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1 Introduction

A two-dimensional grid is a set Gn,m = [n]× [m] where [t] = {1, . . . , t}. A rectangle of Gn,m

is a subset of the form {(a, b), (a + c1, b), (a + c1, b + c2), (a, b + c2)} for some constants c1

and c2. A grid Gn,m is c-colorable if there is a function χn,m : Gn,m → [c] such that there
are no rectangles with all four corners the same color. Not all grids have c-colorings. As an
example, for any c clearly Gc+1,cc+1+1 does not have a c-coloring by two applications of the
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pigeonhole principle. If a grid has a c-coloring, we say it is c-colorable. In this paper, we ask
the following question: what are the exact values of m and n for which Gn,m is c-colorable?

Def 1.1 Let n, m, n′, m′ ∈ N. Gm,n contains Gn′,m′ if n′ ≤ n and m′ ≤ m. Gm,n is contained
in Gn′,m′ if n ≤ n′ and m ≤ m′. Proper containment means that at least one of the ≤ is
actually <.

Clearly, if Gn,m is c-colorable, then all grids that it contains are c-colorable. Likewise, if
Gn,m is not c-colorable then all grids that contain it are not not c-colorable.

Def 1.2 Fix c. then OBSc is the set of all grids Gn,m such that Gn,m is not c-colorable but
all grids properly contained in Gm,n are c-colorable. OBSc stands for Obstruction Sets. We
also call such grids c-minimal.

We leave the proof of the following theorem to the reader.

Theorem 1.3 Fix c. A grid Ga,b is c-colorable iff it does not contain any element of OBSc.

By Theorem 1.3 we can rephrase the questions of finding which grids are c-colorable: find
OBSc. Note that if Gn,m ∈ OBSc, then Gn,m ∈ OBSc.

This problem arises as follows. The Gallai-Witt theorem1 (also called the multi-dimensional
Van Der Waerden theorem) has the following corollary: For all c, there exists W = W (c)
such that, for all c-colorings of [W ]× [W ] there exists a monochromatic square. The classical
proof of the theorem gives enormous upper bounds on W (c). Despite some improvements2

the known bounds on W (c) are still enormous. If we relax the problem to seeking a monochro-
matic rectangle then we can obtain far smaller bounds. In fact, we will obtain, in some cases,
exact characterizations of when a grid is c-colorable.

Another motivation is the bipartite Ramsey problem: Given a, c, what is the least n such
that for any c-coloring of the edges of Kn,n there is a monochromatic Ka,a? A coloring of
Gn,n can be viewed as an edge coloring of Kn,n. A monochromatic rectangle corresponds to a
monochromatic K2,2. Beineke and Schwenk [2] study a closely related problem: what is the
minimum value of b such that any two-coloring of Kb,b results in a monochromatic Kn,m? In
their work, this minimal value is denoted R(n, m). Later, Hattingh and Henning [7] define
b(n, m) as the minimum b for which any two-coloring of Kb,b contains a monochromatic Km,m

or a monochromatic Kn,n.
In a related paper, Cooper, Fenner, and Purewal [3] generalize the problem to multiple

dimensions and obtain upper and lower bounds on the sizes of the obstruction sets.
The remainder of this paper is organized as follows. In Sections 2 and 3 we develop tools

to show grids are not c-colorable. In Section 4 we develop tools to show grids are c-colorable.
In Section 5 we obtain upper and lower bounds on |OBSc|. In Section 6 and 7 we find OBS2

and OBS3 respectively. In Section 8 we obtain a small handful of possibilities for OBS4.

1It was attributed to Gallai in [11] and [12]; Witt proved the theorem in [15].
2Both [6] and [4] can be used to obtain better bounds on W (c).
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We also propose a reasonable conjecture which, if true, would yield the exact elements of
OBS4. In Section 9 we apply the results to finding some new bipartite Ramsey numbers.
We conclude with some open questions. The appendix contains some sizes of maximum
rectangle free sets (to be defined later).

2 Lower Bounds on Uncolorability

A rectangle-free subset A ⊆ Gn,m is a subset that does not contain a rectangle as defined
above. A problem that is closely related to grid-colorability is that of finding a rectangle-free
subset of maximum cardinality. This relationship is illustrated by the following lemma.

Theorem 2.1 If Gn,m is c-colorable, then it contains a rectangle-free subset of size dnm
c
e.

Proof: A c-coloring partitions the elements of Gn,m into c rectangle-free subsets. By the
pigeon-hole principle, one of these sets must be of size at least dnm

c
e.

Def 2.2 Let n, m ∈ N. maxrf(n, m) is the size of the maximum rectangle-free A ⊆ Gn,m.

Finding the maximum cardinality of a rectangle-free subset is equivalent to a special
case of a well-known problem of Zarankiewicz [16] (see [5] or [14] for more information).
The Zarankiewicz function, denoted Zr,s(n, m), counts the minimum number of edges in a
bipartite graph with vertex sets of size n and m that guarantees a subgraph isomorphic to
Kr,s. Zarankiewicz’s problem was to determine Zr,s(n, m).

If r = s, the function is denoted Zr(n, m). If one views a grid as an incidence matrix for
a bipartite graph with vertex sets of cardinality n and m, then a rectangle is equivalent to a
subgraph isomorphic to K2,2. Therefore the maximum cardinality of a rectangle-free set in
Gn,m is Z2(n, m) − 1. We will use this lemma in its contrapositive form, i.e., we will often
show that Gn,m is not c-colorable by showing that Z2(n, m) ≤ dnm

c
e.

Reiman [13] proved the following lemma. Roman [14] later generalized it.

Lemma 2.3 Let m ≤ n ≤
(

m
2

)
. Then Z2(n, m) ≤

⌊
n
2

(
1 +

√
1 + 4m(m− 1)/n

)⌋
+ 1.

Corollary 2.4 Let m ≤ n ≤
(

m
2

)
. Let zn,m =

⌊
n
2

(
1 +

√
1 + 4m(m− 1)/n

)⌋
+ 1 be the

upper-bound on Z2(n, m) in Lemma 2.3. If zn,m ≤ dnm
c
e then Gn,m is not c-colorable.

Corollary 2.4, and some 2-colorings of grids, are sufficient to find OBS2. To find OBS3

and OBS4, we need slightly more powerful tools to show grids are not colorable (along with
some 3-colorings and 4-colorings of grids). This next lemma, which has a proof that is very
similar to the previous lemma gives us two more uncolorability corollaries.
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Def 2.5 Let n, m, x1, . . . , xm ∈ N. (x1, . . . , xm) is (n, m)-placeable if there exists a rectangle-
free A ⊆ Gn,m such that, for 1 ≤ j ≤ m, there are xj elements of A in the jth column.

Lemma 2.6 Let n, m, x1, . . . , xm ∈ N be such that (x1, . . . , xm) is (n, m)-placeable. Then∑m
i=1

(
xi

2

)
≤

(
n
2

)
.

Proof: Let A ⊆ Gn,m be a set that shows that (x1, . . . , xm) is (n, m)-placeable. Let
(

A
2

)
be the set of pairs of elements of A. Let 2(A

2) be the powerset of
(

A
2

)
.

Define the function f : [m] → 2(A
2) as follows. For 1 ≤ j ≤ m,

f(j) = {{a, b} : (a, j), (b, j) ∈ A}.

If
∑m

j=1 |f(j)| >
(

n
2

)
then there exists j1 6= j2 such that f(j1) ∩ f(j2) 6= ∅. Let {a, b} ∈

f(j1) ∩ f(j2). Then
{(a, j1), (a, j2), (b, j1), (b, j2)} ∈ A.

Hence A contains a rectangle. Since this cannot happen,
∑m

j=1 |f(j)| ≤
(

n
2

)
. Note that

|f(j)| =
(

xj

2

)
. Hence

∑m
i=1

(
xi

2

)
≤

(
n
2

)
.

Lemma 2.7 Let a, n, m ∈ N. Let q, r be such that a = qn + r with 0 ≤ r ≤ n. Assume that
there exists A ⊆ Gn,m such that |A| = a and A is rectangle-free.

1. If q ≥ 2 then

n ≤
⌊

m(m− 1)− 2rq

q(q − 1)

⌋
.

2. If q = 1 then

r ≤ m(m− 1)

2
.

Proof: The proof for the q ≥ 2 and the q = 1 case begins the same; hence we will not
split into cases yet.

Assume that, for 1 ≤ j ≤ m, the number of elements of A in the jth column is xj. Note
that

∑m
j=1 xj = a.

∑m
j=1

(
xj

2

)
≤

(
n
2

)
. We look at the least value that

∑n
j=1

(
xj

2

)
can have.

Consider the following question:
Minimize

∑n
j=1

(
xj

2

)
Constraints:

•
∑n

j=1 xj = a.

• x1, . . . , xn are natural numbers.
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One can easily show that this is minimized when, for all 1 ≤ j ≤ n,

xj ∈ {ba/nc , da/ne} ⊆ {q, q + 1}.

In order for
∑n

j=1 xj = a we need to have n − r many q’s and r many q + 1’s. Hence we
obtain∑n

j=1

(
xj

2

)
is at least

(n− r)

(
q

2

)
+ r

(
q + 1

2

)
.

Hence we have

(n− r)

(
q

2

)
+ r

(
q + 1

2

)
≤

n∑
j=1

(
xj

2

)
≤

(
m

2

)
nq(q − 1)− rq(q − 1) + r(q + 1)q ≤ m(m− 1)

nq(q − 1)− rq2 + rq + rq2 + rq ≤ m(m− 1)

nq(q − 1) + 2rq ≤ m(m− 1)

Case 1: q ≥ 2.
Subtract 2rq from both sides to obtain

nq(q − 1) ≤ m(m− 1)− 2rq.

Since q − 1 6= 0 we can divide by q(q − 1) to obtain

n ≤
⌊

m(m− 1)− 2rq

q(q − 1)

⌋
.

Case 2: q = 1. Since q − 1 = 0 we get

2r ≤ m(m− 1)

r ≤ m(m− 1)

2
.

Corollary 2.8 Let m, n ∈ N. If there exists an r where m(m−1)
2

< r ≤ n and
⌈

mn
c

⌉
= n + r,

then Gm,n is not c-colorable.

Corollary 2.9 Let 1 ≤ c′ ≤ c. Gc+c′,m is not c-colorable for any m > c
c′

(
c+c′

2

)
.
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Proof: Let n = c + c′ and q = 1 in Lemma 2.7. Then we have⌈
(c + c′)m

c

⌉
= m + r

m +

⌈
c′m

c

⌉
= m + r⌈

c′m

c

⌉
= r

Note that m ≥ r. Hence

m ≥
⌈

c′m

c

⌉
= r

c′m

c
≤ r

m ≤ cr

c′

If m > c
c′

(
c+c′

2

)
, then r >

(
c+c′

2

)
, and so Gc+c′,m is not c-colorable by Corollary 2.8.

