
An Upper Bound for the Solvability 
Probability of a Random Stable 
Roommates Instance 

Boris G. Pittel 
Department of Mathematics, The Ohio State University, Columbus, OH 432 10 

Robert W. Irving 
Computing Science Department, University of Glasgow, Glasgow, G12 8QQ, 
Scotland 

ABSTRACT 

It is well-known that not all instances of the stable roommates problem admit a stable 
matching. Here we establish the first nontrivial upper bound on the limiting behavior of 
P,,, the probability that a random roommates instance of size n has a stable matching, 
namely, limn-- P,, I el% (=0.8244. . .). 0 1994 John Witey & Sons, Inc. 
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1. INTRODUCTION 

An instance of size n of the stable roommates problem consists of n persons, n 
even (for the moment), each of whom ranks all of the others in strict order of 
preference. A matching (a partition of the persons into pairs) is unstable if there 
are persons x and y who are not paired with each other, but each of whom prefers 
the other to his partner in the matching. Such a pair is said to block the matching. 
A matching for which there are no blocking pairs is called stable. 
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466 PITTEL AND IRVING 

This problem generalises the better-known stable marriage problem, in which 
the persons form two equal-sized disjoint sets, the men and the women, and each 
person ranks the members of the opposite sex. In this case a matching consists of 
man-woman pairs, with the concept of stability defined analogously. 

Gale and Shapley [3] showed that at least one stable matching exists for every 
instance of the stable marriage problem, but that some stable roommates 
instances admit no stable matching. 

Example. The following roommates instance of size 6, in which the persons are 
numbered 1, . . . , 6  and the preference lists are set out horizontally, admits the 
unique stable matching {1,2}, {3,4}, {5,6}: 

1: 4 6 2 3 5  
2: 6 1 5 3 4  
3: 2 1 6 5 4  
4: 3 6 5 2 1  
5: 4 1 2 6 3  
6: 5 4 3 1 2  

By contrast, it is easily verified that the following instance of size 4 admits no 
stable matching; 

1: 2 3 4  
2: 3 1 4  
3: 1 2 4  
4: 3 2 1  

Here, anyone who is paired with person 4 is bound to cause instability. m 

Also in [3], Gale and Shapley described an efficient algorithm to determine a 
stable matching for a stable marriage instance. Much later, Irving [5] gave an 
efficient algorithm to find a stable matching in the roommates case, or to show 
that no stable matching exists. Gusfield and Irving [4] present a comprehensive 
study of both problems. 

The question arises [4, Open Problem 81 as to the probability P, that a random 
roommates instance of size n is solvable (i.e., admits at least one stable 
matching), and in particular as to the limiting behavior of P,  as n grows large. 
Empirical evidence is presented in [4] to suggest that P, decreases as n grows, but 
this evidence is not conclusive in suggesting whether P, is bounded away from 
zero. Very recently, Pittel [9] proved that the expected number of stable 
- matchings is asymptotic to el’’ (thus bounded) and that P, 5 (4e3/7rn)”’, so if 
lim,*m P, = 0, the rate of convergence is quite low. 

It is not hard to construct an unsolvable instance of any given size n 2 4, so 
that P, < 1 for all n 2 4, but hitherto no bound less than 1 has been established on 
P,. It is our objective here to establish the first such bound, namely, 

P, 5 e’/’/2.  The empirical evidence of 141, extended in Section 5 of the 
present paper, suggests that this upper bound is by no means best possible, and 
this result, and the lower estimate from [9], should be seen merely as first steps 

- 
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towards establishing the true limiting behavior of P,. However, the existence of 
such a bound is enough to illustrate a dramatic difference between the stable 
roommates and stable marriage problems since, for the latter, Pittel [ll] showed 
that the likely number of solutions is at least n1’2+0(1! 

The rest of the paper is structured as follows. In Section 2, we describe the key 
idea of a stable partition, first introduced by Tan [13]. This concept provides us 
with a neat characterization of roommates solvability. In Section 3, we examine 
the dynamic roommates algorithm, also due to Tan [12], which enables us to 
identify a certain structure called a core configuration, which must be present in 
any solvable roommates instance. In Section 4, we study the expected number of 
these core configurations, and derivation of the limiting value of this number 
enables us to bound from above the solvability probability P,. Finally, in Section 
5 ,  we summarize the latest empirical evidence, which suggests that there is still a 
considerable gap between this bound and the true limiting behavior of P, , while 
still leaving us tantalizingly short of convincing support for any conjecture. 

2. STABLE PARTITIONS 

In [4, Open Problem lo], Gusfield and Irving asked whether it is possible to 
provide a succinct “certificate” for an unsolvable roommates instance, in the same 
sense as a stable matching, which can easily be verified for stability, provides a 
succinct certificate of solvability. This question was answered in the affirmative by 
Tan [13], who introduced the notion of a stable partition, showed that every 
roommates instance admits at least one such partition, and that an instance is 
unsolvable if and only if it admits a stable partition with one or more subsets of 
odd cardinality. 

From now on, we allow roommates instances of odd as well as even size. So a 
roommates instance is specified by a positive integer n,  and for each i (1 5 i I n)  a 
permutation Pi of the set {1,2, . . . , n }  in which i itself occupies position n 
[P,(n) = i]. The permutation Pi constitutes the preference list of person i- 
P i ( k )  = j if person j occupies position k in the preference list of person i; it is 
convenient to add each person to the end of his own preference list. Alternatively 
and equivalently, the instance could be specified by the ranking list Ri of each 
person i ,  defined as the inverse permutation of Pi .  

