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Abstract
We present an n-ary constraint for the stable mar-
riage problem. This constraint acts between two
sets of integer variables where the domains of those
variables represent preferences. Our constraint en-
forces stability and disallows bigamy. For a sta-
ble marriage instance with n men and n women
we require only one of these constraints, and the
complexity of enforcing arc-consistency is O(n2)
which is optimal in the size of input. Our computa-
tional studies show that our n-ary constraint is sig-
nificantly faster and more space efficient than the
encodings presented in [3]. We also introduce a
new problem to the constraint community, the sex-
equal stable marriage problem.

1 Introduction
In the Stable Marriage problem (SM) [2; 5] we have n men
and n women. Each man ranks the n women into a prefer-
ence list, as do the women. The problem is then to produce a
matching of men to women such that it is stable. By a match-
ing we mean that there is a bijection from men to women,
and by stable we mean that there is no incentive for partners
to divorce and elope. A matching is unstable if there are two
couples (mi, wj) and (mk, wl) such that mi prefers wl to his
current partner wj , and wl prefers mi to her current partner
mk.

Figure 1 is an instance of the stable marriage problem, and
has 6 men and 6 women. Figure 1 shows the problem ini-
tially, with each man and woman’s preference list. Figure 2
shows the intersection of the male and female-oriented Gale-
Shapley lists (GS-lists) [5], where the GS-lists are reduced
preference lists. A man-optimal (woman-pessimal) stable
matching can now be found by marrying men (women) to
their most (least) preferred choices in there GS-lists. Con-
versely, we can produce a woman-optimal (man-pessimal)
matching by marrying women (men) to their most (least) pre-
ferred choice in their GS-lists. An instance of SM admits at
least one stable matching and this can be found via the Ex-
tended Gale-Shapley algorithm in time O(n2), where there
are n men and n women.
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Men’s lists Women’s lists
1: 1 3 6 2 4 5 1: 1 5 6 3 2 4
2: 4 6 1 2 5 3 2: 2 4 6 1 3 5
3: 1 4 5 3 6 2 3: 4 3 6 2 5 1
4: 6 5 3 4 2 1 4: 1 3 5 4 2 6
5: 2 3 1 4 5 6 5: 3 2 6 1 4 5
6: 3 1 2 6 5 4 6: 5 1 3 6 4 2

Figure 1: An SM instance with 6 men and 6 women

Men’s lists Women’s lists
1: 1 1: 1
2: 2 2: 2
3: 4 3: 4 6
4: 6 5 3 4: 3
5: 5 6 5: 6 4 5
6: 3 6 5 6: 5 6 4

Figure 2: the corresponding GS-lists

We present a simple constraint encoding for the stable mar-
riage problem. We introduce a specialised n-ary constraint
with only three methods, where each method is no more than
six lines of code. We show how enforcing arc-consistency in
this encoding results in the male-oriented Gale-Shapley lists.
This minimal encoding cannot be used in search and only
achieves directed arc-consistency, from men to women. We
then go on to show how we can extend this encoding by in-
troducing a modest amount of additional code, such that the
encoding can be used in search, can be embedded in richer
impure problems where the stability of marriages is only part
of a larger problem, and the male and female oriented GS-lists
are produced. Our empirical results suggest, that although
our encodings has O(n2) time complexity, the same as the
optimal encoding proposed in [3], our constraint significantly
outperforms this encoding in both space and time.

2 The Extended Gale-Shapley Algorithm
(EGS)

We now describe the male-oriented Extended Gale-Shapley
(EGS) algorithm (shown in Figure 3). In particular, we ex-
plain what is meant by a proposal, an engagement, and for a
man to become free. We will use this later to show that this



algorithm and our constraint encoding are equivalent.
The EGS algorithm [5] produces a stable matching be-

tween men m1 to mn and women w1 to wn, where each man
(woman) ranks each of the women (men) into preference or-
der. Via a process of proposals from men to women the algo-
rithm delivers reduced preference lists, called GS-lists (Gale-
Shapley lists), such that if each man (woman) is paired with
his (her) best (worst) partner in their GS-list the marriages
will be stable.1

1 assign each person to be free
2 WHILE (some man m is free)
3 DO BEGIN
4 w := first woman on m’s list
5 IF (some man p is engaged to w)
6 THEN assign p to be free
7 assign m and w to be engaged
8 FOR (each successor p of m on w’s list)
9 DO BEGIN

10 delete p from w’s list
11 delete w from p’s list
12 END
13 END

Figure 3: The male-oriented Extended Gale/Shapley algo-
rithm.

