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The stable marriage problem is that of matching n men and n women, each of 
whom has ranked the members of the opposite sex in order of preference, so that no 
unmatched couple both prefer each other to their partners under the matching. At 
least one stable matching exists for every stable marriage instance, and efficient 
algorithms for finding such a matching are well known. The stable roommates 
problem involves a single set of even cardinality n , each member of which ranks all 
the others in order of preference. A stable matching is now a partition of this single 
set into n/2 pairs so that no two unmatched members both prefer each other to their 
partners under the matching. In this case, there are problem instances for which no 
stable matching exists. However, the present paper describes an O(n2) algorithm 
that will determine, for any instance of the problem, whether a stable matching 
exists, and if so, will find such a matching. Q 1985 AC&~ PESS, IX. 

1. INTRODUCTION AND HISTORY 

The Stable Marriage Problem 

The stable marriage assignment problem was introduced by Gale and 
Shapley [l] in the context of assigning applicants to colleges, taking into 
account the preferences of both the applicants and the colleges. 

In its most familiar form, a problem instance involves two disjoint sets of 
cardinality n, the men and the women, with each individual having ranked 
the n members of the opposite sex in order of preference. A stable matching 
is defined as a one-to-one correspondence between the men and women 
with the property that there is no couple both of whom prefer each other to 
their actual partners. 

Gale and Shapley demonstrated that at least one stable matching exists 
for every problem instance, and described an algorithm that would yield one 
such solution. McVitie and Wilson [4] proposed an alternative recursive 
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algorithm for generating a stable matching, and extended this approach to 
an algorithm yielding all stable matchings for a given problem instance. 
Implementations of these algorithms in ALGOL60 were provided [5]. Both 
the Gale/Shapley and the McVitie/Wilson algorithms have been subjected 
to a variety of analyses (see, e.g., [2,6,3]). For each, the worst-case time- 
complexity is 0(n2), but it is also known that, on average, the “core” of 
each algorithm (as opposed to setting up the data structures) involves a 
number of operations that is 0( n log n ). 

The problem became more widely known as a result of two later works. 
In [8], Wirth developed an alternative algorithm for generating all stable 
matchings, as an illustration of the technique of backtracking. Though more 
transparent than McVitie and Wilson’s approach, tests have revealed that 
Wirth’s algorithm is dramatically less efficient. Then, in an eminently 
readable account [3], Knuth investigated a wide range of issues thrown up 
by the stable marriage problem, including connections with a .number of 
other combinatorial problems, detailed analysis of the average behavior of 
McVitie and Wilson’s algorithm, and a number of extensions of this 
“fundamental” algorithm. Finally, Knuth presented a list of twelve research 
problems related to stable marriage. 

The Roommates Problem 

One of the research problems mentioned by Knuth, the so-called room- 
mates problem, had originally been described in the paper of Gale and 
Shapley [l], and has also been raised by Wilson [7]. The roommates problem 
is essentially a version of the stable marriage problem involving just one set. 
Each person in the set, of even cardinality n, ranks the n - 1 others in 
order of preference. The object is to find a stable matching, which is a 
partition of the set into n/2 pairs of roommates such that no two persons 
who are not roommates both prefer each other to their actual partners. 

Gale and Shapley had already demonstrated that, contrary to the case of 
the stable marriage problem, roommates instances exist for which no stable 
matching is possible. They gave the instance of size 4 described by the 
preference lists below, in which anyone paired with person 4 will cause 
instability. 

Person Preference list 

1 234 
2 314 
3 124 
4 arbitrary 

Knuth [3] demonstrated that multiple solutions could exist, giving the 
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instance of size 8 below, for which there are exactly 3 stable 
matchings, namely {l/2, 3/4, 5/8,6/7}, {l/4,2/3, 5/6,7/8}, and 
{l/5,2/6,3/7,4/8}. 

1 2546783 
2 3617854 
3 4728561 
4 1835672 
5 6182347 
6 7253418 
7 8364125 
8 5471236 

Knuth asked for an efficient (polynomial-time in the worst case) algorithm 
to generate a solution, if one exists, to any given instance of the roommates 
problem, and suggested that it may be possible to prove the problem 
NP-complete. 

