
Increasing the Flexibility of Modelling Tools via
Constraint-Based Specification

Philip Gray and Ray Welland

Department of Computing Science, University of Glasgow, UK
fpdg,rayg@dcs.gla.ac.uk

Abstract

Most commercial modelling tools provide support
for customising surface features (i.e., visual and,
to some extent, interactive behaviour) of a model.
Although useful and simple to use, such customisa-
tion is typically very limited; for example, one can-
not change the basic representation of model com-
ponents. Meta-CASE tools offer the potential for
much greater customisation, but at a high cost, viz.,
the tool must be respecified and rebuilt. We pro-
pose an approach, constraint-based specification,
which combines the flexibility of current tools with
the power of CASE tool builders.

1 Introduction

A meta-CASE tool is a tool that provides facilities
for specifying and generating CASE tools [1]. A
common use of such tools is to generate design
diagram editors and our examples will be drawn
from this domain. The use of meta-CASE, or tool
builder, technology provides flexibility in the gen-
eration of graphical design tools, extensibility to
provide tools for new, hybrid or integrated nota-
tions and methods, the efficient use of the graphical
infrastructure underpinning many different tools.
Our objective is to provide finer control over a gen-
erated tool’s interaction, providing greater flexibil-
ity of interaction, giving individual users more con-
trol of some aspects of a tool’s behaviour, particu-
larly with respect to enforcement of design rules.

Varying the specification used as the basic input
to the meta-CASE tool provides flexibility in the
generation of design tools. For example, to provide
a local variation of a widely used design notation,
such as UML, we can modify the specification of
the standard notation and generate a new variant of
the design tool. However, it would not be economic
(nor manageable!) to generate individual variants
of tools tailored for individual users.

Run-time customisation of tools is possible
within the limits set by the tool designer; any more
substantial changes will require the tool to be re-
built. Run-time customisation is a form of configu-
ration, but it can also be viewed as micro-evolution
of the tool specification. The limitation of most
current tools is that the degree of control over run-
time customisation is ad hoc. A user can change
just those features that the tool provider anticipated
should be tailorable. Normally, these customisa-
tion facilities are purely cosmetic, allowing the use
of different colours or changing the line routing in
a diagram. There is no general model of what is
changeable or why. Our work combines the use of
meta-CASE technology with run-time constraints
(described below) to create a two level configura-
tion model for tools, the coarse level being pro-
vided by the meta-CASE tool and the fine level of
control via the use of run-time constraints.

This paper reports on recent work to combine in-
dependent but related research on software mod-
elling tools and constraint-based user interface de-
velopment tools. We examine the ways in which



constraints can be exploited in meta-CASE tool
technology and develop a three-level characteri-
sation of configuration constraints for modelling
tools. The potential of this approach is demon-
strated via several examples of tool customisabil-
ity and the limitation of some current tools. We
propose a constraint-based meta-CASE system that
provides greater flexibility and customisability of
software modelling tools. An outline of our pro-
posed architecture is presented, followed by a dis-
cussion of related work and concluding observa-
tions.

2 Specification and Constraints

2.1 Specification via Constraints

The notion of constraint is based on the notion of
value dependency. That is, some data element e
is constrained by condition c if the value of e de-
pends on the value of c. Constraint specification
languages have proved useful for a variety of ap-
plications in which value dependencies are volatile
and subject to change. A number of successful user
interface development environments, for example,
have been implemented using constraints to spec-
ify the interactive behaviour of graphical elements
[4, 6].

Software modelling tools, such as those gener-
ated by meta-CASE tools, are similar in relevant
ways to user interface development environments:

� both generate end-user systems featuring in-
teractive graphics, and

� as we have argued above, support for customi-
sation is a desirable feature.

The power of the constraint approach lies in the fact
that constraints can be specified via constraint lan-
guages and interpreted at run-time via constraint-
satisfaction engines. Changes to the constraints
(e.g., to reflect customisation) can be carried out
without rebuilding the system; the new constraints
will be resolved by the actions of the constraint-
manager.

We find it useful to distinguish several varieties
of constraint from the point of view of tool design
and construction:

2.1.1 Design-time Constraints

Design-time constraints are restrictions on system
behaviour identified or asserted by a designer; typ-
ically they express functional and non-functional
requirements. They may be expressed in many dif-
ferent forms or, indeed, may merely be informal
requirements existing only in the head of the de-
signer.

