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Abstract 

Determining whether a propositional theory is satisfiable is a prototypical example of an NP- 
complete problem. Further, a large number of problems that occur in knowledge-representation, 
learning, planning? and other areas of AI are essentially satisfiability problems. This paper reports 
on the most extensive set of experiments to date on the location and nature of the crossover point 
in satisfiability problems. These experiments generally confirm previous results with two notable 
exceptions. First, we have found that neither of the functions previously proposed accurately mod- 
els the location of the crossover point. Second, we have found no evidence of any hard problems 
in the under-constrained region. In fact the hardest problems found in the under-constrained region 
were many times easier than the easiest unsatisfiable problems found in the neighborhood of the 
crossover point. We offer explanations for these apparent contradictions of previous results. 

Keywords: Search phase transition; Satisfiability; Crossover point in random 3-SAT; Experimental analysis of 
3-SAT 

1. Introduction 

A large number of problems that occur in knowledge-representation, learning, plan- 
ning, and other areas of AI are known to be NP-complete in their most general form. 
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Further, many commercially important problems in scheduling, configuration, and plan- 
ning also appear to be instances of NP-complete problems. The best-known algorithms 
for solving such problems are known to require exponential run time (in the size of the 
problem) in the worst case. 

However, a worst-case result tells us relatively little about the nature of a problem in 
practice. It might turn out that almost every practical problem requires exponential run 
time, or that virtually none do. Similarly, the exponential factor might be so large that 
a three-variable problem is unsolvable, or so small that the problems do not become 
intractable in practice until the problem size is larger than we can even write down. 
Alternatively, there might be a problem parameter such that the hardest problems tend 
to be those for which the parameter is in a particular range. 

Recent experimental evidence indicates that satisfiability problems fall into this last 
class. Problems with a relatively small number of constraints appear to be easy because 
they generally have many solutions. Problems with a very large number of constraints 
appear to be easy because an intelligent algorithm will generally be able to quickly close 
off most or all of the branches in the search tree. However, the problems in between- 
those with few solutions but lots of partial solutions-seem to be quite hard. Interestingly, 
for randomly generated 3-SAT problems, these hard problems seem to occur very near 
the point at which half of the randomly generated problems are satisfiable [ 161. We 
refer to this point as the crossover point. Fig. 1 shows the crossover effect graphically. 
One line shows the percent satisfiable, and the other shows problem difficulty. Notice 
that problem difficulty peaks in the region where percent satisfiable suddenly falls from 
almost one-hundred percent to almost zero. 

The crossover point divides the space of satisfiability problems into three regions: 
the under-constrained region below the crossover point, the critically-constrained region 
in the neighborhood of the crossover point, and the over-constrained region above the 
crossover point. Each of these regions is interesting-though for different reasons. Gen- 
erally the commercially important satisfiability and constraint-satisfaction problems are 
optimization problems: one wants to minimize costs subject to a given set of constraints. 
If the cost threshold is set too high then an under-constrained problem results. If the 
cost threshold is set just right then a critically-constrained problem results. Similarly 
for over-constrained problems. If we have an optimization problem to solve, and we do 
not have sufficiently powerful algorithms to solve it in the critically-constrained region 
(which is usually the case for realistically-complex problems), then our only choice is to 
loosen the cost threshold and move the problem into the under-constrained region. Thus 
the under-constrained region is important because in practice this is where optimiza- 
tion problems are usually “solved”. Clearly the critically-constrained region is important 
because this is where we must work if we are to solve optimization problems exactly. 
Finally, the over-constrained region is important because showing over-constrained prob- 
lems unsolvable corresponds to showing optimality of solutions to optimization problems 
(showing unsatisfiability is also the essential task of a theorem prover though there is 
no a priori reason to expect that theorem proving problems fall into any particular 
regions). 

In this paper we investigate the location of the crossover point and the behavior of 
a modern systematic satisfiability algorithm in each of the three regions. All of our 
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Fig. I. Percent satisfiable and problem difficulty for 200~variable random 3-SAT as a function of the 
clause/variable ratio. Problem difficulty is nonnaked so that the hardest problem is given a difficulty of 
100. 

experiments are done on randomly generated 3-SAT problems. This choice perhaps 
deserves some explanation. The first question to be asked is why work with random 
problems. The immediate answer is that random problems are readily available in any 
given size and virtually inexhaustible numbers. For example, the experiments reported 
here required several million problems and it is hard to imagine collecting that many 
problems any other way. But beyond this, there is an argument that randomly generated 
problems represent a “core” of hard satisfiability problems. Certainly real problems 
have structure, regularity, symmetries, etc., and algorithms will have to make use of 
this structure to simplify the problems. However, once all the structure is “squeezed 
out”, the remainder will be a problem that requires search, and if all the structure is 
used up then the remainder will presumably be a random problem. Clearly it is unlikely 
that techniques will be developed to squeeze out all structure, but the fact remains that 
random problems seem to get at some basic domain-independent aspect of the hardness 
of NE-complete problems. 

