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Abstract
The proliferation of widely available, but very different, parallel ar-
chitectures makes the ability to deliver good parallel performance
on a range of architectures, or performance portability, highly de-
sirable. Irregularly-parallel problems, where the number and size
of tasks is unpredictable, are particularly challenging and require
dynamic coordination.

The paper outlines a novel approach to delivering portable par-
allel performance for irregularly parallel programs. The approach
combines declarative parallelism with JIT technology, dynamic
scheduling, and dynamic transformation.

We present the design of an adaptive skeleton library, with a task
graph implementation, JIT trace costing, and adaptive transforma-
tions. We outline the architecture of the protoype adaptive skele-
ton execution framework in Pycket, describing tasks, serialisation,
and the current scheduler. We report a preliminary evaluation of the
prototype framework using 4 micro-benchmarks and a small case
study on two NUMA servers (24 and 96 cores) and a small cluster
(17 hosts, 272 cores). Key results include Pycket delivering good
sequential performance e.g. almost as fast as C for some bench-
marks; good absolute speedups on all architectures (up to 120 on
128 cores for sumEuler); and that the adaptive transformations do
improve performance.

Keywords parallelism; performance portability; JIT compiler

1. Introduction
The general purpose hardware landscape is dominated by paral-
lel architectures — multicores, manycores, clusters, etc. These ar-
chitectures have very different performance characteristics e.g. the
number of processors or communication costs. A key element of
the multicore software crisis is a lack of abstraction: most parallel
code mixes coordination and computation at the expense of clarity
and maintainability. Worse still, coordination often hard-codes as-
sumptions about the architecture. Hence the program requires sig-
nificant refactoring for a new parallel architecture. The challenge
of performance portability is to deliver good parallel performance
on a range of architectures with minimal refactoring.

The performance portability challenge is already hard for prob-
lems with regular parallelism, i. e. where the number and size of
tasks can be statically predicted. However many important prob-
lems exhibit irregular parallelism. Examples include sparse matrix
operations as used in PDE solvers, algorithms mining large graphs,
and core algorithms used in computer algebra and symbolic compu-
tation. This large class of problems requires coordination strategies
that dynamically adapt during the computation.

The aim of the Adaptive Just-In-Time Parallelisation (AJITPar)
project is to investigate a novel approach to deliver portable par-
allel performance for programs with irregular parallelism across a
range of architectures. The approach we propose combines declar-
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Figure 1. Adaptive Skeletons Execution Framework

ative parallelism with Just In Time (JIT) compilation, dynamic
scheduling, and dynamic transformation.

We aim to investigate the performance portability potential of
an Adaptive Skeletons (AS) library based on task graphs, and an
associated parallel execution framework that dynamically sched-
ules and adaptively transforms the task graphs. We express com-
mon patterns of parallelism as a relatively standard set of algorith-
mic skeletons [7], with associated transformations. Dynamic trans-
formations, in particular, rely on the ability to dynamically com-
pile code, which is the primary reason for basing the framework
on a JIT compiler. Moreover, a trace-based JIT compiler can de-
liver estimates of task granularity by dynamic profiling and/or dy-
namic trace cost analysis, and these can be exploited by the dy-
namic scheduler. We chose a trace-based JIT-compiled functional
language as functional programs are easy to transform; dynamic
compilation allows a wider range of transformations including ones
depending on runtime information; and trace-based JIT compilers
build intermediate data structure (traces) that may be costed.

Figure 1 shows a functional block diagram of the adaptive skele-
tons execution framework, showing the interaction between its var-
ious components. The execution engine and trace compiler together
make up a traditional trace-based JIT compiler, with the added ca-
pability of profiling hot traces. The trace analyser performs cost
analysis of hot traces as they are compiled to native code. Profiler
and trace analyser feed their data to the scheduler, which uses the
information to decide where to schedule which parallel tasks. If the
scheduler cannot find enough parallelism, or if the parallel tasks
turn out to be too fine-grain, the scheduler may call the rewrite
engine to attempt to transform individual tasks or the whole task
graph.

The AS framework is being engineered in Pycket [2, 5], a very
new trace-based JIT compiler for Racket, itself a Scheme dialect.
Currently Pycket only supports a strict subset of Racket and does
not yet support any of the parallel, concurrent and distributed fea-
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tures of full Racket. Our original intention was to develop the
framework for a trace-based JIT compiler for Haskell, but were un-
able to in the absence of a sufficiently mature Haskell JIT compiler.

To investigate performance portability the AS framework must
support a range of different parallel architectures. In particular, the
prototype framework currently supports standard multicores, (4 to
16 cores) manycore servers (i. e. NUMA servers with up to 100
cores) and small clusters of multicores (with a few hundred cores
in total).

The paper makes the following research contributions after sur-
veying related work (Section 2). We outline a novel approach to
delivering portable parallel performance for programs with irreg-
ular parallelism in the form of the design of an adaptive skele-
ton library with a task graph implementation, JIT trace costing,
and transformations that adapt skeletons for parallel architectures
(Section 3). We outline the Pycket protoype adaptive skeleton ex-
ecution framework, describing tasks, serialisation, and the current
scheduler (Section 4). We report a preliminary evaluation of the
prototype framework using 4 micro-benchmarks and a small case
study on two NUMA servers (24 and 96 cores) and a small clus-
ter (17 hosts, 272 cores). Key results include the following. Pycket
delivers good sequential performance e. g. almost as fast as C for
benchmarks with substantial amounts of numerical computation,
and never more than 3.5 times slower. The protoype framework
achieves good absolute speedups on all architectures for all but one
program, e. g. maximum speedups of 117 for SumEuler on 96 cores
(with two hardware threads each) and 55 for k-means clustering on
128 cores (spread over 16 hosts). Crucially, the adaptive transfor-
mations do improve parallel performance (Section 5).

2. Background
Stateless Declarative Parallelism. Many language designs reflect
the importance of statelessness for parallelism, e. g. the semantics
of a parallel for loop in OpenMP is typically only deterministic if
the body is stateless. Indeed there is a movement of programming
languages towards a stateless “functional second” model as exem-
plified by languages like C# and JavaScript.

For the purposes of AJITPar functional languages have two key
advantages over imperative or object-oriented languages.

• Typically, substantial program fragments are stateless. This en-
sures determinism even for speculative parallelism where com-
putations may be aborted, restarted or replicated.
• An equational theory of program equivalence that justifies pro-

gram transformations based on rewriting. For example, the stan-
dard Haskell compiler GHC, winner of the 2011 ACM SIG-
PLAN Programming Languages Software Award for (among
other achievements) its “efficiency”, relies heavily on equa-
tional rewriting during its optimisation phase.

We base our coordination constructs on task-parallel languages,
e. g. MonadPar [15] or HdpH [14], Haskell DSLs for expressing
task parallel computations on shared- and distributed-memory plat-
forms, respectively. On top of the (often) low-level primitives of
these DSLs sits a library of algorithmic skeletons [7], providing
high-level abstraction to the application programmer.