2.1.2 Executable Constraints

These are constraints that affect the behaviour of
an actual system. They may be hard-coded in the
system implementation, in which case they are em-
bedded constraints, or they may be run-time con-
straints that are resolved by a constraint-manager.
Ideally, the executable constraints will capture all
and only the set of design-time constraints.

Implementation of a tool can be viewed as trans-
forming design-time constraints into executable
constraints (see figure 1).

In the simplest case, where meta-CASE technol-
ogy is not used, tool specification will be expressed
in a programming language, the toolbuilder will be
a compiler and all of the executable constraints will
be implicit in the executable image (i.e., they are
”embedded” in the code).

2.2 Embedded Constraints vs. Run-
Time Constraints

A major part of the specification of the design no-
tation that is used as input to a meta-CASE tool is a
set of design-time constraints on the way in which
the generated tool can be used. For example, the
type or number of connections permitted between
node types may be restricted; names may be re-
quired to be unique over certain classes of diagram
entities; the graph must be connected, no disjoint
partitions of the graph are allowed. These con-
straints may be embedded directly in the code of
the run-time system or explicitly separated out as
conditions to be handled by a constraint manager.
Together these (executable) constraints are used to
enforce the rules of the diagramming notation.

In a conventional meta-CASE tool that does not
generate a constraint-resolution subsystem in the
output tool, any executable constraints must, of
course, be embedded constraints. Furthermore,
some meta-CASE specification languages do not



Design-Time Constraints

Core System

Constraints

Constraint Manager

Run-Time System

Embedded
Constraints

Run-Time
Constraints

in tool specification language

in designer’s head

Tool Builder

Tool Specification

Figure 1: Relationships Among Constraint Types

offer the option to describe constraints explicitly
as conditions to be met by a diagram. Design-time
constraints can only be expressed in such languages
by embedding them in the constructs that define the
syntax of the design notation. However, in the case
of a system that permits run-time constraint check-
ing, the question arises: which constraints should
be embedded and which should be run-time? We
now turn to that question.

2.3 Hard vs. Soft Constraints

the way in which the user can interact with the gen-
erated tool. We can classify executable constraints
as hard constraints, which are enforced as a dia-
gram is drawn, and soft constraints, which may be
temporarily violated by intermediate states of the
diagram. For each constraint there is a choice about
when it should be enforced and in a standard meta-
CASE tool this decision is hard-wired into the gen-
erated tool. Soft constraints will eventually have
to be satisfied before a legal design diagram is cre-
ated; their enforcement is simply deferred until ei-
ther the user requests checking or checking is in-
voked automatically. Given a suitable constraint-
satisfaction engine, run-time constraints offer the

potential to modify the constraints from hard to
soft and vice versa. That is, the time of constraint
enforcement can itself be treated as customisable.
This additional customisation can be quite useful:
hard constraints can be relaxed to speed up or sim-
plify complex software modelling and soft con-
straints can be hardened to check the current status
of the software model.

2.4 Why Restrict Constraints to Cus-
tomisation?

We are unlikely to generate an editor in which
all the design-time constraints are implemented as
run-time constraints. This type of ’free for all’ ed-
itor would be grossly inefficient and would make
it very difficult to give sensible feedback to the
user, as there would probably be cascades of de-
pendent errors. Therefore, some of the constraints
will be embedded and the tool designer will have
to decide where the dividing line between embed-
ded and run-time constraints should be drawn. This
could be seen as balancing compiling constraints
and interpreting them. Typically, hard constraints
will be compiled into actions enforced by the gen-
erated tool (i.e., embedded constraints), while soft



constraints will be interpreted at run-time. Hard
constraints will normally be related to the opera-
tions that the tool allows. For example, attempting
to make an illegal connection between two nodes
will be prohibited, i.e. implemented as an embed-
ded hard constraint, if there is no operation that al-
lows the insertion of a new node to transform the
current state into a legal diagram.

Our approach is to separate run-time constraints
from the rest of the specification of the design no-
tation so that a constraint engine can process them
at execution time. In this way, the end-user can de-
cide at what point in a diagram development pro-
cess a particular soft constraint should be enforced.
At one extreme, the user can decide that all run-
time soft constraints should be enforced immedi-
ately (i.e., treated as hard constraints), giving a
syntax-directed style of editing. At the other ex-
treme, all run-time constraints can be relaxed (i.e.,
treated as if they were soft) giving the effect of a
compilation system in which all checking is post
hoc. In practice, we expect most users to adopt an
intermediate position, identifying their own subset
of constraints to be enforced immediately, leaving
the remainder of the constraints to be post checked.

