Computing Science 1P
Assignments
Contact details for the module team

	Name
	Role
	E-mail
	Phone
	Room

	Quintin Cutts
	Lecturer, Semester 1
	quintin@dcs.gla.ac.uk
	330 5619
	S114

	Rob Irving
	Lecturer, Semester 2
	rwi@dcs.gla.ac.uk
	330 4478
	S111

	Gail Reat
	Course Secretary
	gail@dcs.gla.ac.uk
	330 6042
	F161

Preferred method of contact is by e-mail unless it is an emergency
Read e-mail regularly – at least once per week – it is our primary form of communication.
The rooms identified above are in the Computing Science Dept. See map below. S111 and S114 are on the second floor, F161 is on the first floor

[image: image1]
My Details

Major assessments

	Name
	
	
	1st Lab Exam:
Week 12
10%

	E-mail address
	
	
	Class Test:
January diet
10%

	Tutor's name
	
	
	Date/Place:

	Tutorial group letter
	
	
	2nd Lab Exam:
Week 26
10%

	Tutorial room/time
	
	
	Degree Exam:
May diet
70%

	Lab room/time
	
	
	Date/Place:

Contents

Page
Supporting Information

The Assignment Regime

 3
Submitting your Assignments

 4

Laboratory Resources

 4
Ada Resources on the Web

 5
Aids to Debugging your Programs

 6
Assignment 1

 7
(Deadline 5 - 10 October)

Assignment 2

 11

(Deadine 19 - 24 October)
Assignment 3

 15

(Deadine 2 - 7 November)

Assignment 4

 21

(Deadine 16 - 21 November)

Assignment 5

 25

(Deadine 30 November - 5 December)

Past laboratory exam question

Supporting Information
The CS1P assignment regime
Outline

There are ten CS1P assignments during the course of the year, together with two formal laboratory examinations. In each semester, assignments run at one per fortnight for the first ten weeks; the final two weeks are focussed on the lab exam. There is one scheduled lab session associated with each assignment, and one devoted to each lab exam.
Assignments

You are expected to submit a serious attempt at each of the assignments. The submission deadline in each case is 24 hours after the end of the appropriate scheduled CS1P laboratory session (or 72 hours, if your lab group meets on a Friday.) A significant amount of work must be done on the assignment in your own time before that lab session, so that you can take maximum advantage of interaction with your tutor during the lab. You should expect to start work on each assignment at least a week before the lab session that is dedicated to it; think of each assignment as a two-week exercise, stretching from before the preceding tutorial to the submission deadline. If you find that you need help just to get started on an assignment, why not try one of the lab drop-in sessions where there will be a tutor available to offer assistance (These will be on Mondays and Thursdays – we'll announce the times in due course).
Your assignment submissions are made electronically using our Assignment Management System (AMS). It is your responsibility to ensure that you use this system correctly, but your tutor will help you whenever necessary. The feedback given by the system should enable you to tell whether you have done so, and an electronic receipt will be issued for each submission.

You must submit by the appropriate deadline. Late submissions are not accepted, and no extensions are given. If you fail to submit an assignment for unavoidable reasons (illness, etc.) then you should submit appropriate documentary evidence to your tutor, and the assignment will be made void for you.

When you submit a serious attempt at an assignment your tutor will award you a 'tick'. You must gain a minimum of EIGHT of the ten available ticks in order to qualify for credit for the CS1P module. In addition, a notional grade ('A', 'B', 'C', etc.) will be awarded, to give you an idea of the quality of your work - remember that 'A' - 'D' are pass grades, 'E' and 'F' are fail grades, and a 'G' grade means unworthy of a 'tick'. (These grades are 'notional' in the sense that we do not retain them on your record, and they do not contribute to your overall assessment for the module.) A printed copy of your assignment containing your tutor's written feedback will be returned to you at the tutorial session following the submission deadline.
What you submit for each assignment should be primarily your own work. This does not preclude getting help from your tutor, or discussing the exercise with friends and classmates. However, there is no value in merely taking a copy of a friend's work and submitting it as if it were your own; this is simply cheating, and is a form of dishonesty that will not enhance your university career.

The last scheduled lab session in each semester takes the form of a practical examination. You will be given the examination question (a programming problem) some two weeks in advance, so that you have time to work on a solution. But when you attend the exam itself, you will not be allowed to bring with you any written material, nor will you have access to your normal filestore, nor to Web resources; you will have two hours to develop a working program based on the preparatory work that you have done.

Each lab exam contributes 10% to the overall assessment for CS1P. A minimal aggregate score of 6 out of 40 is one of the requirements for the award of credit for the CS1P module.
Setting up your assignments

When you are ready to start work on an assignment, you obtain any necessary files, such as skeleton programs, sample data files. etc., using AMS. This simply involves selecting the appropriate module and assignment and then clicking the Set Up button. which creates an appropriate folder in your workspace and copies into it the relevant files.
Submitting your assignments

When you have finished work on an assignment, you should submit it using AMS. The deadline is 24 hours after the end of the associated lab session, or 72 hours if your lab is on a Friday.

When you are ready to submit, ensure CS1P and the appropriate assignment number are selected in the AMS window, and click the Submit button. Make sure, when you submit, that all of the files that form part of the submission are present in the assignment folder, and have the correct names. (Upper and lower case letters are NOT equivalent in this context.)

Clicking the Submit button will initiate appropriate compilation, and may run any resulting executable file on secret test data, before delivering all relevant material, in a suitable form, to your tutor.

It is important to remember that you can submit an assignment even if you know that the program is incomplete or does not work according to specification, or if you have not answered fully all questions. What you cannot do is submit an assignment after the deadline – it will not be accepted.

Laboratory resources

· GNAT
· This is the Ada compiler that you will use. It was developed by the Free Software Foundation as part of the GNU project. Commercial versions of the compiler are distributed by ACT (Ada Core Technologies).
· AdaGIDE
· This is a simple but effective program development environment for Ada (Ada Graphical Integrated Development Environment) developed by Martin Carlisle at the US Airforce Academy.
· JEWL

· This is an Ada package that provides facilities for displaying graphical user interface components and for drawing pictures. It was developed by John English of the University of Brighton (John English's Windowing Library).
· AMS

· This is the Department's own Assignment Management System, designed to ease the process of setting up and submitting assignments.
· AMS Mirror website

· AMS is only available from the Level 1 machines. The AMS Mirror is a website that enables you to download the necessary starter files for each Assignment so that you can start work at home if you wish. You will need to bring partially-completed or completed work into the lab on a disk or memory stick, or else e-mail it to yourself, so that you can continue working on it there. If you do bring work in like this, use AMS to setup the exercise first in your workspace, then overwrite the skeletons in your workspace with your updated versions. The Mirror is at

www.dcs.gla.ac.uk/courses/teaching/level1/CS1P/AMSmirror
· PFE

· This is an easy-to-use but powerful text editor (Programmer's File Editor) that enables you to create and edit text files that your programs may need.
Note that you can install GNAT, AdaGIDE and JEWL onto your own machine. These are available from the web, or from the BIRKS-CD that you can buy from the department – for around £5 (we make no profit on this).

