
Review of the Bron-Kerbosch algorithm and variations

Alessio Conte

School of Computing Science
Sir Alwyn Williams Building
University of Glasgow
G12 8QQ

Level 4 Project — May 05, 2013

Abstract

This report describe six different variations of the Bron-Kerbosh algorithm (which solves the problem of listing
all maximal cliques in a graph) and compares their performance.

Contents

1 Introduction 1

1.1 Implementation . 1

2 The algorithms 2

2.1 Classic Bron-Kerbosch . 2

2.2 Bron-Kerbosch with degeneracy ordering . 2

2.3 Tomita . 3

2.4 Tomita with degeneracy ordering . 3

2.5 Tomita on vertex cover . 3

3 Performance 4

3.1 Classic Bron-Kerbosch . 4

3.2 Bron-Kerbosch with degeneracy ordering . 4

3.3 Tomita . 4

3.4 Tomita with degeneracy ordering . 5

3.5 Tomita on vertex cover . 5

i

Chapter 1

Introduction

The Bron-Kerbosch algorithm is used to find all maximal cliques in an undirected graph.

1.1 Implementation

The algorithms were implemented in Java, which is not a fast language since it runs on a virtual machine. On top
of that memory consumption wasn’t optimized since at each step of the search new data structures are created
for each recursive call. This makes these implementation not optimal for usage in a real scenario, though good
enough for the purpose of this report, since the focus is on comparing the algorithms rather than speeding up the
process. The different implementations are all extension of the same class, which gives the basic structure of the
execution. This guarantees that differences in the performance are due to the algorithms themselves rather than
differences in the implementation.

1

Chapter 2

The algorithms

2.1 Classic Bron-Kerbosch

This is a simple implementation of the Bron-Kerbosch algorithm.

Algorithm 1: Classic Bron-Kerbosch algorithm

BronKerbosch(R,P,X)
1 if P and X are both empty then
2 report R as a maximal clique

3 for each vertex v in P do
4 BronKerbosch(R ∪ v, P ∩N(v), X ∩N(v))
5 P ← P \ v
6 X ← X ∪ v

On the first call R and X are set to ∅, and P contains all the vertexes the graph. R is the temporary result, P
the set of the possible candidates and X the excluded set. N(v) indicates the neighbors of the vertex v.

The algorithm can be textualized as follwing: Pick a vertex v from P to expand. Add v to R and remove its
non-neighbors from P and X . Then pick another vertex from the new P set and repeat the process. Continue
until P is empty. Once P is empty, if X is empty then report the content of R as a new maximal clique (if it’s not
then R contains a subset of an already found clique). Now backtrack to the last vertex picked and restore P ,R
and X as they were before the choice, remove the vertex from P and add it to X , then expand the next vertex. If
there are no more vertexes in P then backtrack to the superior level.

2.2 Bron-Kerbosch with degeneracy ordering

This algorithm is very similar to the classic Bron-Kerbosch. The difference is that on the outermost level of
recursion the vertexes are picked in a specific order, called degeneracyordering. Given d, degeneracy of the
graph a degeneracyordering of the graph is an ordering in which each vertex has d or less neighbors which
follow it in the ordering (it doesn’t matter how many neighbors precede it). A degeneracy ordering of a graph
can be computed in linear time, so computing it doesn’t impact the computational comlpexity of the classic
Bron-Kerbosh (which is exponential on the number of vertexes in the graph). David Eppstain demonstrated
that a modified version of the Bron-Kerbosch that visits the graph using a degeneracyordering can be bound

2

in complexity to O(d ∗ n ∗ 3d/3) (exponential on d), instead of the classic Bron-Kerbosch bound (O(3n/3),
exponential on n). This algorithm however, is not the one created by Eppstein et al.; as said before it is a classic
Bron-Kerbosch with a modified outermost level of recusrion. This was made to test how the ordering itself affects
the execution of the algorithm.

