
Transactions — An Introduction

Tony Printezis

tony@dcs.gla.ac.uk

Dept of Computing Science

University of Glasgow

17 Lilybank Gardens

Office G103, x6043

Transactions — An Introduction – p.1/48

Motivation — Scenario 1

o One way to populate a JTable with the contents of the Band table

í count how many rows there are in Band

– SELECT COUNT(*) FROM ...

í create a JTable with that many rows

í populate the JTable after getting the actual data from Band

– SELECT Name, Country, WebSite FROM ...

o Does this work?

Transactions — An Introduction – p.2/48

Motivation — Scenario 2

o Imagine I’m transferring 50 pounds from account A to account B

o The updates necessary to reflect this are

1. balance of A -= 50

2. balance of B += 50

o After update 1 has been propagated to the DB, a system failure prevents

update 2 to be propagated to the DB

o Is this correct?

Transactions — An Introduction – p.3/48

Motivation — Scenario 3

o Consider if we add a row to the Release table that contains a bid field

that does not appear in the Band table

í (this is a valid insert to the Release table, if no constraints have been

defined)

o Is this correct?

Transactions — An Introduction – p.4/48



Transactional Programming

o Purpose of Transactions (Tx)

í DB usage is essentially concurrent

í Isolation gives the illusion of a single user

– implies much easier application programming

í Requirements

– stability: data shouldn’t change while you’re using it

– isolation: your logic should not be corrupted by others’ logic

– reliability: when you you’ve done an update, it should persist

– fairness: you should be able to make reasonable progress

Transactions — An Introduction – p.5/48

ACID Transactions

o DB Community invented ACID Transactions

í Atomic

– all or nothing updates

í Consistent

– takes the database from one consistent state to another one

í Isolated

– it is possible to write an application ignoring the possibility of

concurrent applications

í Durable

– once committed, reliably persistent

o . . . as well as Undoable

í voluntary abort (rollback) of the Tx

Transactions — An Introduction – p.6/48

Transactions

o A Transaction is essentially a series of actions against a DB

í updates and reads

o These actions are performed

í atomically and durably,

í isolated from other transactions,

í while preserving the consistency of the data in the DB

Transactions — An Introduction – p.7/48

Atomicity

o All of the effects of the operations within the Tx are preserved in the

database, or

o None of the effects of the operations within the Tx are preserved in the

database

o Complications

í delimiting the Tx

– e.g. Tx begin, Tx commit, Tx rollback

í synchronizing with external actions

– e.g. issuing money

Transactions — An Introduction – p.8/48



Atomicity — Commit

u6u5u4u2 u3u1

Tx CommitTx Start

time

Transactions — An Introduction – p.9/48

Atomicity — Rollback (Tx Undone)

u6u5u4u2 u3u1

Tx Start

time

Tx Rollback

Transactions — An Introduction – p.10/48

Atomicity — System Crash

time

u6u5u4u2 u3u1

Tx Start

u6u5u4u2 u3u1

Tx CommitTx Start

should always be equivalent to

CRASH!

Transactions — An Introduction – p.11/48

Atomicity — Delimiting Tx

o Who decides which updates should be performed atomically?

í The DBMS?

– No.

– the DBMS does not know anything about the application logic

í The Application Programmer?

– Yes.

– only the programmer knows about the application logic

– only they can decide which updates should be part of one Tx

Transactions — An Introduction – p.12/48



Consistency

o Internal Consistency

í required by DBMS to operate

o Logical Consistency

í required by Applications to operate

í ideally “Does the data make sense?”

í in practice

– “Are all constraints & assertions satisfied?”

– if not force the Tx to rollback

– issue error information to the application

Transactions — An Introduction – p.13/48

Consistency — When?

o When should we perform the consistency checks?

1. Per update?

2. Per commit?

o A single update might violate a constraint. . .