If you intend to install this software, it can be quite tricky. Be sure to read the extensive instructions written by the Level 1 systems developer, Paul Philbrow – available at

www.dcs.gla.ac.uk/course/teaching/level1/burks6ada.html
If you run into difficulties with the installation, please e-mail Paul – pp@dcs.gla.ac.uk – for assistance.
Ada resources on the web
The following are a number of potentially helpful and interesting Ada-related links. Try them!
· AMS mirror website - www.dcs.gla.ac.uk/courses/teaching/level1/CS1P/AMSmirror

See previous page for an explanation of the AMS mirror website

· Ada World - http://www.adaworld.com/
· Ada Information Clearinghouse - http://www.adaic.com/
· Ada resources for educators and students - the SigAda home page http://www.acm.org/sigs/sigada/education/
· 'Ada power' - http://www.adapower.com/
· The AdaGIDE home page - http://www.usafa.af.mil/df/dfcs/bios/mcc_html/adagide.cfm
· The Gnat home page (GNU) - http://directory.fsf.org/GNU/gnat.html
· The Gnat home page (Ada Core Technologies) - http://www.gnat.com/
· The JEWL home page - http://www.it.bton.ac.uk/staff/je/jewl/
· The Free Software Foundation home page - http://www.fsf.org/
· Ada Glossary - a glossary of common Ada-related terminology

Aids to debugging your programs
Programs rarely work first time. You will spend a significant proportion of your time in the lab 'debugging' your programs, i.e., locating and correcting 'bugs', or errors. It is important to conduct this activity as effectively as possible. Here are some tips.

· Avoid 'blind experimentation' - trying this or that arbitrary change and seeing what happens as a result. Think about what is going wrong; understanding it is the key to fixing it.

· Maximise your AdaGide window - this let's you see more of the code at any one time, which has been shown to improve programming productivity.
· Take time away from the machine to look at and thoroughly understand your program. Avoid square eyes!
· Make a printed copy - you can see the complete picture, and you can scribble notes on it! This makes a huge difference.
· Include 'Put' statements at carefully chosen places, to help track changes to the values of key variables.

· Take advantage of the Ada Syntax Guide in the Help menu in AdaGide

· Read compile-time error messages (and warning messages) carefully, and work at understanding what they mean.

· See the Common Errors entry in the Help menu in AdaGide

· Understand the significance of run-time error messages; the following are among the most common:

· CONSTRAINT_ERROR - probably means an array index has gone out of bounds, or a variable of some subtype has violated its constraints.

· DATA_ERROR - something wrong with the input - a 'Get' statement was probably expecting an integer and found something else; maybe the input layout is incorrect.

· END_ERROR - the program has tried to read past the end of the input; maybe the input layout is wrong, or there are blank lines at the end of the input, etc.

· NAME_ERROR - the program tried to access a non-existent file.

· Learn to use the 'debugger' in AdaGide
· Look at GVD-intro under the Help menu in AdaGIde

Assignment 1

Based on lectures: 1-2

Submission: after the week 2 lab, 5-10 October
The deadline for this submission is set 24 hours after the end of your scheduled laboratory session in week 2 (week beginning 3 October), or 72 hours if your lab is on a Friday.

Aims and objectives
· Reading, understanding and writing straight-line programs in Ada

· Handling errors in programs

· Reading and using procedure specifications held in packages

· Ensuring you are familiar with the AdaGIDE environment

· First use of the on-line assignment submission system
Synopsis of material covered in lectures

· Sequential programs consisting of calls to procedures with and without parameters

· Basic structure of an Ada program

· Using the AdaGide programming environment

· Using packages and procedures
Assignment – Before the lab

Keeping up with the material introduced in lectures

With your lecture notes at hand, review PRS questions from lectures on the web (https://prs.dcs.gla.ac.uk), [notice the https] particularly any that you got wrong. This site is available from any computer. Read the lecturer's comments and try out any further questions set. If you still don't understand, post a request for clarification on the discussion forum.

This review process ensures that you understand the material introduced in lectures. Without a reasonable understanding of this material, you will find it hard to progress to the laboratory assignment.

Minimum preparation for the laboratory session

Your tutor will expect you to have completed the following exercise before coming to your laboratory session. You may progress on into the 'During the lab' section if you wish by coming up to the lab in advance of your own laboratory session. The lab is open from 8am-10pm on weekdays and from 9am-1pm on Saturdays.

[image: image7.bmp]
This week, the lab preparation exercise is quite short – you can expect it to be longer in future. Recall from lectures 1 and 2 the rocket program. In preparation for the lab this week, write on paper a sequence of commands (procedure calls) that you think will launch the rocket and cause it to fly in a loop-the-loop (i.e. flying upwards first, then curving to the left, then upside-down, then to the right, and then upwards again, as shown on the right). Remind yourself from your notes how the rocket flies. The procedures you should use are shown overleaf. Note that these procedures take parameters, as described in Lecture 2.

procedure Fly(time : Integer);

-- Rocket flies with its present settings for 'time' seconds.

procedure Engines_On;

-- Turns the rocket engines on.

procedure Engines_Off;

-- Turns the rocket engines off.

procedure Inc_Thrust_Level(amount : Integer);

-- Increases the thrust in the engines by 'amount' units.

procedure Dec_Thrust_Level(amount : Integer);

-- Decreases the thrust in the engines by 'amount' units.

procedure Turn_Left(angle : Integer);

-- Turns the rocket left by 'angle' degrees.

procedure Turn_Right(angle : Integer);

-- Turns the rocket right by 'angle' degrees.

Assignment – During the lab

Task 1 – Setting up program files using AMS

Start up AMS. You will first download files required in order to complete the assignment. To do this, ensure that module CS-1P and exercise Submission_1 are selected in AMS and then press Setup. This will install the necessary files into the folder Submission_1 in your file space which is found inside the Workspace folder on the desktop. Within folder Submission_1 is the folder rocket, which you should open.

Task 2 – Editing, building and running a program in Adagide

Run the program aim_landing_pad.adb. To do this, open up the program file, by right-clicking on the program icon and then choosing Send To… and AdaGIDE from the menu. The programming environment AdaGide will start up, displaying the program code contained in the file. Then press the build button at the top of the window in order to compile and build the program and then the run button. (Remember all this being done in the lectures?)

