Computing Science 1P

Lecture Guides / Exercises
Contact details for the module team
	Name
	Role
	E-mail
	Phone
	Room

	Quintin Cutts
	Lecturer, Semester 1
	quintin@dcs.gla.ac.uk
	330 5619
	S114

	Rob Irving
	Lecturer, Semester 2
	rwi@dcs.gla.ac.uk
	330 4478
	S111

	Gail Reat
	Course Secretary
	gail@dcs.gla.ac.uk
	330 6042
	F161

Preferred method of contact is by e-mail unless it is an emergency
Read e-mail regularly – at least once per week – it is our primary form of communication.
The rooms identified above are in the Computing Science Dept. See map below. S111 and S114 are on the second floor, F161 is on the first floor

[image: image1]
My Details

Major assessments
	Name
	
	
	First Lab Exam: Wk 12
10%

	E-mail address
	
	
	Class Test: January exam diet
10%

	Tutor's name
	
	
	Date/Place:

	Tutorial group letter
	
	
	Second Lab Exam: Wk 26
10%

	Tutorial Room
	
	
	Degree Exam: May exam Diet
70%

	Tutorial Time
	
	
	Date/Place:

	Lab session Time
	
	
	

In this pack:

A:
Aims & Objectives

2
B:
Course Summary

3
C:
Module Resources and Assessment

5
D:
Lecture Guides

7
E:
Exercises for after the lectures

42

Introduction

Welcome to CS-1P!! This course is a first stepping stone to discovering and bringing to life some of the science underlying the technological revolution all around us. For Computing Science is a science, with many deep concepts only discovered in the last 50 years and others still to be discovered, although the study of computation itself is thousands of years old.

Programming gives us the opportunity to bring the many concepts discovered over the years to life. Programming is therefore an enabling technology, a practical skill – just like the practical skills you may have learned in the physical or biological sciences. It enables you to bring concepts to life and to explore the science of computing, just as dissecting did in the biological world. Whereas most sciences place limited emphasis on practical skills, we place significant emphasis on your programming skills in this degree, because you will have a professional qualification in software engineering skills if you graduate with a degree in this discipline.

So, programming is a skill – but it is founded on some fundamental concepts in computing science. To succeed in this course, you will need to learn both the concepts and the skills.

We make no apologies for this being a challenging course – but we hope you will step up to this challenge and, moreover, learn to relish the creativity of solving a problem and the thrill of getting your solution running on a computer.

Quick-start guide
The next few pages lay out the aims, objectives, structure, resources and assessment of the course in detail. Here, we include a quick start guide, to give you an overview of how we expect you to study on this course.

First, and most important,

Programming takes regular practice

Programming brings the concepts mentioned above to life. It is hard to cram the concepts for an exam – and impossible to cram the skills. Could you have read about learning to ride a bike, or play a musical instrument, the night before an exam on it without any practice? No, of course not. The same is true of programming. Set aside study time every week for this course. We expect you to complete around 4 hours every week, outside lectures, labs and tutorials.
In CS-1P, you have two lectures every week, and a one-hour tutorial and two-hour lab on alternating weeks.

To assist your learning, Section E contains numerous short exercises to be attempted as soon as possible after the lectures to which they relate. These help you to embed the concepts you require for programming – the basic building blocks. You will be asked to prepare some of these for tutorials.
Additionally, the separate Assignments Pack contains a series of larger programming assignments, one to be completed each fortnight. These must be submitted to your tutor a day after your laboratory session. These assignments bring together all you have learned on the course so far. Each assignment gives an indication of which lectures cover new material required for the programming task. Start exploring the assignment after the first lecture or two has been completed.
So:

· Attend all lectures

· Attempt the short exercises when you go over the lecture afterwards to consolidate your understanding – preferably before the next lecture. This will assist your learning immensely.
· Start work on the assignment at the beginning of the two-week period to which it relates – see Section C in this document, or the assignments themselves in the Assignments Pack. Don't be last minute (
· Use https://prs.dcs.gla.ac.uk, a web forum for the course, to post any questions you have about the material of the course if you have difficulty with the exercises or the assignments.

A. Aims and Objectives of the CS-1P course
These aims and objectives are split into two sections – the first is concepts and understanding, the second is skills. In order to program, you need a thorough understanding of a range of computational concepts and techniques and the necessary skills to solve problems and develop running programs. You must invest yourself in learning both the concepts and the skills.
Aims
To produce programmers equipped with an understanding of

· fundamental computational concepts underlying most programming languages

· a range of problem solving techniques using computers

· the role of programming within the overall software development process

· attitudes and working practices appropriate for a professional programmer

and skills supporting

· the solution of small problems using a programming language

· the clear expression of solutions at different levels of abstraction

· independent and self-motivated study in Computing Science.

Objectives
On completion of the course, the student should

Knowledge

know about:

· techniques for solving problems

· basic computational concepts and elementary data structures

· the edit-compile-link-run cycle from a user point of view

· testing strategies

· the main activities of software development and their interactions, and some of the major problems of software development

Skills

be able to:

· hand-execute simple programs, showing how input data is processed, output data is produced, and how the values of internal variables change

· explain at various levels the behaviour of fragments of programming language code

· amend existing programs to adjust or correct their functionality

· analyse simple problems involving text, numbers and graphics, producing a top-level plan with refinements

· translate well-structured plans into working programs

· use the error messages of the compiler to identify and correct mistakes in program syntax

· use testing strategies to identify and correct semantic errors in programs

Attitudes

appreciate that:

· a programmer requires creativity in order to solve problems and precision in the construction and manipulation of programming language code

· a programmer builds up a repertoire of techniques for solving problems, usually adapting and reusing techniques as each new problem is encountered

· a programmer must be able to communicate his/her ideas to others

· effective programming requires effort both in front of and away from a computer

· learning to program requires commitment and perseverance

B. Course summary

The following numbered points are the lectures of the course. The lecture summaries are only a guide – the precise content of lectures may be adjusted slightly according to the progress of the course.
The tutorials and assignments are inserted into the lecture summary to show what material you should be familiar with in order to tackle those sessions. Submission details for each assignment are included on each assignment in the Assignments Pack.
Week 1

Assignment 1 – due wk 2: Familiarisation with Ada; program consisting of sequences of commands

1. Introduction to programming. Recognition of activities or tasks as a sequence of actions. A program as a definition of a sequence of actions. First program in Ada, a simple sequence. Basic program structure. Processing programs using Adagide. Syntax errors. Reflect on two themes in the lectures: Programming concepts and Ada programming language specifics

2. Procedures, parameters, packages. Commands are procedures – definition of an activity created by someone else for reuse. Collections of procedures held in a package. Procedure specifications. Parameterising the activity undertaken by a procedure. Reflection: steady increase in expressive power of the programming constructs
Week 2
3. Introduction to algorithms. Close examination of the structure of everyday activities to bring out the concept of controlling the flow of actions. Identify repetition and selection of sequences of activities, and how these make use of conditions.
4. Introduce formal control flow constructs used this semester – while-do repetition, one and two-arm selection. Justify the use of these – Goto considered harmful, program readability etc. Further examples of framing activities in this format

Week 3
Tutorial 1: Expressing everyday activities using the formal control flow constructs introduced

Assignment 2 – due wk 4: Developing algorithms – coding, testing in Ada

5. Introduce Ada constructs to be used for repetition and selection. Boolean-valued functions used for the conditions. Solve first problem from scratch – Room Navigator scenario

6. Problem-solving methodology outline. Case study using Room Navigator scenario

Week 4
7. Introduction to the concept of state in real world systems. Variables. Declaring variables. Updating variables using assignment statement. Accessing the value contained in a variable. Expressions, expression evaluation. Arithmetic operators. Conditional operators
8. A new program context: the JEWL drawing package. Case study using JEWL – animation programs – rotating wheel

Week 5

Tutorial 2:

Assignment 3 – due wk 6: Solving a series of problems from scratch. Using the JEWL package.

9. New operators – integer division, unary minus, Boolean operators. Operator precedence. Expression evaluation rules.

10. Case study. Practice at identifying top-level plan and refinements. Getting an integer from the user.
Week 6
11. Exploring repetition. Noticing that the same operation is performed many times, only on different data items. How can this kind of repetition be represented?