Corollary 2.10 Let n, m ∈ N. Let dnm
c
e = qn + r for some 0 ≤ r ≤ n and q ≥ 2. If

m(m−1)−2qr
q(q−1)

< n then Gn,m is not c-colorable.

Note 2.11 In the Appendix we use the results of this section to find the sizes of maximum
rectangle free sets.

3 Tools to Show Sets Contain Rectangles

3.1 Conventions

Throughout this section we will have the following notations and conventions.

Notation 3.1 If n, m ∈ N and A ⊆ Gn,m then we assume the following.

1. The top row of a grid is row 1.

2. We will denote that (a, b) ∈ A by putting an R in the (a, b) position.

3. For 1 ≤ j ≤ m, xj is the number of elements of A in column j.

4. The rows and columns are reordered so that the following holds (unless we explicitly
say otherwise):
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(a) x1 ≥ x2 ≥ · · · ≥ xm.

(b) The first column has x1 contiguous elements of A starting at row 1.

(c) The second column has x2 contiguous elements of A (unless we say otherwise).

5. For 1 ≤ j ≤ m, Cj is the set of rows r such that A has an element in the rth row of
column j. Formally

Cj = {r : (r, j) ∈ A}.

6. For 1 ≤ i ≤ k let
Ii =

∑
1≤j1<···<ji≤m

|Cj1 ∩ · · · ∩ Cji
|.

Example 3.2

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
1 R R R R R
2 R R R R R
3 R R R R
4 R R R R R
5 R R R

C1 = {2, 3}, C2 = {1, 2, 5}, C3 = {5}, C4 = {1}, C5 = {},

C6 = {4, 5}, C7 = {}, C8 = {}, C9 = {3, 4}, C10 = {2},

C11 = {2}, C12 = {4}, C13 = {2, 4}, C14 = {1, 4}, C15 = {3},

C16 = {1, 3}, C17 = {1},

In this example A is rectangle free. Hence, for all i < j Ci ∩Cj| ≤ 1. Hence we have the
following observations.

1. I1 is the number of R’s in the grid which is 22.

2. I2 is the number of pairs of columns that intersect. We list all of the intersecting pairs
that are nonempty by listing what Cj intersects with Cj′ where j′ > j.

C1 intersects C2, C9, C10, C11, C13, C15, C16;

C2 intersects C4, C6, C10, C11, C13, C14, C16, C17;

C3 intersects C6;

C4 intersects C14, C16, C17;
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C6 intersects C9, C12, C13, C14;

C9 intersects C12, C13, C14, C15, C16;

C10 intersects C11, C13,

C11 intersects C13;

C12 intersects C13, C14;

C14 intersects C16, C17;

C15 intersects C16;

C16 intersects C17;

Therefore I2 = 37.

3. I3 is the number of triples of columns that intersect. We list all of the intersecting
triplets that are nonempty:

(C1, C2, C10), (C1, C2, C11), (C1, C2, C13), (C1, C9, C15), (C1, C9, C16), (C1, C10, C11), (C1, C10, C13),
(C1, C11, C13), (C1, C15, C16),

(C2, C4, C14), (C2, C4, C16), (C2, C4, C17), (C2, C10, C11), (C2, C10, C13), (C2, C11, C13),
(C2, C14, C16), (C2, C14, C17), (C2, C16, C17);

(C4, C14, C16), (C4, C14, C17), (C4, C16, C17);

(C6, C9, C12), (C6, C9, C13), (C6, C9, C14), (C6, C12, C13), (C6, C12, C14), (C6, C13, C14);

(C9, C15, C16), (C9, C12, C13), (C9, C12, C14), (C9, C13, C14);

(C10, C11, C13),

(C12, C13, C14),

(C14, C15, C16),

(C15, C16, C17).

Hence I3 = 35.

4. I4 is the number of 4-tuples of columns that intersect. We list all of the intersecting
4-sets that are nonempty:

(C1, C2, C10, C11), (C1, C2, C10, C13), (C1, C9, C15, C16), (C1, C10, C11, C13);

(C2, C4, C14, C16), (C2, C4, C14, C17), (C2, C4, C16, C17), (C2, C10, C11, C13), (C2, C14, C16, C17),

(C4, C14, C16, C17),

(C6, C9, C12, C13), (C6, C9, C12, C14), (C6, C9, C13, C14),

(C6, C12, C13, C14),
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(C9, C12, C13, C14).

Hence I4 = 15.

5. I5 is the number of 5-tuples of columns that intersect. We list all of the intersecting
5-sets that are nonempty:

(C1, C2, C10, C11, C13),

(C2, C4, C14, C16, C17),

(C6, C9, C12, C13, C14),

Hence I5 = 3.

6. I6 is the number of 6-tuples of columns that intersect. There are none of these, so
I6 = 0.

Def 3.3 Let n, m ∈ N and A ⊆ Gn,m. Let 1 ≤ i1 < i2 ≤ n. Ci1 and Ci2 intersect if
Ci1 ∩ Ci2 6= ∅. The following picture portrays this happening with C1 and C2.

1 2 . . .
1 R . . .
2 R . . .
...

...
...

...
x1 − 1 R . . .

x1 R R . . .
x1 + 1 R . . .
x1 + 2 R . . .

...
...

...
...

x1 + x2 − 1 R . . .
x1 + x2 . . .

x1 + x2 + 1 . . .
...

...
...

...
n . . .

3.2
∑k

j=1 xj and |
⋃k

j=1 Cj|
Lemma 3.4 Let n, m ∈ N. Let A be a rectangle free subset of Gn,m. Let 1 ≤ j1 < j2 ≤ n.
Then |Cj1 ∩ Cj2| ≤ 1.
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Proof:
As the following picture shows what happens if |C1 ∩ C2| ≥ 2. Note that a rectangle is

formed. We leave it to the reader to make this into a formal argument.

1 2 . . .
1 R . . .
2 R . . .
...

...
...

...
x1 − 1 R R . . .

x1 R R . . .
x1 + 1 R . . .
x1 + 2 R . . .

...
...

...
...

x1 + x2 − 2 R . . .
x + x2 + 1− 1 . . .

...
...

...
...

n . . .

Lemma 3.5 Let n, m ∈ N. Let 1 ≤ k ≤ m. Let x1, . . . , xk ∈ N. Assume (x1, . . . , xm) is
(n, m)-placeable via A. (We need not assume that x1 ≥ · · · ≥ xm and hence can use this for
any set of columns.)

1. x1 + · · ·+ xk ≤ n +
(

k
2

)
.

2. If x1 + · · ·+ xk = n +
(

k
2

)
then

• for all 1 ≤ j1 < j2 ≤ k, |Cj1 ∩ Cj2| = 1, and

• for all 1 ≤ j1 < j2 < j3 ≤ k, |Cj1 ∩ Cj2 ∩ Cj3| = 0.

3. If
⋂k

j=1 Cj 6= ∅ then
∑k

j=1 xj ≤ n +
∑k

j=2(−1)j
(

k
j

)
.

4. |
⋃k

j=1 Cj| ≥
∑k

j=1 xi −
(

k
2

)
.

Proof:
We begin with facts that are useful for all four parts.
By the law of inclusion-exclusion

|
k⋃

j=1

Cj| =
k∑

j=1

|Cj| − I2 + I3 − I4 + · · ·+ (−1)k+1Ik.

Since |Cj| = xj we have
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|
k⋃

j=1

Cj| =
k∑

j=1

xj − I2 + I3 − I4 + · · ·+ (−1)k+1Ik.

k∑
j=1

xj = |
k⋃

j=1

Cj|+ I2 − I3 + I4 + · · ·+ (−1)kIk.

Since |
⋃k

j=1 Cj| ≤ n we have

k∑
j=1

xj ≤ n + I2 − I3 + I4 + · · ·+ (−1)kIk.

1) Assume k is odd (the case of k even is similar).

k∑
j=1

xj ≤ n + I2 + (I4 − I3) + · · ·+ (Ik−1 − Ik−2)− Ik.

Since I2 ≤
(

k
2

)
and, for 3 ≤ j ≤ k − 2, (Ij+1 − Ij) ≤ 0 and −Ik ≤ 0 we have

k∑
j=1

xj ≤ n +

(
k

2

)
.

2) We assume k is even. The k odd case is similar. We always have

k∑
j=1

xj = |
k⋃

j=1

Cj|+ I2 − I3 + I4 + · · ·+ (−1)kIk.

If this sum equals n +
(

k
2

)
then we obtain

n+

(
k

2

)
= |

k⋃
j=1

Cj|+ I2− I3 + I4 + · · ·+(−1)kIk = |
k⋃

j=1

Cj|+ I2 +(I4− I3)+ · · ·+(Ik− Ik−1).

Since

|
k⋃

j=1

Cj| ≤ n,

I2 ≤
(

k

2

)
,

and
(∀j ≥ 3)[Ij+1 − Ij ≤ 0]
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the only way that equality can hold is if

|
k⋃

j=1

Cj| = n,

I2 =

(
k

2

)
,

and
(∀j ≥ 3)[Ij+1 − Ij = 0].

By Lemma 3.4 for all 1 ≤ j1 < j2 ≤ k, |Cj1 ∩ Cj2| ≤ 1. Since I2 =
(

k
2

)
we have that, for

all 1 ≤ j1 < j2 ≤ k, |Cj1 ∩ Cj2| = 1.
Since (∀j ≥ 3)[Ij+1−Ij = 0] for all 3 ≤ j ≤ k, Ik = 0. Hence for all 1 ≤ j1 < j2 < j3 ≤ k,

|Cj1 ∩ Cj2 ∩ Cj3| = 0.

3) Since C1 ∩ · · · ∩ Ck 6= ∅, for all j, Ij =
(

k
j

)
.

Hence
k∑

j=1

xj ≤ n +
k∑

j=2

(−1)jIj = n +
k∑

j=2

(−1)j

(
k

j

)
.

4) We will assume k is odd. The k even case is similar.

|
⋃k

j=1 Cj| =
∑k

j=1 |Cj| − I2 + I3 − I4 + · · ·+ Ik−1 − Ik

=
∑k

j=1 |Cj| − I2 + (I3 − I4) + · · ·+ (Ik−1 − Ik−2)− Ik

Since |I2| ≤
(

k
2

)
and, for all 3 ≤ j ≤ k − 1, (Ij − Ij+1) ≥ 0, we have

|
k⋃

j=1

Cj| ≥
k∑

j=1

|Cj| −
(

k

2

)
=

k∑
j=1

xj −
(

k

2

)
.

