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Abstract. Tracing JIT compilation generates units of compilation that
are easy to analyse and are known to execute frequently. The AJITPar
project aims to investigate whether the information in JIT traces can be
used to make better scheduling decisions or perform code transformations
to adapt the code for a specific parallel architecture. To achieve this goal,
a cost model must be developed to estimate the execution time of an
individual trace.
This paper presents the design and implementation of a system for ex-
tracting JIT trace information from the Pycket JIT compiler. We define
three increasingly parametric cost models for Pycket traces. We perform
a search of the cost model parameter space using genetic algorithms to
identify the best weightings for those parameters. We test the accuracy
of these cost models for predicting the cost of individual traces on a set
of loop-based micro-benchmarks. We also compare the accuracy of the
cost models for predicting whole program execution time over the Py-
cket benchmark suite. Our results show that the weighted cost model
using the weightings found from the genetic algorithm search has the
best accuracy.

1 Introduction

Modern hardware is increasingly multicore, and increasingly, software is required
to exhibit decent parallel performance in order to match the hardware’s poten-
tial. Writing performant parallel code is non-trivial for a fixed architecture, yet it
is much harder if the target architecture is not known in advance, or if the code
is meant to be portable across a range of architectures. Existing approaches to
address this problem of performance portability, e.g. OpenCL [19], offer a device
abstraction yet retain a rather low-level programming model designed specifically
for numerical data-parallel problems.

In contrast, problems of a more symbolic nature, e.g. combinatorial searches,
computational algebra, are not well supported. These problems often do exhibit
large degrees of parallelism but the parallelism is irregular : The number and size
of parallel tasks is unpredictable, and parallel tasks are often created dynamically
and at high rates.

The Adaptive Just-in-Time Parallelism (AJITPar) project [1] investigates
a novel approach to deliver portable parallel performance for programs with
irregular parallelism across a range of architectures by combining declarative
task parallelism with dynamic scheduling and dynamic program transformation.



Specifically, AJITPar proposes to adapt task granularity to suit the architecture
by transforming tasks at runtime, varying the amount of parallelism. To facil-
itate dynamic transformations, AJITPar will leverage the dynamic features of
the Racket language and its recent trace-based JIT compiler, Pycket [9, 6].

Dynamic task scheduling and dynamic task transformation both require the
prediction of task runtimes. In this paper, we investigate how to construct simple
cost models to predict task runtimes in AJITPar. These cost models essentially
attempt to predict the execution time of traces, i.e. linear paths through the
control flow that the compiler has identified as being executed often. Due to the
very restricted control flow of traces, we hypothesize that even very simple cost
models can yield reasonably accurate runtime predictions.

The main contributions in this paper are as follows. We have designed and
implemented a system for extracting JIT trace information from Pycket JIT
compiler (Section 3). We have defined 3 cost models for JIT traces (Section 3.4),
ranging from very simple to parametric, and we have used an automated search
to tune the cost model parameters on a Pycket benchmark suite. We have also
classified the typical instruction mixes of 32000 Pycket traces generated by 26
programs from the benchmark suite (Section 4). We have used this information to
produce a number of varying length synthetic benchmarks, in order to compare
and validate the cost models. We also compare accuracy for predicting whole
program execution time by analysing 43 programs from the Pycket benchmark
suite (Section 6).

We outline our plans for ongoing and future work (Section 7).

2 Background

2.1 AJITPar

The Adaptive Just-in-time Parallelism Project (AJITPar) [1] investigates whether
performance portability for irregular parallelism can be achieved by dynamically
transforming the program for a particular architecture, using information from
JIT trace analysis. The idea is that a programmer only has to write a parallel
program once, and then AJITPar’s tool will automatically apply code transfor-
mations at runtime to enable parallelism on any platform the program is running
on from a specific range of platforms. AJITPar aims to investigate to what degree
the use of JIT compilation and dynamic scheduling helps achieve this.