2.3 Tomita

Algorithm 2: Tomita et al.

Tomita(R,P,X)
1 if P and X are both empty then
2 report R as a maximal clique

3 choose the pivot vertex u in P ∪X as the vertex with the highest number of neighbors in P
4 for each vertex v in P \N(u) do
5 Tomita(R ∪ v, P ∩N(v), X ∩N(v))
6 P ← P \ v
7 X ← X ∪ v

Tomita is a modified version of the Bron-Kerbosch algorithm developed by Tomita et al. It uses a specific
pivoting policy to cut computational branches. The pivoting consists in the following: instead of iterating at each
expansion on the P set, chose a pivot. The results will have to contain either the pivot or one of its non-neighbors,
since if none of the non-neighbors of the pivot is included, then we can add the pivot itself to the result. Hence
we can avoid iterating on the neighbors of the pivot at this step (they will still be expanded in the inner levels of
recursion). The strategy proposed by Tomita et al. is to chose the pivot as the node in P ∪ X with the highest
number of neighbors in P .

2.4 Tomita with degeneracy ordering

Tomita’s version of the algorithm, with the outermost level of recursion ordered in a degeneracyordering. A
combination of Bron−Kerbosch with degeneracy ordering and Tomita.

2.5 Tomita on vertex cover

Tomita’s version of the algorithm, with the first iteration only performed on a subset of the P set. The subset is a
vertex cover of the graph, which means that for each edge in the graph, at least one of the vertices is in the cover.
It is demonstrated in the appendices that this algorithm returns the same set (not necessarily in the same order)
of cliques returned by the classic Bron-Kerbosch algorithm.

3

Chapter 3

Performance

The algorithms were tested on a set of randomly generated graphs, generated with two parameters: n (number of
vertexes) and p (chance of connection between nodes). Graphs of different dimension and denseness were gener-
ated to compare the performances in different situations. Due to the not optimized nature of the implementations
the algorithms were able to solve graphs with parameters up to n = 1000 and p = 30%. The search on graphs
with higher parameters didn’t terminate on neither of the implememtations, and was manually interrupted after
20 to 30 minutes. At the end of the chapter a table shows the results got from each algorithm on each graph of
the testing set.

3.1 Classic Bron-Kerbosch

The basic algorithm, as expected, didn’t perform as well as the extensions (except for Bron −Kerbosch with
degeneracy ordering) in terms of both execution time and nodes expanded.

3.2 Bron-Kerbosch with degeneracy ordering

This version of the algorithm didn’t gain any advantage over the basic one. It expanded exactly the same number
of nodes as ClassicBron −Kerbosch, and run in a slightly bigger time (due to the additional computation of
the degeneracy ordering).

3.3 Tomita

Tomita gave overall the best performance. It outperformed all the other algorithms on all of the graphs in terms
of computational time, and was the second-best for number of expanded nodes. Compared to ClassicBron −
Kerbosch, the nodes expanded were reduced by a factor varying from approx. 2 to approx. 2000. The time was
always smalles, sometimes very similar and sometimes by an approx. 2 factor. The only algorithm that expanded
less nodes than Tomita was Tomita with degeneracy ordering.

4

3.4 Tomita with degeneracy ordering

Though the use of a degeneracy ordering didn’t change anything when applied to ClassicBron − Kerbosch,
it did make a difference when combined with Tomita. This algorithm expanded the smallest amount of nodes
overall, though the number was always very close to the one made by Tomita (the reduction went up to a factor
of just 1.05). Though it expanded less nodes, the execution time was always slightly bigger compared to Tomita.

