Patrick Maier, Daria Livesey, Hans-Wolfgang Loidl, Phil Trinder High-Performance Computer Algebra: A Hecke Algebra Case Study ABSTRACT: We describe the first ever parallelisation of an algebraic computation at modern HPC scale. Our case study poses challenges typical of the domain: it is a multi-phase application with dynamic task creation and irregular parallelism over complex control and data structures. Our starting point is a sequential algorithm for finding invariant bilinear forms in the representation theory of Hecke algebras, implemented in the GAP computational group theory system. After optimising the sequential code we develop a parallel algorithm that exploits the new skeleton-based SGP2 framework to parallelise the three most computationally-intensive phases. To this end we develop a new domain-specific skeleton, parBufferTryReduce. We report good parallel performance both on a commodity cluster and on a national HPC, delivering speedups up to 548 over the optimised sequential implementation on 1024 cores. KEYWORDS: Distributed-memory parallelism; Algorithmic skeletons, Computer algebra; Case study