
REM 2007

Monitoring External Resources in Java MIDP

David Aspinall Patrick Maier1 Ian Stark
Laboratory for Foundations of Computer Science

School of Informatics, The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

Abstract

We present a Java library for mobile phones which tracks and controls at runtime the use of potentially costly resources,
such as premium rate text messages. This improves on the existing framework (MIDP — the Mobile Information Device
Profile [6]), where for example every text message must be authorised explicitly by the user as it is sent. Our resource
management library supports richer protocols, like advance reservation and bulk messaging, while maintaining the security
guarantee that attempted resource abuse is trapped.

Keywords: Runtime Monitoring, Resource Control, Java MIDP, Security.

1 Introduction

Modern mobile phones are powerful computers. Their primary task, providing mobile
wireless telephone services, is comparatively losing importance as they are being used for
a range of other applications, from personal information managers to web browsers, from
media players to games. Most of these applications access the network 2 , either because it
is integral to their functionality (e. g. web browsers, online games), or because networking
is adding desired features (e. g. playing streaming media or synchronising diaries).

The cost of the standard computational resources, like execution time or memory space,
is determined solely by the computational device (i. e. the hardware of the mobile phone)
itself. The cost of network access, however, is determined by external entities, e. g. the
business model of the phone operator, which is why we classify network access as an
external resource. Moreover, it is a resource the spending of which users generally would
like to control tightly because it costs them money. The last point actually goes double:
If network access is maliciously exploited it could be very expensive, but even if it is not
exploited, users care about each 10p 3 , i. e. they want to know the exact cost beforehand.

In MIDP [6], the current standard framework for Java applications on mobile phones,
monitoring external resources, like communication via text message, is left to the user, as

1 Email: pmaier@inf.ed.ac.uk
2 Refers to the operator’s mobile phone network; access to other networks (like the Internet) is routed through this one.
3 The standard cost of sending a text message in the United Kingdom.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:pmaier@inf.ed.ac.uk

Aspinall, Maier, Stark

send(msg3)
Is it ok to send 1 msg
to +44 444 1234567 ?

YES

create msg3

send to +44 444 1234567

send(msg2)
Is it ok to send 1 msg
to +33 333 7654321 ?

YES

create msg2

send to +33 333 7654321

send(msg1)
Is it ok to send 1 msg
to +44 444 1234567 ?

YES

create msg1

send to +44 444 1234567

NO

NO

NO

SecurityException

create multiset
of phone nums

To +44 444 1234567

To +33 333 7654321

How many msgs to send ?

2
1
0

1
0

(containing submultiset of granted nums)

return mgrall nums
granted to

NO

mgr ?

YES

create msg2
send(mgr, msg2)

create msg1

create msg3
send(mgr, msg3)

send(mgr, msg1)
send to +44 444 1234567

send to +33 333 7654321

send to +44 444 1234567

enable(multiset)

Fig. 1. Transaction sending 3 text messages; in MIDP 2.0 (left) and with explicit resource management (right).

illustrated by the flowchart on the left hand side of Figure 1. For each of the three messages,
the application pauses to ask the user for authorisation before sending. This one-shot autho-
risation is clearly prohibitive for applications wishing to send many messages because users
will get annoyed by the many pop-up screens, which malicious applications may exploit
to trick users into authorising messages to premium rate numbers. Such social engineering
attacks [12] have been reported in the wild [14]. Yet, even if an application sends only few
messages, one-shot authorisation can lead to undesirable results, like transactions aborted
midway by an exception because the user stops authorising messages (see the left hand side
of Figure 1).

We propose explicit accounting and monitoring of external resources to better protect
the user from accidental or malicious resource abuse. Our approach revolves around re-
source manager objects, which keep an account of which external resources an application
is granted to use and how often. The right hand side of Figure 1 illustrates this on the mes-
saging example. Before sending messages, the application computes a multiset of phone
numbers encoding how many messages it will send to which recipients. In a single authori-
sation dialogue the user then gets to decide how many messages the applications may send
to whom. This information (a submultiset of the multiset of requested numbers) is stored
in a resource manager. The application only proceeds if all the requested numbers have ac-
tually been granted, in which case it calls instrumented methods for sending the messages,
taking an extra resource manager argument, which monitors the resources being spent (and
would abort the application if it was overspending).