12. Introducing arrays – collection of similar values – elements and indices. Specifying the type of an array, declaring array variable, accessing an element of an array, updating an element of an array.

Week 7

Tutorial 3:

Assignment 4 – due wk 8: First use of arrays. Reusing algorithms from Lecture 13.

13. Algorithms and programs commonly used with arrays containing integer values. Reading values into the array and writing them out. Finding the average of all the values. Finding the largest or smallest value. Checking if the values are in ascending order. Searching for a value in the array. Identifying two particular styles of repetition.

14. New program context: textual input and output. Put and Get with Integers. Introducing the for loop – when the number of repetitions are known, or can be calculated, at the start of first repetition. Problem using integer arrays.
Week 8
15. Handling text in programs: Character and String types. Slicing arrays and strings. Reading in characters and strings using Put and Get in Ada.Text_IO. Case study using characters and strings.
16. Textual I/O. Considering files as a stream of characters to be read from or written to. Keyboard as a stream that is only read from and screen as a stream that is only written to. Standard Input and Standard Output. Reading from and writing to Standard I/O. Case study.

Week 9

Tutorial 4:

Assignment 5 – due wk 10:Solving problems using characters, strings, and Standard I/O.

17. Reading in structured/formatted textual data – tricks of the trade. Typical problem structure, regularly found in exams etc. Precise definitions of textual input procedures. Case Study.
18. Practice class test

Week 10
19. Consolidation. Assessment issues

20. Developing a library of reusable patterns to assist in problem solving

Week 11
Tutorial 5:

Laboratory examination 1 – preparation in wk 11, exam in wk 12
21. Handling errors. Compile time: syntax, contextual and type errors. Run time: .e.g constraint and I/O errors. Logic errors. Mismatch between intention and reality. Techniques for thoroughly understanding the code you have written. Typical errors.

22. Testing Strategies. Why test? Developing good test data sets. Considering testing at the design stage – what should my program be able to do.

Week 12

23. Christmas lecture

24. Spare lecture slot
Week 13/14

Class Test
C. Module resources and assessment

Learning resources
1. Lectures and lecture guides
CS1P incorporates 24 weeks of lectures, at 2 lectures per week. Printed notes accompany each lecture – they are in this pack. A lecture and that lecture’s printed notes (known as a lecture guide) are to be viewed as an indivisible item. The notes are only useful if you attend the lecture – since the experience of the lecture will breathe life into the notes when they are re-examined.
If you look at the guides here, you will see that they are very sparse. You will not be able to learn from them alone. Principally, they allow you to concentrate fully on the lecturer, without having to be constantly scribbling notes. However, we do expect you to augment the skeleton here with whatever you deem useful from the flow of the lecture – note-taking will definitely be necessary.
2. Personal Response System and Web Forum
You will be given a (returnable) handset for use in lectures. These enable you to answer questions interactively set by the lecturer, and have been shown to improve learning. A website – https://prs.dcs.gla.ac.uk [note https] – enables you to access your own votes and also the aggregated class vote for any question after the lecture. On this site, the lecturer may make further comments about students' answers, and you may query an answer if you are unsure about it. Further questions to challenge you will also appear on the site. Use this web resource as part of your personal study, as you review lecture material. Note that your tutor has access to your responses and so can support your learning personally during labs and tutorials.

3. Tutorials

Tutorials provide an opportunity to explore the concepts underlying the course. You will have a timetabled one-hour tutorial slot every fortnight, in the week after the laboratory slot. At these sessions, your tutor can provide feedback on your progress, gleaned from progress in lectures and the submission at the previous lab session. Such feedback is essential for learning. Your tutor may have asked you to prepare solutions to some specific exercises prior to the tutorial, for discussion there. In addition, you can raise any questions you have during the tutorial, or you can mail them to your tutor beforehand. Be prepared – tutorials are much more valuable when you have worked on the material beforehand.

4. Exercises

A series of exercises are included at the end of this pack, in Section E, following the sequence of lectures. Most of these are short, and help you develop your understanding of programming concepts and the programming language. Steady work with these exercises is essential to your progress – it is very hard to write larger programs when you do not understand the basics. You may be asked to prepare specific exercises for a tutorial, but you should also incorporate them into your regular after-lecture consolidation work, and into any revision sessions.

The majority of the exercises can be completed away from a machine. Get into the habit of working on computing material away from machines – it will deepen your understanding, and enhance your preparation for the written exams. Work in the library for example, with a text book to hand. Some are larger exercises that you can complete by entering solutions into Adagide.
5. Assignments
Each assignment in the Assignments Pack is typically a programming exercise that you start in your own time and then continue working on in your laboratory session. Each assignment will develop and hone your practical problem solving and programming skills, drawing together the range of programming concepts so far introduced in the module. The completed assignment must be submitted on-line 24 hours after the end of your lab session, or 72 hours afterwards if your lab is on a Friday.

6. Laboratories

You will have one timetabled two-hour laboratory slot every fortnight. This is your opportunity to discuss your progress on the current assignment, while working on it, or any other aspect of the module, with your tutor. Ensure that you have done at least the 'minimum preparation' work specified in the study pack, so that you can make the most of this opportunity. (You are expected to spend around three to four hours per week outside timetabled sessions either in the lab or elsewhere working on the module.) It is a requirement that you attend laboratory sessions and speak to your tutor, even if it is only to submit an assignment you have completed elsewhere.

The assignments are essential preparation for the lab exams (and, indeed, for the degree exam). You may, of course, receive assistance from your tutor, and from colleagues in the class, but remember that, in the lab exams, you will be on your own! (and while 'receiving assistance' is acceptable, plain copying is not, and is worthless).
7. Other resources
The recommended course texts (N. Dale et al, Programming and Problem Solving with Ada 95, Jones & Bartlett, 2000, £27.99, and L. Robinson, Simple Program Design - A step-by-step approach. Thomson: Course Technology, 4th Edition, price £24.29). Copies will be available for short loan in the University Library. You may well wish to purchase a copy of Dale - extensive use of Ada is made in CS levels 1 and 2, and most programmers find that a textbook is valuable for reference purposes.
A set of 3 CD-ROMs (Burks' CD, approx £5.00) that contains all the software used on the course (and a lot more besides). This will allow those with a PC at home to install a system compatible with the one in the lab. (See http://burks.bton.ac.uk/burks/index.htm for a description of this CD set.)

Credit and assessment

CS1P is a 20-credit module that runs throughout the year to May. The degree examination is held in May/June (with a resit in August). In addition, there is a class test in January (week 13-14) and two laboratory exams, held during the supervised lab sessions, in weeks 12 and 26. As described above, the Assignments pack contains a series of assignments to be submitted electronically during the year.

To obtain the credits for CS1P you must

· Obtain at least a grade G in the degree examination

· Obtain an average of at least a grade G in the laboratory examinations

· Obtain a 'tick' for at least 8 of the 10 study packs. To obtain a tick, you must (a) attend the lab session, and (b) submit a serious attempt at the assignment. Note: nearly all successful students do in fact submit all 10.

Adjustments will be made if, for medical or other valid reasons, you miss a lab examination or some of the laboratory sessions.

Your overall grade for the course will be determined as follows:

· A 70% contribution from the degree examination;

· A 20% contribution from the two laboratory examinations;

· A 10% contribution from the class test.

D. The Lecture Guides
1. Introduction to Programming

What is a program? What is programming?

Running a program

· The programming language is a textual language, so this means we write down our solution to a problem in a text document – rather like a word processor document. At some point it must be checked and converted into a language the computer understands directly.
· A programming environment called AdaGide will be used on this course to allow us to enter these textual descriptions into the computer, and perform the necessary checking/conversion. AdaGide is like a word processor for programming. Various steps to consider are as follows:

· EDITING – the process of typing the textual description into the computer, or making subsequent changes to it. This textual description is referred to as the source program. To open an existing program file, simply double click on it.
· COMPILING (type F2) – an AdaGide operation – where the program is checked for errors. If errors are found, then further Editing is required. (This is a bit like a spell-check!)
· BUILDING (type F3) is another operation that takes a number of components and, from them, constructs a single executable program. Some of the components may have been written by other people, but you can reuse their work in your own programs. (Note that the text book does not refer to the BUILD operation – but it is required in the AdaGide system.)
· RUNNING/EXECUTING (type F4) – another AdaGide operation - the actions of the executable program are performed by the computer and we can see the results

Purpose of the next few lectures

To introduce and develop a deep understanding of the fundamental concepts or building materials to be found in most programming languages.