It will be convenient to specify the k = 2 case of Lemma 3.5.

Lemma 3.6 Let n, m ∈ N. Assume (x1, . . . , xm) is (n, m)-placeable via A. Then x1 + x2 ≤
n + 1.

3.3 Using maxrf

Lemma 3.7 Let n, m ∈ N. Let x ≤ x1 ≤ n. Assume (x1, . . . , xm) is (n, m)-placeable via A.
Then

|A| ≤ x + m− 1 + maxrf(n− x, m− 1).
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Proof: The following picture portrays what might happen in the case of n = 12, x1 = 8.
We use double lines to partition the grid in a way that will be helpful later.

1 2 3 4 5 . . . j · · · m
1 R R · · · · · ·
2 R R · · · · · ·
3 R R · · · · · ·
4 R R · · · · · ·
5 R · · · · · ·
6 R · · · · · ·
7 R · · · · · · R
8 R · · · R · · ·
9 R R · · · · · ·
10 R R · · · · · ·
11 R · · · · · ·
12 R · · · · · ·

We view this grid in three parts.
Part 1: The first column. This has x1 elements of A in it.

Part 2: Consider the grid consisting of rows 1, . . . , x1 and columns 2, . . . ,m. Look at the
jth column, 2 ≤ j ≤ m in this grid. For each such j, this column has at most one element
in A (else there would be a rectangle using the first column). Hence the total number of
elements of A from this part of the grid is m− 1.

Part 3: The bottom most n − x1 elements of the right most m − 1 columns. This clearly
has ≤ maxrf(n− x1, m− 1) elements in it.

Taking all the parts into account we obtain

|A| ≤ x1 + (m− 1) + maxrf(n− x1, m− 1).

We leave it as an exercise to show that, if x ≤ x1, then

x1 + (m− 1) + maxrf(n− x1, m− 1) ≤ x + (m− 1) + maxrf(n− x, m− 1).

3.4 Disjoint Columns

In this section we prove a very general theorem about what happens if the first k columns
are disjoint. In order to actually use this theorem we will need some lemmas.

Def 3.8 Let n, m, q, u ∈ N.

14



1. maxrfq(m, n) is the size of the maximum rectangle-free A ⊆ Gn,m where every column
has at least q elements in it.

2. colsrfq(n) is the largest m such that there is a rectangle-free A ⊆ Gn,m where every
column has at least q elements in it.

3. colsintq(n) is the largest m such that there is set A ⊆ Gn,m where no two columns
intersect and there are at least q elements in each column.

Lemma 3.9 Let p, q ∈ N such that p ≥ q. Then

1.

colsrfq(p) ≤
⌊

p(p− 1)

q(q − 1)

⌋
(We allow the case of q = 1 though it gives the trivial result that colsrfq(p) ≤ ∞.)

2.

colsrfq(p) · q ≤ p +

(
colsrfq(p)

2

)
.

Proof:
Let A ⊆ Gp,u be a rectangle-free set such that every column has at least q elements in

it. Let C1, . . . , Cu be the columns. We show conditions that u satisfies, and hence colsrfq(p)
satisfies.

1) If {a, b} is a distinct pair of elements in (say) C1 and {c, d} is a distinct pair of elements
in (say) C2 we have {a, b} 6= {c, d}.∣∣∣∣∣

u⋃
j=1

(
Cj

2

)∣∣∣∣∣ ≥
(

q

2

)
· u

Since each
(

Cj

2

)
is a subset of

(
[p]
2

)
we also have∣∣∣∣∣
u⋃

j=1

(
Cj

2

)∣∣∣∣∣ ≤
(

p

2

)
.

Hence we have (
q

2

)
· u ≤

(
p

2

)
.

u ≤
(

p
2

)(
q
2

) =
p(p− 1)

q(q − 1)
.

Since u is an integer
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u ≤
⌊

p(p− 1)

q(q − 1)

⌋
.

2) By Lemma 3.5

|C1|+ · · ·+ |Cu| ≤ p +

(
u

2

)
.

Since each |Ci| is ≥ q we have

u · q ≤ |C1|+ · · ·+ |Cu| ≤ p +

(
u

2

)
.

The following easy lemma we leave to the reader.

Lemma 3.10

colsintq(p) =

⌊
p

q

⌋

Theorem 3.11 Let k, n, m, p, q, u ∈ N. Assume the following.

• q ≤ p ≤ n and 1 ≤ k ≤ m.

• u is the largest number such that u ≤
⌊

p(p−1)
q(q−1)

⌋
and uq ≤ p +

(
u
2

)
.

• (x1, . . . , xm) is (n, m)-placeable via A.

• In this placement, for all 1 ≤ j1 < j2 ≤ k, |Cj1 ∩ Cj2| = ∅.

• x1 ≥ · · · ≥ xk. We make no other assumptions about the orderings of the xj’s.

• x1 + · · ·+ xk = n− p.

Let N = Nk+q be the number of j, k + 1 ≤ j ≤ m, such that |Cj| = k + q. Then N
satisfies the following conditions.

1. N ≤ colsrfq(p) ≤ u.

2. N ≤ (colsintq(p))xk−maxrfq(p,N)+qN ≤
⌊

p
q

⌋
xk−maxrfq(p,N)+qN

3. If q = 1 and p = 1 then N ≤ xk.

4. If q = 1, p = 2, and k ≥ 2, then N ≤ 2xk−1.

5. If q = 1, p = 3, and k ≥ 4, then N ≤ 3xk−3.

16



(The last three items follow directly from item 2 and Lemmas 3.10 and 12.1. Hence we will
not prove them.)

Proof:
The proofs (1) and (2) of this theorem begin the same way.
The following picture portrays an example where k = 4, x1 = 8, x2 = 5, x3 = 4, x4 = 2,

and p = 5.

1 2 3 4 5 . . . j · · · m
1 R · · · · · ·
2 R · · · · · ·
3 R · · · · · ·
4 R · · · · · ·
5 R · · · · · ·
6 R · · · · · ·
7 R · · · · · ·
8 R · · · · · ·
9 R · · · · · ·
10 R · · · · · ·
11 R · · · · · ·
12 R · · · · · ·
13 R · · · · · ·
14 R · · · · · ·
15 R · · · · · ·
16 R · · · · · ·
17 R · · · · · ·
18 R · · · · · ·
19 R · · · · · ·
20 · · · · · ·
21 · · · · · ·
22 · · · · · ·
23 · · · · · ·
24 · · · · · ·

By renumbering we can assume that our general grid looks like the one above. In par-
ticular

C1 = {1, . . . , x1}
C2 = {x1 + 1, . . . , x1 + x2}
C3 = {x1 + x2 + 1, . . . , x1 + x2 + x3}

...
Ck = {x1 + · · ·+ xk−1 + 1, . . . , x1 + · · ·+ xk−1 + xk}
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Let k + 1 ≤ j ≤ k + N . Let Cj = {i1 < · · · < ik+q}. Note that

|Cj ∩ C1| ≤ 1
|Cj ∩ C2| ≤ 1

...
|Cj ∩ Ck| ≤ 1.

hence

|Cj ∩ {1, . . . , x1 + · · ·+ xk}| ≤ k.

Therefore

|Cj ∩ {x1 + · · ·+ xk + 1, . . . , n}| ≥ q.

Let rj ≥ 0 be such that

|Cj ∩ {x1 + · · ·+ xk + 1, . . . , x1 + · · ·+ xk + p}| = q + rj.

Let SETS be the following set of sets:

• {1, . . . , x1},

• {x1 + 1, . . . , x1 + x2},

• ...

• {x1 + · · ·+ xk−1 + 1, . . . , x1 + · · ·+ xk−1 + xk}.

Cj has to intersect at least (k + q)− (q + rj) = k− rj of the sets in SETS. Let MISSj be
the sets in SETS that Cj does not intersect. Note that |MISSj| = k − (k − rj) = rj.

Look at the grid formed by rows x1 + · · · + xk + 1, . . . , x1 + · · · + xk + p and columns
k + 1, . . . , k + N . Let B be the restriction of A to this set. Note the following:

• Every column of this grid has ≥ q elements in it.

• |B| ≤ maxrfq(p, N).

• |B| = (q + r1) + · · ·+ (q + rN) = qN + r1 + · · ·+ rN .

• Combining the last two items we obtain

r1 + · · ·+ rN = |B| − qN ≤ maxrfq(p, N)− qN.
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1)
Note that B is a rectangle-free subset of Gp,N with at least q elements in each column.

Hence, by the definition of colsrfq(p), N ≤ colsrfq(p). By Lemma 3.9 colsrfq(p) ≤ u. Hence

N ≤ colsrfq(p) ≤ u.

2)
Assume, by way of contradiction, that

N ≥ (colsintq(p))xk−maxrfq(p,N)+qN + 1.

Let 1 ≤ j0 ≤ k be the largest number (hence the smallest xj0 value) such that, for all
k + 1 ≤ j ≤ N ,

Cj ∩ {x1 + · · ·+ xj0−1 + 1, . . . , x1 + · · ·+ xj0−1 + xj0} 6= ∅.

(We define x0 = 0 for this notation.) We want a lower bound on j0. For each k + 1 ≤ j ≤ N
there are at most |MISSj| = rj sets Z ∈ SETS such that Cj ∩ Z = ∅. Hence there are at
most r1 + · · ·+ rN elements of SETS such that there is a k + 1 ≤ j ≤ N such that Cj does
not intersect. Hence j0 ≥ k − (r1 + · · ·+ rN) ≥ k −maxrfq(p, N) + qN . Therefore

|{x1 + · · ·+ xj0−1 + 1, . . . , x1 + · · ·+ xj0−1 + xj0}| = xj0 ≥ xk−maxrfq(p,N)+qN .

Map each k + 1 ≤ j ≤ k + N to the following ordered pair:

(Cj∩{x1+· · ·+xk+1, . . . , x1+· · ·+xk+p}, Cj∩{x1+· · ·+xj0−1+1, . . . , x1+· · ·+xj0−1+xj0}.)

Note that there will be exactly one element in the second component of this ordered pair.
Since

N ≥ (colsintq(p))xk−maxrf(p,N)+qN + 1 ≥ (colsintq(p))xj0 + 1

there are colsintq(p) + 1 values of j in k + 1 ≤ j ≤ N that all map to the same second
coordinate. We can renumber so that these are columns k + 1 ≤ j ≤ k + colsintq(p). The
following picture portrays what is happening (though we have so far left out R’s in the last
p rows).

k + 1 k + 2 · · · k + colsintq(p) + 1
x1 + · · ·+ xj0−1 + 1 R R · · · R

...
...

... · · · ...
x1 + · · ·+ xj0−1 + xk · · ·

...
...