You should find that the rocket lands too far to the right, and misses the landing pad. We need to make a small change to the program so that the rocket lands safely in the middle of the landing pad. The list of procedure calls looks like this:

-- ***
-- ** NB - Change the code in this section only. **

 Engines_On;

 Inc_Thrust_Level;

 Fly(2);

 Turn_Left(45);

 Fly(2);

 Turn_Right(45);

 Fly(2);

 Engines_Off;

 Fly(20);

 -- ** NB - end of section you should change. **

 -- **

Change the program so that after the rocket has turned 45 degrees to the right, it continues flying for 3 seconds, rather than 2 seconds, before turning the engines off.

Now save, build and run your edited program. Does it land on the landing pad now? It will still explode in flames, because it is moving too fast down and to the left. If you have time at the end of the study pack, you could try adding code to brake the rocket as it falls - it must be moving at less than 20 in any direction to land safely.

Task 3 – Dealing with errors in your code

Ask somebody sitting next to you to remove a single character from the code directing the rocket, without letting you know which character it was. They could remove a letter in the name of a procedure, a bracket, or a semicolon for example. Now save and build the program again. You should get an error message. Work out from the error message which character has been removed. When you have fixed the error, ask your colleague to do this a couple more times.
Task 4 – Typing in and running your own program

Now open the file loop_the_loop.adb, and at the indicated position in the program type in the code that you prepared before the lab session. Build the program, correcting any syntax errors as necessary. Run the program.

Task 5 – Correcting the program, if necessary

Did it do what you expected? If it did, amazing, well done! More likely it didn't work quite right! This often happens when writing a program, it's part of the process. Look at the behaviour of the rocket on the screen and at your code, and work out what changes you need to make so that it does fly (more or less!) in a loop. It might take you a few goes before you get it right – keep at it!

Task 6 – New exercise – navigating through a room

This exercise is similar to the previous one, but set in a new context. The programming principles are the same in the two exercises. It is important that you learn to transfer the fundamental principles of program design, procedures, parameters etc. between contexts – in this case from rocket flying to navigating through a room. Practice makes perfect.

In detail, you are to write a program that uses a package of pre-written procedures to direct a person through a room from the north-west corner to the east wall without hitting any obstacle or wall. The size of the room and the layout of obstacles are established interactively.

The room consists of a grid of cells, size up to 12 across by up to 10 high. Each cell is either empty, or contains an obstacle, or contains the person who is trying to navigate through the room. The cells are referred to using x,y positions, where x runs from 1 upwards, going west to east, and y runs upwards going north to south. An example layout for the room is given below, where the black cells are the obstacles and cell (1,1) is the starting position for the person, who faces East initially (to the right on the diagram below).

[image: image8.png]is ok, but this is not

 cell (1,1)

[image: image9.png]is ok, but this is not

[image: image10.png]is ok, but this is not

[image: image11.png]g
H
H

v

Computing Science Dept entrance,
17, Lilybank Gardens

Building site
Queen Margaret Union

Boyd Orr Building

Task 7 - Laying out the obstacles in the room

In the first part of the exercise, you will use the interactive aspect of the program to produce the room layout shown in the diagram above. This part of the program has been pre-written; you just have to learn how to use it.

7.1.
From within the Submission1 folder, open the file Navigate.adb. Alter the banner comment so that it is clear who wrote this code, and add the date too. Notice that the program contains only a call to the Finished procedure – look in Room_Navigator.ads to see what this does.

7.2.
Build and then Execute Navigate.adb. The program will ask you to enter a number of rows followed by a number of columns, and will then draw a room of the appropriate size with no obstacles. You can set or remove an obstacle by clicking on a cell.

7.3.
Set up the room in the diagram above. When you are satisfied with the room layout, click the Fix the room button. You will then see a person appear in the north west corner of the room, and the Start walking button is enabled. What happens when you click on this button?

7.4.
The reason that the person fails to navigate the room to the east wall is that the program Navigate.adb contains no procedure calls to move the person. It will be your job to provide these procedure calls.

Task 8 - Writing code to navigate through the room
8.1
Now examine Room_Navigator.ads again, this time looking carefully at the room navigation procedure specifications to see how the person may be controlled.

8.2
On paper, and based on the particular room layout displayed above, design a sequence of procedure calls that will navigate the person from the starting position in the north-west corner around all the obstacles to the east wall. Don't try to navigate through the east wall, just take the person to the wall and stop there. Aim for your sequence to be as concise as possible.

8.3
Type your navigation procedure calls into the program (before the call of the Finished procedure). Then build and run the program again. Correct any mis-directions you may have made. When you are happy with all aspects of the program, run it one final time.

Task 9 - Reflecting on your work in this Study Pack

9.1
Reflecting on your work is a crucial step in the learning process. Take time to consider the following questions

· Why does a procedure take parameters?

· Did you make any mistakes of any kind while developing the code for any of the questions in the study pack? If so, what were some of the mistakes, and can you identify what caused them?

· Look at your code for navigating the room. Do you follow this kind of program yourself when you cross a room? If not, explain in general terms what kind of program you do follow. What do you have as a human that is not embodied in the set of procedures provided?

· Do you think the code you have written is useful? Could it be used elsewhere?

· Explain why this was or wasn't a useful exercise for you.

9.2
Open the file reflection.txt, downloaded with Submission1. Type in your answers to these questions, and save the file.

Submitting your assignment

When you have finished work on your assignment, submit it using AMS. The deadline is 24 hours after the end of your lab session, or 72 hours if your lab is on a Friday.

Assignment 2

Based on lectures: 3-6
Submission: after the week 4 lab, 19-24 Oct

The deadline for this submission is set 24 hours after the end of your scheduled laboratory session in week 4 (week beginning 17 October), or 72 hours if your lab is on a Friday.

Aims and objectives
· Awareness of sequence, repetition and selection as fundamental activities in computing and their basic format

· Familiarisation with the Ada constructs that support these activities

· Introduction to problem solving techniques

· First practice at solving some simple programming problems

Synopsis of material covered in lectures

· Identification of sequential, repetitive and selective actions in everyday life
· Formalisation of these actions into the structure used in programming – identification of the condition and body for repetition, condition and branch(es) for a selection
· Problem solving – algorithmic decomposition
· While loops, if then else, if then statements
· Boolean valued functions, used as the test in while and if statements
· Development of these ideas in the context of the room navigator program
Assignment – Before the lab

Keeping up with the material introduced in lectures

Remember that the key to success in this course is to work a little (or a lot if needed) every week in order to keep up with each new concept as it is introduced. It is very hard work to catch up if you fall far behind.

To do this, review your lecture material frequently, in conjunction with the review of the PRS lecture questions available on https://prs.dcs.gla.ac.uk which can be accessed from home or university. Use your Computing Science login and password to access the site. Make use of hints and tips posted there for further study on aspects of the course that you are not clear about.
If you still have queries or uncertainties about the material, post a message to the site.