Even given that we are interested in randomly-generated problems, there are still var- 
ious choices to be made. First, there are many possible distributions: e.g., the “constant 
probability model”, ‘Yandom k-SAT’, etc. We focus on random k-SAT because of its 
simplicity and because past experimental results have indicated that the k-SAT model 
generates problems whose difficulty in the critically-constrained region grows exponen- 
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tially for all known algorithms. For other distributions, such as that given by the constant 
probability model, problem difficulty seems to grow much more slowly [ 151. Finally, 
we focus on k = 3 primarily to limit the scope of the paper to a manageable size. k = 3 
is in a sense the simplest interesting case since (1) if all clauses are of length two 
then polynomial algorithms are known, and (2) a theory with clauses longer than three 
can be converted to an equivalent theory with clauses of length three with only a linear 
increase in the length of the theory. 

The rest of this paper is organized as follows. First we present the experimental 
results broken down into first the results on the location of the crossover point, and 
then results on the difficulty of problems below, at, and above the crossover point. We 
then give a detailed description of the satisfiability algorithm used to generate these 
results. 

2. Experimental results 

In this section we present a series of experimental results on the location of the 
crossover point and the difficulty of solving satisfiability problems in the under-constrain- 
ed, critically-constrained, and over-constrained regions. We begin with formal definitions 
of satisfiability and random 3-SAT. 

The propositional satisfiability problem is the following [ 91: 
l Instance: A set of clauses3 C on a finite set U of variables. 
l Question: Is there a truth assignment 4 for U that satisfies all the clauses in C? 

Clearly one can determine whether such an assignment exists by trying all possible 
assignments. Unfortunately, if the set U is of size n then there are 2” such assignments. 
All known approaches to determining propositional satisfiability are computationally 
equivalent (asymptotically in the worst case) to such a complete search-they differ 
only in that they may take time 2 n/k for some constant k (and in their expected-case 
time complexity on different classes of problems). 

In all our experiments we generate random 3-SAT theories using the method of 
Mitchell et al. [ 16]-we generate each clause by picking three different variables at 
random and negating each with probability 0.5. We do not check whether clauses are 
repeated in a theory. 

2.1. The location of the cross-over point 

The location of the crossover point is of both theoretical and practical importance. It 
is theoretically interesting since the number of constraints required to achieve crossover 
is an intrinsic property of the language used to express the constraints (and in particular 
is independent of the algorithm used to find solutions). Further, in the case of 3-SAT 
the number of constraints required for crossover appears to be almost (but not exactly) 

3 A clause is a disjunction of variables or negated variables. 
4 A truth assignment is a mapping from U to {true,false}. 
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a linear function of the number of variables in the problem. This leads one to expect 
there to be some theoretical method for explaining the location of the crossover point 
(though no satisfactory method has yet been proposed). The crossover point is of 
practical interest for several reasons. First, since empirically the hardest problems seem 
to be found near the crossover point, it makes sense to test candidate algorithms on 
these hard problems. Similarly, if one encounters in practice a problem that is near the 
crossover point, one can expect it to be difficult and thus avoid it (or plan to devote extra 
computational resources to it). Further, several algorithms have been proposed [ 14,171 
that can often find solutions to constraint-satisfaction problems, but which cannot show 
a problem unsolvable (they simply give up after a given number of tries). Accurate 
knowledge about the location of the crossover point would provide a method for testing 
such algorithms on larger problems than those on which complete methods (i.e., methods 
which always show problems solvable or unsolvable) can work. Finally, as problem size 
increases the transition from satisfiable to unsatisfiable becomes increasingly sharp. This 
means that if one knows the location of the crossover point, then for random problems 
(i.e., problems with no structure) the number of clauses can be used as a predictor of 
satisfiability. 

We should point out that it is not reasonable to expect to take satisfiability problems 
drawn from other sources (e.g., satisfiability encodings of scheduling problems) and 
expect to derive any meaningful information by comparing the clause/variable ratio 
to the results given in this paper. The crossover point is algorithm-independent but it 
is heavily distribution-dependent-problems drawn from other distributions are likely 
to have a crossover point, but the clause/variable ratio at that point is likely to bear 
little or no relationship to the clause/variable ratio at the crossover point for random 
3-SAT. 

In the experiments presented in this section we first look generally at how the percent 
satisfiable changes as a function of the clause/variable ratio. As we shall see, near the 
crossover point the percent satisfiable curve is nearly linear. The slope of this line is 
fairly gentle for small numbers of variables (e.g., 20) but gets progressively steeper 
as the number of variables grows (see Fig. 2). Some past work [ 131 has suggested 
that this percent satisfiable curve “rotates” around the point at which the clause/variable 
ratio is 4.2. In other words, if the clause/variable ratio is fixed at 4.2 and the number of 
variables is increased, then the percent satisfiable will remain approximately constant. If 
this were true it would suggest that in the limit the fifty-percent point would approach 
4.2. We show, however, that the percent satisfiable at 4.2 clauses/variable is not fixed 
but actually appears roughly parabolic. As yet we know of no explanation for this 
phenomenon. We then focus on deriving the best estimate we can for the location of the 
fifty-percent point. We present data from 20 to 300 variables. It turns out that neither 
the simple linear function presented in our past work [4], nor the finite-scaling model 
presented by Selman and Kirkpatrick [ 121, fit particularly well. We show that a variant 
of the Kirkpatrick and Selman equation, 

c/v = 4.258 + 58.26~-~/~, 

fits the data fairly well. 
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Fig. 2. Percent satisfiable as a function of the number of variables and the clause/variable ratio. 
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Fig. 3. Percent satisfiable for each number of variables as a function of the clause./vaxiable ratio. 