Explicit resource management has additional benefits besides runtime monitoring. It
forces the application to determine early on how many resources to request. It provides a
clear user interface by centralising the choice of which of the requested resource to grant
into a single dialogue. Plus, it enables the application to react flexibly to the amount of re-
sources it has been granted, i. e. the application can choose whether it is feasible to continue
with the resources granted or whether it has to abort because of insufficient resources.

The rest of this paper is structured as follows. Section 2 gathers some facts about
MIDP which are relevant to us. Section 3 introduces the resource management library,

2

Aspinall, Maier, Stark

which Section 4 extends by adding policies. Section 5 describes the security properties that
library guarantees and outlines a deployment scenario. Section 6 discusses related work,
and Section 7 concludes.

2 Background: The MIDP Security Model

The Mobile Information Device Profile (MIDP, current version 2.0 [6]) is the current stan-
dard framework for Java applets (also called MIDlets) on networked mobile devices. MIDP
builds upon the Connected Limited Device Configuration (CLDC, current version 1.1 [7]).
Together, CLDC and MIDP, which are part of the Java Micro Edition Platform (Java ME),
define a set of APIs for programming small devices like phones and PDAs. With security
in mind, they restrict Java in several ways. In particular, reflection and custom class load-
ing are not supported; all of a MIDlet’s classes must be loaded from a single JAR using
the standard CLDC class loader, which renders possible to statically check the MIDlet’s
classes for certain properties (see Section 5.4).

As of MIDP 2.0, access to sensitive APIs and functions (e. g. for sending text mes-
sages) is regulated by a permission-based security model. MIDlets are bound to protection
domains based on whether and by whom they are signed (where a signature expresses the
signer’s trust in the MIDlet but does not provide any guarantees about the code itself). Each
protection domain holds a set of permissions, each of which is either flagged as Allowed or
User. The former grants unconditional access whereas the latter requires access to be au-
thorised by the user. How often this authorisation has to be obtained depends on whether a
User permission is flagged as Blanket, Session or OneShot; the latter requires authorisation
for every single access.

According to the MIDP specification, only MIDlets signed by the device manufac-
turer or the network operator may obtain unconditional access to cost-sensitive functions
(e. g. for sending text messages). The protection domains for other MIDlets must insist on
OneShot authorisation for access to these functions. As a consequence, MIDlets wishing
to use messaging more than just occasionally are faced with the choice of either having
to be signed by the operator (or manufacturer) or having to annoy their users with lots of
authorisation screens.

3 Basic Resource Management API

This section presents an API for monitoring the use of external resources. The API intro-
duces special objects, called resource managers, which encapsulate multisets of resources
that a MIDlet may legally use (according to the user’s approval) and which are passed as ar-
guments into instrumented MIDP methods that actually use the resources. These methods,
e. g. the method for sending text messages, check the resource manager before consuming
the resources. If the required resources are not present, the instrumented methods abort the
MIDlet with a runtime error.

3.1 Resource Managers

Figure 2 shows a class diagram of resource management package. The core of the API is
the final class ResManager, which encapsulates a multiset of resources and whose meth-

3

Aspinall, Maier, Stark

Resource

+ contains(ResMultiset) : boolean
+ clear()

+ subtract(ResMultiset)

+ isEmpty() : boolean

+ split(ResMultiset) : ResMultiset
+ intersect(ResMultiset)

+ add(ResMultiset)
+ remove(Resource, int)
+ insert(Resource, int)

+ union(ResMultiset)

ResMultiset

+ enable(ResMultiset)

+ join(ResManager)

+ assertEmpty()
+ assertAtLeast(ResMultiset)

+ clear()

+ split(ResMultiset) : ResManager

ResManager
java.lang.Error

ResManagerError
MsgResource

<<throw>>

1 0..1**

Fig. 2. UML class diagram of the basic resource management API. All terminal (w. r. t. generalisation) classes are final.

ods are explained below. The final class ResMultiset provides modifiable multisets
of resources, with the usual operations on multisets, including multiset intersection, sum
and inclusion. Internally, multisets are realised by hash tables, mapping resources to mul-
tiplicities (which may be infinite). Every ResMultiset object encapsulates its mutable
state, so that it cannot be changed other than by calling its public methods. The abstract
class Resource serves as an abstract type for resources; actual resources (e. g. the class
MsgResource representing the permission to send one text message to a given phone
number) must be final subclasses. Being used as keys in hash tables, resources must abide
by the following contract: They must be immutable objects, and resources constructed from
the same arguments must be indistinguishable by the equals method.