3 Configuration Constraints
Applied to Modelling Tools

3.1 Types of Tool Configuration

Three basic types of specification or configuration
can be identified in graph-based modelling tools:

� changes to the actual graph structure, which
we call the relationship level;

� changes to the information associated with
nodes and arcs, called the representational
level;

� changes to the visual appearance of the graph
and its associated information, called the pre-
sentation level.

We refer to these three types of customisation as
levels since they form an interpretational hierarchy.
That is, relationship level customisation concerns
the structure of the uninterpreted graph, represen-
tational level customisation refers to the interpreta-
tion of the graph, and presentational level customi-

sation affects the mapping of the interpreted graph
onto visual properties of a display.

3.1.1 Relationship Level

At this level, properties of the graph are speci-
fied. Characterisation at this level affects the graph
structure, but has no effect on the meaning of
the graph components or their visual presentation.
Thus, a STN might be customised so that cycles are
not permitted; that is, the graph must be acyclic.

This type of condition on the modelling tech-
nique should be distinguished from using the graph
structure for investigating properties of an actual
model specification. That is, one might want to as-
sert that there exists a path between two specified
nodes (e.g., to prove that an interactive sequence
can be performed). Such a condition is not on the
modelling technique but on a particular use of the
technique. While such conditions can be handled
using the approach described below, they are be-
yond the scope of the present paper.

It is perhaps misleading to say that the relation-
ship level only affects a completely uninterpreted
graph. Often graph properties are specified by ref-
erence to the type of the nodes or arcs. Thus, con-
sider a tool for constructing petri nets. This might
be customised for use in specifying user inter-
faces by declaring a special node type, called a de-
vice place, which represents the source of device-
generated input events. One might require that such
places have no input transitions. The condition, no
input transitions into device places, applies to the
graph structure, but refers to the typing (hence in-
terpretation) of the nodes. Our three-level categori-
sation of configuration is based on what is affected
by the configuration, not on the type of information
in the constraint condition.

3.1.2 Representation Level

Configuration at this level conditions the meaning
of graph components while preserving the underly-
ing graph-based relationships among components.
One may think of this as augmenting the graph
structure with additional information. That is, one
may customise nodes and arcs by placing condi-
tions on the information associated with them. For
example, one might require that nodes represent-
ing transforms in a DFD must have a unique name.
The customisation does not change the graph prop-



erties of the DFD but only affects the information
associated with nodes.

3.1.3 Presentation Level

Configuration at this level affects the visual appear-
ance of the model, including the graphical render-
ing of model components and the manner of their
layout.

This may seem the least important of the three
forms of configuration, but the visual presentation
can be critical for the understandability of the in-
formation in the model. A poor layout (e.g., many
arc crossovers in a graph) or graphical components
breaking well-known conventions (e.g., using dia-
monds to stand for entities in an ER diagram) can
increase the difficulty of ”reading” the model and
cause errors of interpretation.

3.2 Capturing a Modelling Technique

Customisation at all three levels may be combined
with a base-level tool specification to define a mod-
elling technique. Consider the configuration of a
DFD tool. At one level of abstraction, a data flow
might be defined as a labelled relationship between
a source transform and a destination transform. We
can describe customisations at all three levels of a
tool related to this abstraction:

� relationship level: a data flow is represented
by a directed arc between transform nodes.

� representation level: the data flow must have
a label (not necessarily unique).

� presentation level: the data flow is presented
as a line with a textual label centred on the
centre of the line and an arrow pointing to the
destination transform.

A lower level of abstraction, in which the data flow
label is a named and typed data element, could
modify the representation and presentation levels
of the tool.

This multi-level description of a modelling tech-
nique can be defined by a set of appropriate run-
time constraints. We can think of these like ”style”
specifications that can be applied to a basic DFD
modelling tool [8]. Rebuilding of the tool is un-
necessary to change the modelling technique, only
the set of constraints defining the style need be
changed.

3.3 Capturing and Supporting Design
Guidelines

Software design is a demanding intellectual activ-
ity, often helped by design knowledge (e.g., prin-
ciples, guidelines and local expertise). Typically,
software modelling tools do not support the design
process, apart from supplying an interactive speci-
fication medium and reducing the effort of record-
ing the results of the process.

Constraints can encapsulate design knowledge
expressed in guidelines like:

� don’t put more than 5 classes in a diagram

� put inputs on the left, outputs on the right

� where appropriate, prefix names with the par-
ent entity’s abbreviated label (or other such lo-
cal naming convention)

Such guidelines provide additional assistance in
producing software models that are readable and
likely to lead to satisfactory designs. However, it
is possible for legal diagrams (in the sense of ex-
pressing a model with correct semantics) to violate
these guidelines.

