User guide - Choco Page 1 of 23

User guide

From Choco

Contents

An introduction to Constraint Programming

Constraint programming represents one of the closest approaches computer science has yet made to the Holy
Grail of programming: the user states the problem, the computer solvesit. E. C. Freuder, Constraints, 1997

Fast increasing computing power in the 1960s led to a wealth of works around problem solving, at the root of
Operational Research, Numerical Analysis, Symbolic Computing, Scientific Computing, and a large part of
Artificial Intelligence and programming languages. Constraint Programming is a discipline that gathers,
interbreeds, and unifiesideas shared by all these domains to tackle decision support problems.

Constraint programming has been successfully applied in numerous domains. Recent applications include
computer graphics (to express geometric coherence in the case of scene analysis), natural language processing
(construction of efficient parsers), database systems (to ensure and/or restore consistency of the data),
operations research problems (like optimization problems), molecular biology (DNA sequencing), business
applications (option trading), electrical engineering (to locate faults), circuit design (to compute layouts), etc.

Current research in this area deals with various foundational issues, with implementation aspects and with
new applications of constraint programming.

Constraints

A constraint is simply alogical relation among several unknowns (or variables), each taking avalue in agiven
domain. A constraint thus restricts the possible values that variables can take, it represents some partial
information about the variables of interest. For instance, the circle isinside the sguare relates two objects
without precisely specifying their positions, i.e., their coordinates. Now, one may move the square or the
circle and he or sheis still able to maintain the relation between these two objects. Also, one may want to add
other object, say triangle, and introduce another constraint, say square isto the left of the triangle. From the
user (human) point of view, everything remains absolutely transparent.

Constraints naturally meet several interesting properties:

m constraints may specify partial information, i.e., constraint need not uniquely specify the values of its
variables,

m constraints are non-directional, typically a constraint on (say) two variables X, Y can be used to infer a
constraint on X given a constraint on Y and vice versa,

m constraints are declarative, i.e., they specify what relationship must hold without specifying a
computational procedure to enforce that relationship,

m constraints are additive, i.e., the order of imposition of constraints does not matter, all that matters at
the end is that the conjunction of constraintsisin effect,

m constraints are rarely independent, typicaly constraints in the constraint store share variables.

Constraints arise naturally in most areas of human endeavor. The three angles of atriangle sum to 180
degrees, the sum of the currents floating into a node must equal zero, the position of the scroller in the
window scrollbar must reflect the visible part of the underlying document, these are some examples of
constraints which appear in the real world. Thus, constraints are a natural medium for people to express

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 2 of 23

problemsin many fields.

Constraint Programming

Constraint programming is the study of computational systems based on constraints. The idea of constraint
programming is to solve problems by stating constraints (conditions, properties) which must be satisfied by
the solution.

Work in this area can be tracked back to research in Artificial Intelligence and Computer Graphicsin the
sixties and seventies. Only in the last decade, however, has there emerged a growing realization that these
ideas provide the basis for a powerful approach to programming, modeling and problem solving and that
different efforts to exploit these ideas can be unified under a common conceptual and practical framework,
constraint programming.

| f you know sudoku, then you know constraint programm ng (see sudoku and constraint progranmmi ng)

Modeling with Constraint Programming

The formulation and the resolution of combinatorial problems are the two main goals of the constraint
programming domain. Thisis an essential way to solve many interesting industrial problems such as
scheduling, planning or design of timetables. The main interest of constraint programming is to propose to the
user to model his problem without being interested in the way the problem is solved.

Modelling a Constraint Satisfaction Problem

Constraint programming allows to solve combinatorial problems modelized by a constraint satisfaction
problem (CSP). Formally, a CSPis defined by atriplet (X,D,C) such as:

1. Variables: X ={X,X,,... X} isthe set of variables of the problem.

2. Domain: D isafunction which associates to each variable X, its domain D(X;), i.e., the possible values
that can be affected to X;.

3. Congraints: C={C,,C,,..,.C,} isthe set of constraints. Each constraint Cj isarelation between a
subset of variables which restricts the domain of each one.

A constraint is satisfied if the tuple of the values of its variables belongs to the relation describing the
constraint. Thus, solving a CSP consists in finding a tuple on the set of variables such that each constraint is
satisfied. Moreover, several types of variables can be distinguished:

1. Integer variables are variables described on domains containing integer val ues.

2. Set variables are variables described on domains containing sets of values.

3. Real variables are variables described on continous domains and generaly use intervals to represent
values.

Examples

This part provides three examples using different types of variablesin different problems. These examples are
used throughout this tutorial to illustrate their modelling with Choco.

Example 1: the n-Queen's problem

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 3 of 23

Let us consider a chess board with n rows and n columns. A queen can move as far as she pleases,
horizontaly, verticaly, or diagonally. The standard n-Queen's problem asks how to place n queens on an n-
ary chess board so that none of them can hit any other in one move.

The n-Queen's problem can be modelized by a CSP in the following way:

1. Variables: X = {X; | iisan integer in [1,n]}.
2. Domain: for all X; in X, D(X;) = {j|] is an integer in [1,n]}.
3. Condtraints: the set of constraints is defined by the union of the three following constraints,

m gueenshaveto beon distinct lines:
m Ces =X % Xj | i and j are two distincts integer in [1,n]}.

= gueenshaveto be on distinct diagonals:
" Cdiagl ={X; = Xj+j-i | i and j are two distincts integer in [1,n]}.

n Cdiagz = {Xi + Xj+i-j | i and j are two distincts integer in [1,n]}.

Example 2: theternary Steiner problem

A ternary Steiner system of order n is a set of n*(n-1)/6 triplets of distinct elements taking their values in
[1,n], such that all the pairs included in two different triplets are different.

The ternary Steiner problem can be modelized by a CSP in the following way:

let t = n*(n-1)/6.
Variables: X = {X, | i an integer in [1,t]}.
Domain: for all X; in X, D(X;) = {1,...,n}.
Constraints:
= every set variable X; hasa cardinality of 3:
w foralliin[1,t], [X;|=3.
» thecardinality of theintersection of every two distinct sets must not exceed 1:
m foralli,jin[1,t], |intersection(xi,xj)|<:1.

> w e

Example 3: the CycloHexane problem

The problem consists in finding the 3D configuration of a cyclohexane molecule. It is described with a system
of three non linear equations:

1. Variables: x,y and z.

2. Domain:]-00;+00[.

3. Constraints:
my2*(1+2"2)+2*(z-24*y)=-13.
B XM2*(L+y2)+y*(y-24*x)=-13.
mzZ"2*(L+xM2)+x*(X-24*2z)=-13.

Problem Modeling with Choco

Creating a problem

The central element of a choco program is the Problem object.