í “add a row to the Release table with a bid 6”

í when 6 does not exist in the Band table

o . . . but it may not, if it is part of a group of updates

í “add a row to the Release table with a bid 6” and

í “add a row to the Band table with a bid 6”

í (atomicity — remember?)

o Cosistency can only be checked at commit time

í only then enough information is available to do so

Transactions — An Introduction – p.14/48

Consistency — How?

o Again, DBMS cannot decide what a consistent state of the data is

í only the application programmer can do so

o Trigger

í application-level code invoked when an particular events occurs

í e.g. commit

o To perform consistency checks, the programmer registers

í assertions

í triggers

Transactions — An Introduction – p.15/48

Isolation

o Informally

í An application developer writes code as if they are the only one

coding & only one instance of one application runs at once

o Formally

í The set of Tx that run must be serialisable

– i.e. their effects (on the database) must be equivalent to some

serial sequence of the individual Tx running one at a time.

– assumption of independence

– avoid non-commutative operations interfering

Transactions — An Introduction – p.16/48



Multiple Concurrent Tx

time

u6u5u4u2 u3u1

r1 r2 r3 r4 r5

1

2

r1 r2 r3 r4 r5 r6

u2 u3 u4u1

Tx1 Start Tx1 Commit

Tx2 CommitTx2 Start

Transactions — An Introduction – p.17/48

Should have the same effect as. . .

u4

r4r3

u1

r1 r2

u2 u3

r3

u4

r4

u5

r5

u6

r6r5

u3

r2

u2u1

r1

time

1

2

Tx1 Start Tx1 Commit

Tx2 Start Tx2 Commit

Transactions — An Introduction – p.18/48

Erroneous Interleaving

Tx1 Tx2 Account Balance

start Tx 1 start Tx 2 100

read balance (100) read balance (100) 100

pay in 100 (200) pay out 50 (50) 100

write back (200) 200

commit Tx 1 write back (50) 50

commit Tx 2 50

Transactions — An Introduction – p.19/48

What You Actually Want. . .

Tx1 Tx2 Account Balance

start Tx 1 start Tx 2 100

read balance (100) wait 100

pay in 100 (100) wait 100

write back (200) wait 200

commit Tx 1 wait 200

read balance (200) 200

pay out 50 (150) 200

write back (150) 150

commit Tx 2 150

Transactions — An Introduction – p.20/48



Isolation

o In Practice

í application programmers must . . .

– keep Tx short

– otherwise they delay other Tx (holding locks)

í . . . and must take over I/O & GUI actions

– otherwise can introduce delays and

– cause irreversible external state change

Transactions — An Introduction – p.21/48

Isolation Locking

o Two Popular Methods

í Locking

– stake claim before use

� i.e. take a lock

– hold it until the end of Tx

í Optimistic Concurrency

– assume “collisions” hardly ever happen

– track the Read Set (RS) and the Write Set (WS)

– at commit time check that

� no WS � intersects with RS
�

WS, and

� no RS � intersects with WS

– if condition fails

� abort and retry!

Transactions — An Introduction – p.22/48

Locks

o Also referred to as

í Mutexes

í Latches

o A lock guards a data structure from being manipulated by more then one

thread (or process)

í only one thread can take the lock

í the others have to wait until lock is released

o Critical Region

í code that updates the data structure

í only one thread can enter it

o Java has locks!

í synchronized methods or statements

Transactions — An Introduction – p.23/48

Locking Granularity

o Locks claimed implicitly as needed

í e.g. as an object is about to be read or updated

– physical locking (e.g. per page)

– logical locking

� e.g. per DB, Cluster, Catalog, Schema, Table, Row

o Trade-offs

í coarse locking granularity

– low locking overhead

– more conflicts

í fine locking granularity

– less conflicts

– high locking overhead

Transactions — An Introduction – p.24/48



Locking Granularity

low high

high

low

L
o

c
k
in

g
 O

v
e
rh

e
a
d

Conflicts

coarse-grain locking

compromise?

fine-grain locking

Transactions — An Introduction – p.25/48

Two-Phase Locking

o Lock Acquisition Phase

í locks are taken as data is accessed

o Lock Release Phase

í locks are implicitly released at the end of Tx

í (either at commit or rollback)

o Cannot release and then retake the same lock during a Tx

í since somebody else might have taken it and updated the data

í always keep all the locks until the end of the Tx

Transactions — An Introduction – p.26/48

Acquisition of Locks (i)

lock

acquisition

phase

All locks are released implicitly

at the end of the Tx.