It is the primary purpose of this note to present such an algorithm, to 
prove its effectiveness, and to demonstrate its polynomial-time worst-case 
behaviour. In addition, an implementation of the algorithm (in Pascal) is 
given, and the results of some computational experience are presented. 

2. THE ROOMMATES ALGORITHM 

First Phase 

The algorithm breaks down naturally into two phases, the first of which is 
not unlike the McVitie/Wilson algorithm for the stable marriage problem. 
The first phase of the algorithm is based on a sequence of “proposals” made 
by one person to another. This sequence of proposals proceeds with each 
individual pursuing the following strategies: 

(i) If x receives a proposal from y, then 
(a) he rejects it at once if he already holds a better proposal (i.e., a 

proposal from someone higher than y in his preference list); 
(b) he holds it for consideration otherwise, simultaneously rejecting 

any poorer proposal that he currently holds. 
(ii) An individual x proposes to the others in the order in which they 

appear in his preference list, stopping when a promise of consideration is 
received; any subsequent rejection causes x to continue immediately his 
sequence of proposals. 
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The individuals begin their proposal sequences one at a time, and each 
person’s first proposal will, in general, lead to a chain of proposals and 
rejections that terminates only when some person receives his first proposal. 

EXAMPLE. Consider the problem instance of size 6 specified by the 
preference matrix below. (The rows of the preference matrix are the 
preference lists.) 

1 46253 
2 63514 
3 45162 
4 26513 
5 42361 
6 51423 

According to the above rules, the following sequence of proposals and 
rejections takes place: 

1 proposes to 4; 4 holds 1; 
2 proposes to 6; 6 holds 2; 
3 proposes to 4; 4 rejects 3; 
3 proposes to 5; 5 holds 3; 
4 proposes to 2; 2 holds 4; 
5 proposes to 4; 4 holds 5 and rejects 1; 
1 proposes to 6; 6 holds 1 and rejects 2; 
2 proposes to 3; 3 holds 2; 
6 proposes to 5; 5 rejects 6; 
6 proposes to 1; 1 holds 6. 

This phase of the algorithm will terminate either 

(i) with every person holding a proposal (as in the example above), or 
(ii) with one person rejected by everyone (as would happen, for exam- 

ple, in the problem instance of size 4 mentioned in Sect. 1). 

In case (ii) it is not hard to see that everyone but the rejected person holds 
a proposal, because they have alI rejected him. Hence everyone else has also 
made a proposal. The general outline of this phase of the algorithm is as 
follows: 

set-proposed-to := [ 1; 
for person := 1 to n do 
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begin 
proposer := person; 
repeat 

proposer proposes to his next-choice; 
if not rejected 
then if next-choice in set-proposed-to 

then proposer := next-choice’s reject 
until not (next-choice in set-proposed-to); 
set-proposed-to := set-proposed-to + [next-choice] 

end 

Note that possibility (ii) above can be detected by setting a sentinel nth 
column in the preference matrix so that each person’s n th choice is himself. 
Exit from the for loop with next-choice equal to proposer is then the signal 
that this individual has been rejected by all of the others. 

A consequence of the above proposal strategies is the following crucial 
lemma. 

LEMMA 1. If y rejects x in the proposal sequence described above, then x 
and y cannot be partners in a stable matching. 

Proof Suppose that, of all the rejections that involve two individuals 
who are partners in some stable matching, the rejection of x by y is, 
chronologically, the first. Denote by M a stable matching in which x and y 
are partners. 

Now, y rejected x because he either already held, or received later, a 
better proposal, say from z. But if y prefers z to x, then, for the stability of 
M, z must prefer his own partner in M, say w, to y. Now, before z could 
propose to y, he must have been rejected by w, and this rejection must have 
preceded the rejection of x by y, contradicting our initial assumption. 

From this lemma we deduce a number of useful corollaries. 

COROLLARY~ .l. If, at any stage of the proposal process, x proposes to y, 
then, in a stable matching 

(i) x cannot have a better partner than y; 

(ii) y cannot have a worse partner than x. 