For a given roommates instance, a stable partition (perhaps more properly 
called a stable permutation), is a permutation II of the n-set {1,2,  . . . , n }  of 
persons such that; 

(i) for every i ,  R , ( I I ( ~ ) )  5 Ri(II- l ( i ) ) ;  
(ii) if Ri( j )  < R i ( K 1 ( i ) ) ,  then Rj( i )  > Rj(II-’( j ) )  . 

Viewing this permutation in terms of its cyclic decomposition, we refer to n(i) 
and II-’(i) as the successor of i and the predecessor of i ,  respectively, in the 
partition. In these terms, condition (i) states that no one prefers his predecessor 
to his successor, and condition (ii) states that if i prefers j to his own predecessor, 
then j prefers his own predecessor to i .  

Note that i may be both his own successor and predecessor, if he is a fixed 
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point of II, and i and j may be both the successor and predecessor of each other, 
if (i, j )  forms a transposition in II-in this case we say that { i ,  j }  forms a pair in 
the partition. In general, of course, j is the successor of i if and only if i is the 
predecessor of j .  

It should be clear at once from the stability condition (ii) in the definition of a 
stable partition that the special case in which all cycles of the permutation have 
length 2 is precisely a stable matching for the roommates instance in question. 
Just as in the special case of a stable matching, we say that { x ,  y }  forms a stable 
pair and x and y are stable partners if they form a pair in some stable partition. 

Example. 
stable matchings: 

The following instance of size 6 has 5 stable partitions, 3 of which are 

1: 2 4 3 6 5 1  
2: 6 5 4 1 3 2  
3: 2 5 6 1 4 3  
4: 5 2 1 3 6 4  
5: 1 3 2 4 6 5  
6: 3 1 4 5 2 6  

The stable partitions are: II, = (1 4 2 6)(3 5), 112 = (1 6 3 5)(2 4), 113 = 
(1 4)(2 6)(3 5), 114 = (1 6)(2 4)(3 5), II, = (1 5)(3 6)(2 4). 

Example. 
two odd-length cycles, and is unsolvable: 

This second instance of size 6 has a unique stable partition containing 

1: 2 3 6 5 4 1  
2: 6 1 3 4 5 2  
3: 6 2 5 1 4 3  
4: 6 2 5 1 3 4  
5:  1 2 3 6 4 5  
6: 5 2 1 3 4 6  

The only stable partition in II = (1 3 5)(2 6)(4). 

The following significant results were established by Tan [13]. 

Theorem 2.1. Every roommates instance admits at least one stable partition. 

Theorem 2.2. Z f  II is a stable partition for a given roommates instance, and 
C = (al, a,, . . . , a Z m )  (m 2 2) is an even length cycle of II, then replacing C by the 
transpositions (a,, az ) ,  . . . , (a2m-1,  aZm),  or by the transpositions 
(a2, a3),  . . . , (azm,  a* ) ,  gives another stable partition. 

We will call a stable partition in which all even-length cycles are of length 2 a 
reduced stable partition. As a corollary of Theorem 2.2, it follows that an instance 
admitting a stable partition in which all cycles are of even length is a solvable 
instance. 
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Theorem 2.3. 
roommates instance, then C is a cycle in all stable partitions for that instance. 

If C is an odd-length cycle in a stable partition for a given 

It follows from Theorem 2.3 that an instance that admits a stable partition with 
an odd-length cycle is unsolvable, and from the above three theorems that such a 
stable partition can serve as a succinct certificate of unsolvability. (Clearly, and 
trivially, every roommates instance of odd size is unsolvable.) It also follows from 
Theorem 2.3 that all stable partitions for a given roommates instance contain the 
same number of odd-length cycles-we shall refer to this as the odd-cycle index of 
the instance. 

Note that the concept of an odd-length cycle in a stable partition, and the 
unsolvability of any instance admitting such a cycle, was implicit in the notion of 
an “improper rotation” introduced by Irving [6], but the full significance of the 
concept was first understood and established by Tan [13]. 

In the terminology of Gusfield and Irving [4, Chapter 41, for a solvable 
roommates instance, a stable partition corresponds to a stable table after all 
singular rotations have been eliminated, and in which the non-singular rotation p 
is exposed if and only if its dual p is also exposed. 

3. THE D Y N A M I C  ROOMMATES PROBLEM 

In [12], Tan addressed the following problem: Given a roommates instance of size 
n and a stable partition for that instance, how can we find a stable partition for 
the instance of size n + 1 arising from the arrival of a new person? 

To be more precise, an instance Z,,+l of size n + 1 is created from a given 
instance Z,, of size n in the following way: 

(1) Person n + 1 is added, with preference list a permutation P,+l of 
{1 ,2 , .  . . , n + l} in which Pn+l(n  + 1) = n + 1. 

(2) For each person i (1  5 i I n ) ,  person n + 1 is inserted at some position j 
(1 s j  5 n) in i’s preference list, and all persons occupying positions k 
( j  I k 5 n )  are demoted by one position. 

It turns out, as shown in [12], that a stable partition for can be found from 
a stable partition for Z,, by application of a “proposal sequence” reminiscent of the 
algorithms of Gale and Shapley [3] for the stable marriage problem and Irving [5] 
for the roommates problem. This proposal sequence starts from a (reduced) 
stable partition for I,, and the new “free” person. Each proposal except for the 
last leads to a single change in the current partition, and in the identity of the free 
person, until the last proposal completes the derived (reduced) partition for the 
extended instance. 