An approach to tuning code to specific architectures by trans-
forming high-level coordination constructs like skeletons into se-
mantically equivalent ones with different coordination behaviour
was validated by the PMLS compiler [20]; a similar idea of re-
factoring skeletons is has also been pursued in ParaPhrase (EU
FP7-288570). However, neither ParaPhrase nor PMLS transform
code at runtime, as we propose to do.

Just-In-Time Compilers. The challenge of portable binaries has
arisen in other contexts, e. g. for Java web apps running on a diverse

and unpredictable set of architectures. Therefore, Java compilers
generate machine-independent bytecode, which is designed to be
interpreted by a virtual machine (VM). To gain execution speed,
many VMs translate bytecode to native code on-the-fly, a technique
called just-in-time (JIT) compilation. Over the last 15 years, JIT
compilers have been developed for many languages, e. g. Mozilla’s
TraceMonkey [10] for JavaScript, PyPy [6] for Python, and Mi-
crosoft’s SPUR project [3] for .NET bytecode. JITs are beginning
to emerge for statically typed functional languages. For Haskell,
there are already several JIT compilers in prototype state, e. g. Py-
Haskell [25] and lambdachine [21, 22]. The standard Racket VM
has long been powered by a JIT compiler. Moreover, Pycket [2, 5]
is a novel JIT for Racket (often faster than the Racket VM) based
on the PyPy tool chain.

An emerging technology in this area is trace-based JIT compi-
lation; in fact all of the systems mentioned above apart from the
standard Racket VM are trace-based JITs. Rather than compiling
whole function or method bodies with their complex control struc-
ture, trace-based JITs detect, compile and optimise only hot traces,
e. g. the common path through a loop body. Because traces are
straight-line pieces of code without complex control, trace-based
JITs aggressively optimise based on highly accurate analyses that
aren’t feasible in static compilers. Moreover, traces often span sev-
eral static scopes, so trace-based JITs can perform inlining and ac-
curate inter-procedural analysis for free.

The idea to build an auto-parallelising runtime system (RTS) on
top of a trace-based JIT has been proposed in [23, 27], but only in
the context of fine-grained implicit parallelism on small multicores.
However, implicit parallelism is unlikely to scale to systems with
large numbers of cores or deep memory hierarchies because it does
not help the RTS navigate the vast space of potential parallelism.
Instead, we propose to limit the search space by relying on the
programmer to annotate parallel code (often termed semi-implicit
parallelism), yet guiding the RTS’s efforts to auto-tune parallelism
with code transformations supplied by the programmer.

An alternative approach, exemplified by languages like OpenCL
and SaC [11], is to perform specialisation of architecture-independent
data parallelism at runtime by selecting from a small number of
pre-compiled code variants. Instead, we propose a more flexible
system that can explore an unbounded space of variants.

Code transformations. Program transformations are central to
optimising compilers. The GHC Haskell compiler, for instance,
aggressively optimises Haskell code by equational rewriting [17,
18]. Haskell programmers can aid the compiler by supplying hints
in the form of rewrite rules; thanks to Haskell’s purity many helpful
semantic properties of data structures are expressible as simple
equational rules.

Besides optimisation, program transformations can be used to
tune parallelism. The PMLS compiler [20], for example, tunes par-
allel ML code by transforming skeletons based on offline profiling
data. While this works well for regular problems, PMLS cannot
help with irregular parallelism because it transforms code at com-
pile time rather than at runtime. A similar approach [24] based on
rewrite rules transforming algorithmic skeletons into OpenCL code
has been shown to automatically tune regular linear algebra kernels
on GPUs to performance level comparable with code hand-tuned
by expert library developers.

In Java, bytecode transformations are a common way to extend
the language without changing the compiler or the VM. For in-
stance, Java bytecode rewriting has been used to enforce resource
bounds [8], or to transparently run applications on distributed-
memory architectures [26]. Typically, such transformations pre-
serve bytecode structure, e. g. replacing a class by a class, and
can be implemented by simple bytecode traversal. Transformations
that alter the bytecode structure, e. g. rewriting loops to optimise
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database queries [12], are far more complex. However, some com-
plex transformations can be implemented in expressive rule-based
rewrite frameworks [1].

Java bytecode rewriting is typically performed ahead of run-
time, so it cannot help a program adapt to irregular parallelism.
Instead, we propose a novel approach where code is (potentially
continually) rewritten at runtime by a JIT rewrite engine, that ap-
plies equational rules guided by online profiling and cost analysis.

3. Adaptive Skeletons
This section presents the design of the Adaptive Skeleton library
for expressing and transforming parallelism, and outlines how the
framework adapts parallelism to the current execution architecture.
Adaptive skeletons are based on a standard set of algorithmic skele-
tons [7] for specifying task-based parallelism within Racket [19].
The AS framework expands skeletons to task graphs and schedules
tasks to workers; expansion and scheduling happen at runtime to
support tasks with irregular granularity. The AS framework piggy-
backs on Pycket [2], a trace-based JIT compiler for Racket, to ana-
lyze the cost of tasks as they are executed. The cost information is
used both to guide the dynamic task scheduler as well as a skele-
ton transformation engine. The latter adapts the task granularity of
the running program to suit the current architecture by rewriting
skeletons according to a standard set of equations.

Although the skeletons are implemented in Racket we choose to
present their type signatures and semantics in a Haskell-like syntax
for brevity, and in our opinion readability. This section glosses over
serialisability, assuming that all types are serialisable, including
function types; how serialisation is realised is detailed in Section 4.

3.1 Task graph
Programs are expressed in terms of skeletons rather than individual
tasks, thus the functional semantics of programs can be understood
without knowledge of its task dependencies. However, the parallel
behaviour of a skeleton is best described by providing a translation
to a graph making explicit its tasks and and their dependencies.

A task graph is an acyclic directed bipartite graph, the vertices
of which are alternately tasks and futures, and the edges of which
are dependencies. We use letters f, g, . . . to range over tasks and
a, b, . . . to range over futures. Given a task f and futures a and b,
an edge from a to f indicates that a is an input of f , whereas an
edge from f to b indicates that b is an output of f .

A future a is a storage cell that is either empty or full; in the
latter case, a stores a value. A future can be filled only once, that
is, the value stored in a cannot be updated, and any attempts to do
so are silently ignored.

A task is essentially a function call. A task f is enabled if all
of its input futures are full, otherwise f is blocked. When enabled,
f may be evaluated by applying the function to the values stored
in the input futures; the results of the application fill f ’s output
futures.1 We generalise the notion of enabledness to subgraphs of
the task graph as follows. A subgraph is enabled if there is a partial
order on its tasks such that no task is blocked when evaluating
according in order.

The AS framework hides the task graph almost completely from
programmers. Accessing futures is handled transparently by the
system, simply producing their value in case they are full. In case
an empty future is accessed, the system suspends evaluation until
that future is filled, as elaborated in Section 3.5.