Context of the assignment

In this assignment, we will be working with the Room Navigation scenario introduced in Study Pack 1 and in lectures. You will solve a series of four problems that involve writing a program to direct the person to the East wall of the room. Note however, that the person's initial position in the room and direction of travel are specified when the room is laid out, and so your programs should work no matter where the person starts from, or which direction he/she faces. The sequence of problems differs according to the complexity of the permitted layout of obstacles in the room, as follows:

Problem 1: The room contains no obstacles. (as worked on partially in lectures)

Problem 2: Only obstacles that occupy a single square and that have empty squares in all eight positions around them are permitted. Referring to the diagram below, the layout on the right has an obstacle consisting of more than one square and an obstacle adjacent to the wall and so is not permitted in this problem. (we also worked on this one in lectures)

[image: image2]

Problem 3: Obstacles that consist of a number of individual squares shaped into a rectangle are permitted. As in problem 2, these rectangular obstacles must have empty squares all around them. In the right hand diagram below, two rectangles touch each other at the corner, and the third rectangle is touching the wall, and so this configuration is not permitted in this problem.

[image: image3]

Problem 4: [This is more challenging.] Obstacles are rectangular as in Problem 3. This time, additionally, they may be placed next to one another and the wall. However, the arrangement should not contain any space that is closed on the North, South and East sides, but open on the West side. The right hand diagram contains three spaces that are closed in this way, and so is disallowed in this problem.

[image: image4]
The procedures and functions available to you in the Room_Navigator package are:

-- Procedures to move the person about and change direction

procedure Forward(Steps : Integer);

-- The person is moved Steps number of steps forward

-- in the direction he is currently facing

procedure Clockwise_90;

-- Turns the person 90 degrees in a clockwise direction

procedure Anticlockwise_90;

-- Turns the person 90 degrees in an anticlockwise direction

-- Functions to test what is around the person, and direction

function Reached_East_Wall return Boolean;

-- Returns True if the person is at the East wall

function Obstacle_Ahead return Boolean;

-- Returns true if an obstacle is directly ahead of the

-- person, in the direction he is facing

function Facing_North return Boolean;

function Facing_East return Boolean;

function Facing_South return Boolean;

function Facing_West return Boolean;

-- Returns True if person facing in the specified direction

-- Admin procedures

procedure Finished(Num : Integer);

-- Called when navigation is complete, outputs a success

-- or failure message, according to whether the person is

-- at the East wall

procedure Set_Delay(Delay_Interval : Integer);

-- Sets the delay between moves to be Delay_Interval which

-- is measured in tenths of a second

Minimum preparation for the laboratory session

You should walk into your lab session with a first draft of a program on paper for as many of the four problems as you can manage. In order to prepare each program, follow these steps for each problem, 1 to 4, in turn:

· Think how you would solve the problem, standing in a room as specified, with only the commands and tests given. Think of your actions as being essentially sequential, repetitive or conditional, as discussed in lectures, and made up of uses of the commands and tests given. Try doing this for many room layouts – draw them on paper, imagine your path, and precisely what your actions are as you take that path.

· Remember, crucially, that you, as the person walking, don't know the layout in advance – you can only discover the room layout by using the functions provided. (Remember the blind-folded person in the lecture…)

· Once you have tried this for a number of layouts, look for a single general strategy or algorithm that would work for all of your layouts.

· Code this strategy/algorithm using the Ada while and if constructs as well as the Room_Navigator procedures and functions given above.
Assignment – During the lab

Launch AMS. Setup the Exercise Submission2. Open the file Auto_Navigate_1.adb. You should find the program printed below.

with Room_Navigator; use Room_Navigator;

-- Program to automatically guide a person across a room containing

-- no obstacles

-- Author: ??? Date: ???

procedure Auto_Navigate_1 is
 Number_Of_Steps : Integer := 0;

begin
 -- Replace this comment line with your own code

 Finished;

end Auto_Navigate_1;
Add your own code for Problem 1 at the position specified, and then compile, build and execute it to see if it operates as you expected.

If not, you need to debug your program:

1. Run it again, noting very carefully the path taken by the person

2. Identify the difference between what you expected and what happened
3. Find the part of your code that is causing the different/unexpected behaviour. Do this by hand executing your code – using a room layout drawn on paper. Be very precise about this. If you still cannot see the problem, call your tutor over, ask a friend/colleague, or if neither is available, post a message on http://prs.dcs.gla.ac.uk, explaining your problem as clearly as you can ("My program doesn't work, please help" is clearly not enough information for anyone to help).

4. Once you have identified the erroneous code, work out how to adjust it to give you the desired behaviour – then recompile, build and execute to see if you've caught the bug!
When you are happy with your solution to Problem 1 (when you are confident that it works no matter where the person starts), save the file one last time, and then use Save As… to save a new version of the file, called Auto_Navigate_2.adb.

Change the name of the procedure in the code to Auto_Navigate_2, as well as updating the comments appropriately, and then replace your code for Problem 1 with the code that you have prepared for Problem 2. Use the same process as you did for Problem 1 to ensure you have a correct solution. Be sure to try out many starting positions for the person and many room layouts to ensure your code works correctly.

Now follow the same process for Problems 3 and 4, naming these solutions Auto_Navigate_3 and Auto_Navigate_4.

Submitting your assignment

When you have finished work on your assignment, you should submit it for feedback using AMS. The deadline is 24 hours after the end of your lab session, or 72 hours if your lab is on a Friday.

As far as this submission is concerned, all you have to do is to make sure CS1P and Submission2 are selected in the AMS window, and click the submit button. Make sure, when you submit, that the following files are in the form that you wish your tutor to receive, and that they have exactly these names:

· Auto_Navigate_1.adb
· Auto_Navigate_2.adb
· Auto_Navigate_3.adb
· Auto_Navigate_4.adb
Assignment 3
Based on lectures: 7-10

Submission: after the week 6 lab, 2-7 November
The deadline for this submission is set 24 hours after the end of your scheduled laboratory session in week 6 (week beginning 30 October), or 72 hours if your lab is on a Friday.
Aims and objectives
· By the end of this study pack you should have had significant experience of manipulating small programs that draw static or moving pictures. You will be developing a growing collection of template programs that will help you in future problem solving. You will have developed programs almost from scratch.

Synopsis of material covered in lectures

· Drawing simple graphics using JEWL.Simple_Windows
· Simulating moving objects
· Key elements in problem solving
· Understanding the problem fully
· Designing/planning/creating a solution to the problem, introducing stepwise refinement, reusing known templates and lateral thinking
· Writing a plan
· Implementing the plan
Assignment

There are three separate programming problems to work on in this assignment:

A. Sun-Earth-Moon

B. Bouncing Balls

C. Curve Drawing

Each question is split into three parts:

1. work to complete before the lab – this involves preparing a program on paper at least;

2. work to complete in the lab;

3. additional optional exercises related to the problem that will strengthen your programming skills.

Start work on these problems right away. Be ready to ask questions at your tutorial in Week 5 about any aspects of these problems with which you are having difficulties.