We will assume that we have an instance I of the stable
marriage problem, and that for any person q in I , PL(q) is
the ordered list of persons in the original preference list of q
and GS(q) is the ordered list of people in the GS-list for q,
and initially GS(q) equals PL(q). In a proposal from man
m to woman w, w will be at the head of the man’s GS-list
GS(m). This leads to an engagement where m is no longer
free and all men that w prefers less than m are removed from
her GS-list, i.e. the last entry in GS(w) becomes m. Further,
when a man p is removed from GS(w) that woman is also
removed from his GS-list, i.e. w is removed from GS(p),
consequently bigamy is disallowed. Therefore m and w are
engaged when m is no longer free, w is head of GS(m), and
m is at the tail of GS(w). A man p becomes free when p was
engaged to w (i.e. the head of GS(p) is w) and w receives
a proposal from man m that she prefers to p. On becoming
free, p is added to the list of free men and w is removed from
GS(p).

The algorithm starts with all men free and placed on a list
(line 1). The algorithm then performs a sequence of proposals
(lines 2 to 13). A man m is selected from the free list (line 2),
and his most preferred woman w is selected (line 4). If w is
engaged, then her partner p becomes free. The pair m and w
then become engaged (lines 7 to 12).

3 Preliminaries
We assume that the men and women’s preference lists have
been read into two 2-dimensional integer arrays mpl and wpl
respectively. mpl[i] is the preference list for the ith man

1Strictly speaking, the given algorithm produces MGS-lists, the
male GS-lists. But for the sake of brevity we will refer to them as
GS-lists.

where mpl[i][j] is the ith man’s jth preference, and similarly
wpl[j] is the preference list for the jth woman. Using our
problem in Figure 1, if we consider our 3d man he will have
a preference list mpl[3] = (1, 4, 5, 3, 6, 2).

We also assume we have the inverse of the preference
lists, i.e. mPw and wPm, where mPw[i][j] is the ith

man’s preference for the jth woman and wPm[k][l] is the
kth woman’s preference for the lth man. Again, consider-
ing the 3d man in Figure 1, his inverse preference list will
be mPw[3] = (1, 6, 4, 2, 3, 5), mPw[3][2] is his preference
for the 2nd woman, and that is 6, i.e. woman 2 is in the 6th

position of man 3’s preference list.2

We associate a constrained integer variable with each man
and each woman, such that x[i] is a constrained integer vari-
able representing the ith man mi in stable marriage instance
I and has a domain dom(x[i]) initially of 1 to n. Similarly,
we have an array of constrained integer variables for women,
such that y[j] represents the jth woman wj in I . The values
in the domain of a variable correspond to preferences, such
that if variable x[i] is assigned the value a this corresponds to
mi being married to his ath choice of woman, and this will
be woman mpl[i][a]. For example, if x[2] (in Figure 1) is
set to 3 then this corresponds to m2 marrying his 3d choice,
w1 (and conversely y[1] would then have to be assigned the
value 5). Again referring to Figure 1 our 6th man’s domain
is dom(x[6]) = (1, 2, 3, 4, 5, 6), as is everyone else’s, and in
Figure 2 dom(x[6]) = (1, 4, 5). We also assume that we have
the following functions, each being of O(1) complexity, that
operate over constrained integer variables:

• getMin(v) delivers the smallest value in dom(v).

• getMax(v) delivers the largest value in dom(v).

• getV al(v) delivers the instantiated value of v.

• setMax(v, a) sets the maximum value in dom(v) to be
min(getMax(v), a).

