
by Patrick
August 7th, 2018

Combining Cliquer and MCSa

Introduction

Cliquer [2] is essentially a Russian doll search [7]. Given a graph G, Cliquer finds the largest clique in the
set of vertices {1} and records the size of this clique in c[1]. Cliquer then searches for the largest clique
in the set of vertices {1,2} and records the size of this in c[2]. On the ith iteration Cliquer finds the
largest clique in the set of vertices {1..i} and records this size in c[i]. Within an iteration, if a vertex v is
selected from the candidate set and c[v] plus the size of the currently growing clique cannot displace the
incumbent search can be abandoned. One hard restriction on Cliquer is that vertices in the candidate
set must be visited in decreasing order.

MCSa is essentially one of Tomita’s algorithms [6, 4, 5]. At each recursive call, the candidate set is
coloured, with each vertex given a colour number. Vertices are then selected in non-increasing colour
order (i.e. from one colour class at a time, so as to exhaust one colour class before going on to another).
Consequently, if the colour number of a selected vertex v plus the size of the currently growing clique
cannot displace the incumbent search can be abandoned.

Therefore we have two algorithms, one computing an exact bound but committed to a static vertex
selection strategy, the other performing a colouring step at each recurisve call and dynamically selecting
vertices in a coloured order. These two algorithms can be combined, with some compromise. This new
algorithm is presented below along with a small empirical study.

MCSCliquer = Cliquer + MCSa

The trick used to combine these two approaches is to associate with each vertex a colour and to associate
with each colour, the number of times that colour has been used. In addition we maintain a count of
the number of colours used. For example, if we have a candidate set P = {a, b, c, d, e} and these vertices
are coloured red, green, blue, red and green respectively then we have used three colours. If vertices a
is removed from the candidate set then the number of times red is used in P is now one. If vertex d is
later removed from P then red is not used at all, consequently we can reduce the count of the number
of colours used, down from three to two.

Algorithm 1 has an outer loop, lines 17 to 19, from a plain vanilla Cliquer algorithm, i.e. at iteration
i we find the largest clique in the set of vertices {1, . . . , i} via the call to expand in line 18, where the the
growing clique is seeded with vertex i and the candidate set is the set of vertices in {1, . . . , i} that are
adjacent to vertex i (and we assume that there are no self-loops in the graph). On returning from the
call to expand, at line 19 we record the size of the largest clique found in the set of vertices {1, . . . , i}.

Actual search takes place courtesy of the expand function of lines 1 to 12. It takes as arguments
the growing clique C and the candidate set P . On entering expand, if a new largest clique is found we
take note of this (line 3, and we might also save off that clique). In line 4 the candidate set is greedily
coloured, such that adjacent vertices are placed in different colour classes. Consequently, colour classes
are independent sets (composed of non-adjacent vertices) and the size of the clique is bounded from above
by the number of colours used. The colouring function returns a triple: the number of colours used, a
vector giving the colour assigned to each vertex, a vector giving for each colour the number of times it
was used. Vertices are then visited in Cliquer order, i.e. from highest index to lowest index. We now
have two bounds that we can use to limit search. The first is a colour bound, line 6, where the number
of colours used might not suffice to unseat the incumbent. The next is the Cliquer bound, line 7, where



we test if the largest clique found, in previous iterations of lines 18 and 19, using vertices {1, . . . , v} is
insufficient to unseat the incumbent. In lines 8 and 9 we update the colour bound, by decrementing the
number of times the colour of the current vertex has been used (lines 8 and 9) and then conditionally
decrementing the number of colours used (line 10). A recursive call to expand is then made, line 11,
with the current vertex v added to the growing clique and a new candidate set made of the vertices in
P that are adjacent to v (again, we assume no self-loops). On return from the recursive call, the current
vertex v is removed from the candidate set (line 12).

Algorithm 1: MCSCliquer

1 expand(C,P )

2 begin
3 maxSize ←max(maxSize, ∣C ∣)

4 {numberOfColours, colourOfVertex , timesColourUsed} ← colourVertices(P)

5 for v ∈ reverse(P ) do
6 if ∣C ∣ + numberOfColours ≤ maxSize then return
7 if ∣C ∣ + c[v] ≤ maxSize then return
8 colour ← colourOfVertex [v]
9 timesColourUsed[colour] ← timesColourUsed[colour] − 1

10 if timesColourUsed[colour] = 0 then numberOfColours ← numberOfColours − 1
11 expand(C ∪ {v},neighbourhood(v) ∩P)

12 P .remove(v)

13 MCSCliquer(G)

14 begin
15 maxSize ← 0
16 for i ∈ {1, . . . , n} do c[i] ← 0
17 for i ∈ {1, . . . , n} do
18 expand({i}, neighbourhood(i) ∩ {1, . . . , i})
19 c[i] ← maxSize

It is worth noting that if we remove line 6, the edited algorithm explores the same search space as Cliquer.