AJITPar uses a high-level sub-language for expressing parallelism semi-explicitly,
in that decisions about where parallelism should occur are specified by the pro-
grammer, but task scheduling decisions are left to the runtime system. To en-
able performance portability for irregular parallelism, JIT compilation will be
leveraged. The lack of complex control-flow in a JIT trace makes it particularly
amenable to static analysis; cost analysis can be performed on a trace to es-
timate the execution time of it - this can be used to produce a picture of the
granularity of a task and the irregularity of the parallelism. This “static” anal-
ysis can actually be performed at runtime because of the relatively small size



and simplicity of traces; information is also available at runtime which is not
available statically.

A JIT compiler also allows dynamic transformations to be performed, since
the essence of a JIT is dynamic recompilation. AJITPar aims to identify different
transformations which can be used to expose a suitable degree of parallelism for
the architecture and degree of irregularity.

AJITPar also proposes a scheduling system for parallelism. This will dynam-
ically parallelise tasks based on timing information from the JIT.

The work described in this paper aims to identify a system for calculating
relative costs of traces, which will be used to determine the scheduling of parallel
tasks based on their relative costs, and the selection of appropriate transforma-
tions to optimise for the parallel work available in the task.

2.2 Tracing JIT

Interpreter-based language implementations, where a program is executed upon
a virtual machine rather than on a real processor are often used for a variety
of reasons - including ease of use, dynamic behaviour and program portability,
but are often known for their poor performance compared to statically compiled
languages such as C or FORTRAN.

JIT compilation is a technology that allows interpreted languages to signifi-
cantly increase their performance, by dynamically compiling well-used parts of
the program to machine code. This enables interpreters or virtual machine lan-
guages to approach performance levels reached by statically compiled programs
without sacrificing portability. Dynamic compilation also allows optimisations
to be performed which might not be available statically.

JIT compilation does not compile the entire program as it is executed, rather
it compiles small parts of the program which are executed frequently (these
parts are described as hot). The most common compilation units are functions
(or methods) and traces [5]. A trace consists of a series of instructions which
make up a path through the body of loop. A complete trace contains no control-
flow except at the points where execution could leave the trace; these points are
known as guards. The main benefit of traces compared to functions as a unit
of compilation is that it can form the entire body of a loop spanning multiple
functions, rather than just the body of a single function.

2.3 RPython Tool-chain

PyPy[28] is an alternative implementation of the Python programming language[18],
notable for having Python as its implementation language. PyPy is implemented
using a subset of the Python language known as RPython and the tool-chain is
intended to be used as a general compiler tool-chain. Smalltalk[8] and Ruby[24]
are examples of languages implemented on the RPython tool-chain. PyPy has
a trace-base JIT, and the RPython tool-chain allows for the JIT to be easily
added to a new interpreter implementation



Pycket[9] is an implementation of the Racket language built on PyPy’s tool-
chain. Racket is a derivative of the Scheme Lisp derivative [27] with a number of
extra features. Pycket uses the Racket front-end to compile a subset of Racket to
a JavaScript Object Notation (JSON)[22] representation of the abstract syntax
tree (AST) and uses an interpreter built with the RPython tool-chain to interpret
the AST.

JITs built with RPython are notable in that they are meta-tracing [7]. Rather
than trace an application level loop, the JIT traces the actual interpreter loop
itself. The interpreter will annotate instructions where an application loop begins
and ends in order for appropriate optimisations to be carried out. The purpose
of this is so that compiler writers do not need to write a new JIT for every new
language that targets RPython/PyPy, they just provide annotations.

2.4 Cost Analysis

Static analysis techniques can be used to estimate the run-time cost of executing
a program. This is particularly important when the cost of instrumenting running
code is unfeasibly high or hard real-time and embedded systems are being dealt
with.

To estimate the cost of a program or piece of program without running it,
some sort metric is required. One of the most well known code metric is cy-
clomatic complexity, first described by McCabe [23], which uses control flow
analysis to estimate the complexity of a program based on the number of differ-
ent paths through it. This measure was not intended for use in estimating the
performance of the code, but is meant as a measure of the complexity of the
code in engineering and maintainability terms.

In embedded and real-time software systems, the most important perfor-
mance metric is the worst case execution time, as strict timing information is
necessary. Various tools[29] have been built to statically estimate or measure
this; an example is aiT from Ferdinand and Heckmann [17] which uses a combi-
nation of control flow analysis and lower level tools, such as cache and pipelining
analysis. Cache and pipelining analysis attempts to predict the caching and pro-
cessor pipelining behaviour of a program and is performed in aiT using abstract
interpretation.