Given a stable partition II for a roommates instance of size n,  Tan’s algorithm 
for a stable partition Il’ in the extended instance of size n + 1 is described in 
Figure 1. For this version of the algorithm, it is assumed that II is a reduced stable 
partition, a valid assumption in view of Theorem 2.2. In fact, as described, the 
algorithm transforms II from a reduced stable partition for the original instance 
into a reduced stable partition for the extended instance. Note also that we 
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p := the new person n + 1 ; {throughout, p is the “proposer”} 
repeat 

if such a q exists tlieii 

else 

if q = p then 

q := first person on y’s list ~vho prefers p to his own predecessor in 17 

q := p : { q  is the “proposee”} 

begin 
W P )  := P ; 
exit {with p forming a cycle of length 1 in II} 
end 

if q was in  an odd-length cycle C of II then 
else 

begin 
in  ll match up other members of C in successive pairs; 
pair off p ahd q;  
exit 
end 

if q was previously a proposer then 
exit with a new odd cycle in Il 

else { q  must be currently matched} 

else 

containing all proposees and proposers since q 

begin 
2 := II (q) ;  { t  is “jilted” by q }  
pair off p and q ;  
p := t {the jilted person becomes the new proposer} 
end 

forever 

Fig. 1. The dynamic roommates algorithm. 

express the algorithm in a form in which a proposal that would be rejected is 
simply not made; at each stage, the current proposer proposes to the person he 
likes best among all those who prefer him to their predecessor in the current 
partition, or to himself if there is no such person. 

In essence, the proposal sequence of Tan’s algorithm, initiated by the new 
person, continues until one of three terminating conditions arises: 

(a) The proposer p proposes to himself; in this case the algorithm terminates 
with p forming a cycle of length 1 in the stable partition for the extended 
instance. 

(b) The proposer p proposes to a person q who is in an odd-length cycle 
C = ( q ,  xl, . . . , x Z m )  of II; in this case the algorithm terminates with p and 
q forming a transposition, and with x Z i p l  and xzi  (i = 1, . . . , m) also 
forming transpositions in the derived stable partition; 

(c) The proposer p proposes to a person q who was previously himself a 
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proposer; in this case the algorithm terminates with an odd-length cycle 
C = (4, p ,  x ~ ~ - ~ ,  xZrn-*, . . . , xl), where the proposal sequence since q 
himself proposed was q + xl, x2  4 x 3 ,  . . . , xZrnp2 + xZrn- and 
(XZm = ) P  + 9. 

If p’s proposal to q leads to none of cases (a), (b), (c), then, because I3 is 
reduced, q must currently be in a transposition, or, in other words, q has a 
partner; instead, p and q become partners, and q’s ex-partner becomes the new 
proposer. 

Further details of the algorithm and a proof of its correctness may be found in 
[121. 

Example. Consider the following instance of size 7 and odd-cycle index 1, where 
we display a reduced stable partition (2 3 6)(1 5)(4 7) in skeleton preference 
lists. 

1: . . .  5 . . 1  
2: . 3 . . 6 . 2  
3: . 6 . . 2 . 3  
4: . . .  7 . . 4  
5: . . .  1 . . 5  
6: . 2 . . 3 . 6  
7: . . .  4 . . 7  

Along comes person 8 with preference list 

8: 1 7 2 5 3 6 4 8  

As an example of case (a), suppose that the (suitably expanded) preference 
lists are 

1: . . . 5 . 8 4 1  
2: . 3 . . 6 4 . 2  
3: . 6 . . 2 4 . 3  
4: 1 2 3 7 6 8 5 4  
5: . . .  1 . 4 . 5  
6: . 2 . . 3 . 4 6  
7: . 8 . . 4 . . 7  
8: 1 7 2 5 3 6 4 8  

Then the proposal sequence is: 8+7, 4+4, and we exit with the stable 
partition (2 3 6)(1 5)(7 8)(4), the extended instance having odd-cycle index 
equal to 2. 

As an example of case (b), suppose that the (suitably expanded) preference 
lists are 
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1: . . . 5 7 8 .  1 
2: . 3 . . 6 8 . 2  
3: . 6 . . 2 . . 3  
4: . . . 7 5 6 . 4  
5: . 8 4 1 . .  . 5  
6: . 2 4 . 3 . . 6  
7: 1 8 . . 4 . . 7  
8: 1 7 2 5 3 6 4 8  

Then the proposal sequence is: 8+7,4+5, 1+7, 8+ 5, 4-6; and since 6 is 
in an odd-length cycle, the extended instance has odd-cycle index 0, and we exit 
with the stable partition (stable matching in this case) (1 7)(8 5)(4 6)(2 3). 

Finally, as an example of case (c), suppose that the (suitably expanded) 
preference lists are 

1: . . .  5 8 . . 1  
2: . 3 . . 6 . . 2  
3: . 6 . . 2 . . 3  
4: . . . 7 5 . 8 4  
5: . . 4 1 8 . . 5  
6: . 2 . . 3 . . 6  
7: . 8 . . 4 . . 7  
8: 1 7 2 5 3 6 4 8  

Then the proposal sequence is: 8+7, 4-5, 1+8, and since 8 was already a 
proposer, the extended instance has odd-cycle index 2, and we exit with the stable 
partition (8 1 5 4 7)(2 3 6). 

As observed by Tan, it is an immediate consequence of this algorithm and 
Theorem 2.3 that if InCl  is an instance of size n + 1 obtained by adding a new 
person to a given instance I,, of size n,  then the odd-cycle index of differs by 
exactly one from the odd-cycle index of I,,. In particular, if Z,,+l is a solvable 
instance, then Z,, must have odd-cycle index 1, and application of Tan’s algorithm 
must terminate in case (b) above. It is now our objective to show that, in 
addition, in this case, the reduced stable partition in I,, relative to which the 
proposal sequence is as short as possible has some additional properties. Since 
these properties are crucial to the analysis in the next section, we state and prove 
them formally as a theorem. 