The only primitive exposed to the programmer (or skeleton de-
veloper) is spawn which adds a new task to the task graph. Se-

1 In Racket functions can have multiple return values, analogously tasks can
have multiple output futures.

p a r F i b : : I n t −> I n t
p a r F i b = parDivconq

(\ n −> i f n < 2 t h e n [ ] e l s e [ n−1,n−2])
( r e d u c e ( + ) 0 )
( c o n s t 1 )

parSumEuler : : I n t −> I n t −> I n t
parSumEuler l u =

parReduce ( + ) 0 $ parMap t o t i e n t [ l . . u ]
where

t o t i e n t : : I n t −> I n t
t o t i e n t n = l e n g t h [ k | k <− [ 1 . . n ] , gcd n k == 1]

Figure 3. Examples: parallel Fibonacci and SumEuler.

mantically, spawn f x1 ... xn is the same as function application
f x1 ... xn but the implementation

• Checks whether each input xi is a future; if not, creates a new
future ai and fills it with xi, else aliases ai to xi.
• Creates new futures b1, . . . , bm where m is the output arity of
f .
• Adds task f with inputs a1, . . . , an and outputs b1, . . . , bm to

the task graph.

3.2 Basic skeletons
Figure 2 introduces three basic adaptive skeletons, the well-known
data parallel skeletons map and reduce and the control-parallel
skeleton divconq, which abstracts the divide-and-conquer paradigm.

The skeletons are specified in a Haskell-inspired equational
style over lists despite the fact that they may be defined over
any container type. The arguments to reduce must form a monoid,
that is, g is an associative operation with neutral element z; more
specialised skeletons may also require g to be commutative.

The parallel behaviour of parMap and parReduce is defined in
terms of spawn. The parMap skeleton produces a flat task graph, that
is, no task depends on any other task, and returns a list of futures. In
contrast, parReduce builds a binary tree of tasks and returns a single
future. Similarly, parDivconq returns a single future from which a
tree hangs. The arity of the tree depends on the divide function, its
leaves are conquer tasks, and its inner nodes are combine tasks.

Examples. Figure 3 shows two small code examples expressed
using the adaptive skeletons. The naive recursive algorithm to com-
pute Fibonacci numbers is a well-known micro-benchmark for
measuring the overhead of function calls. It follows the divide-
and-conquer pattern, so can naturally parallelised using parDivconq.
SumEuler is another micro-benchmark, summing up Euler’s totient
function over an interval of integers. It is naturally expressed as a
map followed by a reduce, hence parallelised using parMap and
parReduce.

The examples show that the skeletons can be composed sequen-
tially as in SumEuler. However, skeletons should not be nested,
that is, their arguments should not call skeletons themselves. This
is restriction is not enforced though; in fact, the system will ex-
ecute nested skeletons and spawn new subtasks. Yet, due to the
distributed architecture of the AS framework (see sections 3.5 and
4), subtasks spawned during the parallel execution of a task on a
worker need to be sent to the central scheduler, which increases
communication overheads.

3.3 Skeleton families
The examples in Figure 3 also illustrate how the skeletons may
generate large numbers of fine grain tasks. For instance, parFib
generates an exponential number of conquer and combine tasks, yet
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map : : ( a −> b ) −> [ a ] −> [ b ] parMap : : ( a −> b ) −> [ a ] −> [ b ]
map f [ ] = [ ] parMap f [ ] = [ ]
map f ( x : xs ) = f x : map f xs parMap f ( x : xs ) = spawn f x : parMap f xs

reduce : : ( a −> a −> a ) −> a −> [ a ] −> a parReduce : : ( a −> a −> a ) −> a −> [ a ] −> a
reduce g z [ ] = z parReduce g z [ ] = z
reduce g z [ x ] = x parReduce g z [ x ] = x
reduce g z ( xs ++ ys ) = g ( reduce g z xs ) parReduce g z ( xs ++ ys ) = spawn g ( parReduce g z xs )

( reduce g z ys ) ( parReduce g z ys )

divconq : : parDivconq : :
( a −> [ a ] ) −> ( [ b ] −> b ) −> ( a −> b ) −> a −> b ( a −> [ a ] ) −> ( [ b ] −> b ) −> ( a −> b ) −> a −> b

divconq d i v comb conq x = parDivconq d i v comb conq x =
c a s e d i v x of c a s e d i v x of

[ ] −> conq x [ ] −> spawn conq x
ys −> comb (map ( divconq d i v comb conq ) ys ) ys −> spawn comb (map ( parDivconq d i v comb conq ) ys )

Figure 2. Specification of basic skeletons (right) and their sequential counterparts (left).

each combine task only adds two numbers, and each conquer task
returns the constant 1. What is needed are skeletons that generate a
smaller number of larger tasks.

Each of the three basic skeletons gives rise to a family of
tunable skeletons (Figure 4) with the same functional semantics but
different parallel behaviour. Typically, the tunable skeletons accept
an extra parameter that allows to tune the number of parallel tasks
generated, thereby reducing the number of tasks while increasing
their computational granularity.

The skeletons in the map family reduce the number of tasks by
having each task apply function f to a “sublist” of the input list
sequentially. This sublists are constructed by dividing the input list
into chunks of size k (function chunk k), or by traversing the input
list with stride k (function transpose . chunk k). In either case, par-
allelism is actually generated by calling the parMap skeleton. The
output list (of futures) is constructed by reversing the transforma-
tion of the input (using concat or concat . transpose ).

The reduce family admits two approaches to control granularity.
Sublists may be generated by chunking or striding as for map,
with sequential reduction of the sublist results. Alternatively, the
input list can be subdivided (typically in the middle) 2k times
by unfolding the call tree of reduce to depth k and spawning 2k

sequential reduction tasks. As parReduceStride reorders the input
list, it is only safe to use with commutative reduction operators g.

The divide-and-conquer family offers a depth-bounded skele-
ton, similar to the depth-bounded reduce skeleton, and a threshold-
ing skeleton. The latter also unfolds the recursive call tree of divide-
and-conquer but spawns a sequential divide-and-conquer task as
soon as the input reaches a certain threshold (i. e. the predicate
thresh becomes true). Both skeletons also spawn conquer tasks en-
countered while unfolding the top levels of the call tree but they
don’t spawn combine tasks. This rests on the assumption that con-
quer tasks are computationally heavier than combine tasks; the
family could be extended to cater for cases when this assumption
does not hold.

3.4 Skeleton transformation by rewriting
The AS framework is designed to adapt the granularity of tasks
by transforming the underlying skeletons and Figure 5 presents a
set of fairly standard equations for rewriting skeleton-based code.
This style of program transformation goes back to Bird’s work on
algebraic identities [4] in the 1980s. The right column relates the
skeletons in each family to each other and to their sequential coun-
terpart. The left column presents various laws about the interaction
between the sequential map and reduce skeletons and the auxiliary

list operations chunk, concat and transpose , e. g. map fusion (3). Note
that the dot ( .) in these equations denotes function composition.