High level cost analysis can also be performed on the syntactic structure of
the source code of a program, as described by Brandolese et al. [12] who use a
mathematical function of C syntactic constructs to estimate execution time.

Cost analysis and resource analysis in general are the subject of continu-
ing research presented at the biennial Foundational and Practical Aspects of
Resource Analysis (FOPARA)[16].

Brady and Hammond [11] describe a system for estimating execution time
by encoding information on the size of function arguments in a dependent type
system.

Many of the currently available approaches for statically estimating execution
time are based around control flow analysis[29][17]; since execution traces from



a JIT compiler do not contain any control flow, these types of analysis are
redundant and a much more specialised approach is required.

2.5 Code Transformation

Program transformations are central to optimising compilers. GHC, for instance,
aggressively optimises Haskell code by equational rewriting[20][21].

Transformations can also be used for optimising for parallel performance.
Algorithmic skeletons[14] - high level parallel abstractions or design patterns -
can tuned by code transformations to best exploit the structure of input data
or to optimise for a particular hardware architecture. Examples of this include
the PMLS compiler[26], which tunes parallel ML code by transforming skeletons
based on offline profiling data, and the Paraphrase Project’s refactorings[13] and
their PARTE tool for refactoring parallel Erlang programs[10].

3 Trace Cost Analysis

3.1 Pycket Trace Structure

A JIT trace consists of a series of instructions recorded by the interpreter, as
discussed previously.

Crucial to understanding the operation of the JIT is the concept of hotness.
A loop is considered hot if the number of jumps back to the start of the loop
is higher than a given threshold, indicating that the loop might be executed
frequently and is thus worth compiling.

Other important concepts include guards, assertions which cause execution
to leave the trace when they fail; bridges, which are traces starting at a guard
that fails often enough; and trace graphs, representing sets of traces. The nodes
of a trace graph are entry points (of loops or bridges), labels, guards, and jump
instructions. The edges of a trace graph are directed and indicate control flow.
Note that control flow can diverge only at guards and merge only at labels or
entry points. A trace fragment is a part of a trace starting at a LABEL and
ending at a JUMP, at a GUARD with a bridge attached, or at another LABEL,
with no LABEL in between.

The listing in Figure 1 shows a Racket program incrementing an accumulator
in a doubly nested loop, executing the outer loop 105 times and the inner loop
105 times for each iteration of the outer loop, thus counting to 1010.

Figure 1 also shows the trace graph produced by Pycket. The inner loop
(which becomes hot first) corresponds to the path from l2 to j1, and the outer
loop corresponds to the bridge. Note that the JIT unrolls loops once to optimise
loop invariant code, producing the path from l1 to l2.

The trace graph is a convenient representation to read off the trace fragments.
In this example, there the following four fragments:

l1 to l2, l2 to g2, l2 to j1, and l3 to j2. Note that trace fragments can overlap:
for instance, l2 to j1 overlaps l2 to g2.



( d e f i n e numb1 100000)
( d e f i n e numb2 100000)

( d e f i n e ( inner i t e r acc )
( i f (> i t e r numb2)

acc
( inner (+ i t e r 1) (+ acc 1 ) ) ) )

( d e f i n e ( outer i t e r acc )
( i f (> i t e r numb1)

acc
( outer (+ i t e r 1) ( inner 0 acc ) ) ) )

( outer 0 0)

Loop Entry

l1

l2

g1

g2

g3

j1

Bridge Entry b2

l3

j2

Fig. 1: Doubly nested loop in Racket and corresponding Pycket trace graph.

Figure 2 shows a sample trace fragment, l2 to j1, corresponding to the inner
loop. Besides debug instructions, the fragment consists of 3 arithmetic-logical
instructions and 3 guards (only the second of which fails often enough to have a
bridge attached).

The label at the start brings into scope 3 variables: the loop counter i7, the
accumulator i13, and a pointer p1 (which plays no role in this fragment). The
jump at the end transfers control back to the start and also copies the updated
loop counter and accumulator i15 and i16 to i7 and i13, respectively.