Theorem 3.1. Let Z be a solvable roommates instance of size n (n even) and let I,,, 
(of odd-cycle index 1) be the instance of size n - 1 obtained by deleting person m 
(1 5 m 5 n).  Let II be a reduced stable partition for Z,,, relative to which the 
proposal sequence in Tan’s algorithm is as short as possible, say m+ q l ,  
p 1  -+ q2, . . . , P , - ~  -+ qr,  where q, is in the odd-length cycle. Then 

(i) the sequence p o  ( = m ) ,  q l ,  p l ,  q 2 , .  . . , P , - ~ ,  q, consists of 2r distinct 
persons ; 
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(ii) there is no pair p i ,  q, (1 5 j < i 5 r - 1) such that p i  prefers q, to qi+' and qj  
prefers p i  to p , .  

Note: It is true of every proposal sequence that there is no pair p i ,  q, 
(1 I j < i 5 r - 1) such that p i  prefers qj to qi+' and qj prefers pi to pi-'. However 
the condition (ii) is stronger since q, preferspjPl to p i .  Put differently, (i) and (ii) 
imply that qi+l  is the best choice for p i  among all members (different from m) 
who prefer p i  to their predecessor in It. 

Proof. (i) p i  = qi and p i  = qi+' are trivially impossible. It is not possible that 
p i  = qj for some i, j with i + 1 < j, for this would imply that Z has odd-cycle index 
2, and therefore is unsolvable [see case (c) of Tan's algorithm]. Further, if pi = q, 
for some i, j with i > j and i, j as small as possible, then it is immediate that 
qi = p i - ' ,  and we reach the same conclusion. 

Suppose that the q's are not all distinct, and that the first repeated entry in the 
sequence of q's is qi = q, with 1 I i < j s r - 1. (Note that j I r - 1 since q, is the 
first occurrence in the sequence of a person in the odd-length cycle.) Then it 
follows that pi-'  = p , ,  since when q, ( = q i )  received the proposal from he 
(q,)  was paired with pi-' -so pi-' ( = p j )  became the free person at that point. 

It suffices therefore to show that all the p's are distinct. Suppose not, and that 
the first repeated entry in the sequence of p's is p i  = pi  with 0 I i < j 5 r - 1. 
Then { p l ,  q l } ,  . . . , { p , - , ,  q,-'} are distinct pairs in II. Also, qi = q i + l ,  since 
when qj receives a proposal, he is paired with pi ( = p i ) .  We claim that replacing 

yields another stable partition 0 for Z,, and that the proposal sequence relative to 
0 is rn + q l ,  . . . , p i - 1  + qi, pi + ql+!, . . . , p , -  + 4,. This is a shorter proposal 
sequence than that relative to II, giving a contradiction. 

Suppose that the indicated partition 0 is not stable, and that there are persons 
x, y such that x prefers y to 0 - ' ( x )  and y prefers x to W'(y) .  Let 9 = 
{ p i + ' ,  . . . , p i - ' } ,  9 = {q i+' , .  . . , q j - ' } .  Note that, in II, p k  E '9 is paired with 
qk;  his first change of partner in the proposal sequence occurs when he proposes 
to qk+',  his partner in 0. Likewise in II, qk E 9 is paired with p k ;  his first change 
of partner occurs when he receives a proposal from P k - 1 ,  his partner in 0. Any 
person x j Z 9  U 22 has the same partner in 0 as in II. 

the pairs { ~ i + l t  q i + l ) ,  * - - 7 { p j - l ,  qj-1) by the pairs { P i + * ,  qi+2) ,  * . . 7 { ~ j - l ,  qjl 

We consider three cases. 

(1) x 6 9  U 9, yg9 U 22. Then O-'(x) = II-'(x), O - ' ( y )  = II-'(y). So the 
instability of 0 due to x and y implies the instability of II due to x and y. 

(a) x E 9, x = p k  say. Since ~ ' ( y )  = ~ ' ( y ) ,  y prefers p k  (=x> to 
II-'(y). Also p k  prefers y to O-'(x)  ( = q k + l ) ,  so p k  would have 
proposed to y instead of qk+ I-a contradiction. 

(b) ~ € 2 2 ,  x =  qk say. Then again y prefers qk to K 1 ( y ) .  But x ( = q k )  
prefers 0-'(x) ( = p k - ' )  to II-' ( x ) ( = p k ) ,  and therefore prefers y to 
II-'(x), contradicting the stability of II. 

(3) x E 9 U 9, y E 9 U 2. It is clear that each member of 9 prefers his 
partner in II to his partner in 0, while the opposite is true for each 
member of 9. So x, y cannot both belong to 2, for then the instability of 0 

(2) x E 9 u 9, ye9 u 9. 



474 PITTEL AND IRVING 

would imply the instability of II. If x ,  y both belong to 9, say x = p k ,  
y = p ,  with k < 1 ,  then when y proposes to q,,' [=O-'( y ) ] ,  x is already 
paired with qk+l [=O-'(x)] so that x prefers y to his partner at that time. 
Therefore, y should propose to x instead of ql+l,  a contradiction. 

Finally, if one of x ,  y is in 9 and the other is in 9, say x = p k ,  y = qr,  then x 
prefers II- ' (x)  ( = q k )  to O-'(x) ( = q k + l )  andy prefers O - ' ( y )  (=p l - ' )  to K ' ( y )  
( = p , ) .  So when x proposes to O-'(X),  regardless of whether y has received a 
proposal from O - ' ( y )  or not, y prefers x to his partner, and so x should propose 
to y instead of qk+ ', again a contradiction. 