Soft run-time constraints can be used to capture
such design guidelines in the modelling tool itself.
Violations of the guidelines might trigger an ”er-
ror” which can lead to a subsequent design review.
We believe that one of the strengths of our approach
is the ability to handle guidelines as well as defini-
tional features of a modelling technique.

4 An Example

We present an example of our approach based on a
popular modelling technique, viz., class diagrams
in UML [14]. We show how constraints can be
used to customise all three levels of a modelling
tool. First, by changing the constraints on inheri-
tance relationships, the graph structure of the tool
is modified. Second, by constraining the class rep-
resentation, we customise the attributes of a class.
Finally, we alter the visual appearance of the class
representation by constraining the visual display of
class members.

4.1 UML Class Diagrams

A UML class diagram is a description of the types
of objects in an object-oriented system. Included in



such a diagram are visual representations of

� the name, attributes and operations of a class,
and

� various static relationships among the classes,
including inheritance and aggregation.

Class diagrams can be used to generate viewpoints
(i.e., descriptions at different levels of abstraction),
including:

� class relationships only, with classes repre-
sented by boxed names

� architectural information only, with classes
represented by their external interface (public
state and operations)

� implementation information, where class rep-
resentation also include private state and
methods.

4.2 Relationship Constraints

The UML modelling notation places few restric-
tions on the class descriptions that can be produced.
Thus, there is no facility in the notation for dis-
tinguishing single from multiple inheritance nor is
there requirement that class descriptions must, or
must not, include certain information about class
members (e.g., that attributes must be typed). It
is reasonable to suppose that restrictions such as
these would be useful for certain software mod-
elling tasks. We shall now examine how tool con-
figuration might support configuration to capture
such restrictions.

Suppose I, a modeller, want to restrict my
specification to single inheritance between classes.
To reflect that condition, inheritance relationships
must be such that each class has at most one par-
ent. There are three options to reflect this condition
in a modelling tool:

� if the tool is not reconfigurable and does not
support such a condition, then the tool user
must maintain the condition mentally by en-
suring that no class node is given more than
one incoming inheritance arc. This is clearly
undesirable since the user may forget or over-
look a violation of the condition and, in any
case, an additional cognitive load is placed on
the user

� if the tool allows for modification, the op-
eration for creating inheritance relationships
might be rewritten and the tool rebuilt. While
this is clearly better than the first option,
the overhead involved in the rebuild is rather
great. Also, the only representation of the
condition is the modified code itself, making
it difficult to validate the correctness of the
change

� if the tool allows for specification of such con-
ditions in a high-level constraint language, the
single inheritance condition can be expressed
in terms of the features of the augmented
graph, enabling validation. Such a language
offers the opportunity, in principle, to gener-
ate a new tool satisfying the constraint or to
add the constraint at run-time, thus reducing
the cost of rebuilding by automating code gen-
eration.

In UML class diagrams produced using the Ratio-
nal Rose modelling tool [11], one may add sev-
eral different types of relationship: inheritance, as-
sociation, aggregation, etc. As Rational Rose is
presently constituted, a ”single inheritance” con-
straint cannot be specified at the level of the tool;
it must be maintained by a careful designer. Hence,
Rational Rose only offers the first option.

4.3 Representation Constraints

A designer might well want to modify class repre-
sentations or add new ones. For example, I might
want a class representation that captures only name
and a set of attributes (abstractions over state and
operations) as in the JavaBeans approach [10]. To
do this in Rational Rose, a convention would have
to be utilised by which special public state vari-
ables stand for the attributes and operations are dis-
allowed in the specification. As with the relation-
ship constraints described above, maintaining the
constraint is the responsibility of the tool user.

In addition to the reasons already mentioned, this
approach is clearly inadequate, since it does not
capture the notion of different levels of abstraction.
If a tool supported modelling constraints, the ”at-
tributes only” version of a tool might be changed
to an ”attributes and attribute-related operations”
version just by changing the representational (and
perhaps presentational) constraints. This provides



a method for the systematic transformation or re-
placement of the one abstraction by another.

4.4 Presentational Constraints

Tools like Rational Rose provide a limited set of
presentation-level customisation options. Thus,
one can specify font type and size for textual in-
formation (class, attribute and operation names),
set relationship lines to be rectilinear or oblique,
and determine the visibility of attributes, operations
and their features (e.g., whether public or private).
Other presentational features, such as line style, are
not available for change, most likely because they
are deemed to be central to the visual conventions
of the UML diagramming style.