To learn the basic rules of the programming language Ada, so that you can start writing your own programs

The Fly_Rocket program

· An example of a computer simulation. The model contains: ground, gravity, rocket engines, landing pad, flight direction and more

Consists of a SEQUENCE of commands – between the begin…end overleaf
with Rocket; use Rocket;

-- Program to simulate the flight of a rocket

procedure Fly_Rocket is

begin

 -- Open a window and draw the world

 Draw_Basic_Landing_Pad;

 -- Now let's start flying

 Engines_On;

 Inc_Thrust_Level;

 Fly1;

 Fly1;

 Turn_Left45;

 Fly1;

 Fly1;

 Turn_Right45;

 Fly1;

 Fly1;

 Engines_Off;

 Fly10;

 Fly10;

 -- We're finished. Remove window when we get a mouse click

 Close_Window_On_Mouse_Click;

end Fly_Rocket;

· In this example, a number of commands for rocket control are available

Inc_Thrust_Level;

Dec_Thrust_Level;

Fly1;

Fly5;

Fly10;

Engines_On;

Engines_Off;

Turn_Left10;

Turn_Left45;

Turn_Left90;

Turn_Right10;

Turn_Right45;

Turn_Right90;

Detecting syntax errors in programs – introducing the rules of the language – the grammar
with Rocket; use Rocket;

-1
procedure Test_Flight_Rocket is
–2

begin

-3

 EnginesOn;

-4
 Inc_Thrust_Level;

-5
 Turn_Left55;

-6
 Fly1;

-7
 Turn_Right45;

-8
 >> Ease off for landing

-9
 Engines_off;

-10
 Fly_10

-11

end Test_Flight_Rocket;

-12

So what rules came out of this? Any new ones?

Where do the commands come from?

· They are the names for fragments of code already written, formally known as PROCEDURES
· Related procedures can be held together in a PACKAGE
· Need to know ONLY what they do and how to use them, NOT how they do what they do

Packages – all have…
· Name

· Specification file
· Body file

Package Specification

Found in a file called <package_name>.ads - the specification of each procedure is inside
How are procedures from a package used?

Package name should appear in context clause. Then any command in package may be used, just by writing its name – this is called a PROCEDURE CALL

FlyRocket.adb

 Rocket.ads
with Rocket; use Rocket;

procedure Fly_Rocket is
begin

 -- Let's start flying

 Engines_On;

 Inc_Thrust_Level;

 Fly1;

 Fly1;

 Turn_Left45;

 -- And so on

end Fly_Rocket;
package Rocket is
begin

 …
 …
 …
 procedure Inc_Thrust_Level;

 -- Pre : None

 -- Post : Thrust of rocket

 -- increased by 20 units

 …
 …
end Rocket;
2. Procedures, packages and specifications

Learning is Dialogue – hence PRS

[image: image2.png]

Q1:

Q2:

Engines_On;
If I see a procedure call in a program, but don't know what the

Inc_Thrust_Level;
procedure does, how can I find out?

Fly20;

In the above sequence, each statement is a:
1.
Look in the context clause

1.
a procedure
2.
Look in a package

2.
a procedure call
3.
Look in a package specification

3.
I don't know what (1) and (2) are
4.
Look in an Ada text book

4.
something else….
5.
I don't know
Procedures

Limited expressiveness so far -- Why?

Procedures with parameters

· The action performed by a procedure can be modified according to one or more parameters passed to it.

· More useful, efficient, flexible

· This is a typical specification for a procedure with one parameter

-- Specification of a procedure taking a single parameter

procedure Inc_Thrust_Level(amount : Integer);
 -- Pre: None

 -- Post: Increase the thrust in the engines by amount units
· To call the procedure, supply a value of the right type for the parameter, placed in brackets straight after the procedure name. For example, a call to the procedure above intended to increase the thrust level by 4 units looks like:

Inc_Thrust_Level(4);

· A procedure may take more than one parameter. For example, the specification of a procedure to draw a line might look like:

-- Specification of a procedure to draw a line

procedure Draw_Line(x1,y1,x2,y2 : Integer);
-- Draws a line from position (x1,y1) to position (x2,y2)
· A procedure with parameters is called by supplying a comma-separated list of values, one for each parameter. The position in the list corresponds to the position of the parameter in the specification. E.g. Draw_Line above is called as follows to draw a line from (1,2) to (3,4)

Draw_Line(1,2,3,4);

Types – briefest introduction…

· Values with the same characteristics are categorised according to a type.

· The categorisation or type of all values that are whole numbers is Integer
Using ONLY the following procedure specifications are available to you

procedure Inc_Thrust_Level(amount : Integer);

procedure Dec_Thrust_Level(amount : Integer);

procedure Fly(time : Integer);

procedure Turn_Right(angle : Integer);

rewrite the following sequence of procedure calls as efficiently as possible

Inc_Thrust_Level;

Inc_Thrust_Level;

Fly5;

Fly5;

Fly1;

Turn_Right45;

Inc_Thrust_Level;

Fly10;

Dec_Thrust_Level;

Dec_Thrust_Level;

Fly10;
Q3: Assuming the four procedures above again only, which lines are incorrect:

Inc_Thrust_Level(2);
1

Fly7;
2
Ans 1:
2, 3

Turn_Right(angle : 45);
3
Ans 2:
2, 3, 4, 5

Inc_Thrust_Level;
4
Ans 3:
2, 3, 5

Fly10;
5
Ans 4:
3

Dec_Thrust_Level(2);
6
Ans 5:
Other

Fly(10)
7
Ans 6:
Don't know
Sections A-C in this pack and Assignment 1
Read both these documents, if you haven't already. The first explains the course structure. Complete the "Before the lab" work in Study Pack 1 before coming to your laboratory session next week. Make use of lecture guides 1 and 2 along with your extra notes taken during the lectures, to help you.

Reviewing questions, asking your own

Use the website https://prs.dcs.gla.ac.uk to review answers to questions set with PRS during lectures. I will be posting further commentary about the answers there, and directions for further work. You may post questions there if you are still unsure about the answers, which may be answered by staff, tutors or your peers. (So if you are getting all the answers right, be prepared to answer a few questions – this is a very good training in its own right – being able to explain clearly to others).
3 & 4. Introduction to Algorithms and Control Structures.

Algorithm

A plan or a strategy for solving a problem

Comes from Al-Khwarizmi – 770-840AD, Baghdad, House of Wisdom

A computer program embodies an algorithm

Criteria for judging a good algorithm

Understandability: it must be written in language that is both understandable in that it can be executed by, and is unambiguous to, the intended processor (could be human or computer).

Correctness: it must give the correct result in all cases specified by the particular problem it is intended to solve
Finiteness: it must end, in all cases

General: it will solve a wide range of problems

Three Fundamental Control Structures

Computers execute actions

The particular actions that are executed are controlled using three key structures – hence the term control structures

Sequence

Repetition

Selection

The "making a call" example

pick up receiver
dial/key number
while waited for less than 30 secs? and not answered? loop
 wait 1 second
if answered? then
 have discussion
Hang up
What is the min & max number of times that the sequence at line 4 is executed?

How would you extend this to allow for the person you're ringing being engaged?

Which kind of control structure would you add or change?

Which lines would form the body sequence(s) of the control structure?

Structure Theorem (1966, Bohm & Jacopini)

Computations on the style of computer we use today (fundamentally Turing m/cs) can

be performed using only these three control structures

Why necessary? – see "GOTO statement considered harmful", 1968, Dijkstra

Repetition

while <condition> loop
 <Sequence of actions>

The condition is evaluated. If the result is True, i.e. the condition holds, then the Sequence of actions is executed, as usual one after another, and then the condition is evaluated again, and so on. As soon as the result of evaluating the condition is False, i.e. the condition doesn't hold, then execution of the repetitive action is complete, and execution continues with the next action.

Selection

if <condition> then if <condition> then
 <First sequence of actions> <Sequence of actions>

else

 <Second sequence of actions>

The left hand construction chooses one, and only one, of the two sequences of actions to execute. The one on the right hand side either performs the sequence of actions or does nothing. The result of evaluating the condition is used to decide on the course of action.