AMS Setup: Use AMS to get all the relevant program fragments and templates discussed in this Assignment – you will find them under Submission3.
Problem A – Sun-Earth-Moon

A1 – Before the lab

The initial problem specification for problem A is: "Write a program that displays a simulation of the Earth's motion around the Sun, and simultaneously, of the Moon's motion around the Earth."
Task A1.1 - Developing an accurate problem specification

Before reading on, write down any questions you have about this problem specification. Do not continue until you have looked hard at the specification above, considered how it could be solved, thereby allowing your mind to ask questions.

A more detailed specification is given below.

Write a program to display a two-dimensional simulation of the Earth's motion around the Sun and simultaneously of the Moon's motion around the Earth. Assume that the Sun, Moon and Earth are circular and that the Moon and the Earth follow circular orbits, at constant speed, around the Earth and the Sun respectively. For the simulation, the radius of the Earth's orbit around the Sun, of the Moon's orbit around the Earth, and the Sun, Earth and Moon's radii should be in the ratio 120 : 40 : 35 : 18 : 9. The period of the Earth’s orbit should be 13 times that of the Moon’s orbit (approximating reality). Each body should be filled in a colour of your choice, with a suitable background colour.

Check this description to see if your questions have been answered.

Task A1.2 - Solving a simpler problem

As we saw with the wheel program in Lecture 8, a problem can often be tackled more effectively if a simpler version of the problem has already been solved, and if the overall solution can be built up incrementally from solutions to such simpler problems. The aim of this task is to break down the problem into a series of stages. The first stage is the simplest possible version of the program you can think of – for example, simply drawing the Sun alone, nothing else. Each subsequent stage adds an addition part of the overall problem to your developing solution.

Write down concise descriptions of each stage in a series that culminates in the entire Sun, Earth, Moon problem.

Task A1.3 - Re-acquainting yourself with the revolving spoke program

You will need your Lecture Guide 8 (LG8) at this point. It contains the revolving spoke program presented in lectures (and also available in the AMS set-up for this study pack – Submission3). Using your lecture notes, ensure that you understand exactly how this program works, as you may wish to reuse parts of it later in the exercise.

Task A1.4 - Writing a simple program
Assuming the basic program framework from the Spoke.adb program in LG8 (e.g. the use, with statements and the interface set-up code), and using Jewl’s Draw_Circle procedure (see LG8), write on paper a program to draw the Sun. What colour and size will you make it? Where will you put it on the canvas? (Consider the ratio of sizes included in the problem statement given earlier.)

Note that, when drawing a shape, the outline is coloured according to the most recent call of the Set_Pen procedure (see LG8 again), whereas the interior is coloured according to the most recent call of an analogous Set_Fill procedure.

Task A1.5 – Writing Sun-Earth, and Sun-Earth-Moon programs

THIS TASK IS THE MOST SIGNIFICANT PART OF THIS PROBLEM. DO NOT RUSH IT, AND WORK TO COMPLETE IT ON YOUR OWN.
5.1 Using all that you know and have seen so far, consider how you can make a representation of the Earth orbit around the Sun that you have drawn in Task A1.4. From a problem solving point of view, this is the key part of the problem. Work hard yourself to get to a solution – if you’re stuck, don’t just let a friend give you the answer – get them to give you the smallest possible hints towards it.

5.2 Write a plan of the program – your algorithm – a set of steps, in language of the same complexity as the comments in the revolving spoke program in LG8. Be sure to show any repetition or selection clearly using indentation as in lectures.

5.3 Now convert your plan into a program.

A2 – In the lab
A2.1 Getting the Earth to go around the Sun

Using AdaGide, open the file Sun_Earth_Moon.adb that was downloaded with Submission3. Type in your code to get the earth going around the sun, and build, execute and edit to get it working, as necessary.

In the space indicated at the beginning of the program, include as a comment your original plan for this program.

A2.2 Adding in the moon
Finally, consider how you can make a Moon travel around the Earth, while the Earth is traveling around the Sun. The technique for moving the Moon is obviously quite similar to that of moving the Earth – since it is essentially a circle rotating around a point. However, something crucial is different.

Write a plan for a program that has the Moon and the Earth moving appropriately. You can expect this to be roughly twice as complicated as the first plan you wrote, since you are now managing two moving bodies.

Convert the plan into a program. Consider how you will make the Moon orbit the Earth 13 times more quickly than the Earth orbits the Sun (as specified earlier). Extend your Sun_Earth_Moon.adb to accommodate this new functionality, and extend the comment at the beginning to reflect your extended plan.
A3 – Extending the problem

In years past, students have extended this exercise with additional planets – some even putting in the full set of 9 (or is it 10 now?) and getting them to orbit with the correct phases. Some included a number of moons around Jupiter and Saturn. Some put stars in the background. Let your creativity go!

Problem B – Bouncing Balls

B1 – Before the lab

Task B1.1 Understanding

When you set up Submission3 you will obtain a program called Ball.adb. This program, the main body of which is given below, causes a small ball to move from side to side on the screen. It does this by repeatedly drawing a circle, a little to the right or left each time – in much the same way as the wheel was moved across the screen in Lecture 8. Variables set by the JEWL canvas set up code (not shown here) are C, for the canvas, and C_Width, for the width of the canvas. The crucial variables for the ball's movement are as follows:

x1 : Integer := 0;

-- x coordinate of the ball

y1 : Integer := 200;

-- y coordinate of the ball

x1_Inc : Integer := 2;

-- add this to x1 on each cycle

and the code that uses these variables is overleaf:

 -- Save initial blank canvas – referred to by variable C

 Set_Pen(C, Red, 2);

 Save (C);

 -- Continue drawing until the mouse is pressed

 while not Command_Ready loop

 -- Draw the ball

 Draw_Circle(C, (x1,y1), 5);

-- 5 is the radius
 delay 0.04;

 -- Update coordinates of the points

 x1 := x1 + x1_Inc;

 -- Is it off the left edge of screen?

 if x1 <= 0 then
 x1 := -x1;

 x1_Inc := -x1_Inc;

 end if;

 -- or is it off the right edge?

 if x1 > C_Width then --C_Width is the width of the canvas
 x1 := (-x1) + 2*C_Width;

 x1_Inc := -x1_Inc;

 end if;

 -- 'Undraw' the ball

 Restore(C);

 end loop;

Look over this code, and try to understand why it works. Try hand-executing it assuming for simplicity that the canvas is only 10 units wide. (Note: The JEWL package does not object if part of a circle is drawn off the canvas, as happens when the ball is near the edge of the canvas)

Having done this, make sure you can answer the following questions for yourself:

· Why does the ball go left or right?

· What ensures that the ball switches directions at each end?

· What could you adjust to make the ball appear to move faster?

Task B1.2 Making the ball move in the Y direction as well

Now extend the code so that the ball moves in the y direction as well as the x direction, and when it reaches the edge of the canvas, bounces away as a real ball would. [Hint – you need to do something with the y coordinate. And in case you need it, C_Height is the maximum height (downward, remember) of the canvas.] Your completed program will form part of the submission for this Study Pack.