...
...

x1 + · · ·+ xk−1 + xk + 1 · · ·
x1 + · · ·+ xk−1 + xk + 2 · · ·

...
...

...
...

x1 + · · ·+ xk−1 + xk + p · · ·
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Look at the grid formed by rows x1 + · · · + xk + 1, . . . , x1 + · · · + xk + p and columns
k + 1, . . . , k + colsintq(p) + 1. Let B be the restriction of A to this set. Note that there are
at least q elements in each column. By the definition of colsintq(p) there are two columns
that intersect. By renumbering we can assume they are columns k + 1 and k + 2. The
following picture portrays what happens and shows that a rectangle is formed. Hence we
have a contradiction. Hence

N ≤ (colsintq(p))xk−maxrfq(p,N)+qN .

k + 1 k + 2 · · · k + colsintq(p) + 1
x1 + · · ·+ xj0−1 + 1 R R · · · R

...
...

... · · · ...
x1 + · · ·+ xj0−1 + xk · · ·

...
...

...
...

x1 + · · ·+ xk−1 + xk + 1 R · · ·
x1 + · · ·+ xk−1 + xk + 2 R R · · ·
x1 + · · ·+ xk−1 + xk + 3 R · · ·

...
...

...
...

x1 + · · ·+ xk−1 + xk + p · · ·

By Lemma 3.10 colsintq(p) =
⌊

p
q

⌋
. Combining this with

N ≤ (colsintq(p))xk−maxrfq(p,N)+qN

we obtain

N ≤ (colsintq(p))xk−maxrfq(p,N)+qN ≤
⌊

p

q

⌋
xk−maxrfq(p,N)+qN .

4 Tools for Finding Proper c-Colorings

4.1 Strong c-colorings and Strong (c, c′)-colorings

Def 4.1 Let c, c′, n, m ∈ N and let χ : Gn,m → [c]. χ is a strong (c, c′)-coloring if the
following holds: For all rectangles where (1) the two right most corners are the same color,
say c1, and (2) the two left most corners are the same color, say c2, we have c1 6= c2 and
c1, c2 ∈ [c′].

Def 4.2 Let c, c′, n, m ∈ N. Gn,m is strongly (c, c′)-colorable if it has a strong (c, c′)-coloring.
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Note 4.3 Let c, n,m ∈ N and let χ : Gn,m → [c]. If there are no rectangles such that (1)
the two right most corners are the same color and (2) the two left most corners are the same
color, then, for all c′, χ is a strong (c, c′)-coloring. However, we will in this case take c′ = 1.
We call such colorings strong c-colorings

Example 4.4

1. The following is a strong 4-coloring of G5,8.

1 1 1 4 1 1 4 4
2 2 4 1 2 4 1 4
3 4 2 2 4 2 4 1
4 3 3 3 4 4 2 2
4 4 4 4 3 3 3 3

2. The following is a strong 3-coloring of G4,6.

1 1 3 1 3 3
2 3 1 3 1 3
3 2 2 3 3 1
3 3 3 2 2 2

3. The following is a strong (4, 2)-coloring of G6,15.

1 1 1 1 1 3 3 3 2 3 3 2 2 2 2
1 2 2 2 2 1 1 1 1 4 4 3 3 3 2
2 1 3 3 2 1 2 2 2 1 1 1 4 4 3
2 2 1 4 3 2 1 4 3 1 2 2 1 1 4
3 3 2 1 4 2 2 1 4 2 1 4 1 2 1
4 4 4 2 1 4 4 2 1 2 2 1 2 1 1

4. The following is a strong (6, 2)-coloring of G8,6.

1 1 2 2 3 6
1 2 1 2 4 5
2 1 2 1 5 4
2 2 1 1 6 3
3 4 5 6 1 1
4 5 6 4 1 1
5 6 3 3 1 2
6 3 4 5 1 2
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5. The following is a strong (5, 3)-coloring of G8,28.

1 1 1 1 1 1 1 5 5 5 5 3 2 4 3 4 3 2 3 4 3 2 3 3 2 2 2 2
1 2 2 2 2 2 2 1 1 1 1 1 1 5 4 5 4 3 4 3 4 3 3 4 3 3 3 2
2 1 3 3 3 3 2 1 2 2 2 2 2 1 1 1 1 1 5 5 5 4 4 3 4 3 4 3
2 2 1 4 4 4 3 2 1 3 3 3 3 1 2 2 2 2 1 1 1 1 5 5 5 4 3 3
3 3 2 1 5 3 3 2 2 1 4 4 4 2 1 3 3 3 1 2 2 2 1 1 1 5 5 4
3 4 3 2 1 5 4 3 3 2 1 5 3 2 2 1 5 4 2 1 3 3 1 2 2 1 1 5
4 3 4 3 2 1 5 3 4 3 2 1 5 3 3 2 1 5 2 2 1 5 2 1 3 1 2 1
5 5 5 5 3 2 1 4 3 4 3 2 1 3 5 3 2 1 3 3 2 1 2 2 1 2 1 1

Lemma 4.5 Let c, c′, n, m ∈ N. Let x = bc/c′c. If Gn,m is strongly (c, c′)-colorable then
Gn,xm is c-colorable.

Proof:
Let χ be a strong (c, c′)-coloring of Gn,m. Let the colors be {1, . . . , c}. Let χi be the

coloring
χi(a, b) = χ(a, b) + i (mod c).

(During calculations mod c we use {1, . . . , c} instead of the more conventional {0, . . . , c−1}.)
Take Gn,m with coloring χ. Place next to it Gn,m with coloring χc′

. Then place next to
that Gn,m with coloring χ2c′

Keep doing this until you have χ(x−1)c′
placed. The following is

an example using the strong (6, 2)-coloring of G8,6 in Example 4.4.4. Since c′ = 2 and x = 3
we will be shifting the colors first by 2 then by 4.

1 1 2 2 3 6 3 3 4 4 5 2 5 5 6 6 1 4
1 2 1 2 4 5 3 4 3 4 6 2 5 6 5 5 2 4
2 1 2 1 5 4 4 3 4 3 1 6 6 5 6 5 3 2
2 2 1 1 6 3 4 4 3 3 2 5 6 6 5 5 4 2
3 4 5 6 1 2 5 6 2 2 3 4 1 2 4 4 5 6
4 5 6 4 1 1 6 1 2 6 3 3 2 3 4 2 5 5
5 6 3 3 1 2 1 2 5 5 3 4 3 4 1 1 5 6
6 3 4 5 1 2 2 5 6 1 3 4 4 1 2 3 5 6

We claim that the construction always creates a c-coloring of Gm,xn.
We show that there is no rectangle with the two leftmost points from the first Gn,m.

From this, to show that there are no rectangles at all is just a matter of notation.
Assume that in column i1 there are two points colored R (in this proof 1 ≤ R,B, G ≤ c.)

We call these the i1-points. The points cannot form a rectangle with any other points in Gn,m

since χ is a c-coloring of Gn,m. The i1-points cannot form a rectangle with points in columns
i1 +m, i1 +2m, . . ., i1 +(c− 1)m since the colors of those points are R+ c′ (mod c), R+2c′
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(mod c), . . ., R+(x− 1)c′ (mod c), all of which are not equal to R. Is there a 1 ≤ j ≤ x− 1
and a 1 ≤ i2 ≤ m such that the i1-points form a rectangle with points in column i2 + jm?

Since χ is a strong (c, c′)-coloring, points in column i2 and on the same row as the i1-
points are either colored differently, or both colors are in [c′]. We consider both of these
cases.
Case 1: In column i2 the colors are B and G where B 6= G (it is possible that B = R or
G = R but not both). By the construction the points in column i2 + jm are colored B + jc′

(mod c) and G + jc′ (mod c). These points are colored differently, hence they cannot form
a rectangle with the i1-points.

· · · i1 · · · i2 · · · · · · i1 + jm · · · i2 + jm · · ·
· · · R · · · B · · · · · · R + jc′ · · · B + jc′ · · ·
· · · R · · · G · · · · · · R + jc′ · · · G + jc′ · · ·

Case 2: In column i2 the colors are both B.

· · · i1 · · · i2 · · · · · · i1 + jm · · · i2 + jm · · ·
· · · R · · · B · · · · · · R + jc′ · · · B + jc′ · · ·
· · · R · · · B · · · · · · R + jc′ · · · B + jc′ · · ·

We have R,B ∈ [c′]. By the construction the points in column i2 + jm are both colored
B + jc′ (mod c). We show that R 6≡ B + jc′ (mod c). Since 1 ≤ j ≤ x− 1 we have

c′ ≤ jc′ ≤ (x− 1)c′.

Hence
B + c′ ≤ B + jc′ ≤ B + (x− 1)c′.

Since B ∈ [c′] we have B + (x− 1)c′ ≤ xc′. Hence

B + c′ ≤ B + jc′ ≤ xc′.

By the definition of x we have xc′ ≤ c. Since B ∈ [c′] we have B + c′ ≥ c′ + 1. Hence

c′ + 1 ≤ B + jc′ ≤ c.

Since R ∈ [c′] we have that R 6≡ B + jc′.

4.2 Using Combinatorics and Strong (c, c′)-Colorings

Theorem 4.6 Let c ≥ 2.

1. There is a strong c-coloring of Gc+1,(c+1
2 ).

2. There is a c-coloring of Gc+1,m where m = c
(

c+1
2

)
.
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Proof:
1) We first do an example of our construction. In the c = 5 case we obtain the following
coloring.

5 5 5 5 5 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 5 5 5 5 2 2 2 2 2 2
1 5 2 2 2 5 2 2 2 5 5 5 3 3 3
2 2 5 3 3 2 5 3 3 5 3 3 5 5 4
3 3 3 5 4 3 3 5 4 3 5 4 5 4 5
4 4 4 4 5 4 4 4 5 4 4 5 4 5 5

Here is our general construction. Index the columns by the
(
[c+1]

2

)
. Color rows of column

{x, y}, x < y, as follows.

1. Color rows x and y with color c.

2. On the other spots use the colors {1, 2, 3, . . . , c − 1} in increasing order (the actual
order does not matter).

2) This follows from Lemma 4.5 with c = c and c′ = 1, and Part (1) of this theorem.

The next theorem generalizes Theorem 4.6.

Theorem 4.7 Let c, c′ ∈ N with c ≥ 2 and 1 ≤ c′ ≤ c.

1. There is a strong (c, c′)-coloring of Gc+c′,m where m =
(

c+c′

2

)
.

2. There is a c-coloring of Gc+c′,m′ where m′ = bc/c′c
(

c+c′

2

)
.

To prove Theorem 4.7, we will use a partition of
(
[2n]
2

)
into perfect matchings of [2n] for

certain values of n. Each perfect matching thus has size n.
We first give some examples and then a general lemma.

