Discrepancy Search (DDS)
are given to the algorithm as confidence estimates, the algorithm produces the
exact same search patterns used in those algorithms. Thus the analysis and algo-
rithm provides a framework which explains/unifies /produces all those standard
search strategies. In contrast to the standard sequential algorithms which are
based on rather simplistic assumptions about how branching heuristic strength
varies in different parts of the search tree, our algorithm can adapt to branching
heuristic strength on a node by node basis, potentially producing search patterns
that are vastly superior to the standard ones. The algorithm is also fully parallel
and thus the paper also presents parallel DFS, IDFS, LDS and DDS as well.
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Confidence-Based Work Stealing

By analysing work stealing schemes using a model based on solution density, we
were able to quantitatively relate the strength of the branching heuristic with
the optimal place to steal work from. This leads to an adaptive work stealing
algorithm that can utilise confidence estimates to automatically produce “op-
timal” work stealing patterns. The algorithm produced near perfect or better
than perfect algorithmic efficiency on all the problems we tested. In particular,
by adapting to a steal high, interleaving search pattern, it is capable of produc-
ing super linear speedup on several problem classes. The real efliciency is lower
than the algorithmic efficiency due to hardware effects, but is still quite good at
a speedup of at least 7 at 8 threads. Communication costs are negligible on all
problems even at 8 threads.
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Using Confidence-Based Work Stealing

m | would like to be able to tell you that all you need to do to get
excellent speedups from parallelism, and all of the benefits of
discrepancy searches with none of the costs, is to annotate your
model and your heuristics a little bit and then use
Confidence-Based Work Stealing.

m But the implementations aren't quite at that stage yet.

Ciaran McCreesh and Patrick Prosser
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Using Confidence-Based Work Stealing

Education
Christian Schulte

Bachelor Students

= Patrik EkIsf, Implementing confidence-based work stealing search in Gecode.
KTH Royal Institute of Technology, Sweden, Bachelar thesis, TRITA-ICT-EX-2014:39, 2014,
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Using Confidence-Based Work Stealing

Not Found

The requested URL /~schulte/teaching/theses/TRITA-ICT-EX-2014:39.pdf was not found on this server.

Apache/2.2.16 (Debian) Seiver at www.gecode.org Port 80
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Using Confidence-Based Work Stealing

THAT;SIOKAY;

I DIDN;T,WANT,TO CUDDLE ANYWAYS




Early Diversity Work Stealing

m Confidence seems hard. What if we just steal as early as
possible, and subject to that, as far left as possible?

m We'll get reproducible runtimes, can guarantee we'll never get
a substantial slowdown, and adding more processors will never
make things worse.

m Added bonus: we can parallelise conflict-directed backjumping
this way too (although we no longer expect a linear speedup for
unsatisfiable instances).
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Early Diversity Work Stealing

A Parallel, Backjumping Subgraph Isomorphism

Algorithm Using Supplemental Graphs

(=)

Ciaran McCreesh and Patrick Prosser

University of Glasgow, Glasgow, Scotland
c.mccreesh. 1@research.gla. ac.uk, patrick.prosserfglasgow.ac.uk

Abstract. The subgraph somorphism problem involves finding a
pattemn graph inside a target graph. We present a new bit- and thread-
parallel constraint-based search algorithm for the problem, and exy

to demonstrate
effectiveness. We introduce supplemental graphs, to create implied con-

ment on a wide range of standard benchmark i

straints.

We use a new low-overhead, lazy variation of conflict directed
backjumping w teracts safely with parallel search, and a counting-
based all-different propagator which is better suited for large domains.
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Early Diversity Work Stealing
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Early Diversity Work Stealing
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This is Not The Exam Question

What is balance, and why is it a problem if we try to parallelise a
tree-search by creating n sub-trees for n processors? Suggest two
potential remedies.

Why does Amdahl’s law not apply to parallel tree-search? Why are
super-linear speedups possible?

Suppose we are solving a decision problem which has a sequential
part taking one second to run, and a parallelisable part which takes
twenty seconds to run on one processor. What is the best possible
runtime we might see when using ten processors to solve this
problem with a parallel tree-search, if the instance is satisfiable?
What if it is unsatisfiable?
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