The class ResManager encapsulates a multiset of resources via a private field rs of
type ResMultiset. All public methods are synchronised to avoid races in case different
threads access the same resource manager. The table below lists the methods with a JML-
style 4 semantics, where the symbols ⊆,] and ∩ stand for multiset inclusion, sum and
intersection, respectively.

requires ensures modifies
ResManager() true this.rs = ∅ this.rs
void enable(ResMultiset req) true this.rs] req = \old(this.rs)] \old(req) ∧ this.rs, req

req ⊆ \old(req)
void clear() true this.rs = ∅ this.rs
void join(ResManager mgr) true this.rs = \old(this.rs)] \old(mgr.rs) ∧ this.rs, mgr.rs

mgr.rs = ∅
ResManager split(ResMultiset bound) true \fresh(\result) ∧ this.rs

\result.rs = \old(this.rs) ∩ bound ∧
\result.rs] this.rs = \old(this.rs)

void assertEmpty() this.rs = ∅ true \nothing
void assertAtLeast(ResMultiset bound) bound ⊆ this.rs true \nothing

The enable method takes a multiset req of requested resources and lets the user decide
(in a pop-up dialogue) how many of these resources to add to the manager’s multiset rs. As
a side effect, enable modifies its argument req; upon return from enable, the MIDlet
should check req to learn which of the requested resources it is being denied; in particular,
if req is empty then all of the requested resources have been granted.

The methods clear, split and join provide some control over the contents of a
resource manager, by consuming all its resources, transferring some resources to a new

4 The \operators generally bear the same meaning as in JML [11], except that \old(e) refers to the pre-state of expression
e in the pre-state of the heap.

4

Aspinall, Maier, Stark

void sendBulk(MessageConnection conn,
Message msg,
PhonebookEntry[] grp)

{
ResMultiset rs = new ResMultiset();
for (int i=0; i < grp.length; i++) {
String num = grp[i].getMobileNum();
rs.insert(new MsgResource(num), 1);

}

ResManager mgr = new ResManager();
mgr.enable(rs);

if (rs.isEmpty()) {
for (int i=0; i < grp.length; i++) {
String num = grp[i].getMobileNum();
msg.setAddress(num);
conn.send(mgr, msg);

}
mgr.assertEmpty();

}
else mgr.clear();

}

public void send(ResManager mgr, Message msg)
throws IOException, InterruptedIOException
{
synchorized (msg) {
String num = msg.getAddress();
ResMultiset rs = new ResMultiset();
rs.insert(new MsgResource(num), 1);

ResManager local_mgr = mgr.split(rs);
local_mgr.assertAtLeast(rs);

try {
send(msg);
local_mgr.clear(); local_mgr = null;

} catch (InterruptedIOException e) {
local_mgr.clear(); local_mgr = null;
throw e;

} catch (IOException e) {
mgr.join(local_mgr); local_mgr = null;
throw e;

}
}

}

Fig. 3. Bulk messaging example, left: MIDlet code, right: instrumented MIDP method.

manager, or joining the resources in two managers, respectively. Thanks to split and
join, the MIDlet may keep resource managers thread local, avoiding contention over
shared managers.

The assertion methods check whether their preconditions hold. If so they behave
like no-ops, otherwise they throw an instance of ResManagerError. The latter case
must be seen as a violation of the MIDlet’s own logic (much like failing an assertion),
and the MIDlet should not be allowed attempts at repairing the situation (by catching
the error), which is why ResManagerError extends java.lang.Error rather than
java.lang.Exception.