Example 4.8

1. If n = 3, 2n = 6, 2n − 1 = 5. We show a partition of
(
[6]
2

)
into 5 parts of size 3. We

first pair up the elements as follows, each number in the top row being paired with the
number below it:

1 2 3
6 5 4

This corresponds to {1, 6}, {2, 5}, {3, 4}. This is our first part of size 3.

We keep 1 fixed and keep rotating the other numbers clockwise to obtain the following
parts.
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1 6 2
5 4 3

1 5 6
4 3 2

1 4 5
3 2 6

1 3 4
2 6 5

Note that the first pair went {1, 5}, {1, 4}, {1, 3}, {1, 2}. That is, 1 was fixed but
the other element decreased by 1. Also note that the second and third pair had both
elements decrease by 1 except 2 goes to 6. This partition is a special case of a general
construction we will have later. The same applies to the next example.

2. If n = 4, 2n = 8, 2n− 1 = 7. Here is a partition of
(
[8]
2

)
into 7 parts of size 4.

We keep 1 fixed and keep rotating the other numbers clockwise to obtain the following
parts.

1 2 3 4
8 7 6 5

1 8 2 3
7 6 5 4

1 7 8 2
6 5 4 3

1 6 7 8
5 4 3 2

1 5 6 7
4 3 2 8

1 4 5 6
3 2 8 7

1 3 4 5
2 8 7 6
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The next lemma shows that such partitions always exist. The lemma (and the examples
above) is based on the Wikipedia entry on Round Robin tournaments. We present a proof
for completeness.

Lemma 4.9 Let n ∈ N.
(
[2n]
2

)
can be partitioned into 2n− 1 sets P1, . . . , P2n−1, each of size

n, such that each Pi is itself a partition of [2n] into pairs (i.e., a perfect matching).

Proof: Following the examples above, we define the cyclic permutation ρ on {2, 3, . . . , 2n}
as follows:

ρ(x) =

{
x− 1 if 2 < x ≤ 2n,
2n if x = 2,

for all x ∈ {2, 3, . . . , 2n}. Then for each 1 ≤ i ≤ 2n− 1, we define

Pi = { {1, 2n− i + 1} } ∪
{
{ρ(i−1)(j), ρ(i−1)(2n− j + 1)} | 2 ≤ j ≤ n

}
,

noting that 2n− i + 1 = ρ(i−1)(2n). It is not too hard to see that each Pi contains exactly n
pairwise disjoint pairs, so it suffices to show that no pair appears in two different Pi. Clearly,
no pair of the form {1, x} can appear in more than one Pi. Suppose {x, y} appears in both
Pi and Pj for some i < j, where 2 ≤ x, y ≤ 2n. Then without loss of generality, x appears in
the top row of Pi with y just below it. If x is still in the top row of Pj, then x has shifted to
the right and y to the left, and so x and y are not vertically aligned in Pj, which means that
{x, y} /∈ Pj. So it must be that x is on the bottom row of Pj with y just above it. But for
this to happen, x and y would have to rotate different amounts from Pi to Pj (one an even
distance and the other an odd distance), but they rotate the same amount, namely, j − i
spaces—contradiction. Thus the Pi are as required.

Proof: [Proof of Theorem 4.7]
1) Here is our general construction. We split into two cases.

Case 1: c + c′ is even. Then c + c′ = 2n for some n. Since c′ ≤ c, we also have c′ ≤ n.
Let P1, . . . , P2n−1 be the partition of [2n] of Lemma 4.9. Index the elements of each Pi as
pi,j for 1 ≤ j ≤ n, that is, Pi = {pi,1, pi,2, . . . , pi,n}. We break up the columns into 2n − 1
blocks of n columns each (note that n(2n − 1) =

(
2n
2

)
). We color the jth column in the ith

block as follows:

• Assign color 1 to the two elements of pi,(j+1) mod n,

• Assign color 2 to the two elements of pi,(j+2) mod n,

• ...

• Assign color c′ to the two elements of pi,(j+c′) mod n,

• Assign the colors c′ + 1, . . . , c one each to the rest of the elements in the column in
increasing order.
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Suppose some pair pi,k = {x, y} is monochrome in two separate columns. Then both
these columns must be in the ith block, the jst

1 column (colored c1) and j2nd column (colored
c2), say. Then we must have

k = (j1 + c1) mod n = (j2 + c2) mod n.

Since j1 6= j2, we must have c1 6= c2.

Case 2: c + c′ is odd. Then we choose a simpler partition. Let c + c′ = 2n + 1 for some
n. Since c′ < c, we also have c′ ≤ n. For 1 ≤ i ≤ 2n + 1 and 1 ≤ j ≤ n, define

pi,j = {(i + j) mod (2n + 1), (i− j) mod (2n + 1)} ∈
(

[2n + 1]

2

)
,

and let
Pi = {pi,1, . . . , pi,n}.

It is not too hard to see that all the pairs within the same Pi are pairwise disjoint and that
no pair is contained in more than one Pi.

We now proceed with exactly the same recipe as in Case 1, except that, noting that(
2n+1

2

)
= n(2n + 1), we group the columns into 2n + 1 blocks of n columns each. We get a

strong (c, c′)-coloring just as in Case 1.
2) This follows from Lemma 4.5 and Part (1) of this theorem.

Corollary 4.10 For all c ≥ 2 there is a c-coloring of G2c,2c2−c.

4.3 Using Finite Fields and Strong c-Colorings

Def 4.11 Let X be a finite set and q ∈ N, q ≥ 3. Let P ⊆
(

X
q

)
.

pairs(P ) = {{a1, a2} ∈
(

X

2

)
: (∃a3, . . . , aq)[{a1, . . . , aq} ∈ P ]}.

Example 4.12 Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Let q = 3.

1. Let P = {{1, 2, 6}, {1, 8, 9}, {2, 4, 6}}. Then

pairs(P ) = {{1, 2}, {1, 6}, {2, 6}, {1, 8}, {1, 9}, {8, 9}, {2, 4}, {4, 6}}

2. Let P = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. Then

pairs(P ) = {{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}, {7, 8}, {7, 9}, {8, 9}}.
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Lemma 4.13 Let c, m, r ∈ N. Assume that there exists P1, . . . , Pm ⊆
(
[cr]
r

)
such that the

following hold.

• For all 1 ≤ j ≤ m, Pj is a partition of [cr] into c parts of size r.

• For all 1 ≤ j1 < j2 ≤ m, pairs(Pj1) ∩ pairs(Pj2) = ∅.

Then

1. Gcr,m is strongly c-colorable.

2. Gcr,cm is c-colorable.

Proof:
1)

We define a strong c-coloring COL of Gcr,m using P1, . . . , Pm.
Let 1 ≤ j ≤ m. Let

Pj = {L1
j , . . . , L

c
j}

where each Li
j is a subset of r elements from [cr].

Let 1 ≤ i ≤ cr and 1 ≤ j ≤ m. Since Pj is a partition of [cr] there exists a unique u such
that i ∈ Lu

j . Define
COL(i, j) = u.

We show that this is a strong c-coloring. Assume, by way of contradiction, that there
exists 1 ≤ i1 < i2 ≤ 2k and 1 ≤ j1 < j2 ≤ 2k − 1 such that COL(i1, j1) = COL(i1, j2) = u
and COL(i2, j1) = COL(i2, j2) = v. By definition of the coloring we have

i1 ∈ Lu
j1

, i1 ∈ Lu
j2

, i2 ∈ Lv
j1

, i2 ∈ Lv
j2

Then
{i1, i2} ∈ pairs(Pj1) ∩ pairs(Pj2),

contradicting the second premise on the P ’s.
2) This follows from Part (1) and Lemma 4.5 with c = c and c′ = 1.

The Round Robin partition of Lemma 4.9 is an example of a partition satisfying the
premises of Lemma 4.13, where c = n, r = 2, and m = 2n − 1 = 2c − 1. The next theorem
yields partitions with bigger values of r.

Theorem 4.14 Let p be a prime and s, d ∈ N. Let c = pds−s, r = ps, and m = pds−1
ps−1

. Then
Gcr,cm is c-colorable.

Proof: We show that there exists P1, . . . , Pm satisfying the premise of Lemma 4.13. The
result follows immediately.

Let F be the finite field on ps elements. We identify [cr] with the set F d.
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Def 4.15

1. Let ~x ∈ F d, ~y ∈ F d − {0d}. Then

L~x,~y = {~x + f~y | f ∈ F}.

Sets of this form are called lines. Note that for all ~x, ~y, a ∈ F with a 6= 0,

L~x,~y = L~x,a~y.

2. Two lines L~x,~y, L~z, ~w have the same slope if ~y is a multiple of ~w.

The following are easy to prove and well-known.

• If L and L′ are two distinct lines that have the same slope, then L ∩ L′ = ∅.

• If L and L′ are two distinct lines with different slopes, then |L ∩ L′| ≤ 1.

• If L is a line then there are exactly r = ps points on L.

• If L is a line then there are exactly c = pds−s lines that have the same slope as L (this
includes L itself).

• There are exactly pds−1
ps−1

different slopes.

We define P1, . . . , Pm as follows.

1. Pick a line L. Let P1 be the set of lines that have the same slope as L.

2. Assume that P1, . . . , Pj−1 have been defined and that j ≤ m. Let L be a line that is
not in P1 ∪ · · · ∪ Pj−1. Let Pj be the set of all lines that have the same slope as L.

We need to show that P1, . . . , Pm satisfies the premises of Lemma 4.13

a) For all 1 ≤ j ≤ m, Pj is a partition of [cr] into c parts of size r. Let L ∈ Pj. Note that
Pj is the set of all lines with the same slope as L. Clearly this partitions F sd which is [cr].

b) For all 1 ≤ j1 < j2 ≤ m, pairs(Pj1) ∩ pairs(Pj2) = ∅. Let L1 be any line in Pj1 and L2 be
any line in Pj2 . Since |L1 ∩ L2| ≤ 1 < 2 we have the result.

Note that each Pj has c = pds−s sets (lines) in it, each set (line) has r = ps numbers

(points), and there are m = pds−1
ps−1

many P ’s. Hence the premises of Lemma 4.13 are satisfied.

It is convenient to state the s = 1, d = 2 case of Theorem 4.14.

Corollary 4.16 Let p be a prime.

1. There is a strong p-coloring of Gp2,p+1.

2. There is a p-coloring of Gp2,p2+p.

Note 4.17 It would be of interest to obtain a Lemma similar to Theorem 4.14 that does
not need prime powers and possibly yields strong (c, c′)-colorings.
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5 Bounds on the Sizes of Obstruction Sets

5.1 An Upper Bound

Using the uncolorability bounds, we can obtain an upper-bound on the size of a c-colorable
grid.