While the equations on the right of Figure 5 are generally suffi-
cient to replace a single instance of an inefficient basic skeleton
with a more efficient tunable one, the equations on the left are
needed to rewrite composite skeleton expressions. Figure 6 demon-
strates this by means of a rewrite derivation of a more efficient
implementation of the SumEuler benchmark (Figure 3) rewriting
modulo associativity of function composition. The derived imple-
mentation devides the input list into “sublists” by striding, then
parMaps the sequential SumEuler function over the list of sublists
and sequentially reduces the results by summation.

Another transformation of SumEuler might use rules (11) and
(12) to arrive at the simpler reduce (+) 0 . parMapStride k totient ,
which also controls task granularity by striding. However, this
expression is not as effcient as the one derived previously because
the derivation in Figure 6 uses map fusion to combine computing
the totient of a sublist with a reduction. Thus, each task in Figure 6
returns a single integer instead of a list of integers, thereby reducing
communication overheads.

3.5 Adaptive execution framework
This section sketches how the adaptive skeleton execution frame-
work combines dynamic scheduling of tasks with adaptive skeleton
transformation. The framework employs a master/worker architec-
ture, where the master occupies a single core and each worker oc-
cupies a single core. The master is responsible for scheduling and
transformations whereas the workers simply execute work as as-
signed by the master. Section 4 discusses the implementation of
workers in detail, and we now focus on the master detailing how it
adapts task granularity to suit the hardware architecture.

Master threads. The master executes three threads, potentially
concurrently.

• The evaluator thread evaluates the main program sequentially.
When it evaluates skeletons, it expands the task graph by
spawning new tasks as described in section 3.2 and 3.3. When
the evaluator attempts to access an empty future, it will block
until that future is filled.
• The scheduler thread schedules enabled tasks or task subgraphs

to idle workers. Decisions on the size of the subgraphs sched-
uled are guided by cost models for computation and communi-
cation (see below). The scheduler also monitors the execution
time and communication overheads of scheduled tasks to es-
tablish (i) whether the cost models predict accurately, (ii) how
regular tasks are, and (iii) whether most of the tasks fall within
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parMapChunk : : I n t −> ( a −> b ) −> [ a ] −> [ b ]
parMapChunk k f xs = concat $ parMap (map f ) $ chunk k xs

parMapStride : : I n t −> ( a −> b ) −> [ a ] −> [ b ]
parMapStride k f xs = concat $ t r a n s p o s e $ parMap (map f ) $ t r a n s p o s e $ chunk k xs

parReduceChunk : : I n t −> ( a −> a −> a ) −> a −> [ a ] −> a
parReduceChunk k g z xs = reduce g z $ parMap ( reduce g z ) $ chunk k xs

parReduceStr ide : : I n t −> ( a −> a −> a ) −> a −> [ a ] −> a
parReduceStr ide k g z xs = reduce g z $ parMap ( reduce g z ) $ t r a n s p o s e $ chunk k xs

parReduceDepth : : I n t −> ( a −> a −> a ) −> a −> [ a ] −> a
parReduceDepth 0 g z xs = spawn ( reduce g z ) xs
parReduceDepth k g z [ ] = z
parReduceDepth k g z [ x ] = x
parReduceDepth k g z ( xs ++ ys ) = g ( parReduceDepth ( k−1) g z xs ) ( parReduceDepth ( k−1) g z ys )

parDivconqDepth : : I n t −> ( a −> [ a ] ) −> ( [ b ] −> b ) −> ( a −> b ) −> a −> b
parDivconqDepth 0 d i v comb conq x = spawn ( divconq d i v comb conq ) x
parDivconqDepth k d i v comb conq x = c a s e d i v x o f

[ ] −> spawn conq x
ys −> comb (map ( parDivconqDepth ( k−1) d i v comb conq ) ys )

parDivconqThresh : : ( a −> Bool ) −> ( a −> [ a ] ) −> ( [ b ] −> b ) −> ( a −> b ) −> a −> b
parDivconqThresh t h r e s h d i v comb conq x = i f t h r e s h x

t h e n spawn ( divconq d i v comb conq ) x
e l s e c a s e d i v x o f

[ ] −> spawn conq x
ys −> comb (map ( parDivconqThresh p d i v comb conq ) ys )

chunk : : I n t −> [ a ] −> [ [ a ] ] concat : : [ [ a ] ] −> [ a ] t r a n s p o s e : : [ [ a ] ] −> [ [ a ] ]

Figure 4. Tunable skeletons (bottom line: signatures of auxiliary functions chunk, concat, transpose).

C a n c e l l a t i o n : Map f a m i l y :
( 1 ) concat . chunk k = id ( 9 ) map = parMap
( 2 ) t r a n s p o s e . t r a n s p o s e = id ( 1 0 ) parMap = parMapChunk k

( 1 1 ) parMap = parMapStride k
Fu s ion :
( 3 ) map g . map f = map ( g . f )

Reduce f a m i l y :
D i s t r i b u t i v i t y : ( 1 2 ) reduce = parReduce
( 4 ) chunk k . map f = map (map f ) . chunk k ( 1 3 ) parReduce = parReduceChunk k
( 5 ) map f . concat = concat . map (map f ) ( 1 4 ) parReduce g = parReduceStr ide k g , i f g i s comm .
( 6 ) reduce g z . concat = reduce g z . map ( reduce g z ) ( 1 5 ) parReduce = parReduceDepth k

R e o r d e r i n g :
( 7 ) t r a n s p o s e . map (map f ) = map (map f ) . t r a n s p o s e Divide−and−conque r f a m i l y :
( 8 ) t r a n s p o s e . reduce g z . map ( reduce g z ) ( 1 6 ) divconq = parDivconq

= reduce g z . map ( reduce g z ) ( 1 7 ) parDivconq = parDivconqDepth k
= reduce g z . map ( reduce g z ) . t ranspose , ( 1 8 ) parDivconq = parDivconqThresh p
i f g i s commuta t ive

Figure 5. Equational laws about lists and skeleton transformations.

parSumEuler
= parReduce ( + ) 0 . parMap t o t i e n t

( 1 2 ) = reduce ( + ) 0 . parMap t o t i e n t
( 9 ) = reduce ( + ) 0 . map t o t i e n t
( 1 ) = reduce ( + ) 0 . map t o t i e n t . concat . chunk k
( 5 ) = reduce ( + ) 0 . concat . map (map t o t i e n t ) . chunk k
( 6 ) = reduce ( + ) 0 . map ( reduce ( + ) 0 ) . map (map t o t i e n t ) . chunk k
( 8 ) = reduce ( + ) 0 . map ( reduce ( + ) 0 ) . t r a n s p o s e . map (map t o t i e n t ) . chunk k
( 7 ) = reduce ( + ) 0 . map ( reduce ( + ) 0 ) . map (map t o t i e n t ) . t r a n s p o s e . chunk k
( 3 ) = reduce ( + ) 0 . map ( reduce ( + ) 0 . map t o t i e n t ) . t r a n s p o s e . chunk k
( 9 ) = reduce ( + ) 0 . parMap ( reduce ( + ) 0 . map t o t i e n t ) . t r a n s p o s e . chunk k

Figure 6. Example: Derivation of efficient strided parallel SumEuler.
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the target granularity range suitable for the hardware architec-
ture. After a warm up period the scheduler reacts to granularity
being persistently out of range by signaling the transformer.
• The transformer thread repeatedly rewrites the main program’s

skeletons following a randomized rewrite strategy; a similar
strategy has recently been used successfully to compile skele-
tons to high-performance OpenCL code [24]. Random rewriting
produces several different skeleton expressions that are seman-
tically equivalent to the original. The transformer expands (in a
similar way to the evaluator) each expression into a task graph
in order to predict its runtime using the computation and com-
munication cost models. Finally, the transformer picks the best
task graph and signals the scheduler and evaluator to restart the
program.