A small empirical study

We would hope that at least, our new algorithms would be better than Cliquer and maybe not much
worse that MCSa, i.e. its performance would place it between Cliquer and MCSa. To investigate this
we use a subset of the DIMACS instances [1], affectionately referred to as the Goldilocks instances, i.e.
those that are not to hard and not too easy [3]. The experiments were run on Intel (R) Xeon(R) CPU
E5-2660 @ 2.20GHz processors with 20480 KB of cache, 132 GB of memory, Scientific Linux release 6.10,
and all algorithms coded in Java 1.8.051. Since Cliquer dictates that vertices be visited in decreasing
order, the adjacency matrix was permuted and vertices renamed such that that verices are visited in
non-decreasing degree order. The results of the experiments are shown in Table 1 below. Runtimes were
capped at 14400 seconds, i.e. 4 hours. If the algorithm failed to terminate in that time we have a table
entry of a dash. What we see is that Cliquer is truly hopeless, whereas MCSCliquer in the same ball
park as MCSa.

2



instance Cliquer seconds MCSCliquer seconds MCSa seconds
brock200-1 116,595,420 77.6 707,438 4.4 524,723 4.6
brock400-1 15,822,180,389 - 326,117,237 3,442 198,359,829 3,862
brock400-2 15,462,284,410 - 203,817,831 2,433 145,597,994 2,930
brock400-3 16,131,413,323 - 100,020,998 996 120,230,513 2,074
brock400-4 15,705,637,222 - 78,972,196 769 54,440,888 1,076
brock800-4 15,227,709,741 - 1,419,549,129 - 640,444,536 -
MANN-a27 23,985,802,214 - 67,735 11.6 38,019 8.4
MANN-a45 10,202,369,582 - 11,590,734 - 2,851,572 4,482
p-hat1000-1 7,991,346 6.9 423,903 3.2 176,576 2.7
p-hat1000-2 11,208,331,187 - 81,114,517 2,562 34,473,978 1,784
p-hat1500-1 72,967,408 62.5 3,188,018 25.6 1,184,526 11.1
p-hat300-3 3,720,813,417 4,630 719,086 13.1 624,947 17.8
p-hat500-2 469,855,484 653 132,003 3.1 114,009 2.7
p-hat500-3 12,813,959,841 - 68,433,164 2,424 39,260,458 1,959
p-hat700-2 11,687,983,900 - 1,385,300 42.6 750,903 43.6
san1000 45,875,765,421 - 713,601 5.3 150,725 11.9
san200-0.9-2 16,313,740,281 - 759,195 10.3 229,567 4.4
san200-0.9-3 14,918,177,622 - 34,784,225 526 6,815,145 135
san400-0.7-1 30,211,449,997 - 2,189,970 15.2 119,356 3.7
san400-0.7-2 33,056,676,679 - 3,614,133 43.7 889,125 29.9
san400-0.9-1 15,681,737,224 - 958,746,155 - 4,536,723 672
sanr200-0.9 14,063,255,062 - 47,959,328 797 14,921,850 336
sanr400-0.5 13,957,283 12.3 362,527 3.2 320,110 4.3
sanr400-0.7 15,705,823,814 - 123,148,404 1,111 64,412,015 920

Table 1: DIMACS Goldilocks instances, calls to expand and run time in seconds.

Conclusion

The new algorithm’s performance is interesting in that although it is algorithmically different from MCSa
and Cliquer it’s performance is quite similar to MCSa. Although MCSa is restricted to visiting vertices
in colour order, by removing this restriction and using colour-counting performance appears to be little
affected. This might suggest further investigation. Also, there has been some Cliquer-like algorithms
coming from the max weight clique community, and this might also be revisited.

References

[1] DIMACS clique benchmark instances. ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique.

[2] P. R. J. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics,
120(1-3):197–207, 2002.

[3] F. Prefect and P. Prosser. Empirical algorithmics: draw your own conclusions. CoRR, abs/1412.3333,
2014.

[4] E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a maximum clique
and computational experiments. Journal of Global Optimization, 37:95–111, 2007.

[5] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki. A simple and faster branch-
and-bound algorithm for finding maximum clique. In WALCOM 2010, LNCS 5942, pages 191–203,
2010.

[6] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for generating all maximal
cliques and computational experiments. Theoretical Computer Science, 363:28–42, 2006.

[7] G. Verfaillie, M. Lemâıtre, and T. Schiex. Russian doll search for solving constraint optimization
problems. In Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth
Innovative Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon,
USA, August 4-8, 1996, Volume 1., pages 181–187, 1996.

3