Proof If x proposes to y then he has been rejected by everyone better 
than y, and (i) follows from the lemma. 

If y partners z in a stable matching, and y prefers x to z, then since by 
(i), x prefers y to his own partner, stability is violated. Hence (ii) is 
established. 

COROLLARY 1.2. If the first phase of the algorithm terminates with one 
person having been rejected by all of the others, then no stable matching exists. 
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Proof By the lemma, the rejected person has no possible partner. 

COROLLARY 1.3. If the first phase of the algorithm terminates with every 
person holding a proposal, then the preference list of possible partners for y, 
who holds a proposal from x, can be “reduced ” by deleting from it 

(i) all those to whom y prefers x; 
(ii) all those who hold a proposal from a person whom they prefer to y, 

(including all those who have rejected y ); 
In the resulting reduced preference lists, 

(iii) y is first on x’s list and x last on y ‘s; 
(iv) in general, b appears on a’s list if and only if a appears on b’s. 

Proof (i) and (ii) follow directly from Corollary 1.1 (ii); (iii) follows 
from (i) and the parenthesised part of (ii); and (iv) is self-evident. 

EXAMPLE. In our example problem instance of size 6, we reproduce the 
original preference matrix. The symbol * or t against an entry indicates that 
the entry should not appear in the reduced lists by virtue of Corollary 3 part 
(i) or (ii), respectively. 

1 4+ 6 2* 5* 3% 
2 6+ 3 5 1+ 4 
3 4+ 5 I+ 6+ 2 
4 2 6+ 5 l* 3* 
5 4 2 3 6* 1* 
6 5+ 1 4* 2* 3* 

Hence, in this case, the reduced preference lists may be displayed as follows: 

1 6 
2 3 5 4 
3 5 2 
4 2 5 
5 4 2 3 
6 1 

LEMMA 2. If, in the reduced preference lists, every list contains just one 
person, then the lists specify a stable matching. 

Proof. That the lists specify a matching is a consequence of Corollary 
1.3 (iv). 

Suppose that x prefers y to the sole person on his list. Then x was 
rejected by y, presumably because y obtained a better proposal. But the 
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final proposal held by y is from the sole person on y’s reduced list and so y 
clearly prefers this person to x. Hence there can be no instability in the 
matching specified by the reduced preference lists. 

Second Phase 

It remains to describe how we deal with the reduced preference lists when, 
as in our illustrative example, some of the lists contain more than one 
person. This brings us to the second phase of the algorithm. 

The second phase involves further reduction of the preference lists, and 
this phase 2 reduction may have to be repeated several times until one of the 
same two terminating conditions is recognised-either one person runs out 
of people to propose to, in which case no stable matching exists, or all the 
preference lists shrink to a single person, in which case they specify a stable 
matching. 

We shall formally describe the set of preference lists for a problem 
instance as reduced if 

(i) they have been subjected to a phase 1 reduction, as described in 
Corollary 1.3, and 

(ii) they have been subjected to zero or more phase 2 reductions, as 
described below. 

The key to a phase 2 reduction is the recognition of a cyclic sequence 
a,, . *. > a, of distinct persons such that 

(i) for i = l,..., r - 1, the second person in ai’s current reduced 
preference list is the first person in a. ,+i’s; we shall denote this person by 
bi+l; 

(ii) the second person in a,‘~ current reduced preference list is the first 
in ai’s; we shall denote this person by b,. 

For want of a better term, and for a reason that will emerge in Lemma 3 
below, we call such a sequence a,, . . . , a, an all-or-nothing cycle relative to 
the current reduced preference lists. 

It is very easy to find an all-or-nothing cycle. Let p1 be an arbitrary 
individual whose current reduced preference list contains more than one 
person. Generate the sequences 

qi = second person in pi’s current reduced list 
pi+l = last person in qi’s current reduced list (so that, as we shall see, qi is 

first in P~+~‘s) 
until the p sequence cycles, as it eventually must, and let 

ui = Ps+i-1 (i = 1,2,...), 
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where p, is the first element in the p sequence to be repeated. We refer to 
Pl, P2,. . .Y p,- 1 as the “ tail” of the cycle. 