Such limitations on what is, and is not, config-
urable at run-time results in an unnecessarily in-
flexible tool. It is inflexible because there may
well be cases of useful visual modifications unan-
ticipated by the original tool builders (e.g., to im-
prove readability or to increase information con-
tent). Consider, for example, setting the line width
of an inheritance link to correspond to the number
of operations which are inherited by (passed down
to) a child class. This breaks no known convention
but might provide valuable information in certain
circumstances.

Furthermore, if there are certain features that
should not be changed in a particular context of
use, constraint change permissions can be restricted
by group-based ownerships. Changing line style
might be available, say, to a project leader but not
to team members. Changing the appearance or be-
haviour of a modelling tool is like changing the
syntax or even semantics of a visual language. As
with any language, such changes can be risky - con-
fusion or misinterpretation can result [9]. But with-
out change any modelling language, just like a nat-
ural language, is doomed to eventual obsolescence.
By using run-time constraints, decisions about ap-
pearance can be fixed relative to a context of use
without being fixed permanently. Indeed, a suitable
constraint manager can report on violations of com-
pany conventions, say, without prohibiting their vi-
olation.

5 The Architecture of a
Constraint-Based Modelling
Tool Generator

To provide structured run-time customisation of the
type described above, a meta-CASE tool must sup-
port:

� the specification of executable constraints,
both embedded and run-time, applicable to the
relationship, representation and presentation
levels of description

� inclusion of design-time constraints as embed-
ded constraints

� a configurable constraint manager, capable of
changing constraints from hard to soft and of
providing different forms of constraint-status
reporting

We propose an architecture for the target modelling
tool, including a software model component con-
sisting of an augmented graph object and a linked
view component which implements the visual ap-
pearance and interactive capabilities of the tool. In
addition, the target tool will include set of run-time
constraints and a constraint manager, responsible
for handling the resolution of these constraints.
Figure 2 illustrates the architecture of modelling
tools produced by our proposed meta-CASE sys-
tem.

Modelling tools are specified using a specifica-
tion language for modelling techniques. A mod-
elling tool specification includes two parts:

� base-level tool description: this defines the
basic graph and its interpretation plus the
user interface representation of the interpreted
graph

� run-time constraints: a set of run-time con-
straints on the graph, its interpretation and its
presentation. A tool generator takes a mod-
elling tool specification and generates a mod-
elling tool by producing graph and presenta-
tion components (augmented graph and graph
view, respectively, in Figure 2) according to
the base-level tool description and a set of
run-time constraints according to the run-time
constraint set.



augmented graph

run-time constraints

graph view

Tool Generator

Tool Specification

constraint manager

Ta rg e t
Too l

Base Classes
(e.g., graph class)

Figure 2: The Target Modelling Tool Architecture

5.1 A Prototype Tool Generator

Serrano and Welland made a first attempt at the
design and implementation of a specification lan-
guage and associated generator that separates tool
syntax from run-time constraints. VCt [17] is a lan-
guage to produce formal specifications of diagram-
based modelling techniques. A number of com-
plete specifications of modelling techniques have
been produced with the language, including Data
Flow diagrams (DFDs), state transition diagrams
and Entity-Relationship diagrams. Serrano devel-
oped a prototype supporting system [15] that in-
cludes a compiler with a code generator, a generic
tool to manage node and link diagrams that en-
forces constraints at run-time, and tailorable user
interaction facilities.

This prototype system generates a complete de-
sign editor tool for the end-user, supporting the
editing of a specified diagram type. The constraints
are implemented as code fragments generated from
the VCt specification and compiled into the code of
the end-user diagram-editing tool.

The system exploits run-time diagram con-
straints, based on assertions that form part of the
diagram specification, that are maintained by the

diagram editor during execution. This notion of
constraint is similar to that of integrity constraints
in databases, i.e., properties, which must be main-
tained by the component objects, and operations
which constitute the diagram editor. For example,
one might specify that in a DFD there must be at
least one external entity that provides input to the
system. This condition can be asserted in the VCt
language as follows:

C9:"There must be a least one
external entity which provides
input to the system"
9e:ExternalEntity �

e 2 Externals (dfd) ^

9f:DataFlow � f 2Dataflows(dfd) ^

(source(f) = e)

ExternalEntity and DataFlow are declared as icons
and connections, respectively, and source is a prop-
erty of DataFlow that returns an icon. This asser-
tion will be transformed into a constraint that must
be satisfied by any diagram created using a diagram
editor that meets the VCt specification. The edi-
tor will include code to ensure that this constraint
is maintained during diagram construction by the



end-user.
A library of pre-defined functions is provided to

extend the expressiveness of the VCt language and
simplify writing predicates. A common constraint
in many modelling techniques is that all elements
of a diagram must be connected, so a function,
which cannot be written directly in VCt, is pro-
vided. A function called UniqueName is also pro-
vided to traverse all diagram elements of a partic-
ular type to ensure that they all differently named,
another very common constraint. This can be writ-
ten as a straightforward predicate in VCt but occurs
so frequently that it is useful to provide a function.