Theorem 5.1 For all c > 0, Gc2+c,c2+c is not c-colorable.

Proof: We apply Corollary 2.10 with m = c2 + c and n = c2 + c. Note that

⌈
nm

c

⌉
=

⌈
(c2 + c)(c2 + c)

c

⌉
= (c + 1)(c2 + c).

Letting q = c + 1 and r = 0, we have

m(m− 1)− 2qr

q(q − 1)
=

(c2 + c)(c2 + c− 1)

(c + 1)c

= c2 + c− 1

< c2 + c

= n.

Using this, we can obtain an upper-bound on the size of an obstruction set.

Theorem 5.2 If c > 0, then |OBSc| ≤ 2c2.

Proof: For each r, there can be at most one c-minimal grid of the form Gr,n. Likewise,
there can be at most one c-minimal grid of the form Gn,r. If r ≤ c then for all n, Gr,n and
Gn,r are trivially c-colorable and are, therefore, not c-minimal. Theorem 5.1 shows that for
all n, m > c2 + c, Gn,m is not c-minimal. It follows that there can be at most two c-minimal
grids for each integer r where c < r ≤ c2 + c. Therefore there are at most 2c2 c-minimal
grids in OBSc.

5.2 A Lower Bound

To get a lower bound on |OBSc|, we will combine Corollary 2.9 and Theorem 4.7(2) with the
following lemma:

Lemma 5.3 Suppose that Gm1,n is c-colorable and Gm2,n is not c-colorable. Then there
exists a grid Gx,y ∈ OBSc such that m1 < x ≤ m2 (and in addition, y ≤ n).

30



Proof: Given n, let x be least such that Gx,n is not c-colorable. Clearly, m1 < x ≤ m2.
Now given x as above, let y be least such that Gx,y is not c-colorable. Clearly, y ≤ n and
Gx,y ∈ OBSc.

Theorem 5.4 |OBSc| ≥ 2
√

c(1− o(1)).

Proof: For any c ≥ 2 and any 1 ≤ c′ ≤ c we can summarize Corollary 2.9 and Theo-
rem 4.7(2) as follows:

Gc+c′,n is

{
c-colorable if n ≤

⌊
c
c′

⌋ (
c+c′

2

)
,

not c-colorable if n > c
c′

(
c+c′

2

)
.

(We won’t use the fact here, but note that this is completely tight if c′ divides c.)
Suppose c′ > 1 and

c

c′

(
c + c′

2

)
<

⌊
c

c′ − 1

⌋ (
c + c′ − 1

2

)
. (1)

Then letting n :=
⌊

c
c′−1

⌋ (
c+c′−1

2

)
, we see that Gc+c′−1,n is c-colorable, but Gc+c′,n is not.

Then by Lemma 5.3, there is a grid Gc+c′,y ∈ OBSc for some y. So there are at least as many
elements of OBSc as there are values of c′ satisfying Inequality (1)—actually twice as many,
because Gn,m ∈ OBSc iff Gm,n ∈ OBSc.

Fix any real ε > 0. Clearly, Inequality (1) holds provided

c

c′

(
c + c′

2

)
≤

(
c

c′ − 1
− 1

) (
c + c′ − 1

2

)
.

A rather tedious calculation reveals that if 2 ≤ c′ ≤ (1 − ε)
√

c, then this latter inequality
holds for all large enough c. Including the grid Gc+1,n ∈ OBSc where n = c

(
c+1
2

)
+1, we then

get |OBSc| ≥ b(1− ε)
√

cc for all large enough c, and since ε was arbitrary, we therefore have
|OBSc| ≥

√
c(1− o(1)).

To double the count, we notice that c + c′ ≤
⌊

c
c′

⌋ (
c+c′

2

)
, whence Gc+c′,c+c′ is c-colorable

by Theorem 4.7(2). This means that Gc+c′,y ∈ OBSc for some y > c + c′, and so we can
count Gy,c+c′ ∈ OBSc as well without counting any grids twice.

6 Which Grids Can be Properly 2-Colored?

Lemma 6.1

1. G7,3 and G3,7 are not 2-colorable

2. G5,5 is not 2-colorable.

3. G7,2 and G2,7 are 2-colorable (this is trivial).
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4. G6,4 and G4,6 are 2-colorable.

Proof:
We only consider grids of the form Gn,m where n ≥ m.

1,2)
The following table, along with Corollary 2.4, shows why G7,3 and G5,5 are not 2-colorable.

m n zn,m dnm
c
e

3 7 11 11
5 5 13 13

Table 1: Uncolorability values for c = 2

3) G7,2 is clearly 2-colorable.

4) G6,4 is 2-colorable by Corollary 4.16 with p = 2.

Theorem 6.2 OBS2 = {G7,3, G5,5, G3,7}.

Proof:
G7,3 is not 2-colorable by Lemma 6.1. G6,3 is 2-colorable by Lemma 6.1. G7,2 is 2-colorable

by Lemma 6.1. Hence G7,3 is 2-minimal. The proof for G3,7 is similar.
G5,5 is not 2-colorable by Lemma 6.1. G5,4 and G4,5 are 2-colorable by Lemma 6.1. Hence

G5,5 is 2-minimal.
We need to show that G7,3, G5,5, and G3,7 are the only 2-minimal grids. We consider the

different possible values of n with m ≤ n and then use symmetry.

n m ≤ n comment
1, 2, 3, 4 any m ≤ n Gn,m is 2-colorable by Lemma 6.1

n 1, 2 Gn,m is 2-colorable by Lemma 6.1
5 3, 4 Gn,m is 2-colorable by Lemma 6.1
5 5 G5,5 ∈ OBS2

6 3, 4 Gn,m is 2-colorable by Lemma 6.1
6 5, 6 Gn,m is not 2-minimal since G5,5 not 2-colorable
7 3 G7,3 ∈ OBS2

n ≥ 7 4, . . . , n Gn,m is not 2-minimal since G7,3 not 2-colorable

The following chart indicates exactly which grids are 2-colorable. The entry for (n, m) is
C if Gn,m is 2-colorable, and N if Gn,m is not 2-colorable.
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2 3 4 5 6 7 8
2 C C C C C C C
3 C C C C C N N
4 C C C C C N N
5 C C C N N N N
6 C C C N N N N
7 C N N N N N N
8 C N N N N N N

7 Which Grids Can be Properly 3-Colored?

Lemma 7.1

1. G19,4 and G4,19 are not 3-colorable.

2. G16,5 and G5,16 are not 3-colorable.

3. G13,7 and G7,13 are not 3-colorable.

4. G12,10 and G10,12 are not 3-colorable.

5. G11,11 is not 3-colorable.

6. G19,3 and G3,19 are 3-colorable (this is trivial).

7. G18,4 and G4,18 are 3-colorable.

8. G15,6 and G6,15 are 3-colorable.

9. G12,9 and G9,12 are 3-colorable.

Proof: We just consider the grids Gn,m were n ≥ m.
1, 2, 3, 4, 5)

Table 2, along with Corollaries 2.4 and 2.8, shows why G19,4, G16,5, G13,7, G12,10, and
G11,11 are not 3-colorable.

m n zn,m dnm
c
e r

(
m
2

)
4 19 26 7 6 apply Corollary 2.8
5 16 27 11 10 apply Corollary 2.8
7 13 31 31 apply Corollary 2.4
10 12 40 40 apply Corollary 2.4
11 11 41 41 apply Corollary 2.4

Table 2: Uncolorability values for c = 3
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6) G19,3 is clearly 3-colorable.

7) G18,4 is 3-colorable by Theorem 4.6 with c = 3.

8) G15,6 is 3-colorable by Corollary 4.10 with c = 3.

9) G12,9 is 3-colorable by Corollary 4.16 with p = 3.

Lemma 7.2 G10,10 is 3-colorable.

Proof: This is the 3-coloring:

R R R R B B G G B G
R B B G R R R G G B
G R B G R B B R R G
G B R B B R G R G R
R B G G G B G B R R
G R B B G G R B B R
B G R B G B R G R B
B B G R R G B G B R
G G G R B R B B R B
B G B R B G R R G G

Note 7.3 The coloring in Lemma 7.2 we found by first finding a size 34 Rectangle Free
Subset of G10,10 and then using that for one of the colors and doing trial and error (with
a short computer program). It is an open problem to find a general theorem that has a
corollary that G10,10 is 3-colorable.

Lemma 7.4 If A ⊆ G11,10 and A is rectangle-free then |A| ≤ 36 =
⌈

11·10
3

⌉
− 1. Hence G11,10

is not 3-colorable.

Proof:
We divide the proof into cases. Every case will either conclude that |A| ≤ 36 or A cannot

exist.
For 1 ≤ j ≤ 10 let xj be the number of elements of A in column j. We assume

x1 ≥ · · · ≥ x10.
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1. 5 ≤ x1 ≤ 11.

By Lemma 3.7 with x = 5, n = 11, m = 10 we have

|A| ≤ x+m−1+maxrf(n−x, m−1) ≤ 5+10−1+maxrf(11−5, 10−1) ≤ 14+maxrf(6, 9).

By Lemma 12.1 we have maxrf(6, 9) = 21. Hence

|A| ≤ 14 + 21 = 35 ≤ 36.

2. There exists k, 1 ≤ k ≤ 6, such that x1 = · · · = xk = 4 and xk+1 ≤ 3. Then

|A| =
10∑

j=1

xj = (
k∑

j=1

xj) + (
10∑

j=k+1

xj) ≤ 4k + 3(10− k) = 30 + k

Since k ≤ 6 this quantity is ≤ 30 + 6 = 36. Hence |A| ≤ 36.

3. x1 = · · · = x7 = 4 and, for all, 1 ≤ j1 < j2 < j3 ≤ 7,

|Cj1 ∩ Cj2 ∩ Cj3| = 0.

Let G′ be the grid restricted to the first 7 columns. Let B be A restricted to G′. Since
every column of G′ has 4 elements of B, |B| = 7 × 4 = 28. Since every row of G′ has
≤ 2 elements of B, |B| ≤ 2× 11 = 22. Therefore A does not exist.

4. x1 = · · · = x7 = 4 and there exists 1 ≤ j1 < j2 < j3 ≤ 7 such that

|Cj1 ∩ Cj2 ∩ Cj3| = 1,

but for all 1 ≤ j1 < j2 < j3 < j4 ≤ 7

|Cj1 ∩ Cj2 ∩ Cj3 ∩ Cj4| = 0.