As far as the proposal sequence relative to 0 is concerned, it is clear that 
proposals up to and including pi-' -+ qi are unaffected. At that point, the pairings 
are exactly as they would be after the proposal p i -1  - qj in the proposal sequence 
relative to II. So subsequent proposals are unaffected, and the proposal sequence 
is as claimed. 

(ii) Suppose, again for a contradiction, that there are p i ,  qj ( j < i )  such that p i  
prefers qi to qi+l and qj  prefers p i  to p i .  Then, by arguments similar to those used 
in the proof of (i), we can show that replacing the pairs { p , ,  qi},  . . . , {pi, qi} by 
the pairs { p i ,  qi+l},  . . . , { p i - ' ,  qi} ,  { p i ,  qi} yields another stable partition 0 for 
I,,, and that the proposal sequence relative to 0 is m- q l ,  . . . , pi-' + qi, 
p i -  qi+l , .  . . , P , - ~ +  q,. This would again be a shorter proposal sequence than 
that relative to II, giving a contradiction. We omit the further details. w 

Example. In the second case illustrated in the earlier example, the proposal 
sequence was 8-7, 4-5, 1-7, 8-5, 4 4 6  relative to the initial stable 
partition (2 3 6)(1 5)(4 7). Replacing the pairs (1 5 ) ,  (4 7) by the pairs (4 5), 
(1 7) leads to the proposal sequence 8-7, 4-6 relative to the initial stable 
partition (2 3 6) (4 5) (1 7). w 

For a solvable roommates instance of even size n ,  we will call a stable partition 
and associated proposal sequence satisfying the properties (i) and (ii) of the 
above theorem a core configuration (relative to person n ) .  We will see that these 
core configurations play a crucial role in the next section. We conclude the 
present section with a uniqueness result for core configurations. For this we 
require some preliminary lemmas. 

The first lemma is proved in [6, Corollary 2.4.21. 

Lemma 3.1. Let I3 be a reduced stable partition for a roommates instance in 
which x ,  y form a matched pair, and let I I f  be any stable partition in which x ,  y do 
not form a matched pair. Then one of x ,  y has a better partner, and the other a 
worse partner in nf than in TI. 

Lemma 3.2. 
and only if x is the best stable partner of y .  

For a given roommates instance, y is the worst stable partner of x if 

Proof. This is an immediate consequence of the previous lemma. 

Lemma 3.3. For a given roommates instance I ,  of odd cardinality n ,  with 
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odd-cycle index 1, let stable partition n and sequence p o ,  q l ,  p l ,  q2,  . . . , p,- 1 ,  q, 
be a core configuration, where p o  is the new person and q, is a member of the odd 
cycle. Then, for i = 1, . . . , r - 1, 

( a )  qi is the worst stable partner of pi in I,; 
( b )  p i  is the best stable partner of qi in I,. 

Proof. (b) is a consequence of (a) and the previous lemma, so it suffices to 
establish (a). We use backwards induction on i. For the base case, suppose that x ,  
rather than q,-l, is the worst stable partner of p r - l  -so p r - l  prefers q,-l to x .  
Certainly p r P l  must prefer x to q,, for otherwise the pair P,-~, q, would block the 
stable partition in which and x are partners. ( x  cannot be equal to q,, for q, is 
in the odd-length cycle in all stable partitions of Z,.) So why did p r - l  not propose 
to x when he proposed to q,? Since P , - ~  is the best stable partner of x ,  it follows 
that x prefers p r - l  to his partner in II. So, in the meantime, x must have received 
a better proposal, so x is a proposee, say x = qi. But then qj  prefers p r - l  to p i ,  
and the pair P , - ~ ,  qi contradict the second defining property of a core configu- 
ration. 

For the induction step, suppose that qi is the worst stable partner of p i ,  and 
that x ,  rather than qi-l is the worst stable partner of pi-1 in I, .  

(i) p i P l  prefers qi to x .  Then since pi is qi’s best stable partner, and qi prefers 
p i - 1  to p i ,  p i - 1 ,  qi form a blocking pair for the supposed stable partition in 
which p i - 1  is paired with x .  

(ii) x = qi .  Then p i - 1  is a stable partner for q i ,  and qi prefers p i e 1  to p i ,  his 
supposed best stable partner - a contradiction. 

(iii) p i P 1  prefers x to qi .  So why does p i - 1  not propose to x when rejected by 
qiP1? Since p i - 1  is the best stable partner for x ,  it follows that x prefers 
p i T 1  to his partner in II. So, in the meantime, x must have received a 
better proposal, so x is a proposee, say x = q j .  But then qj prefers p i - 1  to 
p i ,  and the pair p i - 1 ,  qj contradict the second defining property of a core 
configuration. 

Theorem 3.2. 
roommates instance of even cardinality n have the same proposal sequence. 

All core configurations relative to person n for a given solvable 

Proof. In the sequence po ( = n ) ,  q l , .  . . of any core configuration, q1 is the first 
person in the list of po who prefers p o  to his best stable partner. For, by the 
previous lemma, q1 certainly does prefer p o  to his best stable partner, and if this is 
true of any predecessor x of q1 on po’s list, then p o  would certainly propose to x in 
preference to q l .  So the beginning of the sequence of a core configuration is 
uniquely defined, and the uniqueness of the rest of the sequence follows at once 
from the previous lemma. 