2.1.1. Experiment 1: the shape of the crossover region 

The aim of this experiment is to provide a view of the three-dimensional surface 
defined by the percent satisfiable as a function of the number of variables and the 

clause/variable ratio. 

Experimental method 

We varied the number of variables from 20 to 260 incrementing by 20. We also varied 
the clause/variable ratio from 3.5 to 5.5 incrementing by 0.1. At each point we ran lo3 
experiments and recorded percent satisfiable and difficulty (measured by the number of 
leaves in the search tree). 
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Fig. 4. Percent satisfiable for each clause/variable ratio as a function of the number of variables. 

Results 

The results are shown graphically in Fig. 2. Since it’s hard to get a feel for three- 
dimensional curves in two dimensions, we also show two projections in Figs. 3 and 
4. The first projection shows percent satisfiable as a function of the clause/variable 
ratio. Each line in this figure represents a different number of variables. In the second 
projection we show the percent satisfiable as a function of the number of variables. Each 
line now corresponds to a different clause/variable ratio. 

Discussion 
In Figs. 2 and 3 one can see how the slope of the percent satisfiable curve becomes 

steeper as the number of variables is increased. Notice also that the “beginning” of the 
crossover region stays at around 4 clauses per variable (moving only slightly toward 
higher clause/variable ratios as the number of variables is increased). The other end 
of the crossover region moves more dramatically toward lower clause/variable ratios 
as the number of variables grows. This effect can also be seen in Fig. 4. The lower 
lines curve upwards as the number of variables is decreased. These lines represent 
high clause/variable ratios at which the percent satisfiable increases dramatically for 
small numbers of variables. The upper lines curve down-at these small clause/variable 
ratios the percent satisfiable decreases for small numbers of variables. The nearly sta- 
tionary line is 4.2 clauses/variable. We examine the line more closely in the next 
experiment. 
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Fig. 5. Percent satisfiable as a function of the number of variables at 4.2 clauses/variable. 

2.1.2. Experiment 2: the behavior of percent satisjiable at 4.2 clauses/variable 
The goal of this experiment is to determine the behavior of the percent satisfiable 

curve when the clause/variable ratio is held fixed at 4.2 clauses/variable. 

Experimental method 
We varied the number of variables from 20 to 260, and fixed the number of clauses 

at 4.2 times the number of variables. At each point we ran lo4 experiments (above 200 
variables we ran lo3 experiments at each point). 

Results 
The results are shown in Fig. 5. 

Discussion 
Past work [ 131 has suggested that the percent satisfiable curve “rotates” around 

the point at which the clause/variable ratio is 4.2. In other words, for any number 
of variables u, if the number of clauses is 4.20 then the percent satisfiable will be 
approximately constant. Larrabee and Tsuji’s [ 131 experiments only covered the region 
from 50 to 170 variables and involved 500 experiments at each point. They observed 
that the percent satisfiable stayed within three percent of 68 percent. 
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Fig. 6. Percent satisfiable for unique clause model as a function of the number of variables at 4.2 
clauses/variable. 

J.M. Crawford, L.D. Auton/Artifcial Intelligence 81 (19%) 31-57 39 

The data in Fig. 5 shows that for less than 50 or more than 200 variables, the percent 
satisfiable is not constant. 

In the random 3-SAT model used for these experiments, we make sure that each 
clause contains three unique variables, but do not check whether clauses are repeated 
in a theory. One might argue that the percent satisfiable increases for 20 variables 
because many duplicate clauses are being generated. To test this hypothesis we re-ran 
this experiment making sure to never generate duplicate clauses. The results are show 
in Fig. 6. The percent satisfiable for 20 and 40 variables is slightly lower than in Fig. 
5, but the curve still has the same basic shape. 

To understand this shape notice first that for three-variable problems one can show 
analytically that the percent satisfiable at 4.2 clauses/variable is almost 100 percent. 
This is because the fifty-percent point is at around 19 clauses. As the number of 
variables is increased, this fifty-percent point moves toward smaller clause/variable 
ratios. At 20 variables the fifty-percent point occurs at approximately 91 clauses or 4.55 
clauses/variable. At 200 variables the fifty-percent point is at about 854 clauses or 4.27 
clauses/variable. Thus the fifty-percent point is moving toward the 4.2 clause/variable 
point. This tends to decrease the percent satisfiable at 4.2 clauses/variable. This effect 
seems to dominate up to about 100 variables. 

Above 100 variables another effect seems to take over. Recall that the percent satis- 
fiable curve gets steeper as the number of variables increases. This causes the percent 
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Fig. 7. Percent satisfiable as a function of the clause/variable ratio. 

satisfiable at 4.2 clauses/variable to increase. We conjecture that it approaches 100 
percent in the limit as the number of variables approaches infinity.’ 

2.1.3. Experiment 3: the location of the crossover point 
The aim of this experiment is to characterize as precisely as possible the exact location 

of the crossover point and to determine how it varies with the size of the problem. 