By renumbering we can assume that

|C1 ∩ C2 ∩ C3| = 1

and that the intersection is in row 11. Let G′ be the grid restricted to the first 7
columns. Let B be A restricted to G′. The following picture portrays what is in the
first 3 columns of G′.
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1 2 3 4 5 6 7
1 R
2 R
3 R
4 R
5 R
6 R
7 R
8 R
9 R
10
11 R R R

Since there are no 1 ≤ j1 < j2 < j3 < j4 ≤ 7 with

|Cj1 ∩ Cj2 ∩ Cj3 ∩ Cj4| = 1,

there will be no other elements of A in row 11 of G′. Let N ′ be the number of 4 ≤ j ≤ 10
with xj = 4 in G′. Note that N ′ = 4.

Let G′′ be G′ with row 11 removed. (We do not include a picture— just remove the
last row from the picture above.)

For 1 ≤ j ≤ 7 let yj be the number of elements in the jth column of G′′. Let N ′′ be
the number of 4 ≤ j ≤ 7 with yj = 4. Since G′ cannot use the 11th row in columns
4, 5, 6, 7, N ′ = N ′′.

The first three columns are disjoint. By Theorem 3.11.3 with k = 3, y1 = y2 = y3 = 3
(remember that these are the columns G′′) p = 1, q = 1, n = 10, m = 7, we have

N ′ = N ′′ ≤ y3 = 3.

Since N ′ = 4 this is a contradiction. Hence A cannot exist.

5. x1 = · · · = x7 = 4 and there exists 1 ≤ j1 < j2 < j3 < j4 ≤ 7 such that

|Cj1 ∩ Cj2 ∩ Cj3 ∩ Cj4| = 1.

By renumbering we can assume that

|C1 ∩ C2 ∩ C3 ∩ C4| = 1.

By Lemma 3.5

16 = x1 + x2 + x3 + x4 ≤ 11 +

(
4

2

)
−

(
4

3

)
+

(
4

4

)
= 11 + 6− 4 + 1 = 14.

Hence A does not exist.
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Theorem 7.5

OBS3 = {G19,4, G16,5, G13,7, G11,10, G10,11, G7,13, G5,16, G4,19}.

Proof:
For each Gn,m listed above (1) by Lemma 7.1 or 7.4 Gn,m is not 3-colorable, (2) by

Lemma 7.1 or 7.2 both Gn−1,m and Gn,m−1 are 3-colorable. Hence all of the grids listed are
in OBS3. We need to show that no other grids are in OBS3. This is a straightforward use of
Lemmas 7.1, 7.2, and 7.4. The proof is similar to how Theorem 6.2 was proven. We leave
the details to the reader.

The following chart indicates exactly which grids are 3-colorable. The entry for (n, m) is
C if Gn,m is 3-colorable, and N if Gn,m is not 3-colorable.

03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
3 C C C C C C C C C C C C C C C C C C
4 C C C C C C C C C C C C C C C C N N
5 C C C C C C C C C C C C C N N N N N
6 C C C C C C C C C C C C C N N N N N
7 C C C C C C C C C C N N N N N N N N
8 C C C C C C C C C C N N N N N N N N
9 C C C C C C C C C C N N N N N N N N
10 C C C C C C C C N N N N N N N N N N
11 C C C C C C C N N N N N N N N N N N
12 C C C C C C C N N N N N N N N N N N
13 C C C C N N N N N N N N N N N N N N
14 C C C C N N N N N N N N N N N N N N
15 C C C C N N N N N N N N N N N N N N
16 C C N N N N N N N N N N N N N N N N
17 C C N N N N N N N N N N N N N N N N
18 C C N N N N N N N N N N N N N N N N
19 C N N N N N N N N N N N N N N N N N
20 C N N N N N N N N N N N N N N N N N

8 Which Grids Can be Properly 4 Colored?

In the first section we give absolute results about which grids are 4 colorable. In the second
section we give results that assume a conjecture.
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8.1 Absolute Results

Theorem 8.1

1. G41,5 and G5,41 are not 4-colorable.

2. G31,6 and G6,31 are not 4-colorable.

3. G29,7 and G7,29 are not 4-colorable.

4. G25,9 and G9,25 are not 4-colorable.

5. G23,10 and G10,23 are not 4-colorable.

6. G22,11 and G11,22 are not 4-colorable.

7. G21,13 and G13,21 are not 4-colorable.

8. G20,17 and G17,20 are not 4-colorable.

9. G19,18 and G18,19 are not 4-colorable.

10. G41,4 and G4,41 are 4-colorable (this is trivial).

11. G40,5 and G5,40 are 4-colorable.

12. G30,6 and G6,30 are 4-colorable.

13. G28,8 and G8,28 are 4-colorable.

14. G20,16 and G16,20 are 4-colorable.

Proof:
We only consider grids Gn.m where n ≥ m.

1,2,3,4,5,6,7,8,9)
Table 3 along with Corollaries 2.4, 2.8 and 2.10 show why G41,5, G31,6, G29,7, G25,9, G23,10,

G22,11, G21,13, G20,17, and G19,18 are not 4-colorable.

10) G41,4 is clearly 4-colorable.

11) G40,5 is 4-colorable by Theorem 4.6 with c = 4.

12) G30,6 is 4-colorable by Theorem 4.7 with c = 4 and c′ = 2.
13) G28,8 is 4-colorable by Theorem 4.14 with p = 2, d = 3, and s = 1.

14) G20,16 is 4-colorable by Theorem 4.14 with p = 2, d = 2, and s = 2

Lemma 8.2 If A ⊆ G19,17 and A is rectangle-free then |A| ≤ 80 =
⌈

19·17
4

⌉
− 1. Hence G19,17

is not 4-colorable.
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m n zn,m dnm
c
e r

(
m
2

)
m(m−1)−2qr

q(q−1)

5 41 52 11 10 apply Corollary 2.8
6 31 47 16 15 apply Corollary 2.8
7 29 51 22 21 apply Corollary 2.8
9 25 57 57 apply Corollary 2.4
10 23 58 21 apply Corollary 2.10
11 22 61 21 apply Corollary 2.10
13 21 69 69 apply Corollary 2.4
17 20 85 85 apply Corollary 2.4
18 19 86 18 apply Corollary 2.10

Table 3: Uncolorability values for c = 4

Proof: We divide the proof into cases. Every case will either conclude that |A| ≤ 80 or
A cannot exist.

For 1 ≤ j ≤ 17 let xj be the number of elements of A in column j. We assume

x1 ≥ · · · ≥ x17.

1. 6 ≤ x1 ≤ 19.

By Lemma 3.7 with x = 6, n = 19, m = 17,

|A| ≤ x+m−1+maxrf(n−x, m−1) ≤ 6+17−1+maxrf(19−6, 17−1) = 22+maxrf(13, 16).

Assume, by way of contradiction, that |A| ≥ 81. Then maxrf(13, 16) ≥ 59 By
Lemma 2.7 with n = 16, m = 13, a = 59, q = 3, r = 11

16 ≤
⌊

13× 12− 2× 3× 11

3× 2

⌋
= 15.

This is a contradiction.

2. There exists k, 1 ≤ k ≤ 12, such that x1 = · · · = xk = 5 and xk+1 ≤ 4. Then

|A| =
17∑

j=1

xj = (
k∑

j=1

xj) + (
17∑

j=k+1

xj) ≤ 5k + 4(17− k) = 68 + k.

Since k ≤ 12 this quantity is ≤ 68 + 12 = 80. Hence |A| ≤ 80.
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3. x1 = x2 = · · · = x13 = 5. Look at the grid restricted to the first 13 columns. Let B
be A restricted to that grid. Note that B is a rectangle-free subset of G19,13 of size 65.
By Lemma 2.7 with n = 19, m = 13, a = 65, q = 3, and r = 8 we have

19 ≤
⌊

13× 12− 2× 8× 3

3× 2

⌋
= 18.

This is a contradiction, hence A cannot exist.

Lemma 8.3 G24,9 is 4-colorable.

Proof: We show that G9,6 is strongly (4, 1)-colorable and then apply Lemma 4.5 with
c = 4 and c′ = 1.

The following is a strong 4-coloring of G9,6.

1 2 3 4 5 6
1 Y R R Y R R
2 Y B B R Y B
3 Y G G B B Y
4 R Y G Y G R
5 B Y R B Y G
6 G Y B G R Y
7 G B Y Y B G
8 R G Y G Y R
9 B R Y R G Y

Theorem 8.4

1. The following grids are in OBS4:

G41,5, G31,6, G29,7, G25,9, G9,25, G7,29, G6,31, G5,41.

2. For each of the following grids it is not known if it is 4-colorable. These are the only
such. G17,17, G17,18, G18, 17, G18,18. G21,10, G22,10, G23,10, G22,10.

3. Exactly one of the following grids is in OBS4: G23,10, G22,10, G21,10.

4. Exactly one of the following grids is in OBS4: G22,11, G21,11, G21,10.

5. Exactly one of the following grids is in OBS4: G22,11, G22,10, G21,10.
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6. Exactly one of the following grids is in OBS4: G21,13, G21,12, G21,11, G21,10.

7. Exactly one of the following grids is in OBS4: G19,17, G18,17, G17,17.

8. If G19,17 ∈ OBS4 then it is possible that G18,18 ∈ OBS4.

Proof: This is easily proven from Lemmas 8.1,8.2, and 8.3. For a visual aid see the
following chart where we put a C in the (n, m) spot if Gn,m is Colorable, an N if it is not
colorable, and a U if it is not known.
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04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
8 C C C C C C C C C C C C C C C C C C
9 C C C C C C C C C C C C C C C C C C
10 C C C C C C C C C C C C C C C C C C
11 C C C C C C C C C C C C C C C C C C
12 C C C C C C C C C C C C C C C C C U
13 C C C C C C C C C C C C C C C C C N
14 C C C C C C C C C C C C C C C C C N
15 C C C C C C C C C C C C C C C C C N
16 C C C C C C C C C C C C C C C C C N
17 C C C C C C C C C C C C C U U N N N
18 C C C C C C C C C C C C C U U N N N
19 C C C C C C C C C C C C C N N N N N
20 C C C C C C C C C C C C C N N N N N
21 C C C C C C C C U N N N N N N N N N
22 C C C C C C U N N N N N N N N N N N
23 C C C C C C N N N N N N N N N N N N
24 C C C C C C N N N N N N N N N N N N
25 C C C C C N N N N N N N N N N N N N
26 C C C C C N N N N N N N N N N N N N
27 C C C C C N N N N N N N N N N N N N
28 C C C C C N N N N N N N N N N N N N
29 C C C N N N N N N N N N N N N N N N
30 C C C N N N N N N N N N N N N N N N
31 C C N N N N N N N N N N N N N N N N
32 C C N N N N N N N N N N N N N N N N
33 C C N N N N N N N N N N N N N N N N
34 C C N N N N N N N N N N N N N N N N
35 C C N N N N N N N N N N N N N N N N
36 C C N N N N N N N N N N N N N N N N
37 C C N N N N N N N N N N N N N N N N
38 C C N N N N N N N N N N N N N N N N
39 C C N N N N N N N N N N N N N N N N
40 C C N N N N N N N N N N N N N N N N
41 C N N N N N N N N N N N N N N N N N

8.2 Assuming the Rectangle-Free Conjecture

We have the following conjecture which, if true, yields more 4-colorings and allows us to
state exactly what OBS4 is.
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Rectangle-Free Conjecture (RFC): Let n, m, c ≥ 2. If there exists a rectangle-
free subset of Gn,m of size dnm/ce then Gn,m is c-colorable.