Pragmatics of skeleton transformation. Transformation is po-
tentially costly, both in terms of time and memory spent on rewrit-
ing, task graph expansion and cost analysis, and in terms of work
lost due to restarts. The following heuristics limit the cost.

The cost of computing transformations can be kept in check by
grouping rewrite steps into phases and limiting the number of steps
per phase, as in [24]. Expressions that expand to very large task
graphs can be discarded even before cost analysis on the grounds
that the huge number of tasks would imply low granularity. Cost
analysis itself ought to be cheap as task graphs usually contain
many replicated tasks so the time to analyse individual tasks can
be amortised.

The cost of restarts can be controlled by restricting restarts to
a warm up phase of a few seconds, and by limiting the number
of restarts. The cost of restarts can also reduced if the parallelism
is divided into a sequence of phases, e. g. simulation steps, or
iterations of k-means clustering. In these cases only the currently
active phase needs to be restarted, preserving the work of previous
phases.

Cost models. It may appear that both scheduler and transformer
require accurate task computation and communication time predic-
tions before a task runs. In fact the scheduler tolerates inaccuracy.
Irregularly sized tasks can be scheduled dynamically without accu-
rate information of their expected runtime at the expense of some
(usually moderate) overheads — work stealing schedulers typically
manage this scenario well. What matters for the scheduler is to cap-
ture the ratio of computation to communication in order to select
task subgraphs that minimize this ratio.

Similarly, the transformer requires only relative, rather than ab-
solute measures like actual runtimes or latencies. Relative cost pre-
dictions will be used to compare alternative transformations of the
same skeleton expression. Since the transformations mainly affect
the parallel coordination and leave the sequential code largely un-
touched, consistency of predictions (e. g. two tasks executing al-
most the same code will have very similar costs) is more important
than accuracy.

Complementary to the work reported here, the AJITPar project
is developing simple cost models for predicting the runtime of
tasks. These cost models hook into the trace-based JIT compiler
(Pycket), intercepting traces after the optimisation phase and just
before compiling to native code. Predicting the cost of individual
traces requires a single pass over the trace computing a weighted
sum of all instructions. The cost of a task (typically consisting of
one or more loops and spanning several traces) can be inferred from
the cost of its traces and the value of its trace counters (which
can be obtained from the Pycket runtime). The resulting compu-
tational cost models are not very accurate in absolute terms but
they are consistent and accurately reflect the costs of pre- and post-
transformed skeleton expressiions [16].

task graph

...

Master

Worker_1 Worker_2 Worker_n

task
task

subtasks

results

tasks

Figure 7. Prototype Adaptive Skeleton execution framework.

The overheads of communication are proportional to the size
of the data communicated, i. e. to the size of data in futures. This
is easy to establish for full futures (i. e. for task inputs). To esti-
mate the size of task outputs, the AS framework will rely on ex-
trapolation based on observations during the warm up phase. Static
size analysis might improve predictions (though such an analysis is
complicated by the fact that Racket is not statically typed).

Having described the design vision of the adaptive skeleton
execution framework, the next sections describes the current state
of the implementation.

4. Prototype Framework Implementation
A prototype adaptive skeleton execution framework to implement
the design in Section 3 is under development. This section reports
on the current status of the implementation and discusses the key
design decisions.

The current prototype executes task-parallel computations on
shared or distributed-memory architectures using TCP-based mes-
sage passing, serialisation, futures, tasks, basic skeletons, task eval-
uation, dynamic task scheduling, and monitors task runtimes and
communication overheads. This implementation forms the basis for
the preliminary performance evaluation in Section 5. Cost mod-
elling for Pycket JIT traces has also been implemented, but not yet
integrated into the prototype framework [16].

Not yet implemented are cost analysis of task graphs, cost-
model guided scheduling of subgraphs of the task graph, cost-
model guided transformation of skeletons by rewriting, and support
for cancellation and restart of computations.

4.1 System Architecture
Figure 7 shows the scheduling architecture of the adaptive skeleton
framework. It consists of a central master and n workers; each of
these is realised as a separate OS process, possibly on different
hosts. The master runs a standard Racket VM, the workers run
Pycket. Since trace-based cost models (which depend on Pycket)
are not yet integrated workers can currently also run Racket; we use
this feature in Section 5 to compare scaling of Racket vs Pycket.

The master maintains the current task graph and schedules en-
abled tasks to idle workers. Each worker executes tasks, one at a
time, and returns the result to the master. Upon receiving a result
the master updates the task graph, which may unblock previously
blocked tasks. Workers may also generate subtasks (e. g. following
a divide-and-conquer pattern) which they pass back to the master
for scheduling.

The master and workers behave much like actors, i. e. they do
not share state, are single threaded and communicate by sending
messages over TCP connections. In part, these design choices are
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born out of the restrictions of Pycket, which does not (yet) support
concurrency. However, they also simplify the implementation of
workers, which execute a simple receive-eval-send loop. Nonethe-
less, there are drawbacks compared to a shared-memory design:

• TCP-based message passing can add significant latency, partic-
ularly for large messages.
• All messages need to be serialised by the sender side and de-

serialised by the receiver, which can cause significant overhead
for large messages. (In fact, Section 4.3 demonstrates that seri-
alisation dominates the cost of message passing.)

The decision to adopt a centralised scheduler rather than dis-
tributed work stealing was taken with transformations in mind. Dis-
tributed schedulers typically lack an accurate global view of current
system load and performance, hence it is harder to decide whether
to transform skeletons. Moreover, distributed schedulers tend to
produce more random schedules, which makes it harder to evaluate
whether performance gains are down to good skeleton transforma-
tions or lucky scheduling.

4.2 Tasks and Closures
As a dynamic language Racket supports code mobility (e. g. tasks
moving from master to workers) through the ability to dynamically
load and execute code. However, one of the many current restric-
tions of Pycket rules out dynamic code loading — Pycket expects a
fixed program at startup. As a result mobile code has to be realised
by using a crutch, namely explicit closures similar to the Haskell
DSLs HdpH [13] and CloudHaskell [9]. An explicit closure is a pair
consisting of a uniquely named (hence serialisable) global function
pointer and list of serialisable arguments.