4. B O U N D I N G  THE SOLVABILITY PROBABILITY 

For n an even positive integer, let P, denote the probability that a random stable 
roommates instance of size n is solvable. Also, for a given instance of size n,  
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denote by C, the number of core configurations relative to person n. Note that, if 
the instance is solvable, there must be at least one such core configuration. 
(Although the proposal sequence associated with core configurations is unique, by 
Lemma 3.2, core configurations may differ in the transpositions in their reduced 
stable partitions.) Write C,, = CA + C::, where CA, C: are the numbers of core 
configurations with odd cycle of length 2 3 ,  and equal to 1 ,  respectively. From 
Pittel [8, Theorem 3.11, it follows that 

so 

and we need to establish the following result: 

Theorem 4.1. limnem E(CA) = e’ /2 /2 .  

To prove the theorem, we need to derive first an integral-type formula for the 
expectation E( CA). 

Let k r 0, I z 3 be two nonnegative integers such that k is even, I is odd, and 
k + I i n - 1. Introduce C,(k, I ) ,  the random number of all core configurations 
(relative to member n )  with an odd cycle of length I, and a proposal sequence 
involving k additional members from the set (1, . . . , n - l} ( k  = r - 1 in the 
notation of Theorem 3.1). By symmetry, 

Here P,(k ,  I )  is the probability that a partition II = (1,2),  (3,4),  . . . , ( k  - 1, k ) ,  

is stable, and is the partition component of a core configuration, while the 
proposal sequence component is n+ 1 , 2 + 3 , .  . . , k - 2- k - 1, k+ k + 1 [the 
cycle ( k  + 1 , .  . . , k + I )  is in the order “from member to member’s 
predecessor”]. 

As for N,,(k,  I ) ,  it is the number of ways to choose an ordered sequence of 
( k  + I )  members from (1, . . . , n - l}, and to then pair the remaining (n - 1 - 
k - I )  members. Thus, 

( k + 1 ,  . . . ,  k + Z ) ,  ( k + I + l ,  k + Z + 2 ) ,  . . . , (  n - 2 , n - 1 )  of {1 ,2  , . . . ,  n - 1 }  

N,(k,  I )  = ( n  - l)(n - 2 )  . . . (n  - k - I)(n - k - I - 2)!! 
= ( n  - l ) !  / ( n  - k - I - l)!! , 

where x ! !  denotes the product of the integers IX that are of the same parity as x .  

Lemma 4.1. 
js n } ,  we have 

With the n-dimensional unit cube %’ = { z = (zi):=, . 0 I z .  5 1, 1 5 I 
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Here D is the set of all unordered pairs { u ,  v}, 15  u, v 5 n ,  such that { u ,  v }  is 
either a pair of neighboring members in the sequence (n,  1,2,  . . . , k, k + l ) ,  or in 
the cyclic sequence ( k  + 1, . . . , k + l ) ,  or a pair (a ,  a + 1) (k + 1 + 1 '= a 5 n - 2, 
a even). 

Proof. A random instance of the roommates problem can be generated as 
follows (see [S], [9]). Introduce an n X n matrix X = [X,]  (1 5 i f j  i n) ,  whose 
entries are independent, [0, 11-uniform random variables. Assume that the mem- 
ber i ranks other members in increasing order of the elements of the ith row of X .  
So, for instance, his best choice, is j o  such that Xii, = mini Xii .  Then clearly the 
ordering by i is uniformly random, and the orderings by different members are 
independent. 

Denote by lI' the pairing (n, l ) ,  ( 2 , 3 ) ,  . . . , (k, k + l ) ,  (k + 2 ,  k + 3 ) , .  . . , 
( k + l - l , k + l ) ,  ( k + l + l , k + I + 2 ) ,  . .  . , ( n - 2 , n - 1 ) .  L e t f :  (1, . . . , n -  
l}+ (1, . . . , n - l}, g :  (1, . . . , n -I}-+ (1, . . . , n - l }  be the mappings for lI 
and n', respectively. 

Let us compute P,(k, 1 I x ,  y), the conditional probability of the event in 
question, given the values xi = Xi , f ( i )  (1 5 i 5 n - 1) and y i  = X j , g ( i )  (1 5 i 5 n). 
Clearly P,(k, l l x ,  y )  = 0 unless x ,  y satisfy the conditions: for xi, y i  E the open 
interval (0, l), 

Y l  < x l  7 Y 2 > x 2 7 '  ' * , y k > X k  7 y k + l < X k + l  9 (2) 

[each proposee gains, each proposer (#n)  loses], and 

- 
Y k + 2  = x k + 2  Y k + 3  <'k+3,  ' ' ' 7 Y k + l - l  - ' k + l - l  9 Y k + l <  ' k + l  (3) 

[each even member of the odd cycle keeps his predecessor, each odd member gets 
a better one]. So, assume that the conditions are met. 

Turn to the conditions which involve also Xji ( { i ,  j }  FD). Like odd members 
k + 3 ,  . . . , k + 1, each member of the cycle prefers his successor to his pre- 
decessor. Thus we must have 

X k + I  > X k + l , k + I  7 X k + 2 > X k + 2 , k + 1 7  - .  . t X k + f - l > X k + l - l , k + f - 2 .  (4) 

Since Xm,, are all independent and [0, 11-uniform, 
k + l - 1  

P((4) I x ,  y )  = x k + l  ' n xi * 
even j = k + 2  

All other conditions relate to the pairs { X , ,  X i i } ,  { i ,  j }  $ZD. 

(1) i = n ,  j # 1. The member 1 is the best choice of the member n among those 
who prefer n to their predecessors in IT. Hence 

X n i > y ,  or X i , > x j .  