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 4 of 23

Abst ract Probl em myPb = new Probl en();

The class Problem is afactory where al API to create variables and post constraints is available. Variables
and constraints are therefore related to the Problem object as well as the access to the solution found.

Variables and domains

Actually, three main kind of variables exist :

1. IntDomainVar : It describes discrete domains where values are integers.
s EnumlintVar : It corresponds to enumerated domains and should be used when discrete and
guite small domains are needed.
= BoundIntVar : Such domains are represented by their lower and upper bounds (propagation is
only performed on the bounds). One can use them when large domains are needed.
RealVar : It describes continous domain and use intervals to represent values.
SetVar : It describes discrete set domains where avalue of avariable is a set. Set vars are encoded with
two classical bounds : the union of the all set of possible values called the envel ope and the intersection
of all set of possible values called the kernel.

wnN

Once the Problem has been created, variables are created through factories available on the Problem instead of
the classical java constructor. The use of factories allowsto redefine them in a specific Problem (as done for
the PalmProblem) and ensures that constraints and variables types will remain compatible. The following
example of code show how to create a finite domain variable:

| nt Domai nVar vl = nmyPb. makeEnuml nt Var ("var1", 1, 10);

v1 isan enumerated variable which is called var 1 and has a discrete domain from 1 to 10. It has been
created for the problem ny Pb.

Integer Variables

1. makeBoundlntVar(String s, int Ib, int ub) :createsafinite domain variable whose
domain is approximated by bounds (I b .. ub),withnames.

2. makeEnum ntVar(String s, int Ib, int ub) :creaesafinite domain variable with
domain(l b .. ub),withnames.

BoundintVar are related to large domains which are only represented by their lower and upper bounds. The
domain is encoded in a space efficient way and propagation events only concern the update of the bounds.
Vaue removals between the bounds are therefore ignored. The level of consistency achieved by most
constraints on these variables is called bound consistency. On the contrary, the domain of an EnumintVar is
explicitly represented and every vaue is considered while pruning. Basic constraints are therefore often able
to achieve arc-consistency on EnumintVar (except for NP global constraint such as the cumulative constraint).
Remember that switching from an EnumintVar to a BoundintVar decrease the level of propagation achieved
by the system.

The state of an IntDomainVar can be accessed through the main following public methods on the IntVar class.

hasEnuner at edDomai n() : checksif the variableis an enumerated or a bound one.
get I nf () : returns the lower bound of the variable.

get Sup() : returns the upper bound of the variable.

get Val () : returnsthe valueif it isinstantiated.

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 5 of 23

m i slnstanti at ed(): checksif the domain is reduced to a singleton.

m canBel nstanti atedTo(i nt val): checksif thevalueval is contained in the domain of the
variable.

= get Domai nSi ze() : returns the current size of the domain.

The domain of an IntVar can be modified through the main following public methods: such operations are
subject to the backtrack mechanism.

s set | nf () : setthelower bound of the variable.
m set Sup() : set the upper bound of the variable.
m set Val () : set the value of the variable.

Set Variables
Set variables are still under development but a bit of api isstill available.

1. makeSetVar(String name, int |, int u) :createsaset domainvariablewithnames
where | correponds to the lower bound of the inital enveloppe and b the upper bound.

Set variables are high level modelisation tool. It allows to represent variables whose values are sets. A set
variable on integer vaues between [1,n] has 2n values (every possible subsets of {1..n}). This makes an
exponential number of values and the domain is represented with two bounds (as the BoundintVar)
corresponding to the intersection of all possible sets (called the kernel) and the union of all possible sets
(called the enveloppe) which are the possible candidats value for the variable. The consistency achivied on set
variablesistherefore a kind of bound consistency.

The state of a SetVar can be accessed through the main following public methods on the SetVar class:

i sl nDomai nKernel (i nt x) :checksif avaluex iscontained in the current kernel.

i sl nDomai nEnvel oppe(int x) :checksif avaluex iscontained inthe current envelope.
get Domai n() : returns the domain of the variable as a SetDomain. Iterators on envelope or kernel
can than be called.

get Ker nel Domai nSi ze() : returns the size of the kernel.

get Envel oppeDomai nSi ze() : returns the size of the envelope.

get Envel oppel nf () : returnsthe first available value of the envel ope.

get Envel oppeSup() : returnsthe last available value of the envelope.

get Ker nel | nf () : returnsthe first available value of the kernel.

get Ker nel Sup() : returnsthe last available value of the kernel.

get Val ue() : returnsatable of integer int[] containing the current domain.

The domain of a SetVar can be modified through the main following public methods(ContradictionException
can be thrown in case of an inconsistent change) :

m setValIn(int x):setavaueinsidethekernel.

m set Val Qut (i nt Xx): setavalueoutsidethe kernel.
m setVal (int[] val): setthevalue of thevariable.

Real Variables

Real variables are still under development but can be used to solve toy problems such as small systems of
equations.

1. makeReal Var (String s, double |b, double ub) :creaesa continous domain variable
whose domain is considered as an interval [Ib,ub], with names.

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 6 of 23

Continous variables are useful for non linear equation systems which are encountered in physics for example.

m get | nf () : returns the lower bound of the variable (a double).

m get Sup() : returns the upper bound of the variable (a double).

m i slnstanti at ed() : checksif the domain of avariable is reduced to acanonical interval. A
canonical interval indicates that the domain has reached the precision given by the user or the solver.

Constraints

Constraints are represented by dedicated objects organized in a class hierarchy. It encapsulates a filtering
agorithm which are called when a propagation step occur or when external events happen on the variables
belonging to the constraint, such as value removals or bounds modification.

A constraint is stated to a problem by using the method post available on the Problem object : post(Constraint
¢). Creating a constraint and adding it to the constraint network can be done using the Problem api. For
example, adding a constraint of difference between two variablesis simply written as follow:

nyPb. post (myPb. neq(varsl1, vars2));

Constraintson Integer variables

The constraints available with choco are arithmetic constraints (equality, difference, comparisons and linear
combination), user-defined binary constraints (AC4,AC3, ...), boolean operators (or, and, implies, ...) among
constraints aswell as some global constraints.

Basic constraints

The simplest constraints are comparisons which are defined over expressions of variables such as linear
combinations. The following comparison constraints can be accessed through the Problem API:

neg(lntExp vl, IntExp v2) :vl!=v2
eq(IntExp vl, IntExp v2) :vli=v2
leq(IntExp vl1, IntExp v2) :vl<=v2
lt(IntExp vl, IntExp v2) :vl<v2

To construct complex expressions of variables, simple operators can be used:

m nus(1 nt Exp expl, |IntExp exp2) :expl-exp2

plus(IntExp expl, |IntExp exp2) :expl+ exp2.

mul t (int coef, IntExp exp) :coef* exp.

scalar(int[] coef, IntVar[] vars):coef[l]*varg1] + ... + coef[n]*varg[n].
sun(IntVar[] vars):vadl]+...+vargn].