lock

release

phase

N
u

m
b

e
r 

o
f 

lo
c
k
s
 h

e
ld

time
Tx1 bg Tx2 bg Tx2 cmtTx1 cmt

Transactions — An Introduction – p.27/48

Acquisition of Locks (ii)

This is OK, iff Tx1 and Tx2

do not overlap

N
u

m
b

e
r 

o
f 

lo
c
k
s
 h

e
ld

time
Tx1 bg Tx1 cmtTx2 bg Tx2 cmt

Transactions — An Introduction – p.28/48



Acquisition of Locks (iii)

N
u

m
b

e
r 

o
f 

lo
c
k
s
 h

e
ld

time
Tx1 bg Tx2 bg Tx2 cmt

waits for lock L1

Lock conflict!

Tx1 cmt

releases lock L1

takes lock L1

Transactions — An Introduction – p.29/48

Lock Conflict

o Two types of Lock

í Read Locks (RL) & Write Locks (WL)

í each object (subject to a lock) may have many readers

– each RL can have one or more owners

í each object may have only one writer

– each WL can have exactly one owner

í the owner of a RL may promote it to a WL

– iff there are no other owners of that RL

o Denote possibilities by a Conflict Matrix

Transactions — An Introduction – p.30/48

Conflict Matrix

Lock requested Existing Lock held by Tx �

by Tx � RL � WL �

RL � OK OK, iff k == i

OK, iff k == i

WL � AND OK, iff k == i

no other RL

Transactions — An Introduction – p.31/48

When a Lock is not Granted

o A lock is not granted because of a conflict

o When the current owner(s) end, the lock will become free

o If not deadlock

í (i.e. not final link in a cycle of suspended requests)

í suspend processing requestor Tx until requested lock is freed

o If deadlock

í (i.e. it is the final link in a cycle of suspended requests)

í force the requestor to rollback & retry later

– may be approximated by a time out

– depends on ability to rollback and retry without program action

Transactions — An Introduction – p.32/48



Deadlocks — Example

“Tx1 is transferring money from Account A to Account B”

“Tx2 is transferring money from Account B to Account A”

Tx1 Tx2 Acc A Acc B

start Tx 1 start Tx 2

lock account A lock account B locked(Tx1) locked(Tx2)

read balance of A read balance of B locked(Tx1) locked(Tx2)

calculate new sum calculate new sum locked(Tx1) locked(Tx2)

try to lock account B try to lock account A locked(Tx1) locked(Tx2)

DEADLOCK!

Transactions — An Introduction – p.33/48

Deadlocks

o Those occur when there is a chain of lock requests of the form

í Tx � has X and is waiting for A,

í Tx � has A and is waiting for B,

í Tx � has B and is waiting for C,

. . .

í Tx � has W and is waiting for X

o Detect cycle, choose a victim Tx, and

í forcibly rollback victim

Transactions — An Introduction – p.34/48

Acquisition of Locks — Deadlock

Tx1 bg Tx2 bg Tx2 cmtTx1 abrt

N
u

m
b

e
r 

o
f 

lo
c
k
s
 h

e
ld

time

waits for lock L1

takes lock L1

takes lock L2

waits for lock L2

takes lock L1

releases lock L1

DEADLOCK!

FORCIBLY ABORT Tx1!

Transactions — An Introduction – p.35/48

Durability

o Ensuring that a failure can’t lose committed changes

í software failures: DB system, OS, application, etc.

í hardware failures: CPU, disk, etc.

o Your data can never be totally safe!

í probability of losing it is always non-zero

– you can never eliminate it

– you can only decrease it to acceptable levels

� e.g. less than the probability of all life on Earth being wiped out

by an asteroid impact

Transactions — An Introduction – p.36/48



Atomicity & Durability (i)

u6u5u4u2 u3u1

Tx Start

time

CRASH!