• setV al(v, a) instantiates the variable v to the value a.

• remV al(v, a) removes the value a from dom(v).

We assume that constraints are processed by an arc-
consistency algorithm such as AC5 [9] or AC3 [7]. That is,
the algorithm has a stack of constraints that are awaiting revi-
sion and if a variable loses values then all the constraints that
the variable is involved in are added to the stack along with
the method that must be applied to those constraints, i.e. the
stack contains methods and their arguments. Furthermore, we
also assume that a call to a method, with its arguments, is only
added to the stack if it is not already on the stack. We’ll refer
to this stack as the call stack.

4 An n-ary Stable Marriage Constraint
(SM2N)

We now give a description of our n-ary stable marriage con-
straint, where arc-consistency on such an encoding is equiv-
alent to an application of the male-oriented EGS algorithm.

2The inverse of the preference lists can be created when reading
in the preference lists such that mPw[i][mpl[i][j]] = j, and this
does not affect the overall complexity of constructing our model.



Note that the constraint as described minimally cannot be
used within a search process, however we will later show
how this can be done. Our constraint is n-ary in that it
constrains n men and n women such that stability is main-
tained and bigamy is disallowed, although it achieves only
2-consistency.3 In a stable marriage problem with n men and
n women we will then require only one of these constraints.
We now start by describing the attributes of the constraint
and the three methods that act upon it. We will use a java-
like pseudo-code such that the . (dot) operator is an attribute
selector, such that a.b delivers the b attribute of a.

4.1 The attributes
A n-ary stable marriage constraint (SM2N) is an object that
acts between n men and n women, and has the following at-
tributes:

• x and y are constrained integer variable arrays represent-
ing the men and women that are constrained, such that
x[i] is the constrained integer variable corresponding to
mi and y[j] corresponds to wj .

• xpl and ypl are 2-dimensional integer arrays which con-
tain the male and female preference lists respectively,
such that xpl[i] equals PL(mi) and xpl[i][j] contains
mi’s jth choice woman.

• xPy and yPx are 2-dimensional integer arrays which
contain the male and female inverse preference lists re-
spectively, such that xPy[i][j] contains man i’s prefer-
ence for wj .

• yub is an array of integer variables which contain the
previous upper bounds of all y variables. All are set to n
at the start of search and are updated by the deltaMax(i)
method detailed below.

4.2 The propagation methods
We now describe three methods that achieve male-oriented
arc-consistency.

deltaMin(i)
This method is called when the lower bound of dom(x[i])
increases. The lower bound of dom(x[i]) increasing signifies
that mi has been rejected by his favourite choice of partner
and thus must propose to his new favourite available partner.
To do this we first find mi’s favourite available partner wj

(line 2), then remove all men from the list of wj she likes less
than mi (line 3).

1. deltaMin(i)
2. j = xPy[i][getMin(x[i])]
3. setMax(y[j],yPx[j][i])

deltaMax(j)
This method is called when the upper bound of dom(y[j])
is reduced. To maintain consistency wj needs to be removed
from the domains of all men that have been removed from her
domain. This is done by looping once for each value that has
been removed from the tail of dom(y[j]) since the last call

3A detailed explanation of just what we mean by 2-consistency
in this model is given in section 6.

to deltaMax(j) (line 2). Within the loop a mi that has been
removed from dom(y[j]) is selected (line 3) and then wj is
removed from dom(x[i]). When all relevant men have had
their domains’ altered (line 5) yub is updated (line 6).

1. deltaMax(j)
2. FOR (k = getMax(y[j])+1 to yub[j])
3. i = yPx[j][k]
4. remVal(x[i],xPy[i][j])
5. END FOR LOOP
6. yub[j] = getMax(y[j])

init()
The init method is called when the constraint is created, and
is simply a call to deltaMin for each of the n men variables.