Arbitrary constraints (in extension)

Choco supports the statement of constraints defined by arbitrary relations. It offers the possibility of stating
binary constraints with several AC Algorithm and also n-ary constraints with aweaker form of propagation.

Binary constraints

The relation defines feasible or infeasible pairs of values for the two variables involved in the constraint.

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 7 of 23

Relations may be defined by two means:

1. Tabl es : specifying those pairs of value for which the constraints is satisfied/unsatisfied.
2. Predi cat es : specifying the method to be called in order to check whether a pair of valueis
feasible or not.

On the one hand constraints based on tables of values may become rather memory consuming in case of large
domains, although relation tables may be shared by different constraints. On the other hand, predicate
constraints require little memory as they do not cache thruth values, but imply some run-time overhead for
calling the feasibility test. Table constraints are thus well suited for constraints over small domains; while
predicate congtraints are well suited for situations with large domains. The creation of a constraint for a
relation can be done through the following Problem API :

1. makePai r AC(I ntVar v1, IntVar v2, ArraylList pairs, boolean feas, int
ac).

2. makePai r AC(I ntVar v1, IntVar v2, boolean[][] pairs, boolean feas, int
ac) .

3. relationPairAC(I ntVar v1, IntVar v2, BinRelation pairs, int ac).

Parameter feas indicates whether the relation models feasible pairs of values or infeasible one (default is
infeasible). Parameters pairs contains the definition of the relation. A list of int[] of size 2 in the first case, a
boolean[][] in the second case or as a BinRelation in the last case. Finally parameter ac selects the algorithm
for enforcing arc-consistency (default ac = 2001). Supported values for this parameter are :

1. 3for AC3 agorithm (searching from scratch for supports on all values)
2. 4for AC4 algorithm (maintaining a count of supports for each value)
3. 2001 for the AC2001 algorithm (maintaining the current support of each value)

The definition of abinary relation based on a predicate can be done by inheriting from the CouplesTest class.
Have alook on the following example :

public class Mylnequality extends Coupl esTest {
publ i c bool ean checkCouple(int x, int y) {
return x !'=y;
}
}

Y ou can then state a constraint as the following :

pb. post (pb. rel ati onPai rAC(v1l, v2,new Mylnequality()));

The complete Problem API allow to easily create binary constraint :

infeasPairAC(IntVar v1, IntVar v2, ArrayList pairs)
feasPairAC(IntVar v1, IntVar v2, ArrayList pairs)
relationPairAC(IntVar vi, IntVar v2, BinRelation binR)

ER NN o

Nary constraints

The situations for binary constraints is extended to the case of relations involving more than two variables,
upto a significant difference from the propagation point of view: The propagation engine maintains arc-
consistency for binary constraints throughout the solving process, while for n-ary constraints, it uses a weaker
propagation mechanism with aforward checking algorithm. The API for creating such constraintsis the

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 8 of 23

following ones:

1. makeTupleFC(IntVar[] vs, ArrayList tuples, boolean feas)
2. relationTuple(IntVar[] vs, LargeRelation rela)

Defining a specific n-ary relation without storing the tuples can be done as on the following example :

public class Not Al |l Equal extends Tupl esTest {
publ i c bool ean checkTuple(int[] tuple) {
for (int i =1; i <tuple.length; i++) {
if (tuple[i - 1] != tuple[i]) return true;

return fal se;

Otherwise, the tuples are given in an ArrayList as int[] table given the compatible/incompatible values. One
can then state the constraint to the problem :

pb. post (pb. rel ati onTupl e(new IntVar[]{x, y, z}, new Not Al | Equal ()))

Finally, the structure of the Consistency relations can be seen in more details on the following picture :
Advanced constraints

Choco includes several global constraints. Those constraints allows to filter efficiently some inconsistant
values. For instance, if several variables should be affected to different values, using a global constraint can
offer some additionnal filtering rules (for instance a should be in [1,4], b in [1,4], cin [3,4] and d in [3,4], then
one can deduce that a and b cannot be instantiated to 3 or 4; such rule cannot be infered by simple binary
constraints). Here are described some of those constraints :

1. pb.allDifferent(IntVar[] vars) creates a constraint ensuring that all pairs of variable have distinct
values (which is useful for some matching problems); Notice that the filtering algorithm used will
depend on the nature (EnumintVar or BoundintVar) of the table of variable var s. In case of
EnumintVar, the constraint refers to the alldifferent of régin AAAI94 : "A filtering algorithm for
constraints of difference in CSPs". In case of BoundIntVar, a dedicated algorithm for bound
propagation is used (see Lopez-Ortiz 03 :" A fast and simple algorithm for bounds consistency of the
alldifferent constraint™). Moreover, it is possible to avoid the use of a global filtering algorithm by
using a slight different api with a boolean gl obal to false : pb.alIDifferent(IntVar[] vars, boolean
global) so by default this boolean is set to true.

2. pb.occurrence(IntVar[] vars, int value, IntVar occurrence) creates a constraint to ensure that
occurrence will be instantiated to the number of occurrences of value in the list of variables vars; this is
a specialization of the following constraint;

3. pb.globalCardinality(IntVar[] vars, int[] low, int[] up) creates a constraint ensuring that the number
of occurrences of the value 1 in all the variables vars is between low[0] and up[0], and generallay the
number of occurrences of the value i in vars is between low[i-1] and up[i-1].

4. pb.nth(IntVar index, int[] values, IntVar val) allow to state the well known Element constraint. This
constraint ensures that values[index] = val where i ndex and val are variables.

5. pb.nth(IntVar index, IntVar[] values, IntVar val) allow to state an Element constraint where the
values are variables.

6. pb.cumulative(IntVar[] starts, IntVar[] ends, IntVar[] durations, int[] heights, int Capa) : Given
a set of tasks defined by their starting dates, ending dates, durations and consumptions/heights, the
cumulative ensures that at any time t, the sum of the heights of the tasks which are executed at time t
does not exceed a given limit C (the capacity of the ressource). The notion of task does not exist yet in
choco. The cumulative takes therefore as input three arrays of integer variables (of same size n)

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 9 of 23

denoting the starting, ending, and duration of each task. The heights of the tasks are considered
constant and given via an array of size n of positive integers. The last parameter Capa denotes the
Capacity of the cumulative (of the ressource). The implementation is based on the paper of Bediceanu
and a : "A new multi-resource cumulatives constraint with negative heights' in CP02. WARNING :
Keep in mind that the task is active in the interval [start,end-1] or [start,end] because we always have
start + duree = end. Thisisthe usual definition of start, end, and duration in scheduling.