Conditions or Tests
Both Repetition and Selection make use of conditions or tests to control their behaviour. A condition is like a test giving back a yes/no or true/false answer – using technical terms, evaluating the condition returns a Boolean value, where a Boolean is a type (like Integer, remember, from Lecture 2) consisting of only two possible values, True and False.

not : sometimes it is helpful to be able to write down when you don't want a condition to hold. This is done using the word not which negates whatever value is returned when the condition is evaluated. Such a construction can be used anywhere a condition is wanted

 not <condition>

and and or : sometimes it is helpful to be able to express a combination of conditions. The words and and or can be used for this, and take on their usual English meaning. For example it is not safe to cross the road when

 Red man showing or Emergency vehicle approaching

Technically, and and or take two conditions, one on each side, as follows:

<condition1> and <condition2> <condition1> or <condition2>

Use https://prs.dcs.gla.ac.uk from university or home to check out your answers in more detail.

More information on algorithms and control structures in Robertson "Simple Program Design" Chapters 1 to 3, in library.
5. Using Ada Control Structures. Boolean-valued Functions

Recap on Repetitive and Conditional actions

Both use tests/conditions
Note that both contain Sequences

Tests – performed using functions that return Boolean values

-- Specification of a function to test whether the person is next to the East wall

function Reached_East_Wall return Boolean;
-- Returns True if the person is adjacent to the East wall, False otherwise
· To call the function, simply use its name, as you would a procedure.

· If parameters are specified after the name of the function, as below, then supply values when you call the function, just as you would a procedure with parameters (cf. sin, cos etc).

-- Specification of a function to test the speed of the rocket downwards

function Moving_Down_Faster_Than(Speed : in Integer) return Boolean;
-- Returns True if the rocket is falling fast than Speed, False otherwise
Boolean Type

· A type with only two values – True and False
· Cannot be mixed with the Integer type. Used in tests.

Ada while loop

while <some test> loop
 <one or more statements in a sequence>

end loop;

The test is evaluated
if it is/returns True, the sequence of statements will be executed

when the end loop is reached, execution will jump back up to the

while and the test will be performed again

if it returns False, execution continues with whatever comes after the end loop
Ada one-armed if statement - conditional
if <some test> then
 <one or more statements in a sequence>

end if;

The test is evaluated
if it is/returns True, the sequence of statements will be executed

if it returns False, execution continues with whatever comes after the end if

Ada two-armed if statement - conditional

if <some test> then
 <one or more statements in a sequence>

else
 <one or more statements in a sequence>

end if;

The test is evaluated
if it is/returns True, the sequence of statements between then and else will be executed,

after which, execution will jump to after the end if
if it returns False, execution jumps to just after the else, continuing through the second set of

statements and then whatever comes after the end if
 6. Problem Solving Methodology. Case Study

Methodology

· Problem specification

· think how you could solve it

· ask questions, what's missing, what more do you need to know?

· Design

· draw diagrams, play around, explore the problem

· hone in on a solution that you know is Understandable, Correct, Terminating

· write a concise plan – note different levels of detail
· A step may be complex enough for you to use the whole process just on it

· TEST IT on paper

· Implement the plan

· Ada framework – context clause(s), banner comment, procedure … is begin … end …;

· put the plan steps in as comments

· translate each step into Ada code

· Reflect – what did you learn, what could you have done differently?

Problem

Initial specification: "In the room navigator scenario, direct the person to walk on all squares"

 7. State. Using Ada variables. Expressions. Hand execution

Consider what must be going on behind the scenes of the Rocket or Room Navigator

In the Rocket package, Inc_Thrust_Level, Dec_Thrust_Level and Fly must all make use of the thrust level of the rocket – the first two update it, the third uses it.

How is the state of a system represented?

· …using a number of discrete values, each recording an aspect of the system state

· imagine each value being held in a box, known as a variable
· once the boxes are created, the values in them may be updated and retrieved over time

Creating a variable - declaration

<variable name> : <type name>;
· e.g. Thrust_Level : Integer;
· The name on the left can be any valid name – remember names, also known as identifiers are formed from letters and digits and the underscore character only, and must start with a letter.

· The name on the right of the colon must be the name of a type – so far you have seen only Integer and Boolean. The type specifies the type of the values that can be placed into the variable. It is illegal to, for example, try to put a Boolean value into an Integer variable.

· Declarations are placed BETWEEN the procedure line of a program and the begin line. The variables declared in the program may be used anywhere after their declaration.

Updating a variable – assignment statement

<variable_name> := <expression>;
· Read the := as becomes equal to. i.e. variable name becomes equal to expression
· To execute the statement
· Evaluate the expression on the right hand side of the becomes equal to sign (see below on how to do this), giving you a new value
· Overwrite the value in the variable with the name given on the left hand side of the becomes equal to sign with this new value
Retrieving a value from a variable – accessing the variable
To use the value contained in a variable in your program, simply write down the name of the variable. When the code is executed, the name will be evaluated to whatever value it contains at the moment of execution of the line containing the name.

Expressions

An expression is a fragment of code in a program that describes how to derive a value that is needed during execution. An expression can be as simple a single value – e.g. 2, True. Or it can involve calculations and/or function calls.

Evaluating simple expressions

The rules for how the computer will derive the value, or evaluate the expression, during execution are as follows for simple expressions

1. Replace all variable names with the values that are contained in the corresponding variable boxes.

2. Perform any calculations required, from left to right

A : Integer; A, B, C : Integer;

B,C : Integer;

A := 2; A := 2;

B := A * 7; B := A * 2 + 4;

C := B – A + 3; A := 12;

 B := A * 2 + B;

 C := B - A + 3;
Simple tests using conditional operators
Simple tests such as whether one value is greater than another, or one equal to another can be performed using conditional operators. They are used in conditional, or Boolean, expressions.

The operators are: < > <= >= = /=

These are respectively, less than, greater than, less than or equal, greater than or equal, equal, not equal. They all return a Boolean value – True or False.

Examples – hand execution

Hand execute a fragment of code by first noting down the variables it uses, as they are declared. Then work through the code, line by line, executing each one as the computer would. If the line is an assignment statement, then note the new value for the variable, crossing out the old value. If the line makes use of variables, then look at the variables you noted down to get the current value for use in the expression containing the variable. Jump around the code, as required by any while loops or if statements contained therein.

A, B : Integer;

A := 3;

B := 0;

while A > 0 loop
 B := B + 2;

 A := A - 1;

end loop;

C, D : Integer;

C := 3;

D := 0;

if C = D then
 D := D + 2;

else

 C := C - 1;

end if;

E, F : Integer;

E := 4;

F := 3;

while E > 0 loop
 if F > 5 then
 F := F + 1;

 else

 F := F + 2;

 end if;

 E := E - 1;

end loop;

8. JEWL.Simple_Windows – drawing. Developing related programs

JEWL.Simple_Windows

Provides the ability to open a window, with a drawing canvas inside. Procedures are provided to support line drawings on canvasses. Drawings can be made in different colours and thicknesses, and closed shapes can be drawn filled with specified colour.

To use this in a program, include with JEWL.Simple_Windows; use JEWL.Simple_Windows; at the head of the program. In addition, cut and paste the code shown overleaf with the heading comment Necessary set up code for a window to draw in. The canvas is in variable C.