1. init()
2. FOR (i = 1 to n)
3. deltaMin(i)
4. END FOR LOOP

5 Comparison to EGS
We now compare the behaviour of our n-ary constraint model
(SM2N) to the male-oriented EGS algorithm. In our compar-
ison we will describe steps in the EGS algorithm in italics and
the SM2N constraint encoding in normal font. Sometimes we
will use m and w as a particular person (rather than mi and
wj), and x and y as particular variables (rather than x[i] and
y[j]) for sake of brevity. Additionally, we assume we have the
function fiance(y[i]) and that it delivers the integer k where
k = wpl[i][max(dom(y[i])], i.e. x[k] is the least preferred
partner of y[i].

• Initially the EGS algorithm sets all men to be free by
adding them to the free list (line 1). Equivalently, when
propagation starts the call to init() will cause the set
of calls {deltaMin(i)|1 ≤ i ≤ n} to be added to the
empty call stack.

• EGS picks a man m from the free list and he then pro-
poses to his first choice woman w (lines 4 to 7). Ini-
tially the call stack will contain n calls to the deltaMin
method, called directly via init. When executing the
call deltaMin(i), man x[i] will make the equivalent of
a proposal to his first choice woman (as described next).

• When m makes a proposal to w all values that appear
in GS(w) after the proposing man are removed (lines
8 to 10), i.e. they become engaged. When the call
deltaMin(i) is made, where y[j] is x[i]′s favourite, the
maximum of dom(y[j]) is set to y[j]′s preference for
x[i], therefore removing all less preferred men. Effec-
tively, x[i] and y[j] become engaged.

• To maintain monogamy EGS removes the newly engaged
woman from the GS-lists of all men that have just been
removed from her preference list (line 11). From the ac-
tion above, the maximum of dom(y[j]) has been low-
ered, consequently a call to deltaMax(j) will be added
to the call stack. In that call to deltaMax(j), y[j] is
removed from dom(x[k]) for all k where k has been re-
moved from the tail of dom(y[j]). Therefore, x[k] and
y[j] can never be married.



• In EGS, if m makes a proposal to w, who is already
engaged to p, then w′s previous fiance p is assigned
to be free and added to the free list (lines 5 and 6.)
On initiating the call deltaMin(i) where y[j] is x[i]′s
favourite available woman, y[j]′s fiance corresponds to
the maximum value in dom(y[j]), because all less pre-
ferred men will have been removed (as above). There-
fore if y[j] receives a proposal from x[i] via the call
deltaMin(i), and y[j] prefers x[i] to her current fi-
ance x[k] (where k = fiance(y)) the maximum of
dom(y[j]) will be set lower than her preference for x[k]
and therefore her preference for x[k] will be removed
from dom(y[j]). Consequently, the call deltaMax(j)
will then be put on the call stack, which will remove
x[k]′s preference for y[j] from dom(x[k]). Because y[j]
was x[k]′s previous favourite, x[k]′s preference for y[j]
would have been min(dom(x[k])). Therefore removing
that value will increase x[k]′s domain minimum, and the
call deltaMin(k) will then be added to the stack. And
this effectively assigns man x[k] to be free.

6 Arc-consistency in the Model
On the completion of arc-consistency processing, the variable
domains can be considered as GS − domains. That is, a ∈
dom(x[i]) ↔ wj ∈ GS(mi) ∧ j = mpl[i][a]. Furthermore,
b ∈ dom(y[j]) ↔ mi ∈ GS(wj) ∧ i = wpl[j][b].

The GS-domains are 2-consistent such that if man mi is
married to a woman wj (i.e. x[i] = a ∧ a ∈ dom(x[i]) ∧ j =
mpl[i][a]) then any woman wl can then marry some man
mk without forming a blocking pair or a bigamous relation-
ship. That is, for an arbitrary woman wl there exists a value
b ∈ dom(y[l]) such that k = wpl[l][b] ∧ (mPw[i][j] <
mPw[i][l] ∨ wPm[l][k] < wPm[l][i]) ∧ i 6= k ∧ j 6= l.
Furthermore if a man mi is married to a woman wj then any
other man mk can then marry some woman wl, where l 6= j.