Experimental method 
We varied the number of variables from 20 to 300, incrementing by 20. In each 

case we collected data near where we expected to find the crossover point. For each 
data point we ran TABLEAU on lo4 randomly generated 3-SAT problems ( lo3 for 280 
variables and above). The raw data points are given in the appendix. 

Results 
The results for 20, 100, 180, and 260 variables are shown in Fig. 7. Each set of points 

shows the percentage of theories that are satisfiable as a function of the clause/variable 
ratio. Notice that the relationship between the percent satisfiable and the clause/variable 
ratio is nearly linear in the neighborhood of the crossover point. To derive a good 
estimate of the fifty-percent point for each number of variables, we fit a line to the data 

s This explanation of Fig. 5 is due to David Mitchell. 
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Fig. 8. Experimental results for the number of clauses required for crossover plotted with the linear model 
c = 4.24~ + 5.55. 

for each number of variables, and then interpolated to get the number of clauses at the 
fifty-percent point. The resulting points are shown in Fig. 8. 

Discussion 
The data in Fig. 8 appears quite linear. A least-square fit to the data yields: 

c = 4.24~ + 5.55. (1) 

To the eye this appears to be quite a good fit, and in fact the residuals are only one 
clause or so. However, a close look at the residuals, shown in Fig. 9, reveals a definite 
pattern. This suggests that there are nonlinearities in the data not captured by the fit, 
and further suggests that projecting this fit to larger numbers of variables is not likely 
to be successful. 

A different equation is suggested by Kirkpatrick and Selman [ 121. They use finite-size 
scaling methods from statistical physics to derive an equation of the form: 

1-u C=cYOU+cqo . (2) 

They estimate LXO = 4.17, al = 3.1, and u = 2/3. The residuals of this fit against our 
experimental data is shown in Fig. 10. 
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Fig. 9. Residuals for the fit given by c = 4.24u+ 5.55. 

If we stay with an equation of this form, a better fit to the data appears to be given 
by czo = 4.258, czI = 58.26, u = 5/3. The residuals for this fit are shown in Fig. 11. 
Judging by these residuals, the equation 

c = 4.258~ + 58.26~-~‘~ (3) 

is our best current estimator for projecting values for the crossover point6 
A detailed discussion of the relationship between this data and the theory behind 

resealing is beyond the scope of this paper but we should note that these parameters 
(~yo = 4.258 and u = 5/3) do not work well at all as resealing parameters. However, 
CQ = 4.258 and u = 2/3 do work well as resealing parameters and if we then write 
Kirkpatrick and Selman’s parameter ysa as a function of l/o then we recover an equation 
of the form of 3 for the location of the crossover point. 

‘We give four significant figures in this equation only because using three significant figures leads to 
significantly worse behavior on the part of the residuals. Deriving meaningful bounds for these constants is 
a nontrivial exercise because this fit is to the crossover point data which is itself the result of interpolating 
from a least-square fit to experimental data that has a certain uncertainty to it. Further, the residuals in Fig. 11 
reveal that there is some additional correction term needed for small values of u that is also certainly skewing 
these constant values by some amount. 
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fig. 10. Residuals for the fit given by c = 4.17~ + ~.Iv’/~. 

2.2. Problem dificulty at, below, and above the crossover point 

2.2.1. Experiment 4: problem dificulty in the under-constrained region 
Generally speaking problems in the under-constrained region are quite easy. However, 

some researchers have found rare problems that seem to be harder than any problems 
in the crossover region [ 10, 1 1 ] . The goal of this experiment was to look for such 
extremely hard problems. 

Experimental method 
Following Gent and Walsh [lo], we fixed the number of variables but varied the 

clause/variable ratio from 1.8 to 3.0. In our experiments we took the number of variables 
to be 200 (Gent and Walsh used 50-variable problems). Also following Gent and Walsh, 
we took lo6 problems at each ratio. 

Results 
In Fig. 12 we show the mean, median, and maximum number of branch points as a 

function of the clause/variable ratio. 7 For comparison, in the set of 100,000 problems 

’ To avoid any possible ambiguity we measure the size of the search tree by counting branch points. A 
branch point is a point at which TABLEAU is recursively called twice, setting some variable to true and then 
false. We count the number of these pairs of recursive calls since they are in a Sense the root of the exponential 
complexity of the algorithm. 
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Fig. 11. Residuals for the fit given by c = 4.258~ + 58.26~-*/~. 

in the crossover region used for Experiment 3, the mean and median number of branch 
points is 1290, and the maximum number of branch points is 7781. The minimum 
number of branch points in the crossover region is 9 but this is for a satisfiable problem 
so it presumably corresponds to a case where TABLEAU happened to go almost directly 
to a model. The minimum number of branch points for an unsatisfiable problem is 305. 

Discussion 
These results show that for TABLEAU the hardest problems in the under-constrained 

region are many times easier than the easiest unsatisfiable problems in the crossover 
region. This appears to contradict the results of Gent and Walsh who show that for the 
Davis-Putnam algorithm there are rare problems in the under-constrained region that 
are much harder than any problems in the crossover region. 