7. pb.lex(IntVar[] x, IntVar[] y) : enforces a strict lexicographic ordering on two vectors of integer
variablesx <_lex y withx =<x_0, ..., x_n> andy =<y_0, ..., y_n>:X <, Y. Implementation refers to
"Global Constraints for Lexicographic Orderings' (Frisch and a) of CP'02. lexeq denotes the relation x
<=Iex y:

Some other global constraints can be added to Choco in future releases. One can find all the APl and
constraints avail able on the Javadoc API.

Boolean composition of constraints

Constraintson Set variables

Choco supports the statement of constraints among sets :

pb = new Probl em);
pb. post (nod. eqCard(vars[i],3));

The following set constraints are available :

1. member(SetVar svl, int val): statesthat the variable sv1 contains value val.

2. notMember(SetVar svl, int val): states that the variable sv1 does not contain value val.

3. saDigjoint(SetVar svl, SetVar sv2): states that svl and sv2 are digoint sets ; e.g. that sv1 and sv2
contain no common values.

4. setinter(SetVar svl, SetVar sv2, SetVar inter): statesthat the inter set variable is the intersection of set
variables svl and sv2 ; e.q. states that inter contains exactly those values contained in both sets sv1 and
sv2.

5. egCard(SetVar sv, int val): states that the cardinality of the set variable is equal to value val.

6. geqCard(SetVar sv, int val): states that the cardinality of the set variable is greater or equal equal than
value val.

7. leqCard(SetVar sv, int val): states that the cardinality of the set variable is equal than vaue val.

To deal with integer variables, the following mixed constraint are available :

member(SetVar svl, IntVar var).
notMember(SetVar svl, IntVar var).
egCard(SetVar sv, IntVar iv).
gegCard(SetVar sv, IntVar iv).
legCard(SetVar sv, IntVar iv).

ghrwhpE

Constraints on Real variables

Examples

We provide now the complete choco model for the three examples described in section 1.

Example 1: the n-Queen's problem with Choco

Thisfirst model for the nqueen problem only involves binary constraints of differences between integer

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 10 of 23

variables. One can immediatly recognize the 4 main elements of any choco code. First of al, create the
problem object. Then create the variables by using the factory methods of the problem (One variable per
gueen giving the row (or the column) where the queen will be placed). Finally, post the constraints and solve
the problem.

/1- Create the problem
Abst ract Probl em pb = new Probl em();

/2- Create the variabl es
IntVar[] queens = new IntVar[n];
for (int i =0; i <n; i++) {
queens[i] = pb.makeEnum ntVar("Q + i, 1, n);

/3- Post constraints
for (int i =0; i <n; i++) {
for (int j =i +1; j <n; j++) {
int k=7 -1i;
pb. post (pb. neq(queens[i], queens[j]));
pb. post (pb. neq(queens[i], pb.plus(queens[j], k))); [/ diagonal constraints
pb. post (pb. neq(queens[i], pb.m nus(queens[j], k))); // diagonal constraints

}

/4- Search for all solutions
pb. sol veAl | ();

/5- Print the nunber of solution found
System out. println("NbSol: " + pb.getSolver().getNbSolutions());

Example 2: theternary Steiner problem with Choco

Set variables areillustrated on the ternary steiner system problem. Let'srecall that aternary Steiner system of
order nisaset of triplets of distinct elements taking their values between 1 and n, such that al the pairs
included in two different triplets are different. See http://mathworld.wolfram.com/Stei ner TripleSystem.html
for details. The problem is entirely modelled using set variables and set constraints. There isonly one
difference between the previous code for integer variables : the search for solutions. The search can be simply
controlled from the problem object viaa call to solve, solveAll, nextSolution or viathe solver object to
control it in afiner way. The use of the Solver object will be explained in details in the next section about
Search and Branching.

//1- Create the problem

Abst ract Probl em pb = new Probl em();
int m= 7,

int n=m* (m- 1) / 6;

/2- Create Variables
Set Var[] vars = new SetVar[n]; // A variable for each set
Set Var[] intersect = new SetVar[n * n]; // A variable for each pair of sets

for (int i =0; i <n; i++)
vars[i] = pb.nmakeSetVar("set " + i, 1, n);
for (int i =0; i < n; i++)
for (int j =i + 1; j < n; j++)
intersect[i * n + j] = pb.mkeSetVar("interSet " +i +" " +j, 1, n);

/3- Post constraints

for (int i =0; i < n; i++)

pb. post (pb. eqCard(vars[i], 3));
for (int i =0; i <n; i++) {

for (int j =i +1; j <n; j++) {

/'l Enforce the cardinality of the intersection of each pair to be equal to one.
pb. post (pb. setlnter(vars[i], vars[j], intersect[i * n + j]));
pb. post (pb. 1 eqCard(intersect[i * n + j], 1));

}

}

/4- Search for a solution
pb. get Sol ver () .setFirstSol ution(true);

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 11 of 23

pb. get Sol ver () . gener at eSear chSol ver (pb) ;
pb. get Sol ver () . addGoal (new Assi gnSet Var (new M nDonBet (pb, vars), new M nEnv(pb)));
pb. get Sol ver ().l aunch();

?/5- print the solution

for (int i =0; i <n; i++) {

i Systemout.println(vars[i].pretty());
¥

Example 3: the CycloHexane problem with Choco

Real variables areillustrated on the problem of finding the 3D configuration of a cyclohexane molecule. It is
described with a system of three non linear equations :

A2 (1 +2z72) +z* (z-24*y) =-13
A2 * (L +yh2) +y ¥ (y - 24* x) =-13
7h2 * (1 + xh2) +x * (x - 24* z) =-13

It has been taken from the Elisa project (LINA) examples.