It is important to note, that although our constraint is n-ary
it only achieves 2-consistency. It is our opinion that the cost
of achieving a higher level of consistency would be of little
advantage. This is so because by maintaining 2-consistency,
and using a suitable value ordering heuristic in the model dur-
ing search we are guaranteed failure-free enumeration of all
solutions [3].

In [5] Theorem 1.2.2 it is proved that all possible execu-
tions of the Gale-Shapley algorithm (with men as proposers)
yield the same stable matchings. Our encoding mimics the
EGS algorithm (as shown in section 5) and we claim (with-
out proof) that the encoding reaches the same fixed point for
all ordering of the revision methods on the call stack.

7 Complexity of the model
In [5] section 1.2.3 it is shown in the worst case there is at
most n(n − 1) + 1 proposals that can be made by the EGS
algorithm, and that the complexity is then O(n2). We argue
that the complexity of our SM2N encoding is also O(n2).
First we claim that the call to our method deltaMin() is of
complexity O(1). The deltaMax() method is of complexity
O(r), where r is the number of values removed from the tail
of variable since the last call to deltaMax() for this variable.

Because there are n values in the domain of variable y the
worse case complexity for all possible calls to deltaMax(j)
is O(n). Equally there are n values in the domain of variable
x and thus the worse case complexity for all possible calls to
deltaMin(i) is O(n). Therefore because there are n y vari-
ables and n x variables, the total worst case complexity for all
possible calls to deltaMin(i) and deltaMax(j) is O(n2).

8 Enhancing the model
The full GS-Lists are the union of the male and female Gale-
Shapley lists remaining after executing male and female ori-
ented versions of EGS. It has been proven that the same lists
can be produced by running the female orientated version of
EGS on the male-oriented GS-lists [5]. Because SM2N pro-
duces the same results as EGS the full GS-Lists can be pro-
duced in the same way. But because of the structure of this
specialised constraint it is also possible to combine the male
and female orientated versions of SM2N into one constraint.
This combined gender free version of SM2N will then pro-
duce the full GS-List with only one run of the arc-consistency
algorithm. To create the gender free version all of the meth-
ods presented in this paper must then be symmetrically im-
plemented from the male and female orientations.

The SM2N constraint as presented so far has only consid-
ered domain values being removed by the constraint’s own
methods. If we were to use the constraint to find all possible
stable matchings, unless arc consistency reduces all variable
domains to a singleton, it will be necessary to assign and re-
move values from variable domains as part of a search pro-
cess. Therefore, we need to add code to SM2N to maintain
consistency and stability in the event that domain values are
removed by methods other than those within SM2N. It is im-
portant to note that these external domain reductions could
also be caused by side constraints as well as a search process.

There are four types of domain reduction that external
events could cause: a variable is instantiated; a variable’s
minimum domain value is increased; a variable’s maximum
domain value is reduced; one or more values are removed
from the interior of a variable’s domain. We now describe
two additional methods, inst and removeV alue, and the en-
hancements required for deltaMin. We note that deltaMax
does not need to change, and describe the required enhance-
ments for incomplete preference lists.

inst(i)
The method inst(i) is called when a variable x[i] is instanti-
ated.

1. inst(i)
2. For (k = 0 to getVal(x[i])-1)
3. j = xPy[i][k]
4. setMax(y[j],yPx[j][i]-1)
5. END FOR LOOP
6. j = xPy[i][getVal(x[i])]
7. setVal(y[j],yPx[j][i])
8. For (k = getVal(x[i])+1 to n)
9. j = xPy[i][k]

10. remVal(y[j],yPx[j][i])
11. END FOR LOOP

This method removes all values from the set of y variables
to prevent variable x[i] being involved in a blocking pair or



inconsistency. To prevent x[i] from creating a blocking pair,
all the values that corresponds to men less preferred than x[i],
are removed from the domains of all women that x[i] prefers
to his assigned partner (lines 2-5). Since x[i] is matched to
y[j], y[j] must now be matched to x[i] (lines 6,7). To main-
tain consistency x[i] is removed from the domains of all other
women (lines 8-11)). The complexity of this method is O(n)
and because there are n x variables and each can only be in-
stantiated once during propagation, the total time complexity
of all possible calls to inst(i) is O(n2).

removeValue(i,a)
This method is called when the integer value a is removed
from dom(x[i]), and this value is neither the largest nor
smallest in dom(x[i]).