Tasks are layered on top of closures, linking closures to input
and output futures. Thus evaluating an enabled task amounts to
reading its input futures, evaluating the closure and writing the
results to the output futures; this is the essence of a worker’s
receive-eval-send loop.

4.3 Serialisation
Tasks and futures (results) must be serialised to byte strings that
can be transmitted over TCP sockets. Racket offers a serialisation
library for this purpose but the library does not work in Pycket.
Hence we have implemented our own serialisation library, specifi-
cally designed to serialise tree-like data structure fast. (In fact, the
library relies on data being acyclic; attempting to serialise cycles
will likely result in the system live-locking.)

We have benchmarked the serialisation library on a number of
typical data structures, including binary trees, vectors and matrices.
We have also compared the performance of serialisation in Pycket
to the performance in other languages, including Haskell and Java.
Here, we reproduce the throughput measurements for serialising
triangular matrices of 64-bit integers, see Figure 8.

We observe that the Pycket throughput is consistently the best
— it is only beaten by Java throughput when serialising very large
data structures. (This is likely a result of Java’s memory manager
being better able to handle very large objects.) Yet, we also observe
that serialisation throughput never exceeds 600 MBit/s (measured
on a 5 year old Intel Xeon CPU at 2GHz). That is, serialisation
throughput is an order of magnitude lower than the throughput of
modern networking hardware (10 Gbit/s). Hence, for large mes-
sages communication latency will be dominated by the time taken
to serialise and deserialise messages.

platform network RAM/host cores/host cores total
AMD NUMA server - 512GB 24 24
AMD NUMA cluster 1Gbit 512GB 32 96
Intel cluster 10Gbit 64GB 16 272

Table 1. Benchmark platforms.

5. Preliminary Evaluation
We evaluate the performance of the prototype AS execution frame-
work on a number of micro-benchmark and a small case study ap-
plication. The goals of this evaluation are to demonstrate

• that the framework scales on different architectures (Sec-
tions 5.2 and 5.4),
• that the framework scales to hundreds of workers provided task

granularity is suitable (Sections 5.2 and 5.3), and
• that skeleton transformations can improve performance (Sec-

tion 5.5).

5.1 Benchmarks Applictions and Platforms
We consider the following (micro-)benchmarks applications.

1. Fibonacci. Naively computes the n-th Fibonacci number:

fib(n) = fib(n− 1) + fib(n− 2) .

2. SumEuler. Computes the sum of Euler’s totient function ϕ over
an interval of n integers:

SumEuler(n) = Σn
i=1ϕ(i) .

3. Mandelbrot. Computes a hi-res black-and-white image of the
Mandelbrot set according to the escape time algorithm with
an iteration limit of 1000 and where complex numbers are
emulated by pairs of double precision floating point numbers.

4. Matrix multiplication. Multiplies two square matrices of double
precision floats using the naive cubic time algorithm.

5. K-means clustering Classifies a large data set high-dimensional
points (represented as vectors of double precision floating point
numbers) according to Lloyd’s iterative refinement algorithm
for k-means clustering.

Fibonacci is implemented using a divide-and-conquer skeleton, the
other benchmarks rely on data-parallel skeletons. K-means cluster-
ing exhibits a sequence of parallel phases, the other benchmarks
consist of a single parallel phase. Fibonacci, matrix multiplication
and k-means clustering are regular problems whereas SumEuler
and Mandelbrot show moderate irregularity.

Table 1 summarises characteristics of the three evaluation plat-
forms: a 24-core NUMA server, a cluster of three 32-core NUMA
server, and a cluster of 17 16-core servers. The latter platform is
based on Intel Xeon CPUs, the former two on AMD Opterons.

The experiments reported here were performed using a snapshot
of Pycket obtained on 10 June 2015, extended with TCP bindings
and built on Racket 6.2 and RPython 2.6.0. All experiments were
repeated 7 times; we base speedup calculations on mean runtimes.

5.2 Strong Scaling Experiments on a Distributed Platform
To demonstrate scaling of the AS framework up to hundreds of
workers, we investigate strong scaling of the micro-benchmarks
Fibonacci, SumEuler and Mandelbrot on the AMD NUMA cluster.
For these experiments we pick input parameters to yield sufficiently
large sequential runtimes (between 137 and 499 seconds) and tune
the skeletons to produce a suitable number (about 4000) of tasks.
To be precise, we compute
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Figure 8. Triangular matrices of integers: serialisation throughput (left) and deserialisation throughput (right).

• Fibonacci of n = 50 using a thresholding skeleton cutting off
at 33.
• SumEuler of n = 216, striding through the interval in steps of

4000.
• Mandelbrot at a resolution 10000 × 8000, chunking the image

into 4000 horizontal stripes (of resolution 10000 × 2).

The top row of Figure 9 shows log/log plots of the runtimes
and absolute speedups of these benchmarks in the prototype AS
framework. All problems scale similarly up to 90 workers, with
speedups of 63 to 73 and with moderate variability (as witnessed by
the smallness of the error bars). Only once we move to 180 work-
ers (i. e. making full use of the platform’s two hardware threads
per core) do the graphs diverge. SumEuler, and to a lesser extent
Mandelbrot, scale quite well to 180 workers; Fibonacci, however,
does not. However all benchmarks still improve performance be-
yond 90 workers, with a top speedup of 98.7 for SumEuler on 180
workers. This shows that hardware threads can alleviate some of
the drawbacks of our centralised work stealing architecture, keep-
ing workers busy that would otherwise have been idle waiting for
the master to assign more tasks.

For reference, we performed the same experiments with work-
ers running Racket instead of Pycket, shown in the bottom row of
Figure 9. We found the sequential performance of Racket and Py-
cket comparable; Racket outperforms Pycket by a margin of at most
20% on Fibonacci and Mandelbrot, however Pycket beats Racket
by about 15% on SumEuler. Noteworthy is that Racket generally
scales better than Pycket when using all available hardware threads,
achieving a top speedups of 116.7 for SumEuler on 180 workers.

5.3 Small Case Study: K-means on a Distributed Platform
To assess the performance of the system on a realistic benchmark
application, we implement the iterative refinement algorithm (also
known as Lloyd’s algorithm) for k-means clustering. Given a clas-
sification of N d-dimensional data points into k clusters, an itera-
tion of the algorithm refines the classification by re-classifying each
data point to the cluster whose centroid is nearest. Then the algo-
rithm re-computes the cluster centroids based on the refined clas-
sification, and starts the next iteration. The algorithm terminates
when the classification becomes stable.

Parallelism is introduced by sub-dividing the data sets into equal
sized chunks such that each chunk can be classified in parallel; the
resulting tasks are highly regular. Since each iteration depends on
the results of the previous one, the parallel algorithm is required
to synchronise after each iteration, before generating a new set of
parallel tasks.

We run the algorithm on the Intel cluster, scaling up to 8 workers
per node distributed over 16 nodes; the 17th node is reserved
exclusively for the master.