EXAMPLE. In our illustrative instance of size 6, we may take p1 = 2, 
which gives . 

41 = 5 P2 = 3 

q2 = 2 P3 = 4 

43 = 5 P4 = 3 

so that s = 2, and we obtain an all-or-nothing cycle of length 2 with a, = 3, 
a2 = 4, and a tail of length 1. 

A phase 2 reduction, applied to a given set of reduced lists, and for a 
particular ah-or-nothing cycle ai,. . . , a,, involves forcing each bi (1 5 i I r) 
to reject the proposal that he holds from ai, thereby forcing each a, to 
propose to bi+i (modulo r), the second person in his current reduced list. 

As a result, just as in Corollary 1.3, all successors of ui in bi+i’s reduced 
list can be deleted, and bi+l can be deleted from their lists. For if a, 
achieves no better partner than bi+l, then, in the interests of stability, bi+l 
can settle for no worse partner than a,. It follows that parts (iii) and (iv) of 
Corollary 1.3 apply also to these more general reduced preference lists. 

The essential significance of a reduced set of preference lists is the 
following: if the original problem instance admits a stable matching, then 
there is a stable matching in which every person is partnered by someone on 
his reduced list. We say that such a matching is contained in the reduced 
lists. This crucial result is a consequence of our next lemma. 

LEMMA 3. h?t q,..., a, be an all-or-nothing cycle relative to a set of 
reduced preference lists, and denote by bi the first person in ai’s reduced list 
(1 I i I r). Then 

(i) in any stable matching contained in these reduced lists, either a, and 
bi are partners for all values of i or for no value of i; 

(ii) if there is such a stable matching in which a, and bi are partners, 
then there is another in which they are not. 

Proof: (i) Considering subscripts modulo r, suppose that, for some fixed 
i, uj and bi are partners in a particular stable matching that is contained in 
the reduced lists. Since ui is last on hi’s reduced list, and bi is second on 
aiMi’s with the consequence that u,-i is at least present in hi’s reduced list, 
it follows that b, prefers a,-i to ui. So, for stability, a,-i must be partnered 
by someone he prefers to bi, and the only such person in his reduced list is 
bihl. Repeating this argument shows that ui and bi must be partners for all 
values of i. 
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(ii) Let A = {a,, . . . , a,}, B = {b,, . . . , br}. If A II B is non-empty, 
say aj = b,, then it is impossible for all the a, to have their first remaining 
preference, since b, has his last when ak has his first. Hence, by (i), 
A n B # 0 implies that none of the ai and bi can be partners, so we may 
as well assume A n B = 0. 

Suppose that A4 is a stable matching, contained in the reduced lists, in 
which uj and bi are partners for all i (1 < i I r). Denote by M’ the 
matching in which each ui is partnered by bi+l, and any person not in 
A U B has the same partner as in M. We claim that M’ is stable. 

Clearly, each member of B obtains a better partner in M’, from his point 
of view, than the one he had in M. The only individuals who fare worse in 
M’ than in M are the members of A, so that any instability in M’, not 
present in M, must involve some ui. 

If ui prefers X, say, to bi+l (his partner in M’), then there are just three 
cases to consider: 

(a) a, and x were partners in M (i.e., x = bi); but in this case, x 
undoubtedly prefers his new partner uiwl to a,. 

(b) ui also prefers x to b,, in which case x is not in ai’s reduced 
preference list, where he would precede ai’s known first remaining choice 
bi. So x has willingly rejected uj, or has been forced to reject ai. In the first 
case, x must have received a proposal from someone better than ai, while in 
the second case, the forced rejection must have led to the receipt by x of a 
better proposal. In either case, x must therefore prefer even his last 
surviving choice, and so certainly his partner in M’, to ui. 

(c) ui prefers bi to X, in which case x lies between bi and bj+l in ai’s 
original preference list, but again is absent from ai’s current reduced list. 
This absence must be the result of x obtaining a proposal from someone 
better than ui, so that, just as in case (b), x must prefer his partner in M’ to 
Ui. 