1. removeValue(i,a)
2. j = xPy[i][a]
3. remVal(y[j],yPx[j][i])

The woman the value a corresponds to is found (line 2) then
x[i] is removed from her domain (line 3), and this must be
done to prevent bigamy.

Enhancements to deltaMin(i)
Up till now we have assumed that all values removed from
the head of dom(x[i]) are as a result of mi being rejected by
some wj . We now drop this assumption in the following en-
hanced version. In this method we add a new variable array
named xlb, and this is similar to the yub array except it holds
the previous lower bound of x. All elements in xlb are ini-
tialised to 1 and are updated and used only by the deltaMin
method.

1. deltaMin(i)
2. j = xPy[i][getMin(x[i])]
3. setMax(y[j],yPx[j][i])
4. FOR (k = xlb[i] to getMin(x[i])-1)
5. j = xPy[i][k]
6. setMax(y[j],yPx[j][i]-1)
7. END FOR LOOP
8. xlb[i] = getMin(x[i])

Lines 1 to 3 are as the original. The next four lines (lines 4-
7) cycle through each of the values that have been removed
from the head of dom(x[i]) since the last call to deltaMin(i)
(line 4). y[j], which the removed value corresponds to, is then
found (line 5), and then all values that are not strictly greater
than her preference for x[i] are removed from dom(y[j]) (line
6). The lower bound of the man variable x[i] is then updated
(line 8).

No enhancements to deltaMax(j)
We now consider the situation where some process, other
than a proposal, removes values from the tail of dom(y[j]),
i.e. when the maximum value of dom(y[j]) changes. The
deltaMax method will be called, and the instance contin-
ues to be stable as all values remaining in dom(y[j]) corre-
sponding to men wj prefers to the removed values. How-
ever, we need to prevent bigamy, by removing wj from the
corresponding dom(x) variables removed from the tail of
dom(y[j]), and this is just what deltaMax does. Therefore,
no enhancement is required.

Incomplete Lists (SMI)
The encoding can also deal with incomplete preference lists,
i.e. instances of the stable marriage problems with incom-
plete lists (SMI). For a SM instance of size n we introduce
the value n+1. The value n+1 must appear in the preference
lists mpl[i] and wpl[j] as a punctuation mark, such that any
people after n+1 are considered unacceptable. For example,
if we had an instance of size 3 and a preference list PL(mi) =
(3,2) we would construct mpl[i] = (3, 2, 4, 1) and this would
result in the inverse mPw[i] = (4, 2, 1, 3). Consequently x[i]
would always prefer to be unmatched (assigned the value 4)
than to be married to y[1]. We now need to modify the init
method such that it sets the maximum value in dom(x[i]) to
be mPw[i][n+1]. These modifications will only work in the
full implementation (i.e. it requires the above enhancements).

Reversible integers
In this encoding we have used two variable arrays which con-
tain dynamic data. yub and xlb are initialised to n and 1
respectively, but these values will be updated as the problem
is being made arc-consistent. If we are only looking for the
first solution then we need only use normal integers to hold
these values. However, when the constraint solver backtracks
and values that had been removed from the domain of a vari-
able are reintroduced then the values held in yub and xlb will
no longer be correct. To fix this problem we have to tell the
solver that when it backtracks it needs to reverse the changes
to yub and xlb as well as the variables domains. This is done
by using a reversible integer variable. This class should be
supplied in the constraint solver toolkit. The solver will then
store the values of each of the reversible variables at each
choice point and restore them on backtracking.