3.2 Runtime Access to Traces and Counters

The RPython tool chain provides language developers with a rich set of APIs to
interact with their generic JIT engine. Among these APIs are a number of call-
backs that can intercept intermediate representations of a trace, either straight
after recording, or after optimisation. We use the latter callback to gain access
to the optimised trace and run our trace cost analysis.

Additionally, RPython (in debug mode) can instrument traces with counters,
counting every time control reaches an entry point or label. RPython provides
means to inspect the values of these counters at runtime. AJITPar will use this
feature in the future to derive estimates of the cost of whole loop nests from
the cost and frequency of their constituent trace fragments. For now, we dump
the counters as the program terminates and use this information to evaluate the
accuracy of trace cost analysis (Section 6).

The JIT counts the number of times a label is reached but we are more
interested in counting the execution of trace fragments. Fortunately, we can work
out the trace fragment execution count due to the fact that there is a one-to-one



l a b e l ( i7 , i13 , p1 , de sc r=TargetToken (4321534144))
debug_merge_point (0 , 0 , ’ ( l e t ( [ i f_0 (> i t e r numb2 ) ] ) . . . ) ’ )
guard_not_inval idated ( desc r=<Guard0x10196a1e0>) [ i13 , i7 , p1 ]
debug_merge_point (0 , 0 , ’(> i t e r numb2 ) ’ )
i 14 = int_gt ( i7 , 100000)
guard_fa l se ( i14 , de sc r=<Guard0x10196a170>) [ i13 , i7 , p1 ]
debug_merge_point (0 , 0 , ’ ( i f i f_0 acc . . . ) ’ )
debug_merge_point (0 , 0 , ’ ( l e t ( [ AppRand0_0 . . . ] . . . ) . . . ) ’ )
debug_merge_point (0 , 0 , ’(+ i t e r 1 ) ’ )
i 15 = int_add ( i7 , 1)
debug_merge_point (0 , 0 , ’(+ acc 1 ) ’ )
i 16 = int_add_ovf ( i13 , 1)
guard_no_overflow ( desc r=<Guard0x10196a100>) [ i16 , i15 , i13 , i7 , p1 ]
debug_merge_point (0 , 0 , ’ ( inne r AppRand0_0 AppRand1_0 ) ’ )
debug_merge_point (0 , 0 , ’ ( l e t ( [ i f_0 (> i t e r numb2 ) ] ) . . . ) ’ )
jump( i15 , i16 , p1 , de sc r=TargetToken (4321534144))

Fig. 2: Trace fragment l2 to j1.

correspondence between guards and their bridges. Essentially, the frequency of a
fragment ` to g is the frequency of the bridge attached to guard g. The frequency
of a fragment starting at ` and not ending in a guard is the frequency of label `
minus the minus the frequency of all shorter, overlapped trace fragments starting
at `. Table 1 and Table 2 demonstrate this on the trace fragments of the nested
loop example. The first two columns show the JIT counters, the remaining three
columns show the frequency of the four trace fragments, and how they are derived
from the counters. Note that not all counters reach the values one would expect
from the loop bounds. This is because counting only starts once code has been
compiled; iterations in warm-up phase of the JIT compiler are lost. The hotness
threshold is currently 131 for loops.

JIT counter JIT count
nl1 100,001
nl2 10,000,098,957
nb2 99,801
nl3 99,800

Table 1: JIT counters and counts for program in Figure 1.

3.3 Instruction Classes

When discussing the cost models, it is useful to classify the RPython JIT instruc-
tions into different sets. We begin with the set of all instructions all. Initially, it



fragment frequency expression frequency
l1 to l2 nl1 100,001
l2 to g2 nb2 99,801
l2 to j1 nl2 − nb2 9,999,999,156
l3 to j2 nl3 99,800

Table 2: JIT counters and trace fragment frequencies for program in Figure 1.

was decided to sub-divide all into two subsets: the set debug instructions debug
and all other instructions; this is based on the idea that debug operations are
removed by optimisations and do not count towards runtime execution costs.

It was further theorised that some instructions will be more costly than
others. The set of all non-debug instructions was further subdivided into high-
cost instructions high and low-cost instructions low, based on their expected
relative performance.