The Canvas

New Types

· Angle_Type
an integer type that can only take values in the range 0..359

· Positive

an integer type that can only take positive values
· Point_Type
values are a coordinate pair, simply written as, say, (4,9)
· Colour_Type
a triple of values for red-green-blue levels. But fixed values provided…

Black White Red Blue Green

Gray Yellow Cyan Magenta

Procedures to set colours, pen thicknesses and to draw shapes

-- Set pen to given colour and width
procedure Set_Pen(Canvas : Canvas_Type; Colour : Colour_Type; Width : Integer);

-- Set fill to the given colour

procedure Set_Fill(Canvas: Canvas_Type; Colour: Colour_Type);

-- Set fill to nothing - transparent

procedure Set_Fill(Canvas: Canvas_Type);

-- Set background colour of canvas to given colour

procedure Set_Colour(Canvas: Canvas_Type; Colour: Colour_Type);

-- Draw a line with current settings from From to To

procedure Draw_Line (Canvas: Canvas_Type; From: Point_Type; To: Point_Type);

-- Draw a rectangle – From & To are diagonal corners

procedure Draw_Rectangle(Canvas: Canvas_Type; From: Point_Type; To: Point_Type);

-- Draw a circle centred at Centre, with radius Radius

procedure Draw_Circle(Canvas: Canvas_Type; Centre: Point_Type; Radius: Positive);

-- Saves the current state of the canvas

procedure Save(Canvas: Canvas_Type);

-- Restores the most recently saved version of canvas

procedure Restore(Canvas: Canvas_Type);

-- Returns a new point, Length length at Angle angle from From point

function Endpoint(From: Point_Type; Length: Integer; Angle: Angle_Type)

 return Point_Type;

with Jewl.Simple_Windows; use Jewl.Simple_Windows;

-- Program to draw a revolving spoke

procedure Spoke is

 -- Necessary set up code for a window to draw in -----------------------------
 use type JEWL.Angle_Type;

 function Same_Point(X,Y : Point_Type) return Boolean renames Jewl."=";

 F_Width : constant Integer := 800; -- width of the frame

 F_Height : constant Integer := 600; -- height of the frame

 F1 : Frame_Type := Frame (F_Width, F_Height, "Revolving Spoke", 'X');

 L1 : Label_Type := Label (F1, (0, 10), 0, 45,

 "Revolving Spoke Click mouse in black canvas area to exit", Centre);

 C_Pos : constant Point_Type := (10, 40); -- position of canvas

 C_Width : constant Integer := 650; -- width of canvas
 C_Height : constant Integer := 500; -- height of canvas
 C : Canvas_Type := Canvas (F1, C_Pos, C_Width, C_Height, 'X');

 --
 Background_Colour : Colour_Type := Black;

[image: image3.png]g
H
H

v

Computing Science Dept entrance,
17, Lilybank Gardens

Building site
Queen Margaret Union

Boyd Orr Building

 -- Hub position, radius and angle for the spoke

 Hub, Extremity : Point_Type;

 Radius : Integer := 80;

 Angle : Angle_Type := 0; -- in degrees
 -- Spoke colour

 Spoke_Colour : Colour_Type := Red;

begin

 -- Set the background colour, once and for all

 Set_Colour(C, Background_Colour);

 Set_Pen(C, Spoke_Colour, 2);

 -- Set the hub point

 Hub := (100, C_Height / 2);

 -- Save initial blank canvas

 Save (C);

 -- Continue drawing until the mouse is pressed

 while not Command_Ready loop

 -- Calculate new end point of spoke

 Extremity := Endpoint(Hub, Radius, Angle);

-- Draw the spoke

 Draw_Line(C, Hub, Extremity);

 delay 0.04;

 -- Increase the angle so that the spoke

--is drawn further round next time

 Angle := Angle + 2;

 -- Restore original state of the screen

 Restore(C);

 end loop;

end Spoke;
9. More on Operators – Integer division, Boolean operators, Precedence

Question

Write a Boolean expression that has the value True if either P or Q is zero, and has the value False otherwise.

Integer division (P65-66)

Remember integer division in primary school? Dividing one integer by another gives a quotient and a remainder. For example, 5 divided by 3 gives 1 remainder 2. There are two integer division operators in most programming languages, one that gives the quotient, the other gives the remainder.

The one giving the quotient is
/

5 / 3 gives 1

The one giving the remainder is
rem

5 rem 3 gives 2

Unary minus

A value can be negated by simply placing a minus sign in front of it

Boolean operators – reminder (P170, 174)

and

X and Y
gives True if BOTH X and Y are themselves True
or

X or Y
gives True if EITHER X or Y are themselves True
not

not Y
gives True if Y is False, False if Y is True

Operator Precedence Table (P177-178)

	Highest Precedence

	function call

	Not

	* / rem

	unary minus

	+ -

	> >= < <= = /=

	and or

	Lowest Precedence

Expression evaluation rules

1
Replace variables with values
2
Pick innermost bracketed expression

3
Evaluate operators in order of precedence

4
If all are same precedence, then evaluate left to right
5
Pick remaining innermost bracketed expression, continue again from (3) …..

Evaluate the following five expressions
3 + 5 * 7 + 4

4 + 2 * 8 rem 3
(4 + 2) * 8 - 7 + (6 - 3 * 5)
4 + 7 > 6 * 8
4 + 7 > 6 * 8 = (3 > 5)
and then this one

((3 + 4) * 9 + 4 * 3) * 7 + 2 >= 8 * (7 - 4)
Given the following variables

A, B : Integer;
C : Boolean
A := 7; B := 3; C := True;

evaluate these three expressions

A > B and C
A + 3 < B * 3 or C
(not C and A=7) = C
Execute the following code fragment to find the values of A, B, and C afterwards

A : Integer := 2;

B : Integer := 5;

C : Integer := 1;

while A < B loop
 if A rem 2 = 0 then
 C := A * C;

 end if;

 C := C + 2;

 A := A + 1;

end loop;
The [slightly adjusted – the 15%s should be Grade Gs] criteria for successful module completion in CS-1P are:
· at least 15% overall in the lab examinations;
· at least 15% in the degree examination;
· 'ticks' for at least 8 of the 10 submittable exercises.
Assuming Integer variables Lab, Degree and Ticks, holding appropriate values for a student, write a line of code to ensure that the Boolean variable Successful will record whether the student has successfully completed the module, after it is executed.
10. Case study
Write a program to draw a grid of squares.

 11. Exploring repetition

1 with Jewl.Simple_Windows; use Jewl.Simple_Windows;

2 procedure Four_Spokes is

3 -- Usual JEWL stuff removed

4 C : Canvas_Type := Canvas (F1, C_Pos, C_Width, C_Height, 'X');

5 -- Hub position, radius and angle for the spinners

6 Hub1 : Point_Type := (100, 300);

7 Hub2 : Point_Type := (400, 200);

8 Hub3 : Point_Type := (550, 350);

9 Radius1 : Integer := 70;

10 Radius2 : Integer := 40;

11 Radius3 : Integer := 90;

12 Angle_Inc1 : Angle_Type := 2;

13 Angle_Inc2 : Angle_Type := 1;

14 Angle_Inc3 : Angle_Type := 4;

15 Angle1,

16 Angle2,

17 Angle3 : Angle_Type := 0;

18 begin
19 -- Set the background colour, and paint in the supports

20 Set_Colour(C, Black);

21 Set_Fill(C, Yellow);

22 Set_Pen(C, Yellow);

23 Draw_Rectangle(C, Hub1 + (-15,Radius1+10), Hub1 + (15, -10));

24 Draw_Rectangle(C, Hub2 + (-15,Radius2+10), Hub2 + (15, -10));

25 Draw_Rectangle(C, Hub3 + (-15,Radius3+10), Hub3 + (15, -10));

26 Set_Pen(C, Red, 16); -- ready for the spokes
 -- Save initial setup
27 Save (C);

 -- Continue drawing the spokes until the mouse is pressed
28 while not Command_Ready loop

29 -- Draw the spokes

30 Draw_Line(C, Endpoint(Hub1, Radius1, Angle1),

31 Endpoint(Hub1, Radius1, Angle1 + 180));

32 Draw_Line(C, Endpoint(Hub1, Radius1, Angle1 + 90),

33 Endpoint(Hub1, Radius1, Angle1 - 90));

34 Draw_Line(C, Endpoint(Hub2, Radius2, Angle2),

35 Endpoint(Hub2, Radius2, Angle2 + 180));

36 Draw_Line(C, Endpoint(Hub2, Radius2, Angle2 + 90),

37 Endpoint(Hub2, Radius2, Angle2 - 90));

38 Draw_Line(C, Endpoint(Hub3, Radius3, Angle3),

39 Endpoint(Hub3, Radius3, Angle3 + 180));

40 Draw_Line(C, Endpoint(Hub3, Radius3, Angle3 + 90),

41 Endpoint(Hub3, Radius3, Angle3 - 90));

 -- Increase angles so that each spoke is drawn further round next time

42 Angle1 := Angle1 + Angle_Inc1;

43 Angle2 := Angle2 + Angle_Inc2;

44 Angle3 := Angle3 + Angle_Inc3;

45 delay 0.04;

 -- 'Undraw' the spokes
46 Restore(C);

47 end loop;

48 end Four_Spokes;

12. Collections: using array types

What is an array – basic model?