B2 – In the lab
Extend the ball program with your additional code to make the ball bounce in both x and y directions. Build and run it to ensure that your additions behave as you expected, debugging your code as necessary.

Adjust the program so that the ball moves faster in one direction than the other – then build and run it to ensure that your changes do what you expect.

B3 – Extending the problem
The variables in the ball program are tracking the position of a point as it moves around the screen. Replicate the code that declares and manages the variables x1, y1, x1_Inc and y1_Inc so that you have a second set of variables x2, y2 etc., and code that manages them in the same way. You now have two points moving around the screen. Instead of drawing balls at the position of the points, draw a line between them. It’s a pretty result!

Problem C – Curve Drawing

C1 – Before the lab
Look at the following image, which was produced by an Ada program. Examine how a series of straight lines have been used to create a curve.

[image: image5.png]

Develop an algorithm to draw this curve with straight lines – remember the Draw_Line procedure available in JEWL. Be sure to use repetition in your algorithm.

Translate your algorithm into Ada code. Do you need variables? What are appropriate names and types for the variables, if any?
C2 – In the lab
In your download of Submission3, you will find a template program Curve.adb. Add your code into this file, build and execute it to see if you had the right algorithm. If you aren't drawing the desired shape:

· First check that your code is a correct translation of your algorithm.

· If it is, then work through your algorithm by hand, until you see why you are not getting what you expected.
C3 – Extending the problem
How beautiful a pattern can you make with curves of this style? Try adding curves to the other three adjacent edges of the canvas. How about halving the size of the curve in both directions, and then arranging duplicates in various configurations? If you made the Y rise faster than the X, with 2 curves back to back, you might get something like the Eiffel Tower!

Prize
A £20 book token is on offer to the creator of the most interesting/artistic animation that makes use of the ideas in these three questions. Deadline is Monday 7th, 9am – e-mail Quintin your offering – quintin@dcs.gla.ac.uk.

Submitting your assignment

When you have finished work on the three programs of the assignment, you should submit them for feedback using AMS.

As far as this submission is concerned, all you have to do is to make sure CS1P and Submission3 are selected in the AMS window, and click the submit button. Make sure, when you submit, that the following files are in the form that you wish your tutor to receive them:

· Sun_Earth_Moon.adb, Ball.adb, Curve.adb – the final versions of your programs. They MUST have exactly these names.

Assignment 4

Based on lectures: 11-14

 Submission: after the week 8 lab, 16-21 November
The deadline for this submission is set 24 hours after the end of your scheduled laboratory session in week 8 (week beginning 14 November), or 72 hours if your lab is on a Friday.
Aims and objectives
· By the end of this study pack you should be clear about the declaration and use of arrays, and have built some experience of using them to solve problems

Synopsis of material covered in lectures

· Concept of homogeneous collections of data items
· Details of declaration, element dereference and assignment using Ada arrays
· Simple problem solving using arrays
· Development of typical code templates for manipulating data in arrays
· For loops
Assignment – Simulating a lottery draw

A draw in the UK National Lottery (slightly simplified) consists of six numbered balls representing distinct integers in the range 1 .. 49. The purpose of this exercise is to develop a series of programs that will simulate a lottery draw using a (given) random number generating function, and then display the draw, in a specified format, on a canvas.

To be more specific, the numbers are to appear as illustrated in the screenshot on page 3, each number appearing in a coloured circle. The colour coding is as follows:

Range

Colour

 1 - 9

 Red

10-19

 Blue

20-29

 Yellow

30-39

 Green

40-49

 Cyan

The Random_Numbers package contains a function specified as follows:

function Random_Int(N : Integer) return Integer;

-- returns a (pseudo-)random integer in the range 1..N
Hence an assignment of the form

X := Random_Int(49);

assigns to the Integer variable X an unpredictable, and essentially random value between 1 and 49 inclusive. However, values returned by successive calls to the function are essentially independent of previous values, so a sequence of such values might well contain repeats.

In this assignment, there are three programs to write. A serious attempt at the first two is required for a tick. The third is an auxiliary exercise.

Task 1 – Draw and display six balls with possible repeats
Before the lab

The first program you are to write should draw six balls and display them in the format shown on Page 3. In this version of the program you need not ensure that the numbers picked are all distinct.

Use this simplification of the overall problem to ensure that you can place six balls correctly on the screen, both in terms of position and colour.

Problem clarification: Are there any further clarifications of the problem required? If so, make appropriate assumptions about the layout etc., from the picture shown on Page 3.

Tools/procedures available to you: Note: the procedures from the JEWL package that may be useful are the Set_Fill, and Draw_Circle procedures used in previous exercises, and the Draw_Text procedure. To display
 the value of an integer variable N at a particular point
 P on a canvas C, the appropriate call of the Draw_Text procedure is

Draw_Text(C, P, Integer’Image(N));

Algorithm design: To get a feel for the algorithm, you might want to consider how you would do the necessary drawing – imagine yourself with five appropriately coloured pens, some paper, and a clever machine that gave you a random number within the range each time you pressed the button on the front! Use the kind of questions/techniques we've covered in lectures (e.g. sequence/repetition/selection? etc.) to help you get the right format for your algorithm.

Write a plan: Write a plan that embodies your algorithm. This may consist of a top-level plan and refinements. Remember to show clearly sequences, repetition and selection. Your plan should be understandable (is it clear to a human reader, and are you confident that the steps can be translated into Ada code?). Check it carefully to ensure that it is correct.

Translate your plan into Ada code: be sure to include your plan as comments in your program, to help others understand your code.
In the lab

Relevant files for the exercise are to be found in the AMS folder Submission4. You are given three suitably-named copies of a skeleton program for each Task that merely sets up the canvas (a copy of the program is included later in this Study Pack). When you set up Submission4 using AMS, you will also obtain the Random_Numbers package.

Type your code into the skeleton program Lottery_Draw_Repeats.adb in the usual way, and then build and execute it to ensure it works as you expected.

Task 2 – Draw and display six balls without repeats
Before the lab

This problem is significantly harder than Task 1, although obviously related. A sensible solution will require use of at least one array.
Algorithm design: Again, consider how you would complete this task manually, in the same way as you did the first. Particularly, how are you going to ensure that your six balls/numbers are unique?

Write a plan: You will almost certainly need a top-level plan and refinements this time, as the problem is a little more complex. Look at https://prs.dcs.gla.ac.uk, Lecture 10, to remind you about laying out a plan, if you can't remember. Your plan should, in simple terms, make it clear to a reader how you aim to solve the problem.

Translate into code. As earlier.
In the lab

Type your code into the skeleton program Lottery_Draw_Unique.adb, and test as usual.