Lemma 3 has the following two immediate corollaries. 

COROLLARY 3.1. If the original problem instance admits a stable match- 
ing, then there is a stable matching contained in any reduced set of preference 
lists. 

COROLLARY 3.2. If one or more among a reduced set of preference lists is 
empty, then the original problem instance admits no stable matching. 

Our final lemma, an extension of Lemma 2, justifies the circumstances 
under which the algorithm leads to a positive conclusion. 

LEMMA 4. If in a reduced set of preference lists, every list contains just one 
person, then the lists specify a stable matching. 
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Proof That the lists specify a matching is a consequence of the exten- 
sion of Corollary 1.3 (iv). 

Suppose that y prefers x to the sole person on his reduced list. Then, 
exactly as in the proof of case (b) of Lemma 3(n), we can demonstrate that 
x must prefer the sole person on his reduced list to y. Hence there can be no 
instability in the specified matching. 

EXAMPLE. Pursuing our illustrative instance of size 6, we force 5 to reject 
3, and 2 to reject 4, causing 3 to propose to 2, and 4 to propose to 5. As a 
result, all the preference lists shrink to a single person, and we obtain the 
stable matching l/6,2/3,4/5. 

Of course, in general, several phase 2 reductions may have to be carried 
through before a definite conclusion is reached. So, in summary, the second 
phase of the algorithm can be expressed as follows: 

while (some reduced preference list has length > 1) 
and (no reduced preference list has length < 1) do 

begin 
locate an all-or-nothing cycle; 
carry out a phase 2 reduction 

end; 

Exit from the loop with the second condition false indicates, in view of 
Corollary ,3.2, that no stable matching exists. Otherwise, according to 
Lemma 4, the final reduced preference lists specify a stable matching. 

We observe in passing that the proof of Lemma 3(i) also reveals that, if 
the ai and bj are paired, then the “tail” items p,,, pl,. . . , psel, if any, 
encountered in locating the all-or-nothing cycle, must also be partnered by 
their first surviving choices, and in some cases, this may lead to a contradic- 
tion. However, in its present form, the algorithm does not exploit this 
additional information. 

EXAMPLE. We conclude this section with an illustrative example, again 
of size 6, in which we are led to conclude that no solution exists. The 
original preference lists are 

1 26435 
2 35164 
3 16254 
4 52361 
5 61342 
6 42513 
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The first phase of the algorithm leads to the reduced lists 

1 23 
2 31 
3 12 
4 56 
5 64 
6. 45 

The first cycle detected in the second phase of the algorithm involves 
persons 1, 2, and 3 and forcing each of them to be rejected by his first 
surviving choice causes the preference list of each of them to become empty. 

3. IMPLEMENTATION OF THE ALGORITHM 

The Appendix contains an implementation of the algorithm in the form 
of a Pascal procedure. A problem instance of size n is specified by a 
preference matrix whose rows constitute the preference lists of the n 
individuals. Each person appears in position n in his own list to act as a 
sentinel during the reduction process. The procedure returns a boolean 
value indicating whether a solution exists, and if so, a vector giving each 
person’s partner in a stable matching. 

In order to improve efficiency, a ranking array is set up to permit rapid 
comparisons between alternative choices for an individual. More precisely, 
the entry in row i and column j specifies the position of person j in the 
preference list of person i. In other words, 

preference[ i, k] = j * ranking[i, j] = k. 

The reduction of the preference lists is recorded by the values in two 
vectors, called leftmost and rightmost, that contain, for each person, the 
positions in his original preference list occupied by his current best and 
worst potential partners. There turns out to be no need to delete explicitly 
persons on x ‘s list between his leftmost and rightmost markers, even if such 
a person holds a proposal from someone better than X, and is therefore 
unobtainable as a partner for X. This impossibility will manifest itself in due 
course as a result of a comparison of rankings. 