/1- Create the problem
Abst ract Probl em pb = new Probl en();
pb. set Preci si on(le-8);

/2- Create the variable

Real Var x = pb. nakeReal Var ("x");
Real Var y = pb. nakeReal Var ("y", -1.0e8, 1.0e8);
Real Var z = pb. makeReal Var("z", -1.0e8, 1.0e8);

/3- Create and post the constraints
Real Exp expl = pb. plus(pb. mult (pb. power(y, 2), pb.plus(pb.cst(1.0), pb.power(z, 2))),
pb. mult(z, pb.mnus(z, pb.mult(pb.cst(24), y))));

Real Exp exp2 = pb. plus(pb. mult (pb. power(z, 2), pb.plus(pb.cst(1.0), pb.power(x, 2))),
pb. mult (x, pb.m nus(x, pb.mlt(pb.cst(24), 2))));

Real Exp exp3

pb. pl us(pb. mul t (pb. power (x, 2), pb.plus(pb.cst(1.0), pb.power(y, 2))),
pb. mult (y, pb.mnus(y, pb.mlt(pb.cst(24), x))));

Fquation eql = (Equation) pb.eq(expl, pb.cst(-13));
eql. addBoxedVar (y);
eql. addBoxedVar (z);

Fquati on eq2 = (Equation) pb.eq(exp2, pb.cst(-13));
eq2. addBoxedVar (x) ;
2q2. addBoxedVar (z) ;

Fquati on eq3 = (Equation) pb.eq(exp3, pb.cst(-13));
2q3. addBoxedVar (x) ;
2(q3. addBoxedVar (y) ;

pb. post (eql);
pb. post (eq2) ;
pb. post (eq3) ;

/4- Search for all solution

Sol ver sol ver = pb. get Sol ver () ;

5ol ver . set First Sol ution(true);

50l ver . gener at eSear chSol ver (pb) ;

sol ver . addGoal (new Assi gnl nterval (new Cycli cReal Var Sel ect or (pb), new Real | ncreasi ngDomai n()));
sol ver. | aunch();

/5- print the solution found

Systemout. println("x " + x.getValue());
Systemout. printin("y " + y.getValue());
Systemout.printin("z " + z.getValue());

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 12 of 23

Sear ch and branching

Search for oneor all solution

Once the problem is modelled and created thanks to the API described in previous sections, one may want to
solveit ! If only one solution is needed, thisis quite easy. The following code solves the problem and displays
the solution:

i f (pb.solve() == Bool ean. TRUE) ({
for(int i =0; i < pb.getNbIntVars(); i++) {
System out.println(pb.getlintvar(i) + " =" + ((IntDomainVar) pb.getIntVar(i)).getVal())
}
}

Notice that the solve() method returns a Boolean object instead of a primitive boolean because its value may
be null meaning that alimit has been reached. If one wants several solutions, the incremental solve API can be
used : nextSolution search for another solution in the search tree :

i f (pb.solve() == Bool ean. TRUE) {
do {
for(int i =0; i < pb.getNbIntVars(); i ++) {
System out.println(pb.getlntvar(i) + " =" + ((IntDomainVar) pb.getIntVar(i)).getVal())

}
} whil e(pb. next Sol ution() == Bool ean. TRUE);
}

The Solver

The Problem is the central element of a choco model asit allows the creation of variables and constraints. But
the control of the search process without using predefined tools is made on the Solver class. The following
code will do exactly what you get by calling the solve() method but you may access this time to the solver
once it has been generated to parameterize it in more details. We will use this piece of code in section 3 and 4
to show how the search space can be controlled in details.

Sol ver s = pb. get Sol ver ()

s. set Fi rst Sol uti on(true);

s. gener at eSear chSol ver (pb) ;

/ insert here the code to paraneterize the solver in details (adding goals, newlinmts, //etc .)
s. launch(Q);

Boolean isFeasible = pb.isFeasible();

Optimization

Optimization is done in Choco according to a variable denoting the abjective value. The objective function is
then expressed as a constraint over this variable and the rest of the problem. The API concerning optimization
proposes to minimize/maximize this objective variable (instead of a cal to pb.solve()) :

1. minimize(IntVar obj, boolean restart).
2. maximize(IntVar obj, boolean restart).

Parameter restart is a boolean indicating whether the solver will restart the search after each solution found or

if it will keep backtracking from the leaf of the last solution found. Look at the following knapsack example
where a scalar product over three variables is maximized :

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 13 of 23

Abst ract Probl em pb = new Probl em();
| nt Domai nVar obj 1 pb. makeEnum nt Var (" obj 1", 0, 7) ;
| nt Domai nVar obj 2 pb. makeEnum nt Var (" obj 1", 0, 5) ;
| nt Domai nVar obj 3 pb. makeEnum nt Var (" obj 1", 0, 3) ;
| nt Domai nVar cost pb. makeBoundl nt Var (" cout ", 0, 1000000) ;
int capacite = 34;
int[] volumes = new int[]{7,5, 3};
int[] energie = newint[]{6, 4, 2};
| capacity constraint
pb. post (pb. | eq(pb. scal ar (vol unes, new I ntVar[]{obj 1, obj 2, obj 3}), capacite));

/ objective function
pb. post (pb. eq(pb. scal ar(energi e, new I nt Var[]{obj 1, obj 2, obj 3}), cost));

pb. maxi m ze(c, fal se);

Limiting the search space

Limits may be imposed on the search algorithm to avoid spending too much time in the exploration. The
limits are updated and checked each time a new node is created. The API is given on the Solver class:

1. setTimeLimit(int timeLimit): stops the search algorithm after timeLimit milliseconds have been spent
searching.
2. setNodeLimit(int nodeLimit): stops the search algorithm after nodeLimit nodes have been expanded.

For example, to stop the search after 30 seconds, just add the following line ((before a call to pb.solve()):

pb. get Sol ver (). set Ti neLi m t (30000) ;

To define your own limits/statistics (notice that alimit object can be used only to get statistics about the
search), you can create a limit object by extending the AbstractGlobal SearchLimit class or implementing
directly the interface 1Global SearchLimit. Limits are managed at each node of the tree search and are updated
each time anode is open or closed. Notice that limits are therefore time consuming. Implementing its own
limit need only to specify to the following interface :

* %
/: The interface of objects limting the gl obal search exploration
pu/blic interface | d obal SearchLinit extends Entity {
* %
/* resets the limt (the counter run from now on)
* @aramfirst true for the very first initialization, false for subsequent ones
*
pu/blic voi d reset(boolean first);

/**

* notify the linit object whenever a new node is created in the search tree

* @aram solver the controller of the search exploration, nmanaging the limt

* @eturn true if the linmt accepts the creation of the new node, false otherw se
*/

publ i ¢ bool ean newNode(Abstract d obal Sear chSol ver sol ver);

/**

* notify the linit object whenever the search closes a node in the search tree
* @aram solver the controller of the search exploration, managing the limt

* @eturn true if the limt accepts the death of the new node, false otherw se
*/

publ i ¢ bool ean endNode(Abst ract d obal Sear chSol ver sol ver);

Look at the following example to see a concrete implementation of the previous interface. We define here a
limit on the depth of the search (which is not found by default in choco). The getWorldindex() is used to get

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 14 of 23

the current world, i.e the current depth of the search or the number of choices which have been done from
baseWorld. public class DepthLimit extends AbstractGlobal SearchLimit {

publ i c DepthLi m t (Abstractd obal SearchSol ver theSolver, int theLinmt) {
super (theSol ver,theLinit);
unit = "deep";