Task 3 – Display the six unique balls in order
This is an auxiliary exercise. Can you work out a way to ensure that the balls are displayed on the screen in ascending numerical order, rather than in the order in which they were drawn?

Again, go through the algorithm design and planning stages, before translating into code and typing the result into Lottery_Draw_Ordered.adb, and then testing as usual.

Submitting your assignment

When you have finished work on your assignment, you should submit it using AMS. Make sure CS1P and Submission4 are selected in the AMS window, and click the submit button. Make sure, when you submit, that the following files are in the form that you wish your tutor to receive them:
· Lottery_Draw_Repeats.adb
· Lottery_Draw_Unique.adb
· Lottery_Draw_Ordered.adb
Screen shot (Of course, colours appear here as shades of grey.)
[image: image6.png]M Lotiery Draw

Lottery Draw. Click mouse to ext

Skeleton program used for all three tasks

-- Skeleton of Lottery Draw program

with Jewl.Windows, Jewl.Io; use Jewl.Io;

with Random_Numbers; use Random_Numbers;

procedure Lottery_Draw is

 ---------- Essential set up code for the user interface ----------

 F_Width : constant Integer := 800; -- width of the frame

 F_Height : constant Integer := 600; -- height of the frame

 F1 : Frame_Type := Frame (F_Width, F_Height, "Lottery Draw",'X');

 L1 : Label_Type := Label (F1, (0, 10), 0, 45,

 "Lottery Draw. Click mouse to exit", Centre);

 C_Pos : constant Point_Type := (10, 40); -- position of canvas

 C_Width : constant Integer := 650; -- width of canvas

 C_Height : constant Integer := 500; -- height of canvas

 C : Canvas_Type := Canvas (F1, C_Pos, C_Width, C_Height, '*');

 ------ End of essential set up code for the user interface -------

-- Insert declarations here

begin

-- Insert code here, BEFORE the while loop

 -- Wait for a mouse click to exit the program

 while not Command_Ready loop
 null;

 end loop;

end Lottery_Draw;

Assignment 5

Based on lectures: 15-18
Submission: after the week 10 lab, 30 November - 5 December

The deadline for this submission is set 24 hours after the end of your scheduled laboratory session in week 10 (week beginning 28 November), or 72 hours if your lab is on a Friday.

Aims and objectives
· By the end of this study pack you have experience of using character-based types in conjunction with textual input and output in the solution to problems.

· You should have consolidated your understanding of arrays and be developing your skill in using them to solve problems.

Synopsis of material covered in lectures

· Character type.
· Strings of characters, fixed length
· Standard input and output, and redirecting input
· Typical structure of text processing programs
· Categorisation of problems to determine when arrays are necessary
· Further exploration of looping styles
Whenever you are asked to write a code fragment or a program, think first. Remember the steps of problem solving – particularly the steps to clarify the problem in your mind and then design your algorithm and then check that it works. Be sure to carry out these steps before you start to write code. The result of these steps should be a plan summarising your design for the code. REMEMBER – YOU MUST BE ABLE TO WRITE A PLAN & PROGRAM BY HAND, CORRECT FIRST TIME, IN THE MAJOR WRITTEN EXAMS, SO PRACTISE NOW.

Assignment – Processing book stocks and validating ISBNs

The aim of this programming exercise is to design and implement a program to calculate from a bookshop's stock list the total value of the stock. Books are referred to using International Standard Book Numbers (ISBNs). The program should additionally check that the ISBNs are valid, writing out a list of any invalid ISBNs entered.

Every book published in the world has assigned to it a unique ten-character code, its ISBN. In reality, this is a nine-digit code (that includes publisher and language information as well as a serial number) followed by a single check character.

The check character is derived mathematically from the individual digits in the nine-digit code. If the ISBN is transcribed incorrectly, there is a high probability that the nine-digit code no longer produces this tenth check character. This feature is used in book systems to check that the ISBNs they process have been entered correctly.

The check character is calculated as follows. Suppose that the nine-digit code is x1 x2 x3 . . . x9. The sum

S = 10x1 + 9x2 + 8x3 + . . . + 2x9

is calculated. The check value is then the smallest integer which, when added to S, makes a value that is exactly divisible by 11.

For example, if the 9-digit code is 185424174 then

S = 10.1 + 9.8 + 8.5 + . . . + 2.4 = 215

and the required check value is 5 (since 220 is exactly divisible by 11). Hence the ISBN in this case would be 1854241745. The check character is derived from the check value in the obvious way, except that in the special case where the check value is 10, X (upper-case letter) is used as the check character.

To check the validity of a given ISBN, we simply need to ensure that the sum

S = 10x1 + 9x2 + 8x3 + . . . + 2x9 + x10

is exactly divisible by 11 (where x10 is converted to the integer value 10 if its value in the ISBN string is 'X').

Tackling the assignment

In this assignment, there are four tasks involved in writing the complete program. A serious attempt at the first three is required for a tick.

For each task, we provide a specification of the problem to be solved, and some hints that may assist you in solving it. Follow the steps in Before the lab and In the lab, below, for each of the tasks.

You may of course want to come to the lab before your scheduled lab session to try out your code for the earlier tasks before continuing with the design of later tasks. This is fine – just make sure you don't come to your lab session with the design of only the first task – you'll never get all three completed in time.
Before the lab

Algorithm design: Making use of any hints provided, consider how you can solve the problem. Bear in mind the tools you now have at your disposal – the textual input/output commands, strings, arrays. As previously, imagine you were trying to perform the necessary processing, only try to imagine it as though you only had sequences, repetition, selection, variables, integers, strings, arrays and the textual I/O commands at your disposal.

Plan writing: Express your algorithm as a top-level plan with refinements. For the top-level plan and each refinement, consider whether the operation you are performing is basically a sequence of steps, a repetition, or a selection. This helps to shape your plan.

Before going further, check your plan carefully to make sure that it is logically sound. If it doesn't make sense at any point, go back to the design stage.
Translate your plan into Ada code: Get the best solution you can to the problem written in Ada code away from the machine. Remember, you have to be able to do this in the major exams, so this is good practice.
In the lab

Three skeleton files for the assignment are to be found in the AMS folder Submission5. These files are named Stocktake_X.adb, where X is the number of one of the Tasks. One example skeleton is given later. Type your code for each Task into the appropriate skeleton program in the usual way, and then build and execute it to ensure it works as you expected.

Task 1 – Calculate the value of the book stock

This first version of the program will process a text file containing information about the books held in stock. Each line in the file holds the ISBN for a book, the value of one copy of the book in pence, and the number of copies of it held in stock.

Example input and output for this version of the program:

Input:

0201310066 1099 3
026207118X 2250 5

Output:

The value of the stock currently is 14547.
Tools available to you: Remember that you have the textual I/O procedures as described in lectures – both the Put and Get procedures operating with Strings and Integers.