3.2 Example: Bulk Messaging MIDlet

We illustrate the use of resource managers by an example application built on top of the
Wireless Messaging API (WMA, current version 2.0 [8]), a bulk messaging MIDlet, which
lets the user send a text message to a group of recipients from his phone book. Figure 3 (left
column) shows the MIDlet’s method that actually sends the message. The method takes
an (already open) message connection, a message and a group of recipients (represented
as array of phone book entries). First, the MIDlet builds up a multiset of resources rs
by iterating over the group of recipients and for each one, extracting the mobile phone
number, converting it into a resource by constructing an instance of MsgResource, and
adding one occurrence of that instance to the multiset. Next, the MIDlet creates an empty
resource manager mgr and enables it to use the resources in the multiset rs. This will pop
up a confirmation dialogue box where the user can approve or deny the planned resource
usage, modifying rs as a side effect. Only if the user approves of all messages to be sent,
i. e. if enable returns its argument rs empty, does the code proceed to the actual send
loop. The send loop again iterates over the group of recipients, extracting for each one the
mobile phone number, setting the address field of the message and sending the message
using the instrumented send method, see below. After the loop, assertEmpty checks
that the resource manager mgr is really empty, i. e. all enabled resources have been used.
(Instead of checking, the manager could have been cleared explicitly, like in the else branch,
to prevent unintended later use of left-over resources.)

5

Aspinall, Maier, Stark

3.3 Instrumented Methods

Resources are consumed by specific methods, e. g. in the case of messaging by the method
send(Message) declared in the WMA interface MessageConnection. To moni-
tor whether these methods consume only resources that have been granted, we wrap them
with instrumentation code checking whether a given resource manager holds the required
resources. These instrumented methods are declared in sub-packages of the resource man-
agement package.

To instrument messaging, we have to augment MIDP and WMA in three places. We
supplement the WMA interface MessageConnection with a new wrapper method
send(ResManager,Message), provide a class which implements this extended in-
terface, and revise the MIDP method Connector.open to return the new class.

The code for the wrapper method is shown on the right-hand side of Figure 3. It ex-
tracts the phone number num from the message and constructs a multiset rs containing
a single occurrence of the resource corresponding to num. Then it splits the resources in
rs off from the resource manager mgr and stores them in the new local resource manager
local_mgr, which is checked for containing at least the resources in rs. If this check
fails a ResManagerError will be thrown, aborting the calling MIDlet; if the check suc-
ceeds we know that local_mgr holds exactly the resources in rs. Finally, the message
is actually sent by calling the uninstrumented send method. 5 Clearing local_mgr and
nulling the reference afterwards is not strictly necessary but considered good practise; it
signals that the resources in the local manager are now used up and that the manager itself
is ready to be reclaimed by garbage collection.

In case of a send failure, the event that actually spends the resources (i. e. delivering
the text message to the operator’s network) may or may not have happened yet. We assume
that an IOException is thrown before actually sending the message (e. g. because the
connection to the operator’s network is down), so the resources are not yet consumed, and
the handler can return them to the caller (by joining the local manager to mgr) before
propagating the exception. However, if an InterruptedIOException is raised, we
do not know whether the send event has already happened, so we assume that the resources
are already spent. In this case, the handler consumes the resources (by clearing the local
manager) before propagating the exception.

Note that the instrumented send method method must synchronise on msg, which is
accessed twice, but there is no need to synchronise on mgr (for there are no data depen-
dencies between the first and second access) or on this (for it is accessed only once).

3.4 Runtime Overhead

Monitoring of external resources does cause some runtime overhead. In terms of execution
time, the overhead is negligible, as very little time is spent on the instrumentation com-
pared to what is spent on actually consuming the resource (e. g. transmitting a message).
Due to the hash table based implementation of multisets, all operations on resource man-
agers take (at most) linear time w. r. t. to the size of the multisets involved. In fact, the
overhead of the instrumented send method in Figure 3 is constant because the argument of
assertAtLeast is a singleton multiset.

5 Depending on the MIDlet’s protection domain, the uninstrumented send method may again ask the user to authorise
sending the message; Section 5.4 addresses this shortfall.

6

Aspinall, Maier, Stark

MsgUserPolicy

+ getPolicy(MIDlet) : MsgUserPolicy + getPolicy() : MsgPhonebookPolicy

MsgPhonebookPolicy

+ getPolicy() : MsgNationalPolicy

MsgNationalPolicy

~ decide(ResMultiset) : ResMultiset

Policy

+ join(ResManager)

+ assertEmpty()
+ assertAtLeast(ResMultiset)

+ clear()

+ split(ResMultiset) : ResManager

ResManager

+ enable(Policy, ResMultiset)
<<call>>

Fig. 4. UML class diagram of policy extension of resource management API. All terminal classes are final.