The process of producing a modelling tool with
the system is done in two steps:

1. A given modelling technique is specified us-
ing the VCt language, including assertions
that will eventually be transformed into run-
time constraints,

2. Code is generated automatically to implement
the modelling tool supporting the specified
modelling technique, including code to main-
tain the constraints. Specifications for sev-
eral modelling techniques have been produced
and compiled [16]. As a more extensive test,
Serrano produced a complete state transition
diagram-based design tool using the proto-
type generation system. These preliminary
findings establish the feasibility of the whole
approach, viz., constraint-based specifications
can be used to describe diagram-based mod-
elling techniques and from these, design tools
can be created automatically.

5.2 Developing a Tool Generator with
a Constraint Manager

The prototype system generates embedded code for
constraints directly from the VCt specification us-
ing templates for different types of constraints [15].
In order to implement the architecture shown in
Figure 2, we need to:

� define an intermediate constraint specification
language which can be interpreted by the con-
straint manager

� modify the tool generator so that it translates
constraints from the formal notation of VCt
into the new specification notation

� build a constraint manager which can be in-
voked to check constraints when specified
events occur during diagram construction at
run-time

� enhance the user interface to allow the end-
user to control constraint execution and re-
ceive feedback from the constraint manager
subsystem.

Currently, we are working on a Java-based
model editor framework consisting of a graph
editing framework (based on GEF [12]) aug-
mented by domain enhancements and a proto-
type constraint manager with a user interface that
presents constraint-satisfaction status in the form of
critiquing-oriented reports and that permits control
over constraint resolution policy and execution.

We have taken a small subset of VCt constraints,
those involved with naming in DFDs (including
naming constraints dependent on graph proper-
ties), and hand-translated them into an intermedi-
ate human-readable format in XML. These con-
straints are then transformed by the run-time editor
into equivalent Java objects representing the instan-
tiated constraints. The prototype, albeit limited in
functionality, demonstrates the feasibility of con-
figurable constraint resolution policy. We are now
in the process of adding presentational constraints
and automatic editor generation from VCt specifi-
cations.

6 Related Work

Commercial software modelling tools exhibit rel-
atively limited customisation facilities. For exam-
ple, Rational Rose, a popular set of tools for object-
oriented modelling using UML, has interactive fa-
cilities for customising the appearance of diagram
elements and for incorporating user-defined oper-
ations [11]. However, the basic semantics of di-
agrams cannot be inspected as a specification nor
can the diagram structure or basic behaviour be
modified. EiffelCase from ISE [5] offers facili-
ties for building and displaying concurrently multi-
ple views (viz., alternative presentation levels), but
these have only limited configurability.

The Alvey-funded ECLIPSE project included
the production of a design-editor [3] that could be
tailored to support different software design nota-
tions. This system was based on a single generic



design editor driven by a set of tables gener-
ated from an informal specification language called
GDL [19, 22]. A tool builder could specify a design
notation using GDL that was then compiled to cre-
ate the design-editor tables. The editor’s behaviour
could be changed by modifying the GDL descrip-
tion and recompiling the tables.

GDL is an ad hoc specification language that
mixes design concepts with graphical representa-
tions of modelling techniques. Therefore, it is
not possible to reason about specifications (e.g., to
identify conflicting constraints). GDL also con-
tains distracting detail about graphical representa-
tion and spatial constraints that is not fundamen-
tal for software modelling. The ECLIPSE DE con-
straint system is unsophisticated and does not allow
for constraint classification or dynamic configura-
tion at run-time.

After the ECLIPSE project, the basic compo-
nents were re-engineered into a meta-CASE prod-
uct called Toolbuilder [21, 2], now maintained by
Lincoln Software. Tools are created by parameter-
ising generic tool elements and composing the spe-
cialised elements to create a tailored design tool.
The parameters are generated from a specification
of the desired method. When generic tool com-
ponents do not provide the required functionality,
method specific procedures can be added using the
interpreted language Easel.