Class Example Instructions
debug debug_merge_point

numeric int_add_ovf
guards guard_true
alloc new_with_vtable
array arraylen_gc
object getfield_gc
Table 3: Instruction classes

Further classification of the instructions can be made based on the conceptual
grouping of them and makes no assumptions of their performance characteris-
tics. The classes are object read and write instructions object, guards guards,
numerical instructions numeric, memory allocation instructions alloc and array
instructions array. These classes are described in Table 3. Jump instructions are
ignored, since there is only ever one in a trace. External calls are excluded as
two foreign function calls could do radically different things.

3.4 Cost Models

A cost model — a model or tool for estimating the real world resource use for a
program or part of a program — for a JIT trace can be viewed as an execution of
the trace with an alternative cost semantics. Different models can be produced
by assigning varying costs to each instruction.

In our system, a cost model is implemented by as a method which takes a
trace listing and returns a dimensionless number, the predicted trace cost. In this
paper, we describe four cost models.

All of the cost models can be considered a function of a trace and an equation
is provided for each. In each equation, γ is the cost function, n is the number of



instructions on the trace, and the names for the instruction classes are the same
as those in Section 3.3.

Null Cost Model (CM0) The simplest possible cost model for a trace simply
returns the same cost for each trace, regardless of the instructions contained.
The purpose of this model is to serve as baseline to compare others to; it is
not intended to be used in a real system. Using this model to calculate the cost
for whole programs can be considered roughly equivalent to using control-flow
analysis for estimating the execution time of a program.

γ = 1 (1)

Counting Cost Model (CMC) The first model simply counts the number of
instructions in the trace, excluding debug operations. The idea is that the cost
of traces is proportional to their length. This cost model is described formally
by Equation (2).

γ =

n∑
i=0

{
0, if xi ∈ debug

1, otherwise
(2)

Weighted Cost Model (CMW ) Certain types of instructions are likely to
have a greater effect on the cost of a trace than others, since, for example,
memory accesses are several orders of magnitude slower than register accesses.
This suggests that the simple counting cost model is not likely to be the most
accurate estimate of the real cost of a trace.

A new cost model is created by applying a weighting factor to each of the
instruction classes described in section 3.3. An abstract definition of this model
is shown in equation 3.

γ =

n∑
i=0



0, if xi ∈ debug

a, if xi ∈ array

b, if xi ∈ numeric

c, if xi ∈ alloc

d, if xi ∈ guard

e, if xi ∈ object

(3)

Whole Program Cost If γ is the cost of a single trace, then the cost of a
whole program consisting of a number of traces is as described in equation 4.

Γ (P ) =

m∑
i=1

niγ(xi) (4)

where ni is the ith trace counter and xi is the ith trace.



4 Pycket Benchmark Suite Analysis

Given that the results in Section 6.1 indicate that traces are dominated by “high-
cost” instructions, it is prudent to check that this is true in the general case. To
achieve this we again look at the cross-implementation benchmarks from Pycket-
bench. We exclude programs which include operations which relate to the foreign
function interface, since external calls have unpredictable run times. This results
in all string benchmarks being excluded

4.1 Whole Suite Analysis

A histogram of JIT operations, taken from traces generated by all the cross-
implementation benchmarks and shown in Figure 3, shows that overall these
traces are also dominated by “high-cost” instructions.

Fig. 3: Most common instructions in cross-implementation Pycket benchmarks

4.2 Program-level Analysis

Individual programs in the Pycket benchmarks suite show quite varying instruc-
tion distributions compared to that shown in Figure 3, though they are still
dominated by guards and object operations. Using k-means analysis, these pro-
grams can be divided into two clusters: numeric and non-numeric. The numeric
programs still have a significant proportion of object operations. In Table 4
Cluster 1 contains nearly all numerical benchmarks.



Cluster 1 Cluster 2
ack, array1,fib, boyer, cpstak, ctak,

fibc, pnpoly, sum, dderiv, deriv, destruc,
sumloop, trav2, fibfp, diviter, divrec, lattice,

sumfp, nboyer, perm9, primes,
puzzle, sboyer, tak,

takl
Table 4: Clusters for whole benchmarks

4.3 Trace-level Analysis

Looking at the 32013 individual trace fragments in the Pycket benchmark suite,
a lot more variation is seen compared to the variation between the whole program
histograms. k-means clustering shows 3 distinct clusters, the centroids of which
are shown in Table 5.