In terms of memory, the overhead may be more severe, particularly on small devices,
because of the memory requirements of the hash tables. Additionally, resource monitoring
puts a higher strain on garbage collection because the instrumentation code temporarily al-
locates resources, multisets and managers. If runtime checking is not necessary or desired,
it can be switched off by “erasing” resource managers (see Section 5.2), which reduces the
memory overhead significantly.

3.5 Extensibility

By design, the resource management API is extensible. Monitoring new resources (e. g.
the number of bytes sent over a TCP/IP connection, or the space available in the persistent
record store) simply amounts to adding new resource types plus adding the appropriate in-
strumentation. New resource types are added by extending the abstract class Resource
with final subclasses, which abide by the contract on resources. Instrumented methods,
which monitor the new resources before calling the corresponding uninstrumented meth-
ods, are added to sub-packages of the resource management package.

4 Extending the API with Flexible Policies

So far, the enable method involves the user, who is selecting to-be-added resources in a
pop-up dialogue. That is, the user is acting as a policy oracle deciding which resources to
grant and which to deny. In this section, we extend the API to include more flexible policy
oracles, not just the user.

4.1 Changes to the API

Figure 4 shows the class diagram of the extension. It adds an abstract class Policy pro-
viding an abstract, package private method decide for deciding which resources to grant
and which to deny. The table below shows the formal, non-deterministic semantics of
decide; granted resources are returned in a new multiset, denied resources are returned
via the modified argument.

requires ensures modifies
ResMultiset decide(ResMultiset req) true \fresh(\result) ∧ \old(req) = req] \result req

Actual policies must be final subclasses of Policy and must provide a package private
implementation of decide. The latter requirement ensures that decide can be called by
the resource management library only, not directly by MIDlets themselves. For a MIDlet
to gain access to policies, each subclass of Policy provides a static getPolicy method

7

Aspinall, Maier, Stark

which hands out the requested policy (i. e. an instance of the respective class) or null if
the calling MIDlet is not authorised to use the requested policy.

MIDlets can only pass policies as arguments to other methods, in particular to the
enable method of class ResManager, which consults its policy argument as an ora-
cle to decide which resources to grant and which to deny, and which interprets a null
argument as the deny-all policy, see the implementation below. Note that enable defers
synchronisation on this as long as possible (i. e. until accessing the manager’s encapsu-
lated multiset rs) to avoid locking the manager during a call to decide, which may block
for a long time (e. g. if the policy consults the user).

public void enable(Policy p, ResMultiset req) {
if (p == null) return;
synchronized (req) {
ResMultiset granted = p.decide(req);
synchronized (this) { rs.add(granted); }

}
}

4.2 Use of Policies in MIDlets

The basic resource management API knew only one implicit policy: ask the user. Yet,
typically each resource type has its own policy or policies. The policies for MsgResource
include a MsgUserPolicy, which behaves like the implicit policy of the basic API,
asking the user how many messages to send to which phone numbers. To use this policy,
the call mgr.enable(rs) in the bulk messaging MIDlet (Figure 3) must be replaced by
mgr.enable(MsgUserPolicy.getPolicy(this), rs). 6

There could be other policies for MsgResource, e. g. a MsgNationalPolicy,
which grants only messages to national phone numbers. This policy could be combined
with MsgUserPolicy by chaining calls to enable as in the following code snippet.

mgr.enable(MsgNationalPolicy.getPolicy(), rs);
mgr.enable(MsgUserPolicy.getPolicy(this), rs);

The first call enables all requested messages to national numbers, without asking the user.
The second call asks the user to authorise the messages to the remaining (international)
numbers. In the end, rs contains only those international numbers that the user has denied.

Another interesting policy for messaging could be a MsgPhonebookPolicy, which
automatically grants all messages to numbers in the user’s phone book. If the bulk mes-
saging MIDlet used this policy, the user would not have to confirm anything. In return, the
MIDlet could maliciously send more messages than the user intended, but only to phone
numbers in the user’s phone book, not to premium rate numbers (unless the MIDlet was
allowed to modify the phone book).

4.3 Extensibility

By design of the API, adding new policies simply amounts to extending the abstract class
Policywith final subclasses, which abide by the contract on policies: No public fields and
methods (in particular, decide must be package private) except the static getPolicy
methods, and the implementation of decide must agree with the formal semantics as
shown in the table in Section 4.1.