Notice that xi 2 yi unless j is a proposer. In that case Xni < y ,  would imply y j  
(=Xi,i+l) < Xi,, since otherwise j would have proposed to n. Therefore, when 
y j  > x i ,  we have 
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Xni>y,  or Xi, >yi . 
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So, introducing x, = y,, for all j 

Xni > x ,  v y ,  or Xjn >xi v yi 

where a v b = max(a, b) ,  and 

(2) i , j E { 1 ,  . . . ,  n - l } ,  {i, j}jiZD. 
(2') j${l , .  . . , k + I } ,  so that x j  = y i .  Since II is stable, 

X i j > x i  or X i i > x j .  

Also, as in (l), if x i  < y i ,  then 

(2") i, j E (1, . . . , k + l } ,  i < j .  If i, j are both even, then xi 5 y i ,  x, 5 yi and 

Xij >y i  or Xii > y j ,  

since n' is stable. If i, j are both odd, then x i  > y i ,  xi > y i ,  and 

Xi j  > x i  or Xii > x i ,  

since n is stable. Suppose i is even and j is odd, so that xi 5 y i ,  xi > yi. 
Using stability of II if x i  = y i ,  or arguing as in (l), (2') if x i  < y i  
(remember that i < j ) ,  we get 

xij >y i  or Xj i  > x i .  

Finally, suppose i is odd and j is even, so that x i  > y i ,  xi 2 yi. Let xi < yi,  
i.e., let j be a proposer. Then using condition (ii) of Theorem 3.1 for the 
first time, we obtain that Xii < yi 3 Xii > x i .  Thus we must have 

X i i > x i  or Xii > y j  . 

So, in all four cases, 

Xij > x i  v yi or Xii > xi v y j  (9) 
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Since the events (4), (6), (8), and (9 )  are conditionally independent, we 
arrive at 

where z, = x ,  v y , .  

To finish the proof of the lemma, introduce also 5, = x ,  A y ,  [=min(x,, y , ) ] .  
The variables z , ,  5, satisfy the following conditions [see (2), (3)]: 

(a) z,==, for a E ( k + l + l ,  . . . ,  n - l , n } ,  and for even a in { k +  

(b) O < l , < z , < l  f o r o d d a i n  {1,2 , . . . ,  k + Z }  a n d e v e n a i n  (1 , . . . ,  k } .  
1,. . . , k +  l } ;  

Denote by A the set of crs in (b). Using Fubini's Theorem and switching to 
{z, ,  la}, we have 

The lemma is proven. w 

Note: The formula for P,(k, Z) and other related formulae in [8], [9], [lo], and 
[ll], are all close relatives of a formula for the probability that a given matching 
(marriage) in a bipartite model is stable, obtained earlier by Knuth [7]. (In fact, 
much of what was done in [8], [9], [lo], and [ll] was inspired by that remarkable 
formula.) Knuth's method, however, was quite different. It relied on the inclu- 
sion-exclusion principle applied directly to the random permutations Pi, and on 
two penetrating observations - first, that each summand in the corresponding 
formula can be thought of as the value of a certain multidimensional integral; 
second, that changing the order of summation and integration leads to a single 
integral of a product-type integrand. Our approach is more pedestrian, but it has 
worked in a number of situations, like the lemma, where applicability of the 
inclusion-exclusion method is quite problematic. 
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Our next step is to use the lemma to obtain asymptotic estimates of P,(k ,  1 )  for 
(relatively) small and large values of k and 1. The method will parallel those used 
in [8], [9], [lo], and [ll].  In particular, we will use the following inequality [9]. 

n 

\emma 4.2. For z E Ce, define s = c z i ,  and u = {ui = z,/s; 1% i I n } ,  so that 
c ui = 1. Let L'") = { L?) : 1 5 i 5 n }  be the set of lengths of the consecutive 

subintervals of [0, 11 obtained by selecting, independently and uniformly at ran- 
dom, ( n  - 1)  points in [O, 11. Then, for f (s) ,  g(u) 2 0 ,  

i = l  

i = l  

with equality if su E (e whenever f ( s )  > 0 and g(u)  > 0. 

This lemma is very helpful since the random partitions are well understood. 
Here is a particularly useful property: 

(11) 

where wl, . . . , w, are i.i.d. exponential, exp(1) say (see B;eiman [l] and Durrett 

[2], for instance). For example, we will need to know that E(L:))' is likely to be 
of order n-'. Well, using Ew, = 1, Ew: = 2 and the expd'nintial bounds for the 
distribution tails of sums of i.i.d. random variables, we immediately get from 
(11): for every E >0,  there are n(E), C ( E )  such that for n 2 n(E) 

First, we obtain a bound for Pn(k,  1) that is not very sharp, but works for all 
values of k, 1. The proof is close to that of Lemma 3.2 in [8], but we include it in 
order to make the presentation more self-contained. 

Lemma 4.3. Uniformly over k ,  1 ( k  + 1 5  n - l), 

( n  + k + 1 - l)!! 

and consequently 

N,(k, l)P,(k, 1 )  = O(n-' exp(-(k + 1)'/4n) . 
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Proof. 
(a) Turn to (1). Using 1 - [ 5 e- l  and ab I (a2 + b2)/2, we bound 

k + l - 1  1 "  
a = l  

(15) 

n - 2  

+ 2 k + l z k + 1 +  z a z a + l  
a = k + l + l  
a even  

s c e x p ( - T  s2 + 2 3 c " z i )  ( s z  i: za) 
a = l  a = l  

(maxalzaI 5 1). So { z  E % : s 2 nl/' log n} contributes to P,(k, 1) a quantity of 
order O(exp(- i n  log' n)), that can be neglected because 2 Nn(k,  1) = O(nn!) .  