Specifying the type of an array – array type definition – why is this necessary?

type array_type_name is array (Integer range smallest_index ..

 largest_index) of element_type;

Replace the words in italics with appropriate names/values

Declaring an array variable

Just like any other variable – think up a name for the variable, use the array type name you declared earlier for the type

Accessing an element of an array

array_variable_name(index_expression)
This is an expression, and will return one of the values contained in the array, provided that index_expression, when evaluated, gives an index value that is a valid index for the array. If the index expression is outside the range of index values for the array, an error is generated.

Updating an element of an array

array_variable_name(index_expression) := element_value_expression ;

Specify the element to be updated using the syntax on the left hand side. The index expression must again produce a valid index value. The expression on the right hand side must be of the same type as the element values held in the array named on the left hand side.

-- Array type definitions

type Int_Array is array (Integer range 4..10) of Integer;
type Bool_Array is array(Integer range 4..10) of Boolean;

My_Ints, Your_Ints : Int_Array;
-- array variable declaration

Ints_Even : Bool_Array ;

​​-- array variable declaration

Count : Integer := 4;

-- integer variable declaration

--

My_Ints(7) := 4;

My_Ints(Count) := 10;

-- 1

Your_Ints(6) := 8;

My_Ints(4) := Your_Ints(6);
-- 2

while Count <= 10 loop
 My_Ints(Count) := 0;

 Ints_Even(Count) := Count rem 2 = 0;

 Count := Count + 1;

end loop;

-- 3

PRS 1 – 4 questions

type Attendance is array(Integer range 1..327) of Boolean; --1

Wed_Lecture : Attendance; --2

type Marks is array(Integer range 200000..220000) of Integer; --3

Year_Scores : Marks; --4

Considering each line in turn, which of the following statements is true about each

a :
this is an array variable declaration
b :
this is an array type definition

c :
contains Integer elements

d :
contains Boolean elements

e :
consists of 327 elements

f :
consists of 328 elements

g :
consists of 20000 elements

h :
consists of 20001 elements

PRS2

-- Assume the two type definitions and variable declarations above also

Kevin : Integer := 200103

Wed_Lecture(213) := True; -- A

Wed_Lecture(True) := 213; -- B

Year_Scores(Kevin) := Year_Scores(Kevin) + 55; -- C

Year_Scores(Kevin) + 55 -- D

Match the letter for each line above to the number of one of the descriptions below (e.g. A1, B3 etc):

1 :
The value held in the element in Year_Scores indexed by the value held in Kevin,

is retrieved and then incremented by 55

2 :
Illegal

3 :
Set element indexed by 213 in array Wed_Lecture to be True

4 :
Increment by 55 the value held in the element in Year_Scores indexed by the

value held in Kevin, storing the new value back in the same element

PRS3 – 2 questions

type Ints is array(Integer range 1..4) of Integer;

I : Ints;

Counter : Integer := 1;

Counter1 : Integer;

--

while Counter < 5 loop
 I(Counter) := Counter;

 Counter := Counter + 1;

end loop;

--- Question 1

Counter := 1;

while Counter < 5 loop
 Counter1 := Counter;

 while Counter1 < 5 loop
 I(Counter) := I(Counter) + I(Counter1);

 Counter1 := Counter1 + 1;

 end loop;

 Counter := Counter + 1;

end loop;

--- Question 2

For each question, work out the values held in the array at the position indicated in the program

Original and updated Windmill programs available under AMS – Lecture 11. Play around with them.

13. Array algorithms

with Jewl.Simple_Windows; use Jewl.Simple_Windows;

with Jewl.Io; use Jewl.Io;

-- Program to manipulate values in an array --

-- Written by Quintin --

-- NOTE – THERE ARE ERRORS IN THE FOLLOWING CODE, --

-- TO BE FIXED DURING THE LECTURE --

-- Last Modified: 10/9/05 --

procedure L12algorithms is

 -- Constant values

 Min_Index : constant Integer := 1;

 Max_Index : constant Integer := 5;

 -- Type definition

 type Ints_Type is array(Integer range Min_Index..Max_Index) of Integer;

 -- Variable declarations

 Ints : Ints_Type;

 Index,

 Sum, Average,

 Largest,

 Search_Val : Integer;

 Ascending,

 Found : Boolean;

begin

 -- Now get the numbers from the user
 Index := 1;

 while Index <= Max_Index loop
 Index := Index + 1;

 end loop;

 Show_Message("Numbers entered, thank you", "Response");

 -- Now display all the numbers

 Index := 1;

 while Index <= Max_Index loop
 Show_Message(Integer'Image(Ints(Index)), "Response");

 Index := Index + 1;

 end loop;

 -- Now find the average - first add the numbers, then calculate

 Sum := 0;

 Index := 1;

 while Index < Max_Index loop
 Sum := Sum + Ints(Index);

 Index := Index + 1;

 end loop;

 Average := Sum / (Max_Index - Min_Index + 1);

 Show_Message(Integer'Image(Average), "Integer average");

 -- Now find the largest.

 Index := 1;

 while Index <= Max_Index loop
 if Ints(Index) > Largest then
 Largest := Ints(Index);

 end if;

 Index := Index + 1;

 end loop;

 Show_Message(Integer'Image(Largest), "Largest value");

 -- Now find out if they're in ascending order (ok to be equal)

 if Ascending then
 Show_Message("They're ascending", "Response");

 else
 Show_Message("They're not ascending", "Response");

 end if;

 -- Does a given number exist?

 Get(Search_Val, "Enter the number to search for");

 Found := False;

 Index := 1;

 while Index <= Max_Index and not Found loop
 if Ints(Index) = Search_Val then
 Found := True;

 end if;

 Index := Index + 1;

 end loop;

 if Found then
 Show_Message("It's here", "Response");

 else
 Show_Message("It's not here", "Response");

 end if;

end L12algorithms ;

This program is available under AMS – Lecture 13

Pick it up, and reuse these code fragments, suitably adjusted, wherever you can!

Note the following two styles of loops

Index : Integer;

Condition_Holds : Boolean;

Index := Min;

while Index <= Max loop -- looping a known number of times
 -- do action

 Index := Index + 1;

end loop;

Index := Min; -- looping an unknown number of times up to a maximum
Condition_Holds := True; -- condition to keep looping

while Index <= Max and Condition_Holds loop
 -- do action

 if <test to see if condition no longer holds> then
 Condition_Holds := False;

 end if;

 Index := Index + 1;

end loop;

14

Input and Output. Revisiting Looping. Arrays & looping. Constants

Formatting textual output of integers – P86

-- The following procedures require these context clauses:

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

-- Procedure to read an Integer value into the variable passed to Item

procedure Get(Item : out Integer);

-- Procedure to output an Integer value

procedure Put(Item : Integer);

-- Procedure to output a String value, some text in double quotes

procedure Put(Item : String);

-- Procedure to start a new line on the output screen

procedure New_Line;

-- Procedure to output Item, right justified in a 'field' of Width spaces

procedure Put(Item : Integer; Width : Integer);

Program using Textual I/O

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Calculate_Sum is
 Next_Num, List_Length: Integer;

 Total, Counter : Integer := 0;

begin
 -- Get the length of a list of numbers from the user
 Get(List_Length);

 -- While there are more numbers to read in

 while Counter < List_Length loop

 Get(Next_Num);

-- Get the next one

 Total := Total + Next_Num;

-- Add it to a running total

 Counter := Counter + 1;

-- Note that we’ve seen one more

 end loop;

 -- Output the final result

 Put(Total);

end;

New Loop – for loop – P445-451

for <identifier> in <range> loop
 <sequence of statements>

end loop;

When should a for loop be used?

<identifier> can be any legal Ada95 name – it does NOT have to be declared

<range> is an X..Y style range, as used in an array type declaration. E.g. 3..7, or 1..Last_Num, provided that Last_Num was an Integer variable

When the loop executes, <identifier> can be referred to in the sequence of statements, and contains an integer from <range> - first time round the loop it is the lowest integer, next time round it is the lowest plus one, then plus two, and so on until in the final loop it is the largest integer.

Note that if reverse is placed directly after the in, then the count is from the second limit in the range down to the first limit in the range. So with the range 3..7, <identifier> would take 7, then 6, etc.