3.5 Tomita on vertex cover

As demonstrated in the appendices, this version of the algorithm were able to produce a complete result by
starting the first iteration on a sub-set of the vertexes of the graph (instead of the full graph). The purpose was to
expand a smaller amount of nodes. Surprisingly, though, the total amount was always slightly higher compared to
the simple Tomita (as well as the running time as well). If on one hand, the vertex cover was almost as big as the
graph (95% to 99% of the vertexes), when another algorithm was implemented to calculate a smaller cover (85%
to 98% of the vertexes), the number of nodes expanded increased even more. Hence this solution, while accurate,
didn’t prove to gain any advantage on neither sparse or dense graphs in the testing set. A performance test on
a minimal vertex cover was not made, but it would prove to be useless in terms of speedup, since computing a
minimal vertex cover is NP-complete and would add a heavy load on the computational time.

5

Alg 10-70-00 30-90-00 50-70-00 100-20-00 100-60-00 1000-20-00 1000-30-00
BK cliques: 10

Max size: 5
Nodes: 108
Cpu Time: 1

cliques: 266
Max size: 18
Nodes:
1640624
Cpu Time:
972

cliques:
4879
Max size: 11
Nodes:
215701
Cpu Time:
78

cliques: 879
Max size: 5
Nodes: 2484
Cpu Time: 1

cliques:
57064
Max size: 12
Nodes:
1419083
Cpu Time:
563

cliques:
1218685
Max size: 8
Nodes:
5105221
Cpu Time:
2128

cliques:
15299046
Max size: 9
Nodes:
103448254
Cpu Time:
47221

BK
Degen

cliques: 10
Max size: 5
Nodes: 108
Cpu Time: 2

cliques: 266
Max size: 18
Nodes:
1640624
Cpu Time:
964

cliques:
4879
Max size: 11
Nodes:
215701
Cpu Time:
86

cliques: 879
Max size: 5
Nodes: 2484
Cpu Time: 8

cliques:
57064
Max size: 12
Nodes:
1419083
Cpu Time:
580

cliques:
1218685
Max size: 8
Nodes:
5105221
Cpu Time:
2410

cliques:
15299046
Max size: 9
Nodes:
103448254
Cpu Time:
48435

Tomita cliques: 10
Max size: 5
Nodes: 20
Cpu Time: 1

cliques: 266
Max size: 18
Nodes: 731
Cpu Time:
13

cliques:
4879
Max size: 11
Nodes:
11549
Cpu Time:
57

cliques: 879
Max size: 5
Nodes: 1658
Cpu Time: 1

cliques:
57064
Max size: 12
Nodes:
141818
Cpu Time:
91

cliques:
1218685
Max size: 8
Nodes:
2841410
Cpu Time:
1930

cliques:
15299046
Max size: 9
Nodes:
40176790
Cpu Time:
26843

Tomita
Degen

cliques: 10
Max size: 5
Nodes: 20
Cpu Time: 1

cliques: 266
Max size: 18
Nodes: 699
Cpu Time:
15

cliques:
4879
Max size: 11
Nodes:
11773
Cpu Time:
56

cliques: 879
Max size: 5
Nodes: 1652
Cpu Time:
12

cliques:
57064
Max size: 12
Nodes:
141526
Cpu Time:
101

cliques:
1218685
Max size: 8
Nodes:
2815789
Cpu Time:
2054

cliques:
15299046
Max size: 9
Nodes:
39796407
Cpu Time:
26967

Tomita
Cover

cliques: 10
Max size: 5
Nodes: 26
Cpu Time: 1
Cov. size: 8

cliques: 266
Max size: 18
Nodes: 840
Cpu Time:
18
Cov. size:
29

cliques:
4879
Max size: 11
Nodes:
12321
Cpu Time:
36
Cov. size:
48

cliques: 879
Max size: 5
Nodes: 1718
Cpu Time: 3
Cov. size:
95

cliques:
57064
Max size: 12
Nodes:
145363
Cpu Time:
103
Cov. size:
98

cliques:
1218685
Max size: 8
Nodes:
2851815
Cpu Time:
2149
Cov. size:
995

cliques:
15299046
Max size: 9
Nodes:
40369606
Cpu Time:
29718
Cov. size:
996

6