The reduction process, both in phase 1 and in phase 2, causes corres- 
ponding elements of the leftmost and rightmost vectors to move towards 
each other; when leftmost[i] and rightmost[i] coincide, then a partner is 
specified for person i, while leftmost[i] > rightmost[i] indicates that i has 
run out of potential partners, and therefore that no stable matching is 
possible. 
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A further vector “second” is used to facilitate the isolation of an 
all-or-nothing cycle in phase 2 of the algorithm. This marks the positions in 
an individual’s original preference list of the person who is second in his 
current reduced list, but is updated only when needed in order to locate a 
cycle. 

The array “cycle” is itself used to hold the sequence pl,. . . , ps+r-l 
described prior to Lemma 3 above, with markers first-in-cycle and lastin 
-cycle to delineate the actual extent within the array of the sequence 
a,, . . . , a,. 

If more than one phase 2 reduction is necessary, then, in the interests of 
efficiency, we wish to avoid, in searching for all-or-nothing cycles, a 
succession of long “tails” pl, . . . , p,- i which do not contribute to the 
reduction of the preference lists. This can be handled successfully by 
“remembering” the tail, if any, from the previous phase 2 reduction, and 
starting the next cycle search from the element psM1. 

In order to keep parameter lists short and improve readability, the array 
variables are used globally in the various procedures nested within proce- 
dure roommates. 

For further details of the implementation, see the annotated listing in the 
Appendix. 

4. ANALYSIS 

The worst-case analysis of our implementation of the algorithm can be 
expressed largely in terms of “eliminations” from the preference lists. An 
elimination takes place either when an element of the leftmost vector is 
incremented or when an element of the rightmost vector is decremented. 
The total number of eliminations for any problem instance of size n cannot 
exceed n2. 

Procedure Phase-l-reduce 

Within the main loop of this procedure, the total number of operations 
carried out is proportional to the number of changes made to elements of 
leftmost plus the number of changes made to elements of rightmost. This is 
bounded by a constant times the number of eliminations from the prefer- 
ence lists during this phase of the algorithm. 

Procedure Find 

The total number of incrementations of the variable first-unmatched is at 
most n. 
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Procedure Seek -c@e 

Suppose that seek-cycle is called m times, and that the ith call yields a 
tail of length ti and a cycle of length ri. The number of operations during 
the ith call, excluding those in the inner repeat loop when an element of 
array second changes in value, is 

ai + fi(r, + ti - rivl + 1) +(yr, + S) 

where ai, 8, y, S are constants and t, = 0. Here, the three terms account for 
operations before, during and after the main repeat loop, respectively. 

Now, the total number of operations involved in changing second choices, 
in all calls of the procedure, is 0( n2), since there are n elements in the array 
and none can be changed as many as n times. Hence, the total number of 
operations in all calls of procedure seek-cycle is 

O(n2) + 2 {ai + j3(ri + ti - ti-l + 1) +(yr, + S)>. 
i=l 

But, the ith call results in at least 2ri eliminations from the preference lists, 
and ri 2 2 for all i, so that 

4m 5 2 i ri I n2. 
i=l 

Therefore, the total number of operations is bounded by 

O(n2) + 2 a, +(/3 + y) f rj + fit, +(p + S)m 
i=l i=l 

S O(n2) + Am + pn2 + j3n 

where X = j3 + 6 + maxq, p = $(/3 + y), 
i 

I O(n2) + an2 + p,n2 + fin 

= O(n2). 

Procedure PhaseZ-reduce 

If, as above, the ith call involves a cycle of length ri, then the number of 
operations is bounded by a constant times rj. Hence the total number of 
operations in all calls of the procedure is 

0 Er i 1 = o(n2). i-1 
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Procedure Roommates 

The various initialisations occupy 0( n ‘) steps, as does the call of proce- 
dure phase-l-reduce. 

Within the while loop, the total number of operations carried out in 
procedure calls is O(n2), as justified above for each procedure, so that the 
loop itself involves O(n2) steps. Hence the roommates algorithm, as imple- 
mented, has a worst-case time complexity that is O(n’). 