}

publ i ¢ bool ean newNode(Abstract @ obal Sear chSol ver sol ver) {
nb = Mat h. max(nb, this.getProblen().getWrldlndex() —
this.getProblem().getSolver() .getSearchSolver() .baseWorld);
return (nb < nbMax);

}

public boolean endNode(AbstractGlobalSearchSolver solver) {
return true;

}

public void reset(boolean first) {
it (first) {

nbTot = 0;
} else {

nbTot = Math.max(nbTot, nb);
}

nb = 0;

}

Once you have implemented your own limit, you need to tell the search solver to take it into account. Instead
of using a call to the solve() method, you have to create the search solver by yourself and add the limit to its
limitslist such as in the following code :

Solver s = pb.getSolver();

s.setFirstSolution(true);

s.generateSearchSolver(pb);

s.getSearchSolver().limits.add(new DepthLimit(s.getSearchSolver(),10));
s. launch(Q);

Define your own tree search

A key ingredient of any constraint approach is a clever branching strategy. The construction of the search tree
is done according to a serie of Branching objects (that plays the role of achieving intermediate goals in logic
programming). The user may specify the sequence of branching objects to be used to build the search tree. We
will first present in this section how to define your own branching object and how to compose it with other
goals. We will start with a very simple and common way to branch by choosing values for variables and
specially how to define its own variable/value selection strategy. We will then focus on more complex
branching such as dichotomic or n-ary choices. Finally we will show how to control the search space in more
details with well known strategy such as LDS (Limited discrepancy search).

Building a sequence of branching object

Adding a new goal is made through the problem solver (Solver s = pb.getSolver()) with the addGoal
(AbstractBranching b) method of the solver. As for the addition of your own limit, don’t call the solve()
method but instead, build the solver by yourself add your sequence of branching and call the launch() method
of the solver. The following example add three branching objects on integer variables varsl, vars2 and set
variables svars. The first two branching are both AssignVar (see next section) but uses two different
variable/values selection strategies:

ESoIver s = pb.getSolver();
ipb.getSolver() .generateSearchSolver(pb);

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 15 of 23

.attachGoal (new Assi gnVar (new M nDomn(pb, varsl), new | ncreasi ngDomain()));
. addCGoal (new Assi gnVar (new DonOver Deg(pb, vars2), new Decr easi ngDonai n());
. addGoal (new Assi gnSet Var (new M nDonSet (pb, svars), new M nEnv(pb)));

. launch();

OO

Variable/value selection for AssignVar branching

Choco provides means of composing search trees by specifying the heuristics used for selecting variables and
values on integer variables in case of AssignVar branchings. An AssignVar branching takes as input the
variable and value selection strategy which are based on the following interfaces:

1. lIntVarSelector : Interface for the variable selection
2. |Vadlterator : Interface that provide away of describing an iteration scheme on the domain of avariable
3. IVaSelector : Interface for avalue selection

Default branching heuristics

The default branching heuristic used by Choco isto choose the variable with current minimum domain size
first and to take its values in increasing order. The default branchings currently supported by choco are
available in the packages choco.integer.search for integer variables (choco.set.search for set variables).
Concrete examples of the previous interfaces are the classes MinDomain, MostConstrained, DomOverDeg,
RandomintVarSelector ... If you only want to use one single goa but with customized value and variable
heuristics, you can use the API available on the Solver class (before calling the solve() method) as shown on
the following example:

pb. get Sol ver (). set Var Sel ect or (new Random nt Var Sel ect or (pb));

Changing the values enumeration/sel ection can be done in the same way:

| select the value in increasing order

pb. get Sol ver (). setVal I terator(new Decreasi ngDormai n());

| or select a random val ue

pb. get Sol ver (). set Val Sel ect or (new Random nt Val Sel ector());

How to define it own variable selection Y ou may extend this small library of branching schemes and
heuristics by defining your own concrete classes of |IntVarSelector, 1Vallterator and |V al Selector. We give
here an example of an IntVarSelector with the implementation of a static variable ordering :

public class StaticVarOrder inplements |IntVarSelector {
/**
* the sequence of variables that need be instantiated
*/
protected I ntDomainVar[] vars;

public StaticVarOrder(IntVar[] vars) {
this.vars = vars;
}

public | ntDomai nVar sel ectlntVar() {
for (int i =0; i <vars.length; i++) {
if (lvars[i].islnstantiated()) {
return vars[i];
}
}
return null;

}

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 16 of 23

Notice on this example that you only need to implement the method selectntV ar which belongsto the
contract of 11ntV arSelector. Once the branching is finished, it returns null and the next branching (if one
exists) istaken by the search algorithm to continue the search, otherwise, the search stops as all variable are
instantiated. To avoid the loop over the variables of the branching, a backtrackable integer (Storedint) could
be used to remember the last instantiated variable and to directly select the next onein the table. Notice that
backtrackabl e structures could be used in any of the code presented in this chapter to speedup the computation
of dynamic choices.

Beyond Variable/value selection, how to defineits own Branching object

A branching object is based on the IntBranching interface where each alternative is labelled with an integer.

/**
* I ntBranchi ng objects are specific branching objects where each branch is labelled with an integer.
* This is typically useful for choice points in search trees
*
/
public interface |IntBranching extends Branching {

| * %

* sel ecting the object under scrutiny (that object on which an alternative will be set)
* @eturn the object on which an alternative will be set (often a variable)
*/

publ i c Object sel ect Branchi nglbject();

/**

* performs the action, so that we go down a branch fromthe current choice point
* @aram x the object on which the alternative is set

* @arami the |abel of the branch that we want to go down

*/

public void goDownBranch(Object x, int i) throws ContradictionException;

/**
* perforns the action, so that we go down up the current branch to the father choice point
* @aram x the object on which the alternative has been set at the father choice point
* @arami the |abel of the branch that has been travelled down fromthe father choice point
*
/
public void goUpBranch(Cbject x, int i) throws ContradictionException;

/**

* Conputes the search index of the first branch of the choice point
* @aram x the object on which the alternative is set

* @eturn the index of the first branch

*/

public int getFirstBranch(Object Xx);

/**

* Conputes the search index of the next branch of the choice point
* @aram x the object on which the alternative is set

* @arami the index of the current branch

* @eturn the index of the next branch

*/

public int getNextBranch(Object x, int i);

/**

* Checks whether all branches have al ready been explored at the current choice point
* @aram x the object on which the alternative is set

* @arami the index of the last branch

* @eturn true if no nore branches can be generated

*/

publ i c bool ean fi ni shedBranchi ng(Qoject x, int i);

The AssignVar branching typically implements the computation of the branching object
(selectBranchingObject()) by delegating it to its VarSelector as well as first and next branch computation are
delegated to its Value Selector or Iterator. So in this case, the value chosen is used to label the branch. Finally
the AssignVar branching simply implements the goDownBranch(Object x, i) by assigning the valuei to
variable x (cast in this case as an IntVar) and propagating this choice:

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 17 of 23

public void goDownBranch(Object x, int i) throws ContradictionException {
(I nt Domai nVar) x.setVal (i);
manager . pr obl em propagate();

}

public void goUpBranch(Cbject x, int i) throws ContradictionException {
((I'nt Domai nVar) x).renVal (i);
manager . pr obl em propagate();

}

Notice that in this implementation, we choose to propagate the removal of a value when this value has proved
to lead to afailure. We could have chosen to leave the goUpBranch(Object X, int i) empty and to keep
branching with the next values.