9 Computational Experience

We implemented our encodings using the JSolver toolkit [1],
i.e. the Java version of ILOG Solver. In a previous paper [8]
we presented a specialised binary constraint (SM2) for the
stable marriage problem, and presented some results compar-
ing the SM2 constraint with the two constraint encoding in
[3]. Here we show a chopped down version of those results,
with the results obtained by running SM2N on the same set
of test data included. The other model shown in the results
table is the optimal boolean encoding (Bool) as presented in
[3]. Our experiments were run on a Pentium 4 2.8Ghz pro-
cessor with 512 Mbytes of random access memory, running
Microsoft Windows XP Professional and Java2 SDK 1.4.2.6
with an increased heap size of 512 Mbytes.

size n
model 100 200 400 600 800 1000
Bool 1.2 4.4 ME ME ME ME
SM2 0.23 0.5 1.82 4.21 8.02 12.47

SM2N 0.02 0.06 0.21 0.51 0.95 2.11

Table 1: Average computation times in seconds to produce
the GS-lists, from 10 randomly generated stable marriage
problems each of size n



Our first experiment measures the time taken to generate
a model of a given SM instance and make that model arc-
consistent, i.e. to produce the GS-lists. Table 1 shows the
average time taken to produce the GS-lists for ten randomly
generated instances of size 100 up to 1000. Time is measured
in seconds, and an entry ME means that an out of memory
error occurred. We can see that the SM2N constraint domi-
nates the other models.

size n

model 100 200 400 600 800 1000
Bool 2.02 6.73 ME ME ME ME
SM2 0.47 1.97 10.13 27.27 54.98 124.68

SM2N 0.03 0.07 0.24 0.73 1.56 3.35

Table 2: Average computation times in seconds to find all
solutions to 10 randomly generated stable marriage problems
each of size n

This second experiment measures the time taken to gen-
erate a model and find all possible stable matchings. Table
2 shows the average time taken to find all solutions on the
same randomly generated instances used in the first experi-
ment. Again it can be seen that the SM2N model dominates
the other models. In summary, when the boolean encoding
solves a problem the n-ary constraint does so nearly 100 times
faster, and the n-ary constraint can model significantly larger
problems than the boolean encoding.

Tables 1 and 2 raise the following question, if the Bool en-
coding is optimal then why is it dominated by the SM2 encod-
ing, when SM2 is O(n3) time and the Bool encoding is O(n2)
time? The main reason for this is that there is no significant
difference in the space required to represent variables with
significant differences in domain size, because domains are
represented as intervals when values are consecutive. Consid-
ering only the variables, the Bool encoding uses O(n2) space
whereas the SM2 model uses O(n) space. For example, with
n = 1300 the Bool encoding runs out of memory just by
creating the 2.13002 variables whereas the SM2 model takes
less than 0.25 seconds to generate the required 2600 variables
each with a domain of 1 to 1300. Theoretically the space
complexity of the constraints used by SM2 and Bool are the
same. In practise this is not the case as SM2 requires exactly
n2 constraints to solve a problem of size n whereas Bool re-
quires 2n + 6n2 constraints. Therefore the Bool encoding
requires more variables and more constraints, resulting in a
prohibitively large model. The same argument also applies
to the performance of the SM2N constraint, i.e. the n-ary
constraint is more space efficient that the Bool encoding, is
of the same time complexity, and this results in superior per-
formance. The space and time complexities of these models
are tabulated below. Note that the O(n2) constraint-space for
SM2N is a consequence of the storage of the preference lists
and their inverses.

This Third experiment shows how SM2N can handle larger
problems. Table 4 shows the average time taken to both pro-
duce the GS-Lists and find all solutions for one hundred ran-
domly generated instances of size 1000 up to 2000, again the
times are in seconds.

Bool SM2 SM2N
time O(n2) O(n3) O(n2)

constraints space O(n2) O(n2) O(n2)
variables space O(n2) O(n) O(n)

Table 3: Summary of the complexities of the three SM con-
straint models

size n
problem 1000 1200 1400 1600 1800 2000

AC 2.11 3.12 5.93 8.71 11.59 20.19
All 3.35 5.09 8.8 12.92 18.96 26.81

Table 4: Average computation times in seconds from 100 ran-
domly generated stable marriage problems each of size n

10 Sex equal optimisation
The sex equal stable marriage problem (SESMP) as posed in
[5] as an open problem, is essentially an optimisation prob-
lem. A male optimal solution to an SMP is where all men get
there best possible choices from all possible stable matchings
(and all women get there worst), and in a woman optimal so-
lution all women are matched to there best possible choices
(and all men to there worst). A sex equal matching is where
both the men and the women are equally well matched. This
problem has been proven to be NP-Hard [6].