6 MsgUserPolicy.getPolicy requires an argument of type MIDlet so that the policy can access the MIDlet’s screen.

8

Aspinall, Maier, Stark

5 Security Properties of Explicit Resource Management

This section informally summarises and motivates the security guarantees provided by the
resource management API and a trusted library implementing it.

5.1 No Abuse of Resources

Property 1 MIDlets using the resource management API cannot consume more resources
than granted; any attempt to do so will result in the MIDlet being aborted before the abuse
happens.

The property holds for two reasons.

(i) Before performing any actions, the instrumented methods, e. g. the send method
from Section 3.3, check their ResManager argument for the required resources and
throw a ResManagerError (which will abort the MIDlet) if there aren’t enough. If
there are enough resources, the instrumentation deduces the required amount from the
resource manager, even if the underlying uninstrumented method throws an exception.

(ii) The implementation of the resource management API ensures that policies cannot be
bypassed. Resources may be moved back and forth between managers by the methods
split and join, but there is no way to sneak new resources into the managers other
than by calling enable, in which case a policy gets to decide which resources to
grant and which to deny. Furthermore, the implementation confines the multiset held
by a manager, i. e. it ensures that there are no pointers from outside a manager into its
mutable state, hence a manager’s multiset cannot be modified from the outside.

Of course, the above argument assumes that the MIDlet does not bypass or subvert the
resource management library itself; see Section 5.4 on how to ensure this.

5.2 Erasure

Tracking the use of resources with resource managers does induce some overhead, mainly
in terms of the memory required for storing the multisets. On small devices, one might
want to avoid this overhead if a MIDlet is known to be resource safe, i. e. if it cannot ever
throw a ResManagerError. In this case, resource managers can be “erased”.

Erasure cannot be performed as a simple source code transformation removing all oc-
currences of resource managers from a MIDlet, for two reasons. First, MIDlets must be
able to access resource managers in order to call the enable method, even after erasure,
to let a policy decide which resources to grant. Second, resource managers may appear in
conditions like (mgr1 == mgr2), from where they cannot be removed unless the condi-
tion can be evaluated statically. What can be done, however, is a “soft” erasure, which keeps
the managers themselves in place but erases their multisets, resulting in very lightweight
erased resource managers.

Soft erasure can be achieved by retaining the public interface of class ResManager
but replacing its implementation with a stateless dummy implementation. More precisely,
erasure removes the private field rs (storing the manager’s multiset), which turns all public
methods into no-ops, except for split and enable. The latter still calls the policy and
reports the denied resources back to the MIDlet, whereas the former creates a fresh (erased)
manager.

9

Aspinall, Maier, Stark

Property 2 If a MIDlet is resource safe then erasing the resource managers does not
change its observable behaviour.

The property holds because by design of the resource management API, the value of a
resource manager can only affect the values of other resource managers; it cannot affect
the values of other types.

Note that an optimiser can eliminate all of the calls on erased resource managers, ex-
cept calls to enable, by inlining. As a result, resource managers may become unused and
can be optimised away. In fact, a clever optimiser could optimise away the entire instru-
mentation code from the instrumented send method in Figure 3, leaving just the call of
the uninstrumented method.

5.3 Information Flow Security

It may seem as if resource managers could infringe information flow security. Is it not
possible that sensitive data (e. g. phone numbers from the address book) leaks from a
manager while it is passed from method to method? We argue that at least for resource safe
MIDlets, this is not the case.

Property 3 If a MIDlet is resource safe then its resource managers do not leak information.

This is a corollary of Property 2. If a MIDlet is resource safe, the resource managers can be
erased without changing the MIDlet’s observable behaviour. Yet, erased resource managers
are stateless, so they cannot leak information. Hence, no leakage is observable.

5.4 Secure Deployment

As mentioned in Section 5.1, the security guarantees do not only depend on the correctness
of the resource management library itself but also on the MIDlet correctly using the API
(i. e. not bypassing or subverting the library).

Property 4 Correct use of the resource management API can be checked statically by in-
specting the MIDlet’s JAR only.

The property holds due to the restrictions imposed by CLDC and MIDP (see Section 2),
which imply that all of the MIDlet’s classes are statically known (since all classes must be
loaded from a single JAR) and the signature of each method call is statically known (since
reflection is not supported). Thus, the following properties of the MIDlet’s class files can
be statically checked.