As inputs we used 6 synthetic data sets with N points in d
dimensions, where N varies from 250, 000 to 1, 000, 000 and d
varies from 10 to 40. We classify each data set into 250 clusters.
To obtain comparable results, we run the clustering algorithm for a
fixed 20 iterations (instead of until convergence). We measure wall-
clock time taken for clustering, excluding system startup time and
time taken to read the input. To measure scaling we vary the number
of workers per node (up to 8 workers/node, i. e. 128 workers in
total).

Figures 10 shows log/log plots of runtimes and speedups de-
pending on the total number of workers available. The algorithm
scales well initially, reaching a speedup of 29.4 on 32 workers on
the biggest problem (based on a sequential runtime of 294.7 sec-
onds). However, it does not scale as well as we increase the num-
ber of workers per node to 4 and higher, reaching a top speedup
of 54.9 on 128 workers. One reason for the diminished speedup
may be problem size; smaller problems reach their scaling lim-
its already at 64 workers. Another reason may be Amdahl’s law.
Because of the synchronisation after each iteration the algorithm
essentially alternates between sequential and parallel phases. Yet
another reason may be effects of the parallel hardware. A sepa-
rate experiment comparing the runtime of the biggest problem on
64 workers spread over 16 nodes versus 64 workers spread over 8
nodes reveals a slowdown of about 16% when doubling the number
of workers per node.

We also briefly compare the performance of Racket vs Pycket
on k-means clustering. On this numerically intensive application,
Racket is about 2 to 2.5 times slower than Pycket in sequential exe-
cution. The system does scale better with Racket workers, reaching
a top speedup of 75.5 for the biggest problem. However, improved
scaling is not able to fully compensate for slower sequential execu-
tion; at peak performance the system with Racket workers is still
30% slower than with Pycket workers.

5.4 Strong Scaling on a NUMA Server
An earlier version of the AS framework did not support communi-
cation via TCP. Instead, this version relied on Unix IPC constructs
(named pipes) and was hence limited to run the master and all
workers on the same physical host. We used this version to system-
atically explore strong scaling of the micro-benchmarks Fibonacci,
SumEuler, Mandelbrot and matrix multiplication across a range of
5 to 6 different values for the respective skeleton tuning parameters.
These experiments were performed on the 24-core AMD NUMA
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Figure 9. Runtimes (left) and speedups (right) on AMD NUMA cluster; workers run Pycket (top row) or Racket (bottom row).
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Figure 10. Runtimes (left) and speedups (right) of 20 iterations of k-means on Intel cluster.

platform. The snapshot of Pycket was obtained on 14 May 2015
and built on Racket 6.1.1 and RPython 2.5.1.

To establish a baseline, we compare the sequential runtime of
each benchmark on Pycket with the runtime of a sequential imple-
mentation in C. To determine strong scaling, we compare sequen-
tial runtime on Pycket with parallel runtimes on the AS framework
(which runs Pycket on workers), scaling the number of workers
(and hence the number of cores utilised). Runtimes measured ex-
clude system startup and shutdown but include JIT warmup. During
the experiments the server was not entirely unloaded, which is why
we limit scaling to 21 cores maximum (1 core for the master, up to
20 cores for workers).

Fibonacci Pycket takes 60.8 seconds to compute the 47th Fi-
bonacci number. The C implementation is about 3.5 times faster
at 17.8 seconds.

Figure 11 shows the speedup graphs for parallel Fibonacci
computations using a divide-and-conquer skeleton with different
thresholds for falling back on sequential computations. The thresh-
olds were chosen such that the granularity of the sequential tasks
varies by more than two orders of magnitude, from less than 10
milliseconds to more than one second.

Scaling is best for tasks in the medium granularity range, though
overall the system does not scale well with top speedup of only
14.3 on 20 workers, despite the very low communication overheads
of the Fibonacci computation. One reason for this might be the
centralised master in the AS framework architecture. It is likely
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Figure 12. Speedup of SumEuler on AMD NUMA server.

that distributed work stealing would improve the performance of
divide-and-conquer parallelism.

SumEuler Pycket takes 82.5 seconds to compute the SumEuler
of n = 50, 000. The C implementation is about 30% faster at 62.5
seconds.

Figure 12 shows the speedup graphs for the parallel computa-
tions using a parallel-map task farm skeleton and dividing the input
interval into even sized chunks. The chunksize (and hence the task
granularity) varies. At one extreme, each chunk contains only a sin-
gle integer, resulting in 50,000 tasks with an average granularity of
1.6 milliseconds. At the other extreme there are exactly as many
chunks as there are workers, resulting in an average task granular-
ity of several seconds.

Since the problem is irregular — the runtime of each task
depends on the length of its input interval as well as on the size
of the numbers in the interval — very large tasks result in poor
scaling due to imbalanced load. Very small tasks scale better but not
optimally due to the scheduling overheads (which are around 0.1
milliseconds per task even for tasks with very small communication
overhead). Tasks with a medium granularity scale best with a top
speedup of 15.9 on 20 workers.

Mandelbrot Pycket takes 115.7 seconds to compute the Mandel-
brot image with a resolution of 5000 × 4000 pixels. The C imple-
mentation is about 30% faster at 90.9 seconds.

Figure 13 shows the speedup graphs for the parallel computa-
tions using a parallel-map task farm skeleton to compute horizontal
stripes of the Mandelbrot image. The width (i.e. number of rows
of pixels) of the stripes varies, and with it the task granularity.
The smallest stripes (1 single row of pixels) result in an average
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Figure 13. Speedup of Mandelbrot on AMD NUMA server.

task granularity of about 30 milliseconds. At the other extreme, the
number of stripes matches the number of workers, resulting in an
average task granularity of several seconds. We note that the input
of each task is small: 5 integers describing the position and size of
the stripe plus the iteration limit. However, Mandelbrot tasks pro-
duce a moderate amount of output data, namely at least 1 bit per
pixel. That is, even the smallest tasks produce about 5000 bits, or
625 bytes. The total amount of output data that needs to be trans-
mitted from workers to the master is 5000 · 4000 bits, or about 2.5
megabytes.

Mandelbrot is an irregular problem as stripes at the top and the
bottom of the picture are generally faster to compute than stripes in
the middle. Nonetheless, scaling appears to be fairly unaffected by
task granularity, with a few exceptions. One exception is the scaling
of tasks of the largest granularity (i. e. exactly one task per worker)
at 4 and 8 workers, where irregularity does cause noticeable load
imbalances. The other exception is deterioration of scaling when
task granularity is smallest (i. e. a single row of pixels) due to
increased scheduling overheads. Overall, tasks with a moderate
average granularity of around 300 milliseconds appear to scale best,
achieving a speedup of 15.7 on 20 workers.

The speedup graphs in Figure 12 also show an outlier soaring
above all others. According to the data, dividing the Mandelbrot
image into 4

3
as many stripes as there are workers results in a

speedup of 19.6 on 20 workers; the speedups are even super-linear
at lower numbers of workers, e. g.. 10.3 on 8 workers. We do not
currently have a convincing explanation for this phenomenon.