The primary difference between the Davis-Putnam8 algorithm and TABLEAU is 
that TABLEAU uses dynamic variable ordering. Thus the most likely explanation of 
the difference between these results and those of Gent and Walsh is that TABLEAU’S 
variable selection heuristics are working (or equivalently that the scarce, extremely large, 

* The algorithm Gent and Walsh refer to as “Davis-Putnam” always picks branch variables according to 
a priority scheme that is fixed, essentially randomly, before the search begins. TABLEAU uses a variety of 
heuristics (described in Section 3.3 below) to choose branch variables. 
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Fig. 12. Hardness in the under-constrained region: number of branch points as a function of the clause/variable 
ratio. 

Davis-Putnam search trees are the result of bad choices for branch variables). 9 
It is certainly possible that if we either (1) increased the number of instances, or 

(2) increased the number of variables, we would find under-constrained problems that 
are hard for TABLEAU . While speculation is always dangerous, our expectation is that 
increasing the number of instances would be unlikely to lead to hard under-constrained 
instances; the current set of 1,fKKl,OOO instances is just too tightly clustered. However, as 
the number of variables is increased, the amount of information available to TABLEAU’S 

heuristics at the top of the search tree decreases. Thus, as the number of variables in 
increased it is possible that hard under-constrained problems will emerge. 

2.2.2. Experiment 5: problem dificulty in the crossover region 
Since the crossover region appears to hold the hardest test cases (at least for TABLEAU 

on problems of this size) it makes sense to compare algorithms on instances drawn from 

‘) Gent and Walsh also show that branch variable selection heuristics lie those used in TABLEAU fail to 
prevent the occurrence of hard problems in the under-constmined region for the constant probability model. 
These results are less relevant to our msuhs because the constant probability model leads to a much different 
distribution of instances (and in particular in the constant probability model the mean of the difficulty of the 
problems in the crossover region does not seem to be that much higher than the mean of the difficulty of the 
problems in the under-constrained region [ 151). 
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Table I 
The number of branch points and the nm time of TABLEAU in the neighbofiood of the crossover point. Run 
times are in seconds and are for a Spare 10.51 

V c Branch points CPU time (sec.) 

Mean Variance Maximum Mean Variance Maximum 

2s 112 2.50 1.11 I 0.00 0.00 0.0 

50 218 6.49 2.32 17 0.00 0.00 0.0 

15 324 15.44 6.12 44 0.00 0.01 0.1 

100 430 35.77 18.99 94 0.05 0.05 0.1 

12s 536 89.28 52.41 311 0.14 0.09 0.5 

150 642 225.04 133.85 739 0.4 I 0.24 I .4 

175 748 538.19 341.04 1696 1.03 0.65 3.9 

200 854 1268.02 848.67 4301 2.78 1.86 9.3 

225 960 3080.98 2163.82 I I141 7.62 5.47 37.1 

250 1066 7477.17 5528.35 30902 20.33 15.16 80.4 

275 1172 19345.80 14048.62 78904 57.36 42.46 231.6 

300 1278 44646.20 34972.27 187257 141.48 111.50 587.0 

this region. In this experiment we compute the rate of growth of the number of branch 
points and the run time of TABLEAU in the crossover region. 

Experimental method 
Following Freeman 181, we varied the number of variables from 25 to 350 by 25, 

and choose the number of clauses to give approximately fifty-percent satisfiability. We 
ran on 1000 instances at each point. 

Results 
The results are shown in Table 1. The mean number of branch points is plotted in 

Fig. 13. Run times here are for a Spare IO.51 and are “user” times as reported by 
“/usr/bin/time”. 

Discussion 
As Fig. 13 shows, the growth rate of the number of branch points is exponential in 

the number of variables. If we fit this data to an equation of the form branches = 2aufb 
we get: 

branches = 2@9.5+0.08 

For comparison, for the algorithm described in our previous work [4], the number of 
branches grows as 20/17. Freeman [83 gets branches = 2U~‘8~5-o~02. 

The run times for TABLEAU are quite competitive. In fact, for large problems near the 
crossover point, TABLEAU is the fastest algorithm of which we are aware (TABLEAU 
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Fig. 13. Hardness in the crossover region: Number of branch points as a function of the number of variables. 
Number of branch points shown on log scale. 

is only slightly faster than Freeman’s POSIT, but TABLEAU ‘s run times appear to be 
growing more slowly). 

2.2.3. Experiment 6: problem dificulty in the over-constrained region 

Experimental method 

For this experiment we fixed the clause/variable ratio at 10 and varied the number 
of variables from 100 to 1000, incrementing by 100. At each point we ran on 1000 
instances. 

Results 

The results are shown in Table 2. The mean number of branch points is plotted in 
Fig. 14. Run times here are for a Spare 10.51. 

Discussion 

In this region the number of branch points still seems to grow exponentially with the 
number of variables but the rate of growth is considerably slower. If we fit this data to 
an equation of the form branches = 2avib we get: 

bran&es = 2x/68.2f0.09. 
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Table 2 
The number of branch points and the run time of TABLEAU in the over-constrained region. Run times are in 
seconds and are for a Spare 10.51 

V c Branch points CPU time (sec.) 