Of course, the above analysis is of theoretical interest, but from a 
practical point of view, the memory requirements for the arrays, rather than 

TABLE 1 
Times in Seconds on PDP11/44 Running under UNIX in the Department 

of Mathematics at the University of Salford 

Problem No. of 
size instances 

No. with 
solution 

Proportion 
with solution 

Average 
cpu time 

4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
60 
70 
80 
90 

961 0.961 0.053 
931 0.931 0.077 
909 0.909 0.108 
868 0.868 0.142 
871 0.871 0.179 
867 0.867 0.222 
857 0.857 0.274 
830 0.830 0.323 
815 0.815 0.374 
808 0.808 0.441 
816 0.816 0.505 
394 0.788 0.575 
375 0.750 0.645 
383 0.766 0.727 
151 0.755 0.812 
154 0.770 0.921 
148 0.740 0.984 
145 0.725 1.078 
149 0.745 1.183 
155 0.775 1.279 
148 0.740 1.383 
148 0.740 1.499 
146 0.730 1.616 
142 0.710 1.760 
145 0.725 2.376 
134 0.670 3.110 
135 0.675 3.964 
138 0.690 4.875 
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the processing time of the procedure, are likely to be the limiting factor on 
the size of roommates instances to which the algorithm can be successfully 
applied. (see the figures in Sect. 5). 

5. COMPUTATIONAL EXPERIENCE 

The algorithm implementation listed in the Appendix has been run, using 
as data a number of randomly generated problem instances of various sizes 
up to 90, beyond which memory demands became too great for the machine 
in use. The results of these experiments, in terms of the proportion of 
problem instances for which a stable matching exists, and the average cpu 
time per problem instance, are presented in Table 1. 

The proportion of problem instances of a given size n for which a stable 
matching exists is clearly a matter of some interest. The computational 
evidence suggests that this proportion decreases as n increases, but it is not 
clear whether this proportion tends to a positive limit as n grows large. Any 
theoretical results that could be obtained in this respect would be of 
considerable interest. 

APPENDIX:PASCALIMPLEMENTATIONOFTHEALGOIUTHM 

const SIZE = 91; {FOR PROBLEM INSTANCES OF SIZE < = 90, 
ALLOWING FOR SENTINELS} 

type person-type = O..SIZE; rank-type = O..SIZE; 
matrix = array[person-type,rank&pe] of person-type; 
vector = arrafiperson-type] of person-type; 
set-type = set of person-type; 

procedure room-mates(var preference : matrix; n : integer; 
var partner : vector; var soln-found : boolean); 

var ranking : arrayIperson_type,persorUype] of rank-type; 
leftmost,second,rightmost : array[person-type] of rank-type; 
cycle : arrafirank-type] of person-type; 
person,first-unmatched : person-type; 
rank,firstin-cycle,lastin-cycle : rank-type; 
solnpossible : boolean; 
tail : set-type; 

procedure phase-lreduce(var soln-possible : boolean); 
var set-proposed-to : set-type; 

person,proposer,nextchoice,current : person-type; 
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begin 
set-proposed-to := [I; 
for person := 1 to n do 
begin 

proposer := person; 
repeat 

next-choice := preference[proposer,leftmost[proposer]]; 
{BEST POTENTIAL PARTNER} 

current := preferencdnext-choice,rightmost[nextchoice]]; 
{NEXT-CHOICE HOLDS CURRENT} 

while ranking@ext-choice,proposer] > ranking[next~choice,current] 
do 
begin {PROPOSER IS REJECTED BY NEXT-CHOICE} 

leftmost[proposer] := leftmost[proposer] + 1; 
next-choice := preference[proposer,leftmost[proposer]]; 
current := preference[next-choice,rightmost[next-choice]] 

end; 
rightmost[next-choice] := ranking[next-choice,proposer]; 