Matrix multiplication Pycket takes 75.3 seconds to multiply two
matrices of dimension 3200. The C implementation is about 20%
faster at 62.5 seconds.

Figure 14 shows the speedup graphs for parallel matrix multipli-
cation, computing the rows of the product matrix in parallel using
a parallel-map task-farm skeleton. Computing a single row of the
output takes on average about 25 milliseconds time, i. e. the small-
est possible task granularity is 25 milliseconds. To increase gran-
ularity, tasks may compute blocks of rows; Figure 14 also shows
the speedups for tasks computing blocks of 10 rows, blocks of 50
rows, and blocks of a size such that there are 4 tasks per worker, or
1 task per worker.

Tasks need to communicate only a small amount of input data,
like in the Mandelbrot benchmark, since the input matrices are read
from file by each worker simultaneously (and the time for reading
inputs is excluded from the runtime). However, tasks produce a
substantial amount of output that must be communicated back to
the master. In total, all tasks together produce about 8 ·32002 bytes,
or about 80 megabytes. The current prototype system struggles
with the throughput at these data sizes, taking about 5 seconds
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Figure 14. Speedup of matrix multiplication on AMD NUMA
server (up to 8 workers).

to serialise, transmit and deserialise the product matrix. Besides
slowing parallel computations down, this overhead also appears to
cause significant noise in parallel runtimes, varying by as much as
50%, which is much higher than in the other benchmarks.

We limit the experiments for scaling matrix multiplication to
8 workers — beyond that parallel runtimes are too noisy to draw
any conclusion from the data. We observe that tasks with mid-
dling granularities of around 250 milliseconds scale best, with a
top speedup of 4.4 on 8 workers. The speedup is depressed by the
time taken to transmit the product matrix back to the master, which
accounts for a third of the parallel runtime on 8 workers. If trans-
mitting the final product were omitted (or transparently relegated
to a high-performance distributed key value store) the speedup on
8 workers would rise to 6.7.

As in the other benchmarks, low granularity tasks suffer from
increased scheduling overheads. Surprisingly, very high granularity
tasks also scale badly, despite matrix multiplication being a very
regular problem. This may be explained by noise in the data —
fewer tasks per worker appear to significantly increase the variance
in parallel runtimes of matrix multiplication.

5.5 Impact of Transformations on a NUMA Server
Each of the benchmarks above evaluates the scaling of several
versions of the same algorithm, differing only in the number of
parallel tasks and their granularity. These versions were generated
by (manually) transforming the original parallel algorithm into one
that takes an extra parameter controlling the parallelism:

• a threshold in the case of the divide-and-conquer benchmark
(Fibonacci),
• a chunk or block size in the case of the data parallel bench-

marks.

The results of Section 5.4 show that transformations do have an
impact on the scalability of parallel code. In the case of data parallel
problems, in particular, the untransformed code often generates
tasks that are too fine-grain and, hence incurring high overheads.

As Section 3.4 details there are other transformations that might
be applicable to the benchmarks in Section 5.4. For instance, data
parallel computations might subdivide their input by striding rather
than chunking, effectively re-ordering the computation. Figure 15
shows the effect such a re-ordering transformation on SumEuler.
In this case, each task iterates over the input interval with a given
stride, computing Euler’s ϕ function on all integers encountered.
That is, the transformation groups together integers whose differ-
ence is a multiple of the stride; the total number of tasks equals
the stride. The effect of this transformation on SumEuler is to ren-
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Figure 15. Speedup of strided SumEuler on AMD NUMA server.

der tasks more regular because the magnitude of the numbers in
each task is approximately the same (and the cost of computing
ϕ is determined by the magnitude of its argument). The benefit of
more regular task sizes is evident in Figure 15 which shows that
all strided versions of SumEuler scale virtually the same way,2 re-
gardless of task granularity. Moreover, all strided versions achieve
higher speedups (between 16.0 and 16.4 on 20 workers) than even
the best of the chunked versions.

For these measurements, we manually transformed the parallel
code and manually selected suitable threshold, chunksize and stride
parameters to tune the transformed code for the particular architec-
ture. The aim of the full AS execution framework is to effectively
automate this process.

• Admissible transformations are specified by the programmer
Since transformations are often tied to particular skeletons,
it is most likely that the transformations are specified by the
skeleton library developer. Transformations are expressed in a
domain specific language (e. g. as skeleton transforming rewrite
rules, Section 3.4).
• The AS framework will select applicable transformations and

rank the transformed code according to its cost models (Sec-
tion 3.4). Where transformations require extra parameters (e. g.
thresholds, strides, etc.) cost analysis will also aid in picking
suitable values.
• The AS framework will abort the current computation and

restart a transformed program if it finds the granularity of the
current task graph unsuitable (i. e. either too large or too small)
and if the framework has produced a graph with better (pre-
dicted) granularity.

6. Discussion
We have outlined a novel approach to delivering portable perfor-
mance for irregularly parallel programs that combines declarative
parallelism with JIT technology, dynamic scheduling, and dynamic
transformation. If the approach is successful it may improve many
languages with tracing JIT-compilers.

We have presented the design of an adaptive skeleton (AS) li-
brary with a task graph implementation, JIT trace costing, and
transformations that adapt skeletons for parallel architectures (Sec-
tion 3). We have outlined the Pycket prototype AS execution frame-
work, describing tasks, serialisation, and the current scheduler
(Section 4).

2 The exception is the smallest granularity. However, this is essentially the
untransformed code, where each task computes ϕ of just one integer, and
scales exactly as the smallest granularity of chunked SumEuler.
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The results of the preliminary performance evaluation of the
prototype AS framework are encouraging (Section 5). Pycket de-
livers good sequential performance e.g. almost as fast as C for some
benchmarks, and never more than 3.5 times slower. The protoype
framework achieves good absolute speedups on all architectures for
all but one program. Crucially, the adaptive transformations do im-
prove parallel performance.

The evaluation does, however, reveal several limitations of the
prototype AS framework. (1) The centralised master scheduler in
the framework can become a bottleneck and limit scalability be-
yond a hundred workers; it is also a poor fit for some skeletons like
divide-and-conquer. This could be addressed by adding distributed
work stealing. (2) Communication costs are high due to serialisa-
tion and Unix IPC overheads (Section 4.3), restricting the perfor-
mance of programs with high communication volumes e. g. matrix
multiplication. This could be addressed by maintaining large data
structures in some distributed store, e.g. a key-value store.

Performance issues aside, the key future objectives are to en-
gineer and evaluate the full AS framework as follows. To build the
dynamic skeleton transformation engine into the framework. To use
the JIT trace costs to guide the transformations of the skeleton pro-
grams to adapt to the underlying architecture. The potential of the
approach can then be assessed by evaluating the performance of the
full AS framework on both benchmarks and case studies.
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