Traces in cluster 1 outnumber both 2 and 3 combined and are again dom-
inated by object instructions and guards. From the centroid of cluster 2 we
can see that the proportion of allocation instructions is much higher; this could
correspond to the “cleaning up” portion of a trace where previously unboxed
primitives are boxed again or possibly cons functions calls. Cluster 3 contains a
higher proportion of array and numerical instructions.

Cluster count object (%) array (%) numeric (%) alloc (%) guards (&) jumps (%)
1 17946 38 0.15 0.69 5.6 51 4.0
2 9934 59 0.12 0.51 19 16 4.8
3 4133 22 4.8 11 1.6 54 6.8

Table 5: Trace fragment centroids

5 Cost Model Search

To use the abstract weighted cost model CMW (section 3.4), it is necessary to
find values for each of the five weight parameters in equation 3. Rather than
simply guess at appropriate values, we can systematically search the parameter
space for an optimal solution. To do this a set of benchmarks are required, along
with a search approach and a means of checking the accuracy of the cost model.

5.1 Performance Benchmarks

Using the cross-implementation benchmark suite from pycket-bench (section 4),
with the addition of the Racket Programming Languages Benchmark Game[2]



benchmarks, the execution times and trace logs for each benchmark are recorded.
The execution times are the average of 10 runs.

The platform is an Ubuntu 15.04 system with an Intel Core i5-3570 quad-core
3.40 GHz processor and 16GB of RAM. The Pycket version is revision 5d97bc3f
of the trace-analysis branch of our custom fork[3], built with Racket version
6.1 and revision 72b01aec157 of PyPy. A slightly modified version of pycket-
bench is used.

5.2 Model Accuracy

By applying a instance of a cost model to the trace output from the benchmark
runs, the execution time for each benchmark can be plotted against the cost for
that benchmark calculated using equation 4.The accuracy of the cost model is
calculated by applying linear regression to the plot to obtain a linear best fit.
The value of r2, or the coefficient of determination[15], is used as an estimate of
model accuracy; the higher the value the better the fit, and therefore the more
accurate the cost model. The linear regression calculation is implemented using
the SciPy library to enable automation.

5.3 Exhaustive Search

An exhaustive search of a part of the weight parameter space can be carried out
by systematically varying the weights in equation 3. Representing the weights as
a vector 〈a, b, c, d, e〉, the search covers all integral vectors between 〈0, 0, 0, 0, 0〉
and 〈10, 10, 10, 10, 10〉. On termination, the search returns the weight vector for
the most accurate cost model (i.e. the model with the highest r2 coefficient) in
the given parameter space.

5.4 Genetic Algorithm Search

Unfortunately, the search space of the exhaustive search grows very quickly with
the size of the bounds on the weight parameter space. While a bound of 10 is still
feasible, exhaustively searching a paramter space to a bound of 100 is no longer
possible. Fortunately metaheuristic search methods allow large search spaces to
be covered relatively quickly.

Genetic Algorithms(GA) [25] are a set of meta-heuristics applied to search
problems which attempt to mimic natural selection. Rather than exhaustively
search the problem space, genetic algorithms attempt to evolve an optimal so-
lution from an initial population. Genetic algorithms use a fitness function to
evaluate the quality of a solution. The search process consists of a number of
generations, in which the entire population is evaluated according to the fitness
function and the fittest surviving to the next generation or being selected to
reproduce and generate children for the next generation. Reproduction involves
selecting any number of solutions from the population and combining them to
produce a new solution which contains aspects of its “parents”. Random muta-
tion is added to increase the diversity of the population. The search can be run



for a fixed number of generations, until a sufficiently optimal solution is found,
or until the population converges.

Genetic Algorithms are chosen as our metaheuristic as the coefficient of de-
terminiation r2 of linear regression is a useful fitness function, and the vector
components map well to the idea of a “chromosome”. Details of the search pro-
cedure are as follows.

– The population is a set of 40 weight parameter vectors 〈a, b, c, d, e〉. The first
generation is completely random; subsequent generations are produced by
selection, crossover and mutation, as described below.