More flexibility is offered by a metamodelling
approach in which a metamodel framework is pop-
ulated with the particular model components re-
quired for a desired diagramming tool. MetaEdit+
is a commercial model development environment
that uses this approach [18]. Although there is an
inspectable high-level description of the diagram
(its model) there are no facilities for exploring the
consequences of diagram design decisions in the
run-time system. That is, a designer cannot ex-
plore diagram design alternatives without chang-
ing the underlying model and rebuilding the edi-
tor. Furthermore, a meta-modelling approach dis-
tributes diagram behaviour across model compo-
nents, making it difficult to predict how the dia-
gram will behave. A constraint-based architecture,
in which declarative assertions about diagram se-
mantics are transformed into run-time constraints
satisfied by an interactive diagram modelling tool,
could overcome the restrictions in specification and
customisation encountered in current diagram de-
velopment tools.

MetaView [7, 20] is a meta-CASE system that
includes a constraint language, called ECL (En-
vironment Constraint Language). MetaView dis-
tinguishes between conceptual information, the se-
mantics of a design, and graphical information
stored about the presentation of that design. ECL
can be used to express both conceptual and graph-
ical constraints. The conceptual constraints speci-
fied in ECL have similar expressive power to con-
straints defined in VCt, although ECL addition-
ally includes constraints on aggregates, such as
multi-level DFDs. There is no separation of the
MetaView conceptual constraints into base repre-
sentation (the ”relationship level”) and interpreta-
tion (the ”representation level”) constraints as in
our system.

MetaView conceptual constraints are divided
into consistency and completeness constraints.
Consistency constraints are checked whenever a
graphical operation is carried out that could change
the semantics of the conceptual design informa-
tion, stored in the specification database. Viola-
tion of a consistency constraint generates an er-
ror message, which must be acknowledged by the
user before proceeding and without updating the
specification database (i.e., the operation is can-
celled). Completeness constraints are applied when
the user explicitly requests a completeness check.
Any violations of completeness constraints are re-
ported to the user via a list of error messages.
The MetaView approach links constraint type (con-
sistency vs. completeness) with constraint effect
(abort operation vs. report violation). We have sep-
arated these aspects of constraints - category and
effect, treating them as orthogonal and offering a
designer/tool user the option of choosing the con-
straint effect policy independent of the constraint
category.

The UML-based design environment Argo [13]
employs run-time constraints on graph and model
properties as a means of offering design critiques.
Argo does not, however, provide the same con-
straint mechanism at the presentation level.

7 Conclusions

We have argued that constraint-based customisa-
tion is superior to the rather ad hoc approach of
current commercial modelling tools and, when in-
corporated into a meta-CASE generator, provides a



powerful means of realising flexibility with min-
imum implementational cost (i.e., no rebuilding
necessary to regenerate constraints). By com-
bining constraints with a basic tool specification,
modelling techniques can be defined, promoting
reuse and controlled tailoring and evolution of tech-
niques.

A limited prototype tool and language have al-
ready been developed [10]. We are now engaged in
re-engineering and enhancing this prototype prior
to an evaluation of our method.

A number of questions remain unanswered:

� Can our language and architecture support
a sufficiently rich range of basic modelling
techniques and forms of customisation? We
have done some work on specifying mod-
elling techniques such as STNs, single-level
DFDs and ER diagrams. However, we need to
specify a wider range of modelling techniques
and deal with some awkward problems like
abstraction/explosion in multi-level diagrams
such as DFDs.

� Can we support a rich enough variety of cus-
tomisations using our constraint language?
Will toolbuilders and software modellers find
the constraint model usable and useful? We
intend to tackle this problem from two an-
gles. First, by investigating the use of existing
tools we can identify potentially useful types
of constraints to provide flexibility. Second,
we shall carry out user testing of our proto-
type and its descendants to identify the via-
bility of the constraint approach. These em-
pirical investigations will include small-scale
controlled experiments to explore specific us-
ability questions and longer-term studies of
use in realistic industrial settings.

� Constraint violations can be monitored and
logged. Such a log forms a sort of ”design
history” of tool use during diagram construc-
tion by end-users. Can such design histories
prove useful in identifying problematic parts
of a model and reusable modelling patterns?

� Can tool users customise constraints ex-
pressed in our language or is a more com-
prehensible representation needed in this con-
text? Our present constraint language is for-
mal, based on Z notation, and we need to in-
vestigate whether this is usable by software

engineers or whether we need to provide alter-
native interactive specification techniques for
constraint specification.