Mean Variance Maximum Mean Variance Maximum 

100 1000 2.62 0.74 5 0.08 0.00 0.1 

200 2000 8.31 I .83 17 0.18 0.01 0.2 

300 3000 23.57 4.94 48 0.39 0.03 0.5 

400 4otxl 64.71 13.35 121 0.95 0.12 1.4 

500 5000 176.87 33.25 318 2.60 0.35 4.0 

600 6000 493.73 96.35 797 7.52 1.12 11.3 

700 7000 1331.53 242.45 2253 21.56 3.18 32.2 

800 8000 3634.19 662.78 5931 62.28 9.46 96.0 

900 9000 9798.53 1792.24 16269 175.26 26.42 264.4 

1000 10000 26375.80 4722.36 43792 487.39 70.09 720.0 

1 
100 200 300 400 500 600 700 600 900 1000 

Fig. 14. Hardness in the over-constrained region: Number of branch points as a function of the number of 
variables. Number of branch points shown on log scale. 
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3. The TABLEAU algorithm 

The basic algorithm underlying TABLEAU is depth-first search with unit-propagation. 
This combination can be traced back at least as far as the work of Davis, Logemann, 
and Loveland [5]. To this basic framework TABLEAU adds a highly-optimized unit- 
propagation algorithm, and a set of special-purpose heuristics for selecting branch vari- 
ables. Section 3.1 describes the basic algorithm, and Sections 3.2 and 3.3, respectively, 
describe the unit-propagation algorithm and the heuristics. These sections are fairly de- 
tailed and are probably primarily of interest to those actually building satisfiable or 
constraint-satisfaction algorithms. 

3.1. Basic algorithm 

Find_Model(theory) 
unit-propagate (theory) ; 

if contradiction discovered return(f alse) ; 

else if all variables are valued return(true); 
else { 

x = some unvalued variable; 
return(Find_Model (theory AND x> OR 

Find_Model(theory AND NOT x)); 

) 

unit-propagation consists of the repeated application of the inference rule: 

X 

TX v y1 - ‘. v yn 

Yl v-**Vyn 

(similarly for 7x). 
Complete unit-propagation takes time linear in the size of the theory [ 61. 

3.2. Fast unit-propagation 

The computational bottlenecks for TABLEAU are the unit-propagator and the machin- 
ery needed to save the state of the search for backtracking. TABLEAU ‘s data-structures 
are designed to simultaneously allow efficient unit-propagation and inexpensive back- 
tracking. 

The key to inexpensive backtracking is being able to describe the state of the search 
as concisely as possible [ 81; more concise descriptions require less copying and use less 
memory. The current version of TABLEAU maintains three arrays. These arrays record 
for each variable: ( 1) its current assignment (if any), (2) the number of binary clauses 
in which it occurs positively (i.e., not negated), and (3) the number of binary clauses 
in which it occurs negatively. The binary clause counts are critical for the heuristics 
described below. 
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To speed up unit-propagation, for each variable we maintain a list of the clauses in 
which it occurs. Then whenever a variable is valued we walk down its list. For each 
clause in the list there are several operations we might have to perform: value some 
other variable in the clause, update the binary clause counts on the other variables, etc. 
It is straightforward to enumerate the possible conditions and the actions necessary for 
each condition. For example, for a clause of the form x V y V z these include: 

(1) If x is assigned false, and y and z are unassigned then increment the binary 
clause counts on y and z. 

(2) If y = F, and z is unassigned then set z = T. Similarly, if z = F and y is 
unassigned then set y = T. 

(3) If x is assigned true, y = F, and z is unassigned then decrement the binary 
clause count for z. 

Etc. 
It turns out to be more efficient to unit-propagate breadth-first (this is mostly because 

of the relatively high cost of procedural calls and stack-based recursion in C). Breadth- 
first unit-propagation introduces one additional rather technical complication. Assume x 
is assigned F, and we have two clauses of the form x V ye and x V ~2. We then assign 
values to yi and ~2, and push yt and y2 onto the unit-resolution queue. Now assume 
there is some other clause of the form yi V -~y2 V z. When we unit-propagate y1 we 
decrement the binary clause count for z (by case (3) above). When we later unit- 
propagate y2 we do nothing (this assignment does not create a binary clause because 
yl = 7’). If the binary clause count for z was zero originally it may now be -l! The 
problem is that we somehow skipped the intermediate state that would have contained 
a binary clause: y2 = T and yi unassigned. If we had seen this state then this would 
have incremented the binary count for z and the count would have ended up zero. There 
are many possible fixes for this problem. The current version of TABLEAU explicitly 
examines the unit-resolution queue to check for conditions of this kind. In this case, 
when propagating ~2, TABLEAU would see that yl is still on the queue and would thus 
realize that this clause was not really a binary clause (since yt was valued but not 
propagated) and so would not decrement the binary clause count for z. 

3.3. Heuristics 

There are two choices that must be made on each recursive call to the Find-Model 

routine. First, one must decide which variable to branch on, and second one must decide 
which value (i.e., TRUE or FALSE) to try first. The basic Davis-Logemann-Loveland 
procedure simply branches on the variables in some pre-determined order (independent 
of the problem). We have found that simple variable selection heuristics can make a 
significant difference in the average size of the search tree (however, for random 3-SAT 
we have yet to find any useful heuristics for deciding which value to try first). 