{NEXT-CHOICE HOLDS PROPOSER} 
proposer := current 

{AND REJECTS CURRENT} 
until not (next-choice in set-proposed-to); 
set-proposed-to := set-proposed-to + [next-choice] 

end; 
soln-possible := proposer = next-choice 

end; {phase-l-reduce} 

procedure find(var first-unmatched : person-type); 
begin {FINDS FIRST PERSON WITH > 1 POTENTIAL PARTNER) 

while leftmost[first-unmatched] = rightmost[first~unmatched] do 
first-unmatched := first-unmatched + 1 

end; {find} 

procedure seek-cycle@.r first3n~cycle,last3nn_cycle : rank-type; 
first-unmatched : person-type; var tail : set-type); 

var cycle-set : set-type; 
personnext-choice : person-type; 
posn-in-cycle,pos-in-list : rank-type; 

begin 
if first-in-cycle > 1 
then begin 

person := cycle[first-in-cycle-l]; {LAST PERSON IN 
PREVIOUS TAIL) 
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posn-in-cycle := firstin-cycle-l; {HIS SECOND CHOICE MAY 
HAVE TO BE UPDATED} 

cycle-set := tail 
end 

else begin 
cycle-set := []; 
posnin-cycle := 1; 
person := firstunmatched 

end; 
repeat {GENERATE SEQUENCE} 

cycle-set := cycle-set + [person]; 
cycle[posn-in-cycle] := person; 
posn-in-cycle := posn-in-cycle + 1; 
pas-in-list := second[person]; 
repeat {UPDATE SECOND CHOICE FOR CURRENT PERSON} 

next-choice := preference[person,pos_in_list]; 
pas-in-list := pas-in-list + 1 

until ranking[next-choice,person] < = rightmost[next-choice]; 
second[person] := posinlist - 1; 
person := preferenc~next~choice,rightmost[nextchoe]] 

until person in cycle-set; {SEQUENCE STARTS TO CYCLE} 
last-in-cycle := posn-in-cycle - 1; 
tail := cycle-set; 
repeat {WORK BACK TO BEGINNING OF CYCLE} 

posn-in-cycle := posnin_cycle - 1; 
tail := tail - [cycle[posnin-cycle]] 

until cycle[posnin-cycle] = person; 
first-in-cycle := posn-in-cycle 

end; {seek-cycle} 

procedure phase_2_reduce(firstjn_cycle,lastin_cycle : rank-type; 
var soln-possible : boolean); 

var proposer,next-choice : person-type; 
rank : rank-type; 

begin 
for rank := first-in-cycle to last-in-cycle do 
begin {ALLOW NEXT PERSON IN CYCLE TO BE REJECTED} 

proposer := cycle[rank]; 
leftmost[proposer] := second[proposer]; 
second[proposer] := leftmost[proposer] + 1; {PROPER UPDATE 

UNNECESSARY AT THIS STAGE] 
next-choice := preference[proposer,leftmost[proposer]]; 
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rightmost[next-choice] := ranking[next-choice,proposer] 
{NEXT-CHOICE HOLDS PROPOSER} 

end; 
rank := firstin_cycle; 
while (rank < = last-in-cycle) and soln-possible do 
begin {CHECK NO-ONE HAS RUN OUT 

OF POTENTIAL PARTNERS} 
proposer := cycle[rank],; 
soln-possible := leftmost[proposer] < = rightmost[proposer]; 
rank:=rank+l 

end 
end; { phaseZ_reduce} 

begin 
soln-found := false; 
first-unmatched := 1; 
first-in-cycle := 1; 
for person := 1 to n do 
begin 

preference[person,n] := person; {SENTINEL} 
for rank := 1 to n do 

ranking[person,preference[person,rank]] := rank; 
leftmost[person] := 1; 
rightmost[person] := n 

end; 
leftmost[n + l] := 1; rightmost[n + l] := n; {SENTINELS FOR 

PROCEDURE FIND} 
phase-l-reduce(soln_possible); 
for person := 1 to n do 

second[person] := leftmost[person] + 1; {PROPER INITIALISA- 
TION UNNECESSARY} 

while soln-possible and not sohr-found do 
begin 

find(first-unmatched); 
if first-unmatched > n 
then soln-found := true 
else begin 

seekcycle(firstin_cycle,last_in_cycle,fid,tail); 
phase_2_reduce(firstjn_cycle,last_in_cycle,so~-~ssible) 

end 
end; 
if sohr-found 
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then for person := 1 to n do 
partner[person] := preference[person,leftmost[person]] 

end; {roommates} 
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