k J  
Thus we concentrate on Cel = { z E % : s 5 n112 log n}. On Gel, 

We partition zl into %; (where s-' 2 2: 2 9/n) and %; = Cel 
Lemmas 4.1, 4.2, and (16), we bound 

i = l  

The integral on the right equals (n + k +  1 -  l ) ! ! / (n - l)!. Let us bound the 
expectation-call it E,(k,  1 ) .  The joint densityf(y,, . . . , yn-l) of {I,?): 1 5  j I  

n - 1  .. - 
n - l} is (n - l)! if y j  5 1 (yj 2 0), and zero otherwise. So, denoting y, = 

n - 1  j = l  

1 - c, Yj, 
j = 1  

(y,,, = yz+l + y%+l + Y':+~, y i  = y: + yy for 1 5  i 5 k + 1 and i # k + 1). Using 
(a + b + c)' 5 3 (a' + b2 + c2) ,  and renaming the variables, we obtain according 
to (12): 
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( n + k + Z - l ) ! !  
Jw (n  + k + I ) !  

= o ( e - c ’ n  

Furthermore, 

- ( n + k + / + 1 ) / 2  ( n +  k +  I - l ) ! !  
( n + k + Z ) !  * 

Since the first factor on the right is bounded, using this bound with (18), we 
obtain (13). 

(b) Set k + Z = r .  Then, using (13) and Nn(k,  Z) = (n  - l)! / ( n  - k - I - l)!!, 

The product is bounded by 

The lemma is proven. 

The next estimate is a direct consequence of (14). 

Corollary 4.1. Let ro = [n”’ log nl . Then 

2 N,(k ,  E)P,(k, Z) = O(exp(-log2 n/4)) 
k + / z r o  
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So it remains to ccpsider k + I I ro.  The proof shows that for Y2 = { z  E 
Y ; s l n  1 / 2  l o g n , ~ - ~ C z ; 5 9 / n )  

i = l  

) ,  V K > O  
(n  + k +  I -  l ) ! !  

( n + k + I)! 
On Y2, the bound (15) simplifies to 

n 

Now, like C(Lj"))', L r )Lf j l ,  and Z(Lf' )4  are relatively close (with 

exponentially high probability) to their expectations, which are asymptotically 
(2n)-' and 24K3, respectively. Besides, 

j = l  a even a 

1 - ( 1 + p ) -  

2 1 - O ( L P ) ,  V p  > O  

So, analogously to the proof of Lemma 4.3, we can show [with the help of (20)] 
that 

( n + k + l - l ) ! !  
/w2 = /w3 + o ( n - P  (n  + k + I)! 

Here Y3 is a subset of Ce, defined by the additional constraints 

( E  > 0, p > 0 are arbitrary.) For k + I I yo ,  on the set Ce3 the bound (15) is easily 
sharpened as follows: 

1 2 2  n (1 - z a z p )  = exp( - E [zazp + z z a z p  + o(zi.zi)~) 
{ a , P ) @ D  (a.B)F"O 
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But, for fixed a and b >0, 

ds[b, = b(1 - a/n)-'] 
s2 s4 S n + k + '  - 2ea/' [ exp( - 2 - ;I" b,) ( 

n + k + I ) !  
(23) 

ds 
-sZIZ S n + k + l  

(n  + k + E ) !  - 2ea12-b JIT e 

= 2ea/2-b (n  + k + I - l)!! 
(n  + k + I ) !  ' 

[Since n + k + 1 - n,  the integrand in (23) has a sharp maximum at S - fi.] 
the following result. 

Collecting the estimates (19), (21), (22), and (24) ,  and letting E L O ,  we prove 

Lemma 4.4. Uniformly over k + 15 ro, 

(n  + k +  1 - l ) ! !  
P,(k,  I )  5 2e'" (n  + k + Z)! 

Using Lemma 4.2 (the case of equality), we can show that P,(k, I) is 

Consequently, for r = k + 1 5  ro (=n1/2  log n) ,  
equivalent to the upper bound (cf. [9] and [lo]). We omit the details. 

(n  - l)!(n + r - l)!! 
( n  + r)!(n - r - l)!! N , ( k ,  I)P,(k,  1 )  -2e"' 

( r - l ) / Z  n ( l q )  

]=1  ri ( 1 +  f )  
= 2e112n-l 1=1 

= 2e'/zn-' exp[- r2  + 0(')] . 

Now k is even, Z is odd, so 
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TABLE 1. Empirical evidence on solvability probability 

Size of instance % Solvable Size of instance % Solvable 

100 64.4 1100 36.8 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

53.9 
48.5 
46.2 
46.5 
43.1 
41.2 
40.0 
38.8 
38.6 

1200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 
2000 

38.5 
36.1 
36.1 
36.8 
36.5 
35.4 
32.4 
33.5 
32.6 

This completes the proof of Theorem 4.1. 

have our main result. 
As an immediate corollary of Theorem 4.1 and the remarks preceding it, we 

- 
Corollary 4.2. limn+m P, I e”*/2. 

5. EMPIRICAL EVIDENCE 

So we have established a first upper bound on the limiting behavior of the 
roommates solvability probability P, . However, it remains an open problem as to 
whether P, is bounded below by some constant greater than 0. 

The available empirical evidence here is not conclusive, though it does indicate 
that the upper bound established here (0.8244. . .) is not likely to be very tight. 
Table I shows the percentage that were solvable among 1000 randomly generated 
roommates instances of each of sizes 100,200, . . . ,2000. The simulations were 
performed on a Sun4 workstation, size 2000 being the limit imposed by the 
memory requirements of the program. Although quite striking, this evidence is 
not really conclusive enough to add support to any strong conjecture as to the 
ultimate behavior of P,. 
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