
Reversible Domains

First we start with a data structure you might not have heard of …

sparse sets

Consider this:

• A variable has a domain of values
• This is fixed at the top of search
• Going down a branch of search the domain may decrease
• Going down a branch in search a domain never increases
• On a backtrack (up a branch) deleted values might be returned to the domain
• The sparse set goes some way to allowing this

We represent a (unordered) set using two arrays and one pointer

We represent a (unordered) set using two arrays and one pointer

value[i] = x : the ith element of the set is x

We represent a (unordered) set using two arrays and one pointer

value[i] = x : the ith element of the set is x

location[x] = i: x is the ith value in the set

We represent a (unordered) set using two arrays and one pointer

value[i] = x : the ith element of the set is x

location[x] = i: x is the ith value in the set

last: is the position of the last value in the set

We represent a (unordered) set using two arrays and one pointer

value[i] = x : the ith element of the set is x

location[x] = i: x is the ith value in the set

last: is the position of the last value in the set

Values are removed from the set by swapping, and returned by resetting a pointer

0 1 2 3 4

0 1 2 3 4

location

value

last = 4

new Domain(pb,0,4)

0 1 2 3 4

0 1 2 3 4

location

value

last = 4

0 1 2 4 3

0 1 2 4 3

location

value

last = 3

remove(3)

new Domain(pb,0,4)

0 1 2 3 4

0 1 2 3 4

location

value

last = 4

0 1 2 4 3

0 1 2 4 3

location

value

last = 3

remove(3)

new Domain(pb,0,4)

We have swapped the values 3 and 4, i.e. the value 3 with the last value in the set

• value: 4 goes where 3 was
• location: the value 4 is now in the 3d position of the set
• location: the value 3 is now in the 4th position of the set
• last position in the set is position 3
• The value 3 is not in the set!

0 1 2 3 4

0 1 2 3 4

location

value

last = 4

0 1 2 4 3

0 1 2 4 3

location

value

last = 3

0 3 2 4 1

0 4 2 1 3

location

value

last = 2

remove(3)

remove(1)

new Domain(pb,0,4)

0 1 2 3 4

0 1 2 3 4

location

value

last = 4

0 1 2 4 3

0 1 2 4 3

location

value

last = 3

0 3 2 4 1

0 4 2 1 3

location

value

last = 2

remove(3)

remove(1)

new Domain(pb,0,4)

location of value 0 is 0
location of value 1 is 3
location of value 2 is 2
location of value 3 is 4
location of value 4 is 1

0 1 2 3 4

0 1 2 3 4

location

value

last = 4

0 1 2 4 3

0 1 2 4 3

location

value

last = 3

0 3 2 4 1

0 4 2 1 3

location

value

last = 2

remove(3)

remove(1)

new Domain(pb,0,4)

location of value 0 is 0
location of value 1 is 3
location of value 2 is 2
location of value 3 is 4
location of value 4 is 1

last position is 2

0 1 2 3 4

0 1 2 3 4

location

value

last = 4

0 1 2 4 3

0 1 2 4 3

location

value

last = 3

0 3 2 4 1

0 4 2 1 3

location

value

last = 2

remove(3)

remove(1)

new Domain(pb,0,4)

location of value 0 is 0
location of value 1 is 3
location of value 2 is 2
location of value 3 is 4
location of value 4 is 1

last position is 2

0 1 2 3 4

0 1 2 3 4

location

value

last = 4

0 1 2 4 3

0 1 2 4 3

location

value

last = 3

0 3 2 4 1

0 4 2 1 3

location

value

last = 2

remove(3)

remove(1)

new Domain(pb,0,4)

location of value 0 is 0
location of value 1 is 3
location of value 2 is 2
location of value 3 is 4
location of value 4 is 1

last position is 2

Any thing beyond position 2 is not in the set

0 1 2 3 4

0 1 2 3 4

location

value

last = 4

0 1 2 4 3

0 1 2 4 3

location

value

last = 3

0 3 2 4 1

0 4 2 1 3

location

value

last = 2

2 3 0 4 1

2 4 0 1 3

location

value

last = 1

remove(3)

remove(1)

remove(0)

new Domain(pb,0,4)

Complexity:

• remove(x) is O(1)
• a swap operation

• contains(x) is O(1)
• is location[x] <= last?

• removeAllBut(x) is O(1)
• swap between x and what is in location 0
• set last to be 0
• used for instantiation of a variable

• removeBelow(x) is O(n) (amortised O(1))
• removeAbove(x) is O(n) (amortised O(1))
• min and max as above …

2 3 0 4 1

2 4 0 1 3

location

value

last = 1

How could I go back to the way things were … for example back to where we
were before we did all those removals?

2 3 0 4 1

2 4 0 1 3

location

value

last = 4

How could I go back to the way things were … for example back to where we
were before we did all those removals?

That’s how!

How could I go back to the way things were … for example back to where we
were before we did all those removals?

O(1)

2 3 0 4 1

2 4 0 1 3

location

value

last = 4

reversible variables

reversible variables

It’s all done with stacks

A reversible variable & a reversible integer

A reversible variable & a reversible integer

A stack of “worlds”

A reversible variable & a reversible integer

A trail (history) of values

A reversible variable & a reversible integer

A reversible variable & a reversible integer

Backtrack 

A reversible variable & a reversible integer

A reversible variable & a reversible integer

A reversible variable & a reversible integer

A reversible variable & a reversible integer

pb is a Problem and world is just an integer, nothing fancy.
We might think of “world” as depth in search.

Top of search is world zero.

A reversible variable & a reversible integer

A reversible variable & a reversible integer

A reversible variable & a reversible integer

Is this a new (different) value and is it the first time the value has changed in this “world”?

A reversible variable & a reversible integer

If “yes” … the problem (pb) has a trail (and that’s a stack) push this reversible integer
onto the list that is at the top of the trail (this is the list of reversible that have changed
in this world).

A reversible variable & a reversible integer

If “yes” … on this reversible integer record when (what world) it changed and save of f
the value it had before making the change (yet another stack)

A reversible variable & a reversible integer

Change that value (off coarse)!

A problem is a problem is a problem

A problem (from the point of view of reversibles & worlds)

A problem (from the point of view of reversibles & worlds)

A problem (from the point of view of reversibles & worlds)

A problem (from the point of view of reversibles & worlds)

A problem (from the point of view of reversibles & worlds)

When we are going to try something … that might not work

A problem (from the point of view of reversibles & worlds)

Undoing all changes! Typical use is a backtrack.

A constrained integer variable, IntVar, is then …

A constrained integer variable, IntVar, is then …

A constrained integer variable, IntVar, is then …

Implementation of Domain

d.remove(x)

d.remove(x)

d.remove(x)

d.remove(x)

Amotrized O(1)

d.removeAllBut(x)

d.removeAllBut(x)

d.removeAllBut(x)

O(1)

d.removeBelow(x)

d.removeBelow(x)

d.removeBelow(x)

Amortized O(m)

d.removeAbove(x)

Amortized O(m)

There are only 3 places weeSeepy throws exceptions

• In Domain: a domain becomes empty
• In Problem: search finds a solution
• In IntVar: attempt to get the value of an uninstantiated variable

Code , notes, papers

Also see notes 033 and 034