• The MIDlet does not bypass the instrumentation. More precisely, if the MIDlet allocates
a particular resource type (e. g. MsgResource) then it does not call uninstrumented
methods for consuming resources of that type (e. g. the method send(Message) de-
clared in the WMA interface MessageConnection).

• The MIDlet does not suppress failing assertions. More precisely, it does not catch
ResManagerError or any of its superclasses.

• The MIDlet does not pass policies of its own to the enable method. More precisely,
none of the MIDlet’s classes extend the abstract class Policy.

• The MIDlet does not subvert the implementation of resource multisets by adding re-

10

Aspinall, Maier, Stark

source types of its own. 7 More precisely, none of the MIDlet’s classes extend the ab-
stract class Resource.

• The MIDlet does not exploit non-public methods (e. g. decide) of the resource man-
agement library. More precisely, none of the MIDlet’s classes are declared to be part of
the packages that constitute the resource management library.

The correctness of the resource management library itself cannot be checked easily, hence
the library (including the instrumented methods) has to be trusted. Yet, as MIDP does not
support the download of trusted libraries, MIDlets using the resource management API
have to provide the library as part of their own JAR. To establish trust in the library, a
trustworthy third party (e. g. the network operator) should vouch for it by signing the
MIDlet. In detail, the deployment process should comprise the following steps.

(i) In the MIDlet’s JAR, the signer replaces the untrusted resource management library
with its own trusted implementation.

(ii) The signer checks for correct use of the resource management API by checking the
above properties.

(iii) The signer signs and deploys the MIDlet (possibly after it passed other checks, too).

The signer may choose to erase resource managers by replacing the resource management
library with the library for erased managers (see Section 5.2) if there is additional confi-
dence in the MIDlet’s resource safety (where this confidence may have been gained by type
checking, extended static checking, interactive verification or extensive testing). Of course,
Property 1 is not guaranteed by the library for erased managers.

There is a reason, why MIDlets should be signed by the network operator (or device
manufacturer) rather than just by any trusted third party. For otherwise, the MIDP speci-
fication (see Section 2) demands that the uninstrumented methods which are called by the
instrumented ones do still pop-up authorisation screens, despite the fact that the user (or
the policy) has already approved all of the resources held by resource managers.

As an alternative deployment scenario, the resource management library could be in-
tegrated into future versions of MIDP. In this case, the MIDP class loader would have to
check for correct use of the API, rendering unnecessary the requirement that MIDlets be
signed by the network operator.

6 Related Work

Runtime monitoring to increase software reliability is at the heart of the Java language [4]
with its mandatory runtime checking of array bounds and null pointer dereferences. Several
frameworks have been proposed for enhancing Java with runtime monitoring of resource
consumption, for example JRes [3], J-Seal [1] and J-RAF [10]. Real-time Java (RTSJ [5])
provides resource monitoring as part of its support for real-time applications. These frame-
works monitor specific resources (CPU, memory, network bandwidth, threads), relying on
instrumentation of either the JVM (for CPU time), low level system classes (for memory
and network bandwidth) and the bytecode itself (for memory and instruction counting).
Where our resource management API is designed to enforce security, these frameworks

7 The hash table based implementation of multisets may fail to function correctly if resources are added that breach the
contract that Java imposes on the equals and hashCode methods.

11

Aspinall, Maier, Stark

were developed to support resource aware applications, which can adapt their behaviour in
response to resource fluctuation, for example by trading precision for time (by returning an
imprecise result to meet a deadline), or time for memory (by caching less to reduce memory
consumption).

Runtime monitoring can be used to check whether a program meets a safety property
specified in a propositional temporal logic. Tools like JPaX [9] compile a specification into
a finite automaton which runs in parallel with the program, observing its behaviour. This
kind of temporal specification can express resource protocols like authorise-before-use but
is not expressive enough to capture protocols that involve counting potentially unbounded
resources.

Schneider [13] advocates a similar use of (not necessarily finite) automata for enforcing
security policies at runtime. [15] extends this by allowing an application to query the
policy for compliance with a planned sequence of actions. Thus, the application can react
gracefully to the policy’s decisions; our resource managers provide a similar policy query
feature through the enable method.