Examples

for I in 1..10 loop
 Put("Boo");

end loop;

for Number in 3..9 loop
 Put(Number);

end loop;

for I in 10..15 loop
 Put("Hello");

 New_Line;

end loop;

for I in reverse 10..15 loop
 Put(I); Put(I*2);

 New_Line;

end loop;
for I in 1..10 loop
 Put("_");

end loop;

New_Line;

for I in 1..8 loop
 Put("|");

 for J in 1..8 loop
 Put(" ");

 end loop;

 Put("|"); New_Line;

end loop;

for I in 1..10 loop
 Put("_");

end loop;

for K in 2..4 loop
 for J in reverse K..4 loop
 Put(J);

 end loop;

end loop;

Problem

I have £5 to spend and I want to spend it all. There are ten items I'd like to buy, numbered 1 to 10, but I can only carry two of them. The prices are stored in an array named A, indexed from 1 to 10. Write code to check if there are suitable pairs of items to buy that meet my requirements, and if so, write out their numbers.
Constants – P58

There are advantages to being able to name a value, and then ensure that it can’t be changed. A named value of this kind is known as a constant. It is declared, along with the variables, like this…

 <identifier> : constant <type identifier> := <constant value>;

15. Text – types Character and String

Type Character – P383

· Literal values:
'a'
'z'
'?'
'1'
'D'

· The values of the type are ordered – '0' is less than '9', '9' is less than 'A', 'A' < 'Z', 'Z' < 'a',
'a' < 'z'

· Operations: Because of the ordering, all relational operators are valid: = /= > >= < <=

· The in operator tests whether a value is in a range of values

Type String – P56, P121-3

· The definition of this type is as follows:

type String is array (Integer range <>) of Character;

· It is a standard type, and you don't need to include this line in your program

· The <> indicates that the size of the array must be specified when String is being used to declare a value… see the declarations below for My_Name and Your_Name
Array slicing – P125, P612
· Slicing is an operation that allow a section of an array to be accessed as a unit

· Regularly used with Strings

· Achieved similarly to a normal access using brackets, but with an index range instead of a single index in the brackets e.g. S(3..6) creates a new String, size 4 characters, comprising those elements from positions 3 to 6 in S.

My_Name : String(1..7);
Your_Name : String(1..7);

Letter : Character;

Test_Result : Boolean;

…

My_Name := "Quintin";

Your_Name := "Herbert";

-- 1

My_Name(6) := 'o';

-- 2

My_Name(2) := Your_Name(6);

-- 3

Letter := My_Name(1);

Your_Name(7) := Letter;

-- 4
if My_Name(2) = 'r' then
 Your_Name(1) := 'B';

else

 My_Name(5) := 'l';

end if;

-- 5
for I in 1..5 loop
 Your_Name(I) := 'X';

end loop;

-- 6

Test_Result := My_Name = Your_Name;
-- 7
Reading in Characters and Strings – P384-5, P121-4

procedure Get(Item : out Character);
-- Read in a single character

procedure Get(Item : out String);
-- Read in characters to fill the supplied String – must be enough…
Problem

Work out whether the string "help" appears in a sentence typed at the keyboard
Plan – Top Level

Plan – Refinements

with Ada.Text_IO; use Ada.Text_IO;

-- Program to scan an input sentence for a word

procedure Find_Help is

Window : ;

Next_Char : Character;

Found_Help : Boolean := False;

begin

-- set up the window

-- cycle sentence through the window looking for 'help'

Get(Next_Char);

while Next_Char /= '.' loop

-- cycle the window we are saving one to the left

-- insert next char into the rightmost position

-- Record if the window contains "help"

Get(Next_Char);

end loop;

-- write out whether we found it or not

Put("The word was ");

if not Found_Help then Put("not "); end if;

Put("found.");

end;
 16. More on Textual Input/Output

Streams of characters

Consider what you type at the keyboard as a stream of characters arriving at the program. They are only made available to the program when the user presses 'Enter'. Each time the program calls Get, characters at the head of the stream are consumed.

Similarly, consider calls to Put, New_Line etc, as creating a stream of characters that are passed to the screen for display

Files – Keyboard – Screen

Files are a repository for streams of characters. We can write a stream of characters into a file. We can read a stream of characters out of a file.

Hence the keyboard is like a read-only file, the screen is like a write-only file.

Standard Input and Standard Output

Imagine that Get and Put operate using a pair of variables. These variables contain the source of characters being input to the program and the destination of characters being output from the program, respectively.

These two variables are referred to as Standard Input and Standard Output. Standard Input is either the screen or a file containing input text. Standard Output is either the screen or a file ready to receive output text.

The source and destination for all textual Input/Output in Ada.Text_IO and Ada.Integer_Text_IO can be adjusted by updating these variables.

Resetting Standard Input in Adagide

First, create a file with some suitable input data in it.

Use Run Options in the Run menu. Then use the Browse… button to locate this file you've just created. Then check the Redirect Input box.

The input to the program will now be taken from this file.

Testing for the end of a file, when reading from it
· The following function can be found in Ada.Text_IO:

function End_Of_File return Boolean;

· Typical structure for a program that repeatedly reads one or more items of data from a file

while not End_Of_File loop

 -- Read in and process the next item(s) of data

end loop;

· This loop is known as the main loop when it is the main control structure in the program

Questions:

How do you signal end of input, or end of file, from the keyboard?

At what point are characters transferred from the keyboard to the buffer used by Text_IO, Integer_Text_IO?

When would you use End_Of_File?

What are Standard Input and Standard Output?

Problem

Write a program to read in a sequence of integers from Standard Input and to write them in the same order to standard output. When you write out the numbers, put them into two columns, reading down, not across.

Plans:

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Writing_Numbers is
begin

end Writing_Numbers;
17. Reading in structured textual data

Motivation for concentrating on this application area

Typical file structure

Example problem

A file contains a list of ID numbers and names, one ID and name per line. The format of each line is

<ID number><space><first name><space><second name>

where the first and second name do not contain spaces, and the ID number is an integer.

Write a program that reads the files on Standard Input, outputting the names of people with ID numbers greater than 100. Each output name should be on a separate line, as follows:

<second name><comma><space><initial of first name>

You may assume that no surname is greater than 20 characters long. The number of entries in the file is unknown.

Precise operation of tools to read in structured textual data

A line ends with a line terminator (LT) character. A file ends with a file terminator (FT) character

procedure Get(Item : out Character);

takes the next character available, discarding any LTs

procedure Get(Item : out String);

takes enough characters to fill the supplied String – discards LTs again

procedure Get(Item : out Integer);

discards leading spaces, tabs and LT characters, then

takes characters repeatedly that build an Integer, stopping as soon as a character or terminator is found that cannot be part of the Integer – that last character is not consumed

if the first character encountered is not a space and cannot form part of an integer, an error is raised

procedure Get_Line(Item : out String; Last : out Integer);

Reads available characters, putting them in sequence into Item, until either Item is full, or
a carriage return is encountered. Last contains the index of the element containing the last character read (if the string is indexed from one, then this is the number of characters read). If a CR is encountered, it is consumed.

procedure Skip_Line;

Jumps to the first character of the next line, or if no next line, then to the FT.

Plans:

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Filter_ID is
begin

end Filter_ID;

Notes and observations:

18. Consolidation on processing textual input. Practice class test.
19. Consolidation lecture. Explanation of upcoming assessments
 20. Problem Solving – recognising patterns - reuse

Methodology for solving problems in programming

Design

Examining each new problem… what are the options

Simple problems in every day life

Add two numbers

Attend a lecture

Drive from Glasgow to Oban

Buy Christmas presents

Recognising familiar sub-problems

bottom up

top down

Seeing reusable fragments from the bottom up

while not Command_Ready loop

 -- Calculate outer end position on screen of spoke

 Extremity := Endpoint(C, Angle, Radius);

 -- Draw spoke

 Draw_Line(C, Hub, Extremity);

 delay 0.05;

 -- Increase the angle so that spoke is draw further round next time

 Angle := Angle + 5;

 -- Undraw the spoke

 Restore(C);

end loop;

Abstract/generic versions of the code – a code template
 while some condition holds

 Calculate position of object on screen

 Draw object

 Adjust variables so that the object is drawn in

 a different place on the next time around

 Undraw the object

Generic problem specification

 Make an object appear to move around the screen
See subproblems top-down – see sheet distributed in lecture
Key skill – use in revision

In every program you can find (web, notes, filespace), identify generic reusable tasks

embedded inside the programs and the associated code template

21. Handling errors

1. Errors that break the rules of the language/libraries

1.1 Compile-time errors

Syntax

Contextual

Type

1.2 Run-time errors

Depends on data that is in general unknown at compile-time

How should the error message on the screen be interpreted?