Our primary preference criterion is to prefer variables that would cause a large number 
of unit-propagations. This heuristic is similar to the one used in [7,19]. We have found 
that it is not cost-effective to actually compute the number of unit-propagations that 
would result from valuing a variable. Instead we approximate the number of unit- 
propagations by counting the number of (non-redundant) binary clauses in which the 
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variable appears. In cases where there are no binary clauses we simply choose the 
variables occurring most often in the theory. This is similar to the heuristic used by 
Dubois in which preference is given to the variable that occurs most often in the 
shortest clauses in the theory. 

One question here is how to combine the counts of the number of positive and 
negative occurrences of variables. Following Freeman [8] we use the equation 

score(x) =pc(x) *m(x) * 1024+pc(x) +nc(x) + 1, (4) 

where pc( X) (nc( X) > is the number of positive (negative) occurrences of x in binary 
clauses. This metric gives preference to variables that lead to significant numbers of 
unit-propagations in both branches of the search tree. 

As suggested by Dubois, we collect a list of the top k variables under this metric and 
then explicitly compute the effect of valuing each of these variables and unit-propagating. 
Setting the value for k is something of a black art. Following Freeman, we currently 
use: 

k = v - 21 * vamvalued. 

where vumvulued is the number of variables assigned by the current assignment, Unlike 
Dubois and Freeman we count the number of new binary clauses produced (rather than 
the number of variables valued). We believe this gives a more accurate picture of the 
impact of valuing each variable. We use Eq. (4) to combine this count for valuing the 
variable true and false. We break ties by counting the number of occurrences in the 
theory (combining the number of positive and negative occurrences using Eq. (4) ) . 

4. Conclusion 

Our experimental results show that the hardest satisfiability problems are those that 
are critically constrained-i.e., those that are neither so under-constrained that they have 
many solutions nor so over-constrained that the search tree is small. This confirms past 
results [ 2,161. For randomly-generated problems, these critically-constrained problems 
are found in a narrow band near the crossover point. Empirically, the number of clauses 
required for crossover seems to be best modeled by the equation c = 4.258v+58.26~-*/~. 
We thus predict that the asymptotic value of the clause/variable ratio will be near 4.258. 
Fig. 15, giving the clause/variable ratio at crossover for 20 to 300 variables, shows that 
our existing experimental data is consistent with this prediction. Below the crossover 
point we have failed to find any hard problems for TABLEAU . At the crossover point 
the size of the tree searched by TABLEAU seems to grow at about 2v/19.5. For large 
random 3-SAT problems near the crossover point the run time for TABLEAU seems to 
be slightly faster than the best previously published times. Above the crossover point 
the run time appears to grow as 2 @* This slower growth rate has allowed us to solve , 
1 OOO-variable over-constrained problems. 
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Fig. 15. Clause/variable ratio at the crossover point as a function of the number of variables. 
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Appendix A 

Below is the raw data from our experiments on the location of the crossover point. 
These experiments were run on SGI (Silicon Graphic Inc.) Power Challenge machines. 
Run times are the “user” times reported by the command “/usr/bin/time”. The load on 
these machines varied over the course of the experiments so there may be noise in these 
run times. 
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Variables Clauses Percent SAT Branches Run time Instances 

20 88 60.29 2 0.009952 10000 

20 89 58.33 1 0.009952 10000 

20 90 56.25 1 0.009957 10000 

20 91 52.56 1 0.009941 10000 

20 92 50.43 1 0.009929 10000 

20 93 46.86 1 0.009942 10000 

20 94 44 1 0.00993 1 10000 

20 95 40.72 1 0.009946 10000 

20 96 38.27 1 0.009948 10000 

20 97 35.62 1 0.009957 10000 

40 171 61.38 4 0.019056 10000 

40 172 59.69 4 0.01957 10000 

40 173 57.38 4 0.019644 10000 

40 174 55.33 4 0.019865 10000 

40 175 52.2 4 0.019855 10000 

40 176 49.84 4 0.01989 10000 

40 177 47.25 4 0.01993 10000 

40 178 45.07 4 0.019942 10000 

40 179 42.95 4 0.019953 10000 

40 180 40.46 4 0.01996 10000 

60 255 60.89 9 0.025987 10000 

60 256 58.78 9 0.026548 10000 
60 257 55.99 9 0.026907 10000 

60 258 55.07 9 0.027038 10000 

60 259 51.82 9 0.027252 10000 

60 260 49.12 9 0.027433 10000 

60 261 47.61 9 0.027573 10000 
60 262 46.57 9 0.027749 10000 
60 263 44.02 9 0.0279 10000 

60 264 41.98 8 0.028036 10000 

80 340 58.28 18 0.04171 10000 
80 341 57.51 17 0.041838 10000 
80 342 54.66 18 0.042614 10000 
80 343 52.79 18 0.0428 12 10000 
80 344 50.94 18 0.043278 10000 
80 345 49.65 18 0.043545 10000 
80 346 47.9 18 0.043396 10000 
80 341 44.46 18 0.043666 10000 
80 348 43.68 18 0.0437 14 10000 
80 349 40.91 18 0.04383 1 10000 
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Variables Clauses Percent SAT Branches Run time Instances 
100 424 58.62 35 0.069854 10000 
100 425 57.2 35 0.070392 10000 
100 426 54.53 36 0.071596 10000 
100 427 53.79 35 0.071464 10000 
100 428 51.87 36 0.072399 10000 
100 429 49.69 36 0.073214 10000 
100 430 48.22 36 0.073184 10000 
100 431 46.73 36 0.073393 10000 
100 432 45.21 36 0.073603 10000 
100 433 42.93 36 0.074104 10000 