7 Conclusion

We have designed a Java library for tracking and monitoring the use of external resources
on MIDP mobile phones (e. g. sending text messages). The library improves the flexibility
of runtime monitoring in MIDP (which previously was in the hands of the user), providing
a clear user interface and flexible policies while maintaining the security guarantee that any
attempt to abuse resources will be trapped.

Our technical contribution is an API for fine-grained accounting of external resources,
where fine-grained accounting is achieved by resource managers tracking not just a fixed
set of resources but an input-dependent unbounded set (e. g. phone numbers from the user’s
address book). The API is extensible, admitting to add new resource types and new poli-
cies by extending the class hierarchy. Moreover, we have outlined how a trusted library
implementing the API can be deployed to MIDP phones as part of a potentially malicious
application in such a way that the application cannot subvert the security guarantee (turn-
ing the application into a less malicious one). Finally, resource monitoring can be switched
off by “erasing” resource managers, which reduces the overhead without changing the ob-
servable behaviour of resource safe applications (and we are working on a type system for
certifying resource safety [2, chapter 3.3]).

Acknowledgements
This work was funded in part by the Sixth Framework programme of the European Com-
munity under the MOBIUS project FP6-015905. This paper reflects only the authors’
views and the European Community is not liable for any use that may be made of the
information contained therein. Ian Stark was also supported by an Advanced Research Fel-
lowship from the UK Engineering and Physical Sciences Research Council, EPSRC project
GR/R76950/01.

12

Aspinall, Maier, Stark

References
[1] Walter Binder, Jarle Hulaas, and Alex Villazón. Portable resource control in Java: The J-SEAL2 approach. In ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA), pages 139–
155, 2001.

[2] Mobius Consortium. Deliverable 2.1: Intermediate report on type systems. Available online from http://mobius.
inria.fr, September 2006.

[3] Grzegorz Czajkowski and Thorsten von Eicken. JRes: A resource accounting interface for Java. In ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA), pages 21–35, 1998.

[4] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification, third edition. The Java
Series. Addison-Wesley Publishing Company, 2005.

[5] JSR 1 Expert Group. JSR 1: Real-time specification for Java. Java specification request, Java Community Process,
January 2002.

[6] JSR 118 Expert Group. JSR 118: Mobile information device profile 2.0. Java specification request, Java Community
Process, November 2002.

[7] JSR 139 Expert Group. JSR 139: Connected limited device configuration 1.1. Java specification request, Java
Community Process, March 2003.

[8] JSR 205 Expert Group. JSR 205: Wireless messaging API 2.0. Java specification request, Java Community Process,
June 2004.

[9] Klaus Havelund and Grigore Rosu. Monitoring Java programs with Java PathExplorer. Electr.Notes Theor. Comput.
Sci., 55(2):200–217, 2001.

[10] Jarle Hulaas and Walter Binder. Program transformations for portable CPU accounting and control in Java. In ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation, pages 169–177, 2004.

[11] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok, Peter Müller, Joseph Kiniry, and
Patrice Chalin. JML Reference Manual, July 2007. In Progress. Available from http://www.jmlspecs.org.

[12] Kevin D. Mitnick and William L. Simon. The Art of Deception. John Wiley and Sons, Inc., 2002.

[13] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50, 2000.

[14] Unknown. Redbrowser.A, February 2006. J2ME trojan. Identified as Redbrowser.A (F-Secure), J2ME/Redbrowser.a
(McAfee), Trojan.Redbrowser.A (Symantec), Trojan-SMS.J2ME.Redbrowser.a (Kaspersky Lab).

[15] Dries Vanoverberghe and Frank Piessens. Supporting security monitor-aware development. In International Workshop
on Software Engineering for Secure Systems. IEEE Computer Society, 2007.

13

http://mobius.inria.fr
http://mobius.inria.fr
http://www.jmlspecs.org

	Introduction
	Background: The MIDP Security Model
	Basic Resource Management API
	Resource Managers
	Example: Bulk Messaging MIDlet
	Instrumented Methods
	Runtime Overhead
	Extensibility

	Extending the API with Flexible Policies
	Changes to the API
	Use of Policies in MIDlets
	Extensibility

	Security Properties of Explicit Resource Management
	No Abuse of Resources
	Erasure
	Information Flow Security
	Secure Deployment

	Related Work
	Conclusion
	References