Remember also that to force your program to expect its standard input from a file rather than from the keyboard, select Run Options from the Run menu in AdaGide, type the name of the file in the Input file box, and click on the Redirect input check-box. A sample text file Stock.txt will be provided in the Submission5 download, with the two ISBNs above. You should create some more of your own, to ensure that your programs are thoroughly tested.

This version of the program will have a main loop of the form

while not End_Of_File loop

end loop;
to process the input file.

Task 2 – Check and report on the number of invalid ISBNs

Develop a second program with the same functionality as Task 1, but which also includes a check for each ISBN's validity. Only books with a valid ISBN should be included in the stock valuation. After you have written out the value, you should also write out the total number of invalid ISBNs in the data file.

Using the same example input as before (where the second ISBN is invalid), the output is:

The value of the stock currently is 3297.

Number of invalid ISBNs : 1
Hints

1. Read carefully the description on page 1 and 2 explaining how to check for a valid ISBN.

2. You should use a String variable to hold the ISBN; the input must be read as a string or a sequence of characters rather than as an integer or sequence of integers, because of course the ISBN may contain the character 'X'.

3. In Submission5 you will receive the skeleton program Stocktake_2.adb shown overleaf. This skeleton contains a function, Char_To_Int, which you should find useful. Look carefully at the specification of this function, and consider how it is relevant to your task. Be absolutely clear about the distinction between a character and an integer value.

For example

C := '6';

N := Char_To_Int(C);
assigns the integer value 6 to the variable N, (where it is assumed that C is of type Character and N of type Integer.)

Task 3 – Additionally, write out the invalid ISBNs

Develop a final program with the same functionality as Task 2, but which in addition writes out all ISBNs failing the validity check. You may assume that there will never be more than 100 incorrect ISBNs in a stock file, and that no ISBN is repeated in the input file.

Using the same example input as before, the output is now:

The value of the stock currently is 3297.

Number of invalid ISBNs : 1

List of invalid ISBNs:

026207118X
The output should be exactly in this form. If there are multiple incorrect ISBNs, they should appear one per line.

Hint

1. Note that the invalid ISBNs are written out after the calculation of the stock value. How will you store them until you are able to write them out?
Task 4 – Handling ISBNs in different formats
This is an auxiliary exercise. ISBNs are often written with embedded hyphens or spaces to aid in their readability, for example 0-201-31006-6, 0262 07118 5. Make a copy of your final program, calling it Stocktake_4.adb. Extend your final program to allow the input in this more flexible form.
Example input for this version of the program is as follows:

Input:

0-201-31006-6 22 1495
0262 07118 X 37 2350

Submitting your assignment

When you have finished work on your assignment, submit it using AMS. Select CS1P and Submission5 then click submit. The following files should be available:
· Stocktake_1.adb, Stocktake_2.adb, Stocktake_3.adb
· Stocktake_4.adb if you completed this task
Skeleton program

with Ada.Text_Io; use Ada.Text_Io;

-- Skeleton of program to checks ISBNs

procedure Stocktake_2 is

 function Char_To_Int(Ch : Character) return Integer is
 -- assumes that Ch is in the range '0'..'9'; returns the

 -- corresponding Integer value, i.e. 0 for '0', 1 for '1', etc.

 begin

 return Character'Pos(C) - Character'Pos('0');

 end Char_To_Int;

 -- Insert declarations here

begin

 -- Insert code here

end Stocktake_2;
Computing Science 1P
Laboratory Examination 1 2004-05

14 - 17 December 2004 Time allowed: 1 hour 50 minutes + advance preparation.

Weight: the exam contributes 10% to the overall assessment for the CS1P module.

Threshold: students must obtain an average mark of at least 15% over the two laboratory exams to qualify for credits for the CS1P module.

Instructions

Starting the exam
Complete the attendance slip and place it in front of you together with your matriculation card and handset.

Log in to the system using your special exam username and password as provided on the document in your examination pack.

Use AMS to set up Lab_Exam1. This will create a folder called Lab_Exam1 in your Workspace, and will generate a copy of a skeleton program in a file entitled Text_Analysis.adb, together with a sample data file Input1.txt in that folder.

During the exam
As in a normal examination, communication between candidates during the laboratory exam is strictly forbidden.

A candidate who wishes to print a document during the exam should summon an invigilator, who will collect it from the printer and deliver it.

The AdaGide environment is configured to make regular automatic back-ups. This facility can be used to revert to an earlier version of a program if necessary.

A candidate may leave early, but only after summoning an invigilator, who will ensure that submission has taken place.

Any candidate who experiences a hardware or software problem during the examination should summon an invigilator at once.

At the end of the exam
Candidates should ensure that they have submitted their solution, using AMS, before the end of the examination.

Candidates must leave the laboratory quietly, as the exam may still be in progress for other groups and/or special needs candidates.

Question

A text file Calls.txt contains a log of the telephone calls made from a particular mobile phone over a certain period. Each line of the file contains

· the number called, a string of 11 digits

· the duration of the call in minutes, rounded up to the nearest minute.

A short example file is as follows:

01628345617 210

07684191042 10

07688191125 170

The total charges for the period are calculated as follows. Each call is charged at the rate of 2p per minute; however, the telephone company gives a ‘best friend’ discount. The ‘best friend’ number is the one with the greatest total connection time during the period, and all calls to this number are given a 50% discount - i.e., these calls cost 1p per minute.

You are to write a program that reads in the Calls.txt file from standard input, and reports to standard output

· the ‘best friend’ number, and

· the total charges for the period.

Output should take the following form (based on the short example file above):

Best friend number: 01628345617

Total charges: £5.70

You may assume that no more than 1000 distinct numbers appear in the input file, and that there is a unique best friend number.

On setting up the exercise using AMS, the skeleton program Phone_Bill.adb will be obtained, as listed below, together with an input file Input1.txt containing the input values in the illustration above.

Skeleton program

with Ada.Text_Io; use Ada.Text_Io;

with Ada.Integer_text_Io; use Ada.Integer_Text_Io;

-- program to perform phone bill calculation

procedure Phone_Bill is

-- insert declarations here

begin

 -- insert body of program here

end Phone_Bill;

Marking scheme

The following aspects of the program will be taken into account in marking

· the existence of a plan, embedded in the program in the form of comments

· use of an appropriate and correct algorithm

· use of appropriate data types

· use of appropriate Ada control structures

· correct Ada syntax

· good programming style, including layout, use of explanatory comments, choice of identifiers

· correctness of the implementation (as indicated by outputs corresponding to secret test inputs)

Note that it is perfectly possible to obtain a respectable mark in the examination even if the program that you submit is not complete or correct. Credit will be given, under each of the above headings, for progress made towards a solution.

cell (10,6)

cell (1,6)

East

West

cell (10,1)

� text will be displayed in the current font for the canvas; this can be changed by the Set_Font procedure, but that should not be necessary here.

� the ‘point’ is the top left corner of the text area.

14