Lemma 8.5 There exists a rectangle-free subset of G22,10 of size 55 =
⌈

22·10
4

⌉
. Hence, if

RFC is true, there is a 4-coloring of G22,10 and G10,22.

Proof:
Here is the rectangle-free set.

01 02 03 04 05 06 07 08 09 10
1 R R
2 R R
3 R R
4 R R
5 R R
6 R R
7 R R R
8 R R R
9 R R R
10 R R R
11 R R R
12 R R R
13 R R R
14 R R R
15 R R R
16 R R
17 R R
18 R R
19 R R
20 R R
21 R R
22 R R R R

Lemma 8.6 There exists a rectangle-free subset of G21,12 of size 63 =
⌈

21·12
4

⌉
. Hence, if

RFC is true, there is a 4-coloring of G21,12 and G12,21.

Proof:
Two grids are equivalent if you permute the rows and columns of one to get the other

one. We show two grids that are not equivalent.
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01 02 03 04 05 06 07 08 09 10 11 12
1 R R
2 R R
3 R R

4 R R R
5 R R R
6 R R R

7 R R R
8 R R R
9 R R R

10 R R R
11 R R R
12 R R R

13 R R R R
14 R R R R
15 R R R R

16 R R R
17 R R R
18 R R R

19 R R R
20 R R R
21 R R R
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01 02 03 04 05 06 07 08 09 10 11 12
1 R R
2 R R
3 R R

4 R R R R
5 R R R R
6 R R R R

7 R R R
8 R R R
9 R R R

10 R R R
11 R R R
12 R R R

13 R R R
14 R R R
15 R R R

16 R R R
17 R R R
18 R R R

19 R R R
20 R R R
21 R R R

Lemma 8.7 There exists a rectangle-free subset of G18,18 of size 81 =
⌈

18·18
4

⌉
. Hence, if

RFC is true, there is a 4-coloring of G18,18.

Proof:
Here is the rectangle-free set.
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01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
1 R R R R R
2 R R R R R
3 R R R R R
4 R R R R R
5 R R R R
6 R R R R
7 R R R R R
8 R R R R R
9 R R R R R
10 R R R R
11 R R R R
12 R R R R R
13 R R R R R
14 R R R R
15 R R R R
16 R R R R
17 R R R R
18 R R R R

Note 8.8 If the 5th row and the 2nd column were removed then this would be a rectangle
free set of G17,17 of size 74. Note that

⌈
17×17

4

⌉
= 73. Hence if we had a weaker version of

RFC then we would have that G17,17 is 4-colorable.

Theorem 8.9 Assume RFC is true. Then

OBS4 = {G41,5, G31,6, G29,7, G25,9, G23,10, G22,11, G21,13, G19,17}
⋃

{G13,21, G11,22, G10,23, G9,25, G7,29, G6,31, G5,41}

Proof: For each Gn,m listed above (1) by Lemma 8.1 or 8.2 Gn,m is not 4-colorable, (2)
by Lemmas 8.1, 8.3, 8.5, 8.6, or 8.7, Gn−1,m and Gn,m−1 are 4-colorable. Hence all of the
grids listed are in OBS4. We need to show that no other grids are in OBS4. This is a
straightforward use of the lemmas listed above. The proof is similar to how Theorem 6.2
was proven. We leave the details to the reader.
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9 Application to Bipartite Ramsey Numbers

We state the Bipartite Ramsey Theorem. See [5] for history, details, and proof.

Def 9.1 Ka,b is the bipartite graph that has a vertices on the left, b vertices on the right,
an edge between every left and right vertex, and no other edges.

Theorem 9.2 For all a, c there exists n = BR(a, c) such that for all c-colorings of the edges
of Kn,n there will be a monochromatic Ka,a.

The following theorem is easily seen to be equivalent to this.

Theorem 9.3 For all a, c there exists n = BR(a, c) so that for all c-colorings of Gn,n there
will be a monochromatic a× a submatrix.

In this paper we are c-coloring Gn,m and looking for a 2 × 2 monochromatic submatrix.
We have the following theorems which, except where noted, seem to be new.

Theorem 9.4

1. BR(2, 2) = 5. (This was also shown in [10].)

2. BR(2, 3) = 11.

3. 17 ≤ BR(2, 4) ≤ 19.

4. BR(2, c) ≤ c2 + c.

5. If p is a prime and s ∈ N then BR(2, ps) ≥ p2s.

6. For almost all c, BR(2, c) ≥ c2 − 2c1.525 + c1.05.

Proof:
1) By Lemma 6.1 G5,5 is not 2-colorable and G4,4 is 2-colorable.

2) By Lemma 7.4 G11,11 is not 3-colorable. By Lemma 7.2 G10,10 is 2-colorable.

3) By Lemma 8.2 G19,19 is not 4-colorable. By Lemma 8.1 G16,16 is 4-colorable.

4) By Theorem 5.1 Gc2+c,c2+c is not c-colorable.

5) By Theorem 4.14 Gcr,cm is c-colorable where c = ps, r = ps, and m = p2s−1
ps−1

. Note that
m ≤ ps. Hence Gp2s,p2s is ps-colorable.

6)
Baker, Harman, and Pintz [1] (see [8] for a survey) showed that, for almost all c, there is

a prime between c and c− c0.525. Let p be that prime. By part 5 with s = 1, BR(2, p) ≥ p2.
Hence

BR(2, c) ≥ BR(2, p) ≥ p2 ≥ (c− c0.525)2 ≥ c2 − 2c1.525 + c1.05.

47



10 Open Questions

1. Find OBS4. We feel this is possible since we are so close. A clever computer program
may be needed.

2. Refine our tools so that our ugly proofs can be corollaries of our tools.

3. Find an algorithm that will, given c, find OBSc or |OBSc| quickly.

4. We know that 2
√

c(1− o(1)) ≤ |OBSc| ≤ 2c2. Bring these bounds closer together.

5. Is the Rectangle-Free Conjecture True? If so then this may help us find c-colorings. If
not then this may open up new techniques for proving that a grid is not c-colorable.

11 Acknowledgments

We would like to thank Michelle Burke, Brett Jefferson, and Krystal Knight who worked
with the second and third authors over the Summer of 2006 on this problem. As noted
earlier, Brett Jefferson has his own paper on this subject [9].
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12 Appendix: Exact values of maxrf(n, m) for 0 ≤ m ≤ 6,

m ≤ n

Lemma 12.1

0) For m ≥ 0, maxrf(0, m) = 0.

1) For m ≥ 1, maxrf(1, m) = m.

2) For m ≥ 2, maxrf(2, m) = m + 1.

3) For m ≥ 3, maxrf(3, m) = m + 3.

4)

maxrf(4, m) =

{
m + 5 if 4 ≤ m ≤ 5

m + 6 if m ≥ 6
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5)

maxrf(5, m) =


12 if m = 5

m + 8 if 6 ≤ m ≤ 7

m + 9 if 8 ≤ m ≤ 9

m + 10 if m ≥ 10

6)

maxrf(6, m) =



2m + 4 if 6 ≤ m ≤ 7

19 if m = 8

m + 12 if 9 ≤ m ≤ 10

m + 13 if 11 ≤ m ≤ 12

m + 14 if 13 ≤ m ≤ 14

m + 15 if m ≥ 15

Proof:
Lemma 2.7 will provide all of the upper bounds. The lower bounds are obtained by

actually exhibiting rectangle-free sets of the appropriate size. We do this for the case of
maxrf(6, m). Our technique applies to all of the other cases.

Case 1: maxrf(6, m) where 6 ≤ m ≤ 7 and m = 8: Fill the first four columns with 3
elements (all pairs overlapping). Each column of 3 blocks exactly

(
3
2

)
= 3 of the possible(

6
3

)
= 15 ordered pairs, hence 12 are blocked. Hence we can fill the next 15−12 = 3 columns

with two elements each, and the remaining column (if m = 8) with 1 element. The picture
below shows the result for maxrf(6, 8) = 19; however, if you just look at the first 6 (7)
columns you get the result for maxrf(6, 6) (maxrf(6, 7)).

R R R R
R R R
R R R

R R R
R R R

R R R

Case 2: maxrf(6, m) where 9 ≤ m ≤ 10: Fill the first three columns with 3 elements each
(all pairs overlapping). Each column of 3 blocks exactly

(
3
2

)
= 3 of the possible

(
6
3

)
= 15

ordered pairs, hence 9 are blocked. Hence we can fill the next 15− 9 = 6 columns with two
elements each and the remaining column (if m = 10) with 1 element. The picture below
shows the result for maxrf(6, 10) = 22; however, if you just look at the first 9 columns you
get the result maxrf(6, 9) = 21.
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R R R
R R R R
R R R

R R R
R R R R

R R R R R

Case 3: maxrf(6, m) where 11 ≤ m ≤ 12: Fill the first two columns with 3 elements each
(they overlap). Each column of 3 blocks exactly

(
3
2

)
= 3 of the possible

(
6
3

)
= 15 ordered

pairs, hence 6 are blocked. Hence we can fill the next 15− 6 = 9 columns with two elements
each and the remaining column (if m = 12) with 1 element. The picture below shows the
result for maxrf(6, 12) = 25; however, if you just look at the first 11 columns you get the
result maxrf(6, 11) = 24.

R R R R
R R R R
R R R

R R R R
R R R R

R R R R R R

Case 4: maxrf(6, m) where 13 ≤ m ≤ 14: Fill the first column with 3 elements. This
column of 3 blocks exactly

(
3
2

)
= 3 of the possible

(
6
3

)
= 15 ordered pairs. Hence we can fill

the next 15− 3 = 12 columns with two elements each and the remaining column (if m = 14)
with 1 element. We omit the picture.

Case 5: maxrf(6, m) where m ≥ 15: Fill the first
(
6
2

)
= 15 columns with two elements

each in a way so that each column has a distinct pair. Fill the remaining m − 15 columns
with one element each. The result is a rectangle-free set of size 30 + m− 15 = m + 15.
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