In a SESMP all men will have a score for each woman
and all women will have a score for each man, man mi’s score
for woman wj is mScore[i][j] and woman wj ’s score for man
mi is wScore[j][i]. In an unweighted SESMP all scores
will be the same as the preferences, so mScore[i][j] would
equal mPw[i][j] and wScore[j][i] would equal wPm[j][i].
In a weighted SESMP this is not so, but the same ordering
must be maintained meaning mScore[i][j] < mScore[i][k]
iff mPw[i][j] < mPw[i][k]. For any matching M all men
and women will score the matching determined by which
partner they are match to in M . If man mi is matched to
woman wj in matching M then mi will give that matching
a score of mScore[i][j] and woman wj will give it a score
of wScore[j][i]. The sum of all scores given by men for a
matching M equals sumM(M) and the sum of the women’s
scores is sumW (M). A matching M for an instance I of
the stable marriage problem is sex equal iff there exists no
matching M such that the absolute difference between the
sumM(M) and sumW (M) is less than the absolute differ-
ence between sumM(M) and sumW (M).

Because the values in the domains of the x and y variables
are preferences, it makes finding an unweighted sex equal
matching with SM2N simple. All that is required is to add a
search goal to minimise the absolute difference between the
sum of all x variables and the sum of all y variables. We
tested this using the same test data as in Table 4 and the re-
sults are tabulated below. These results can be compared to
those in Figure 6 of [8], where the Bool encoding failed to
model problems with 300 or more men and women, and at
n = 1000 the SM2 model was more than 15 times slower
than the SM2N model. We believe that this demonstrates the



versatility of our constraint, in that we can easily use the con-
straint as part of a richer problem.

size n

problem 1000 1200 1400 1600 1800 2000
SE 3.65 5.02 8.73 14.44 17.59 22.44

Table 5: Average computation times in seconds to find all
solutions to 100 randomly generated sex-equal stable mar-
riage problems, each of size n, modelled using the SM2N
constraint.

11 Implementation
The SM2N constraint was originally developed using the
choco constraints tool kit, and the way the constraint has
been introduced reflects that. In choco to implement a
user defined constraint, the abstractLargeIntConstraint
class is extended. This class contains the methods
awake, awakeOnInf , awakeOnSup, awakeOnRem and
awakeOnInst. These methods are the equivalent of the ones
used to introduce the constraint. awake is the same as init,
awakeOnInf and awakeOnSup are the same as deltaMin
and deltaMax and awakeOnInst is the same as inst. To
implement a constraint in Ilog JSolver we first state when the
constraint needs to be propagated, i.e. when a domain value
is removed, when the range changes (meaning the upper or
lower bound changes) or just when a variable is instantiated.
We then need to define a method that will handle propaga-
tion when such an event occurs. For the SM2N constraint
we stated it was to be propagated every time the range of a
variable changed. We then used conditional statements to as-
certain which bound had changed, and used the methods as
presented above to handle the propagation.

12 Conclusion
We have presented a specialised n-ary constraint for the sta-
ble marriage problem, possibly with incomplete lists. The
constraint can be used when stable marriage is just a part
of a larger, richer problem. Our experience has shown that
this constraint can be implemented in a variety of constraint
programming toolkits, such as JSolver, JChoco, and Koalog.
The complexity of the constraint is O(n2). Although this is
theoretically equal to the optimal O(n2) complexity of the
Boolean encoding in [3], our constraint is more practical, typ-
ically being able to solve larger problems faster. For example,
we have been able to enumerate all solutions to instances of
size 2000 in seconds, whereas in [4] the largest problems in-
vestigated were of size 60. We have also presented the first
study of SESMP using a constraint solution, i.e. where the
stable matching constraints are part of a richer problem.
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