– The fitness function is simply the r2 value from the linear regression of the
benchmark execution times against the benchmark costs (according to the
cost model beign evaluated).

– Each new generation contains the fittest vector from the previous generation.
Other vectors in each generation are created by
1. selecting two parent vectors from the previous generation by “tournament

selection” (where the fittest of two randomly chosen vectors survives to
become a parent),

2. producing a child vector by crossing over the parent vectors component-
wise at random, and

3. randomly mutating components of the child vector at a rate of 10%.
– The search terminates at 30,000 generations, returning the weight vector for

the most accurate model found so far.

Subsampling Many of the benchmarks in the benchmark suite are intended
to test specific Scheme language features or JIT performance, and some bench-
marks perform markedly different from the majority when analysed with the
null and counting cost models CM0 and CMC . This raises the possibility that
the benchmark suite contains outliers that will weaken the the linear regression
of any possible weighted cost model. We use random sub-sampling whereby 8
randomly selected benchmarks are removed from each search, in order to ac-
count for the possibility of outliers in the benchmark suite. The best cost model
reported is the best model found for any of 125 tested benchmark samples.

5.5 Search Results

Exhaustive Search The cost model found by exhaustive search is displayed in
equation 5.

γ =

n∑
i=0


0, if xi ∈ array ∪ guard ∪ debug ∪ object
1, if xi ∈ numeric

10, if xi ∈ alloc

(5)

Genetic Algorithm Search The cost model found by Genetic Algorithm
search and subsampling is described in equation 6.



γ =

n∑
i=0



0, if xi ∈ debug

34, if xi ∈ array

590, if xi ∈ numeric

9937, if xi ∈ alloc

14, if xi ∈ guard

211, if xi ∈ object

(6)

γ =

n∑
i=0



0, if xi ∈ debug

2.43, if xi ∈ array

42.1, if xi ∈ numeric

709.8, if xi ∈ alloc

1.00, if xi ∈ guard

15.1, if xi ∈ object

(7)

The benchmark sample excluded the benchmarks ack, divrec, fib, fibfp, heap-
sort, lattice, tak, and trav2.

The normalised version of this cost model, where the smallest non-zero weight
is one, is shown in equation 7. This is similar to the cost model found with using
exhaustive search; the ratio between the allocation and numeric weighting is
16.84 in equation 6 and 10 in equation 5.

The cost model in Equation 7 suggests that allocation instructions are the
greatest contributor to program execution time followed by numeric instructions.
The relatively high weighting of the numerical instructions in this model is inter-
esting, as numerical computation is expected to take significantly less time than
the reads and writes seen in object operations; however, the fact that numeric
types are required to be boxed and unboxed, resulting in allocations and object
reads and writes could account for this weighting.

6 Cost Model Evaluation

Our main hypothesis is that there is a linear relationship between modeled trace
cost and execution time, forming the following equation:

t(x) = kγ(x) (8)

where x is a trace, k is some constant, t(x) is the execution time for the trace
and γ(x) is the cost function for the trace.

If Equation (8) holds, we expect that the total program runtime T will be
related linearly to Γ , as defined in equation 4:

T = kΓ (P ) (9)

To evaluate a cost model it must be applied to real programs and evaluated
against timing information. By timing a piece of code which corresponds exactly
to a known trace fragment, we can calculate the average execution time for that
trace and plot it against the modeled cost for that trace; plotting time/cost data
for enough traces should provide the k of Equation (8) as the gradient of a fitted
line. All experiments are run using the same platform as in section 5.1.



6.1 Generated Benchmarks

It is difficult to reliably obtain timing data for single traces using real programs.
Even very simple programs result in multiple traces and working out how much of
a program’s execution time belongs to which trace is very difficult. Fortunately,
we can sythesise benchmarks which contain only a single trace. To reliably obtain
benchmarks with progressively longer traces, we leverage Racket’s macro system
to dynamically generate three synthetic single-trace benchmark programs. The
benchmarks consist of a sequence of operations in the body of a for loop; the
length of the body and the chosen instructions can be changed by changing values
in the macro. Care has to taken to chose operations which would not be optimised
away by the JIT compiler. For the first benchmark, the operations of the loop
body update a vector with the result of a multiplication of random numbers;
all random numbers are chosen by the macro ahead of time to avoid calls to a
random number generator at runtime. The second benchmark extends the first
by adding integer comparisons to the loop body, and the third benchmarks adds
list cons operations on top of that.