An example of a dichotomic branching

In the case of a dichotomic branching, we use a predefined AbstractBinlntBranching where there is only two
aternatives at each choice point. So no value selection strategy is used and the branch selection is ssimply
implemented as :

publ i c abstract class AbstractBinlntBranchi ng extends Abstract!| ntBranching {
public int getFirstBranch(Object x) {
return 1;
}
public int getNextBranch(Object x, int i) {
return 2;
}
publ i c bool ean fini shedBranchi ng(Object x, int i) {
return (i == 2);
}
}

On this basis, gopDownBranch(Object X, int i) is the single method that needs to be implemented. It computes
the middle point of the domain and branches first on the right side by updating the lower bound of the variable
and then on the left side by updating the upper bound.

/**
* A di chotomi ¢ branchi ng exanpl e
*/
publ i ¢ cl ass Di chot om cBranchi ng extends AbstractBinlntBranching inplenents IntBranching {

protected | VarSel ector var Sel ector;

publ i ¢ Di chot onmi cBranchi ng(| Var Sel ector varSel) {
this.varSel ector = var Sel;
}

/**
* del egates to the var selector the choice of the branching variable
*/
public Object sel ectBranchi nglbject() {
return var Sel ector. sel ectVar();
}

public void goDownBranch(Object x, int i) throws ContradictionException {
I nt Domai nVar var = (I ntDomai nVar) x;

/1 we conpute the bound to split
int bound = (var.getSup() - var.getInf()) / 2 + var.getInf() + 1;

switch (i) {
case 1: {
var. set | nf (bound) ;

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 18 of 23

manager . pr obl em propagat e() ; br eak;

case 2: {
var. set Sup(bound - 1);
manager . pr obl em propagat e() ; br eak;

Branching by posting constraints

Y ou can easily implement complex branching by posting a constraint instead of acting on the domain of a
variable aswe only did at that time. It is indeed useful to implement n-ary branching (on more than one
variable). Just for example, the previous code can be changed by the following where a “greater than equal”
and “less than equal” constraint are posted instead of calling the updatelnf and updateSup methods :

publ i ¢ void goDownBranch(Cbject x, int i) throws Contradicti onException {
I nt Domai nVar var = (I ntDomai nVar) x;
int bound = (var.getSup() - var.getInf()) / 2 + var.getInf() + 1;

switch (i) {

case 1: {
manager . pr obl em post (manager . probl em geq(var, bound));
manager . pr obl em propagat e() ; br eak;

}

case 2: {
manager . pr obl em post (manager. probl em | eq(var, bound-1));
manager . pr obl em propagate(); break ;

LDS (Limited discrepancy sear ch)

Harvey and Ginsberg describe an interesting tree search algorithm called limited discrepancy search (LDS)
that exploits the existence of good heuristics. LDS is based on the assumption that a solution constructed
according to a good value-ordering heuristic is unlikely to contain many mistakes. For a path in the search
tree, the number of nodes where the chosen value differs from that specified by the value-ordering heuristic is
called the discrepancy count. When LDS is forced to backtrack, it examines new paths in increasing order of
the discrepancy count. A tree search with a fixed limited discrepancy according to a given branching can be
implemented as a specific Branching which maintains the number of discrepancy of the current path using a
backtrackable integer. All methods are delegated to the branching which is limited (attribute delegate) except
the getNextBranch and finishedBranching which counts the discrepancy and check it does not violates the
limit allowed. The LimitedSearch class constitutes a kind of meta-branching which applies a limited
discrepancy search to its delegate branching.

public class LimtedSearch extends Abstract!|ntBranching inplenents |ntBranching {

I nt Branchi ng del egat e;
| Statel nt di screpancyCount;
int maxDi screpancy;

public LimtedSearch(Problem pb, |ntBranching del egate, int nbViol sMax) {
this. del egate = del egate;
di screpancyCount = new Storedlnt(pb. getEnvironment (), 0);
maxDi screpancy = nbVi ol sMax;

}

public int getNextBranch(Object x, int i) {
di screpancyCount . add(1);
return del egate. get Next Branch(x, i);

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 19 of 23

publ i c bool ean fini shedBranchi ng(Object x, int i) {
if (discrepancyCount.get() < maxDi screpancy)
return del egate. finishedBranching(x, i);
return true;
}

publ i c Object sel ectBranchi nglbject() {
return del egate. sel ect Branchi ngObj ect () ;
}

public int getFirstBranch(Object x) {
return del egate. get Fi rstBranch(x);
}

public void goDownBranch(Object x, int i) throws ContradictionException {
del egat e. goDownBr anch(x, i);
}

public void goUpBranch(Cbject x, int i) throws ContradictionException {
del egat e. goUpBranch(x, i);
}

Limited Depth first search

Another way to limit the tree search exploration is to limit the depth of the tree. Once the limited depth is
reached, we want the solver to branch according to the heuristic without backtracking at all. Every methods of
the IntBranching class is simply implemented by delegating it to its delegate attribut. The only method to
change is the finishedBranching which returns true as soon as the limit of depth has been reached. Indeed, As
for the LDS above, after this point, no alternatives will be tried as the branching always tellsthe solver it is
finished without asking the delegate.

publ i ¢ class DepthLi m tedSearch extends AbstractlntBranching inplenments IntBranching {
I nt Branchi ng del egat e;
i nt maxDept h;

publ i c DepthLi m tedSearch (IntBranching del egate, int maxDepth) ({
thi s. del egate = del egate;
this. maxDepth = maxDept h;

}

publ i c bool ean fini shedBranching(Object x, int i) {
int startDepth = this.getProblem().getSolver().getSearchSol ver().baseWrl d;
i f (manager. probl em get Wrl dlndex() - startDepth < nmaxDepth)
return del egate. finishedBranching(x, i);
return true;

}

publ i c Object sel ectBranchi nglbject() {
return del egate. sel ect Branchi ngObj ect () ;
}

public int getFirstBranch(Object x) {
return del egate. get Fi rstBranch(x);
}

public int getNextBranch(Object x, int i) {
return del egate. get Next Branch(x, i);
}

public voi d goDownBranch(Object x, int i) throws ContradictionException {
del egat e. goDownBr anch(x, i);
}

public void goUpBranch(Cbject x, int i) throws ContradictionException {
del egat e. goUpBranch(x, i);
}

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 20 of 23

How to implement your own constraint ?