Transactions — An Introduction – p.37/48

Atomicity & Durability (ii)

Tx Start

time

CRASH!

u2u1 u3 u4 u6u5

Tx Commit

Transactions — An Introduction – p.38/48

Multiple Tx Durability

time

u6u5u4u2 u3u1

r1 r2 r3 r4 r5

1

2

r1 r2 r3 r4 r5 r6

u2 u3 u4u1

Survivor Tx

Victim Tx

CRASH!
Tx1 Start Tx1 Commit

Tx2 Start

Transactions — An Introduction – p.39/48

Implementation Principles of Durability

o Logging

í ensures durability and guards against most software failures

í all updates to the database are recorded in a Log

– log resides on disk too

í if a crash occurs, the log has enough information to

– redo committed updates, if necessary

– undo uncommitted updates, if necessary

o A log is a series of Log Records

í each log record

– represents a single update to the database

– contains a before-image so we can undo the update

– contains an after-image so we can redo the update

Transactions — An Introduction – p.40/48



Write-Ahead Logging (WAL)

o Most widely used logging protocol

o Always record an update in the log before you write it to the database

o This guarantees that

í if a committed update is not written to the database, the log contains

enough information to be able to redo it

í if an uncommitted update is written to the database, the log contains

enough information to be able to undo it

o Not action needs to be taken for the other two cases

í if a committed update is written to the database

í if an uncommitted update is not written to the database

Transactions — An Introduction – p.41/48

Archiving

o The presence of a log does not guard data against disk failures, even if

the log and the database are stored on different physical disks

í without the log, the rest of the database cannot operate as the log

might contain essential data to bring it to a consistent state

í without the rest of the database, the log itself cannot operate as it

only contains the latest updates

o The database must be frequently archived

í possibly large storage requirements

í can do this incrementally by reading the log

– note: the log contains a complete history of all updates!

o RAID arrays are also typically used to provide higher fault-tolerance and

availability

Transactions — An Introduction – p.42/48

Transactions and JDBC

o Whenever you perform actions against a database using JDBC

í read-only queries

– executeQuery

í updates

– executeUpdate

these are performed in terms of a Tx

í either implicitly or explicitly

o Remember: every action against a database has to be performed in

terms of a Tx

í otherwise, you cannot take advantage of the ACID properties of Tx

Transactions — An Introduction – p.43/48

AutoCommit Mode

o Each JDBC connection can operate in two modes

í AutoCommit On

– (default mode)

– every statement is executed in its own Tx

í AutoCommit Off

– there is a Tx associated with each connection and the

programmer has to explicitly commit or abort it

– the Tx begin is implicit

o (of course, different connections within the same client do not have to

operate in the same mode)

Transactions — An Introduction – p.44/48



JDBC Transaction API

o On the Connection interface

í void setAutoCommit(boolean mode)

– sets the AutoCommit mode on and off for that connection

– this can be changed several times within the same application

í void commit()

– when AutoCommit mode is off, it commits all the updates that took

place through that connection

í void rollback()

– when AutoCommit mode is off, it aborts all the updates that took

place through that connection

Transactions — An Introduction – p.45/48

AutoCommit Mode On

o Default Mode

o Every statement executed against the database is run inside a new Tx

automatically

í each invocation of executeQuery and executeUpdate. . .

í . . . either on Statement or PreparedStatement

o The Tx commits

í when the ResultSet that was returned from executeQuery is

either close()ed, or when the last row has been read

í when executeUpdate returns succesfully

o In this mode, all Tx are assumed to commit

í . . . but might not due to a problem in the database

í SQLException

Transactions — An Introduction – p.46/48

AutoCommit Mode Off

o When AutoCommit mode is off, it is up to the programmer to explicitly

commit or rollback a Tx

o A Tx remains active until

í commit or rollback is called, or

í the connection is terminated

o If commit is not called before the connection is terminated, the Tx is

automatically aborted!

í no implicit commit

o Programming with AutoCommit off is considerably more error-prone

í Use it only when you have to!

Transactions — An Introduction – p.47/48

Releasing Resources

o Whenever you’ve finished with a

í Connection,

í Statement,

í PreparedStatement, and

í ResultSet

you are recommended to invoke close() on the object

o This releases resources held by

í the client application, and

í the DBMS

(these resources are also released when the client terminates)

o You cannot use any of the above objects after calling close() on it

Transactions — An Introduction – p.48/48