� Should the constraint manager itself be con-
figurable? Our initial assumption is that mod-
ifiable constraints along with a fixed global
constraint manager will offer the flexibility
needed. However, we might consider whether
the constraint manager itself should be config-
urable, e.g., to allow selection of alternative
actions on constraint violation.

Acknowledgements

Dr Artur Serrano developed the VCt language and
a prototype tool builder as part of his PhD work
while studying at the University of Glasgow. He
has made a large contribution to the approach de-
scribed in this paper. The authors would also like
to thank the anonymous reviewers for their helpful
comments.

About the Authors

Phil Gray is a lecturer and Ray Welland a senior
lecturer in the Computing Science Department of
the University of Glasgow, Scotland.

References

[1] A. Alderson. Meta-CASE Technology. In
European Symposium on Software Develop-
ment Environments and CASE Technology,
Konigswinter, Germany, 1991.

[2] A. Alderson, J.W. Cartmell, and A. Elliot.
ToolBuilder: From CASE Tool Components
to Method Engineeering. InCoSET 99 Work-
shop, May 1999.

[3] S. Beer, I. Sommerville, and R. Welland. The
Design Editor. In F. Bott, editor,ECLIPSE:
An integrated project support environment,
pages 85–95. Peter Peregrinus, 1989.

[4] A. Borning. Thinglab - A Constraint-
Oriented Simulation Laboratory. PhD thesis,
Stanford University, 1979.

[5] EiffelCase: Graphical support for seamless,
reversible O-O Development. Interactive



Software Engineering, 1999.
http://eiffel.com/products/case/page.html.

[6] B. Myers et al. Garnet: Comprehensive Sup-
port for Graphical, Highly-Interactive User
Interfaces. IEEE Computer, 23(11):71–85,
Nov 1990.

[7] P. Findeisen. The metaview system. Technical
report, Dept. of Computing Science, Univer-
sity of Alberta, 1994.

[8] P. Gray and S. Draper. A Unified Concept of
Style and its Place in User Interface Design.
In Proc. of HCI ’96, pages 49–62. Springer-
Verlag, 1996.

[9] T. Green and M. Petre. Usability Analysis of
Visual Programming Environments: A ’Cog-
nitive Dimensions’ Framework.Journal of Vi-
sual Languages and Computing, pages 131–
174, 1996.

[10] Java Beans API Specification. Sun Microsys-
tems.
http://java.sun.com/beans.

[11] Rational Rose 98. Rational Software Corpo-
ration, 1998.
http://www.rational.com/products/rose/.

[12] J. Robbins, D. Hilbert, and A. Gauthier. Gef:
Graph editing framework. Technical report,
Dept. of Information and Computer Sci-
ence, University of California, Irvine, 1999.
http://www.ics.uci.edu/pub/arch/gef/index.html.

[13] J.E. Robbins and D.F. Redmiles. Software ar-
chitecture critics in the Argo design environ-
ment. Knowledge-Based Systems, 11:47–60,
1998.

[14] J. Rumbaugh, I. Jacobson, and G. Booch.The
Unified Modeling Language Reference Man-
ual. Addison-Wesley, 1999.

[15] J.A. Serrano.Automatic Generation of Soft-
ware Design Tools Supporting Semantics of
Modelling Techniques. PhD thesis, University
of Glasgow, 1997.

[16] J.A. Serrano and R. Welland. Complete
VCt Specifications of Modelling Techniques.
Technical Report TR-1997-24, Department of
Computing Science, University of Glasgow,
1997.

[17] J.A. Serrano and R. Welland. VCt - A For-
mal Language for the Specification of Di-
agrammatic Modelling Techniques.Infor-
mation and Software Technology, 40(9):463–
474, 1998.

[18] K. Smolaner, K. Lyytinen, and V. Taha-
vanainen. Meta-Edit - A flexible graphical
environment for methodology modelling. In
Proc CAiSE91, 1991.

[19] I. Sommerville, R. Welland, and S. Beer. De-
scribing Software Design Methods.Com-
puter Journal, 30(2):128–133, 1990.

[20] P. G. Sorenson, P. S. Findeisen, and J.P. Trem-
blay. Supporting Viewpoints in Metaview.
In SIGSOFT 96 Workshop, pages 237–241,
1996.

[21] Tool Builder. Lincoln Software.
http://www.lincolnsoftware.com.

[22] R. Welland, S. Beer, and I. Sommerville.
Method Rule Checking in a Generic Edit-
ing System. Software Engineering Journal,
5(2):105–115, 1990.