This section describes how to add you own constraint, with specific propagation algorithms. Note that this
section isonly useful in case you want to express a constraint for which the basic propagation algorithms
(using tables of tuples, or boolean predictates) are not efficient enough to propagate the constraint.

The general process consists in defining a new constraint class and implementing the various propagation
methods. We recommend the user to follow the examples of existing contraint classes (for instance, such as
GreaterOrEqual XY C for abinary inequality)

The constraint hierarchy

Each new constraint must be represented by an object implementing the Constraint interface. To help the user
defining new constraint classes, several abstract classes defining Constraint have been implemented. These
abstract classes provide the user with a management of the constraint network and the propagation
engineering. They should be used as much as possible.

For constraints on integer variables, the easiest way to implement your own constraint is to inherit from one of
the following classes:

1. AbstractUnIntConstraint, AbstractBinlntConstraint, AbstractTernlntConstraint : A default
implementation for constraint involving one, two or three integer variables (IntDomainVar).

2. AbstractLargelntConstraint : A default implementation for constraint involving any number of integer
variables.

Constraints over integers must implement the following methods (grouped in the IntConstraint interface).

In the same way, SetConstraint can inherit from :

1. AbstractUnSetConstraint, AbstractBinSetConstraint, AbstractTernSetConstraint.
2. AbstractL argeSetConstraint.

Moreover, Constraints stating on integer and set variables can be written by inheriting from
AbstractMixedConstraint.

Backtrackable structures

Updating domains of variable (indexes and links with
propagation)

The event system handled by the propagation mechanism
(constawake, asynchronous)

An Example: the occurrence constraint

Solver settings

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 21 of 23

The solver object is responsible for managing the search for solutions. It is accessed from the prablem, viathe
getSolver method. This object may be parameterized before actually searching for a solution, in order to
control its behavior. Thisis done by means of of setter methods on the Solver object.

The first possibility for Solver parameterization concern trace logs.
L ogs

The solver classisinstrumented in order to produce trace statements throughout search. The verbosity level of
the solver can be set, by the following static method

Sol ver . set Ver bosi t y(Sol ver. SEARCH) ;

The code above ensure that messages are printed in order to describe the construction of the search tree. For
instance, the following trace

Four verbosity levels are available:

Solver .SILENT prints nothing

Solver .SOLUTION prints messages whenever a solution is reached
Solver SEARCH prints a message at each choice point

Solver PROPAGATION prints messages to trace propagation

Note, that in the case of averbosity set to Solver SEARCH, trace statements are printed up to a maximal
depth in the search tree. By default, only the 5 first levels are traced, but you can change the value of this
threshold with the following setter method

pb. get Sol ver (). set Loggi ngMaxDept h(10)

which changes this value to 10.

|nside choco
CHOCO CVS Source public access

The Java Choco source can be checked out from the SourceForge CV S repository directly. Hereisabasic
Howto under Eclipse IDE:

= 1. Inthe workspace of your choice, do "New Project" and choose "CV S/ Checkout Projects from
Ccvs'

m 2. Check "Create anew repository location” and fill the following info:

Host choco. cvs. sour cef or ge. net
Repository path : / cvsr oot/ choco
User : anonynous

(no password)
(keep pserver and default port)

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco Page 22 of 23

m 3. "Usean existing module[...]" and select "java"
m 4. Follow the next screens as usual to create the project.

Y ou will need junit jar to compile the project properly (JUnit.org (http://www.junit.org/) if you don't have it
aready in Eclipse). To generate the choco.jar, just export all files, excluding test* and chocosamples.

Packages description

Packages (Javadoc)
choco The root package for the Constraint Programming Kernel
A package devoted to propagation over Boolean combinations of
choco.bool constraints

A package devoted to control (branching schemes and heuristics) for

choco.branch branching in a search tree

choco.global

choco.global.matching

choco.integer A package devoted to propagation over integer domain variables.
choco.integer.constraints A package devoted to constraints over integers.

choco.integer.constraints.extension

A package devoted to choice points and search heuristics specific to
integer variables

A package devoted to the management of variables and domains for

choco.integer.search

choco.integer.var

integers

choco.mem A package devoted to backtrackable data structures.

choco.palm A package devoted to e-tools - an explanation-based solver and all the
needed tools.

choco.palm.benders
choco.palm.benders.explain
choco.palm.benders.search
choco.palm.chj
choco.palm.chj.explain
choco.palm.chj.integer
choco.palm.cbj.search
choco.palm.dbt

This package contains generic interfaces and classes for storing and

choco.palm.dbt.explain managing explanations,
choco.palm.dbt.integer

A package devoted to integer explanations, that is explanations for the
different kinds of variables.

A package devoted to an extension of Choco propagation tool to support
explanation features.

choco.pam.dbt.search A package devoted to explanation based search.
choco.palm.dbt.search.pathrepair A package devoted to the decision-repair algorithm.
choco.palm.global.matching

choco.palm.dbt.integer.explain

choco.palm.dbt.prop

This package contains classes for integer-based objects (integer
constraints, variables, explanations).

choco.palm.integer.constraints Package devoted for integer constraints.

This package contains classes for real-based objects (real constraints,
variables, explanations).

choco.palm.integer

choco.palm.real

http://choco-solver.net/index.phptitle=User_guide 10/11/2006

User guide - Choco

choco.palm.real.constraints
choco.palm.real.exp
choco.palm.real.explain
choco.palm.real.search
choco.palm.sear ch

choco.prop

choco.r eal
choco.real.constraint

choco.real.exp

choco.real.search

choco.real.var
choco.search
choco.set
choco.set.constraint
choco.set.search
choco.set.var
choco.util

Page 23 of 23

A package of classes devoted to the event model of constraint
propagation

A package devoted to continuous propagation based on interval
arithmetic.

A package devoted continuous constraints.

A package devoted real expression, that is composition of operators over
real variables.

A package devoted to serach tools based on real constraints and
variables.

A package devoted to contiinuous domains and variables.
A package devoted to the the control of search algorithms

A package devoted to non-backtrackable data structures

Retrieved from "http://choco-solver.net/index.phptitle=User_guide"

http://choco-solver.net/index.phptitle=User_guide

= Thispage was last modified 18:50, 3 October 2006.

10/11/2006