120 509 58.15 70 0.123834 10000 
120 510 55.33 71 0.124714 10000 
120 511 53.95 72 0.125722 10000 
120 512 52.54 72 0.126598 10000 
120 513 50.77 73 0.127967 10000 

120 514 50.09 73 0.12755 10000 

120 515 47.82 74 0.129513 10000 

120 516 46.89 73 0.128761 10000 

120 517 43.69 75 0.132049 10000 

120 518 42.98 75 0.131482 10000 

140 594 57.53 143 0.242835 10000 

140 595 55.38 145 0.244796 10000 

140 596 53.64 147 0.24808 10000 

140 597 52.37 149 0.25 1002 10000 

140 598 50.67 147 0.249652 10000 

140 599 49.47 148 0.251184 10000 

140 600 47.94 150 0.254217 10000 

140 601 45.8 150 0.254696 10000 

140 602 44.3 1 151 0.256326 10000 

140 603 42.09 154 0.25965 10000 

160 679 56.6 294 0.497074 10000 

160 680 55.64 292 0.494609 10000 

160 681 53.38 298 0.505744 10000 

160 682 52.02 301 0.5 10479 10000 

160 683 49.97 305 0.5 1695 1 10000 

160 684 49.18 303 0.51516 10000 

160 685 47.49 306 0.5 19636 10000 

160 686 45.25 311 0.528903 10000 

160 687 44.48 309 0.52479 10000 

160 688 43.36 309 0.52497 10000 
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Clauses Percent SAT Branches Run time Instances 

764 57.02 596 1 MO88 10000 

765 54.75 604 1.05387 10000 

766 53.07 616 1.07616 10000 

767 52.54 605 1.05978 10000 

768 50.33 620 1.0829 10000 

769 48.63 629 1.09834 10000 

770 47.06 631 1.10119 10000 

771 46.2 622 1.08833 10000 

772 44.52 633 1.10704 10000 

773 42 640 1.1184 10000 

850 55.29 1238 2.26319 10000 

851 52.98 1256 2.29539 10000 

852 52.02 1249 2.25742 10000 

853 50.14 1264 2.2837 1 10000 

854 49.53 1266 2.28977 10000 

855 47.74 1279 2.32607 10000 

856 46.63 1283 2.32193 10000 

857 44.67 1281 2.3 1943 10000 

858 43.56 1296 2.35121 10000 

859 41.47 1304 2.3677 10000 

934 56.24 2513 4.82845 10000 

935 54.44 2543 4.8885 10000 

936 52.2 2564 4.93092 10000 

937 51.37 2603 5.0287 1 10000 

938 51.12 2593 5.013 10000 

939 49.45 2575 4.9825 10000 

940 47.85 2637 5.10846 10000 

941 45.58 2648 5.12738 10000 

942 44.54 2647 5.1338 10000 

220 943 43.56 2642 5.11471 10000 

240 1020 53.4 5217 10.4304 10000 

240 1021 53.5 5167 10.3346 10000 

240 1022 51.54 5270 10.6345 10000 
240 1023 51.14 5210 10.5113 10000 
240 1024 49.65 5323 10.7333 10000 
240 1025 47.18 5348 10.7901 10000 
240 1026 46.84 5364 10.8267 10000 
240 1027 44.54 5375 10.8581 10000 
240 1028 43.87 5390 10.9021 10000 
240 1029 43.46 5389 10.9062 10000 
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Variables Clauses Percent SAT Branches Run time Instances 
260 1103 56.6253 10477 22.0023 9992 
260 1104 54.9304 10613 22.2801 10060 
260 1105 54.8761 10549 22.1547 10008 
260 1106 53.1589 10680 22.442 1 10051 
260 1107 51.5561 10879 23.1446 10057 
260 1108 5 1.3549 10691 22.7078 10038 
260 1109 49.8014 10904 23.2187 10072 

260 1110 48.0433 11044 23.5086 10068 

260 1111 46.0679 11036 23.3709 11279 

260 1112 46.0132 11056 23.4536 10008 

280 1188 57.6 21449 47.4166 1000 

280 1189 53.9 21725 48.0683 1000 

280 1190 55.3 21783 48.2112 1000 

280 1191 50.2 22923 50.77 1 1000 

280 1192 51.6 22109 49.0018 1000 

280 1193 51.7 22254 49.0067 1000 

280 1194 50.2 22304 49.1085 1000 

280 1195 49.6 21903 48.2329 1000 

280 1196 46.7 23003 50.6697 1000 

280 1197 46.9 23021 50.7528 1000 

300 1274 57 43298 99.8636 1000 

300 1275 55.3 44240 102.05 1000 

300 1276 51.6 44718 103.172 1000 

300 1277 52.8 45979 106.443 1000 

300 1278 48.6 46815 108.553 1000 

300 1279 53.4 42558 98.7138 1000 

300 1280 44.7 47840 110.981 1000 

300 1281 45.7 46439 107.761 1000 

300 1282 47.7 45969 106.081 1000 

300 1283 45.4 47156 108.884 1000 
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