The maximum trace length produced by the generated program was checked
against the maximum trace length found in the cross-implementation bench-
marks in the pycket-bench benchmark suite [4] to ensure that the traces covered
the length range of “natural” traces. The results are summarised in Table 6.

Benchmark k (CMC) k (CMW )
Vector Update 9672×10−6 2.85×10−6

Vector Update,Comparison 14760×10−6 4.457×10−6

Vector Update, Comparison, Lists 10780×10−6 3.557×10−6

Table 6: k for different benchmarks

6.2 Whole Program Benchmarks

To attempt to validate Equation (9) it is necessary to evaluate the cost mod-
els against more complex benchmarks. To this end, the programs which had no
foreign-function calls from the pycket-bench cross-platform and shootout bench-
mark suites were used - these are the same benchmarks from section 5, but with
the outliers identified by random subsampling (Section 5.5) removed. The total
cost for each benchmark, computed according to Equation (4), is plotted against
the total execution time for that benchmark.

Plots Figures 4, 5 and 6 show the plot and linear regression for cost models
CM0, CMC and CMW respectively. The cost models have increasing better
determination coefficients (r2): 0.34, 0.34 and 0.55. The points for benchmarks
excluded by subsampling are shown for reference.



Fig. 4: Execution time against program cost for CM0

A plot of the residuals from the least-squares regression for each cost model is
presented in Figure 7. This illustrates how each cost model fits individual bench-
marks. The residuals excluded by subsampling are also present shown here,faded
and marked with stars; note that some of these, such as lattice and trav2 are
quite small residual values, suggesting that they are not actually outliers.

6.3 Discussion

The coefficients of determination (r2) values for the whole program benchmark
plots show that CMW clearly fits the data better than CMC and CM0, having
a value of 0.552 compared to 0.343 for CMC and 0.342 for CM0. CMC and
CM0 have similar values for r2 suggesting that simply counting instructions is
not very useful when looking at entire programs. The values from the generated
benchmarks show k values which show roughly an order of magnitude difference
from those found in the whole program evaluation. This is most likely due to
tracing overhead in the whole program benchmark as different benchmarks have
different numbers of traces and bridges, each of which could take varying amounts
of time to become hot, whereas the generated benchmarks all contain a single
trace, with the same number of executions each time. Other reasons could include
the limited types of operations in the generated benchmarks compared to the
whole program benchmarks.

7 Discussion and Ongoing work

We have designed and implemented a system for extracting JIT trace information
from the Pycket JIT compiler (Section 3). We have defined 3 cost models for
JIT traces, CM0, CMC and CMw ranging from the extremely simple CM0,
via a relatively simple costing model CMC to the weighted CMW . We have



Fig. 5: Execution time (µs) against program cost for CMC

applied a genetic algorithm to the 43 programs in the Pycket benchmark suite
to determine appropriate weight parameters for CMW (Section 5). We have
classified the typical instruction mixes of 32000 Pycket traces generated by 26
programs from the benchmark suite (Section 4). We use the classification to
produce a number of varying length synthetic benchmarks, in order to compare
and validate the cost models.

We compare the accuracy of the cost models for predicting whole program
execution time by analysing the Pycket benchmark programs and find that the
weighted CMW produces a markedly better fit than the simpler CMC and CM0

models. Moreover CMW shows a linear fit when applied to single traces similar
k value found between traces from different classes of program (Section 6).

We argue that the weighted CMW cost model that we have developed is
appropriate for Pycket JIT traces, and speculate that similar techniques can
be used to identify an analogous models for the traces produced by the JIT
implementations of other languages, e.g. Java, Javascript etc. In future work
in the AJITPar project we will use the execution cost predictions provided by
CMW to direct the transformation of parallel Pycket programs to adapt to
specific parallel hardware.



Fig. 6: Execution time (µs) against program cost for CMW

Fig. 7: Residuals for all benchmarks
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