CONSTRAINT errors

usually gives precise line

I/O errors – END, DATA

usually doesn't give the precise line

2. Errors of logic – writing the wrong program

The algorithm you have coded up is incorrect

you may have the correct algorithm in your head, but mis-coded it

you may have the wrong algorithm altogether!

Determine why the code is not doing what you hope/expect/want…

3. Fully understanding the code in front of you

3.1 Hand execution

Tried, trusted, but can be tedious for a big, or even quite small, program

Can be hard not to skip steps, make assumptions – in general, not to execute the program in exactly the same way the computer would.

3.2 Writing out diagnostic information from the program

Insert Put statements into critical parts of the program

Could be a message saying "got to position <X>" where <X> identifies the location of the statement. This helps you to find out which commands are being executed and which are not. Helps you to see how many repetitions of a loop are happening before a crash.

Often, though, you need to know the value of variables as the program executes. This is easy for an integer, Boolean or String, but a little harder for an integer array.

Help yourself, by making the program write this data out neatly.

3.3 Using the debugger

more on this at a later date

4 Remember typical errors

Start a new habit: Every time you fix an error, whether it is a compile-time, run-time, or logical error, write down the error in an error log. Identify exactly what the problem was, what you did to find it, and how you fixed it. If you have the same error again, just put an extra tick next to the first entry in the log. Start noticing where you typically make mistakes.

Note some of the typical errors we've talked about:

- No initialization

- Initialising to the wrong value for the rest of your program logic

- Indexing outside the index bounds of an array or String

- Input data not formatted right (always have ONE line terminator only at the end of a file)

Lecture 22 – Testing Strategies

Lecture 23 – Christmas Lecture

E. Exercises for after lectures

Lecture 1

In the laboratory, on a machine – before Lecture 2
Use AMS to download Lecture 1. You'll find a folder CS-1P has been placed in your Workspace folder. The CS-1P folder contains a folder Lecture 1. Navigate into the Lecture 1 folder, and you'll find the programs we used today.

Open up the file Fly_Rocket.adb. This will start the AdaGide programming environment. Compile, Build and Execute the program as we did in the lecture today. Then make some changes – more turns, or longer flying between turns, whatever – and then Compile, Build and Execute again to see what happens.

Look in the file Rocket.ads in your Lecture 1 folder to see what other commands or procedures are available for you to use in your program.

Pencil and paper

1.1
What is a syntax error?

1.2
Identify five syntax errors in the following code fragment, assuming the commands available in the package Rocket outlined in the lecture

with Rocket; use Rocket;

-1
procedure Flight_Practice

–2

begin

-3

 EnginesOn;

-4
 Inc_Thrust_Level;

-5
 Turn_Left_45;

-6
 fly10;

-7
 fly5;

-8
 Turn_Right_45;

-8
 -- Now we'll glide down

-9
 Engines_Off;

-10
 fly_10;

-11

end Flight_Practice

-12

1.3
What syntax rules for the Ada language can you identify now?

Lecture 2

2.1
What is held in a package? Why is a package useful?

2.2
In order to use the contents of a package, what do you have to do?

2.3
What does context clause mean?
2.4
What is a parameter? Why are procedures with parameters useful?

2.5
Look over the following procedure specification:

procedure Fly_Circles(Radius, Number_Of_Circles : Integer);

 -- Causes the rocket to fly Number_Of_Circles circles, each of radius Radius

i)
What does the word Integer signify?

ii)
How many parameters does this procedure take?

iii)
How does each parameter affect the operation of the procedure?

iv)
Write down a call of this procedure – you decide on the value of the parameters.

v)
What do you expect your answer to (iv) will produce?
Lecture 3

3.1
Start to observe what you do every day closely – consciously watch yourself as you perform activities such as taking a shower, getting into the university, going to a lecture, talking to your friends, making a phone call, sending a text, making a cup of tea.

3.2
Consider the following algorithm for brushing my teeth

pick up the tooth brush

wet it under the tap

squeeze some toothpaste onto the brush

while I haven't brushed all of my teeth

brush a dirty area

rinse toothbrush

Comment on this algorithm.

(i)
Do you think it is complete?

(ii)
Is it understandable?

(iii)
Will it finish?

(iv)
Will it work for most/all people?

(v)
Does this algorithm contain a sequence of actions? a repetitive action? a selection?

3.3
For three activities of your own, write down the components that make up that activity in the form of an algorithm, as in 3.2 above.

3.4
Either in your three activities above, or from other activities in your day:

(i)
Identify five repetitive actions

(ii)
Identify five actions that involved selection

(iii)
Now send one each of your repetitive and selection activities to quintin@dcs.gla.ac.uk
Lecture 4

4.1
If the algorithms you wrote in 3.3 were not expressed in the form described in lecture 4 – using the while…loop…, if…then…, if…then…else… format, rework them so that they are in this format.

4.2
Type "GOTO statement considered harmful Dijkstra" into Google. The first result is probably the ACM classic reproduction of this famous scientific paper, published in March 1968 – before most of you were born, and even I was only 16 months. If you have programmed a lot, you should be able to appreciate Dijkstra's argument. If you are new to programming, then don't worry at all if it is confusing – I'm sure it is. The point is to see the science that underlies programming. Dijkstra is helping to identify reasons why programming is conceptually hard, and to bring forward the best subset of possible operations to make it conceptually easier.
4.3
Identify five conditions or tests that you have used today to direct your activities. Take care to express the conditions in terms of multiple parts if appropriate, combined using and or or as necessary: for example, the following contains two conditions connected with and "It is hot and I'm wearing a sweater".

Note how the simple sentence "It is hot" may not look like a test or a question – but in a given situation, it is either True or False, depending on the surrounding conditions.
Lecture 5

The following questions assume the Room_Navigator scenario used in Assignment 1, and extended in Assignment 2. The specification of the procedures available to you in the Room_Navigator package are printed in Assignment 2 in your Assignment Pack.
5.1
Write code to make the person face West, no matter which way he/she is originally facing. Remember that you have functions that test in which direction he/she is facing – look at these in the Assignment Pack.
5.2
Now, assuming the person is facing West, and is in the middle of a large room, write code to make him/her walk in a 3 by 3 square coming back to where he/she started. Write this using a few lines of code as possible.

5.3
Assume the person is facing an obstacle in the middle of the room, which otherwise has clear space all around it. Write code to move the person neatly around the obstacle to the other side.

Now you are ready to start Assignment 2. It may look simple, but it is surprisingly tricky to get solve all four tasks correctly. Give yourself plenty of time to start working on them.

Most importantly, work away from the machines to start with.

Lecture 6

6.1
Go over the problem explored in this lecture. Do you understand the problem thoroughly?
6.2
Is the plan you have complete? Do you understand the solution to the problem discussed in the lecture? If not, then consider yourself in a small room with large tiles on the floor, and you are only able to move and test the surroundings like the Room Navigator person. Perhaps try it physically in a small room or space nearby!! How do you cover all the tiles – and how can you decide when to stop?
6.3
If you are still stumped, talk to a friend about it – perhaps you can work it out together. Or else e-mail your tutor.

6.4
When you thoroughly understand a solution to the problem, translate it into Ada code, making use of the functions and procedures in the Room_Navigator package. These are printed in Assignment 2.

6.5
When you are in the laboratory, and have used AMS to set up Assignment 2, take a copy of the Auto_Navigate_1.adb program and copy in your code for this problem to see if it works.

Lecture 7

7.1
Where in a program do the declarations go?
7.2
What information do you need in order to declare a variable?

7.3
Which of the following are legal declarations? If any one is not legal, what is wrong with it?

i) B : Integer;

ii) A, B : Integer

iii) Steps := Integer;

iv) Finished_Yet : Boolean;
v) Counter : Integer := 0;
vi) 100_Up_Yet : Boolean;
7.4
What is an assignment statement? Where do you find assignment statements?

7.5
You have integer variables Total, Count and Average. Total contains the sum of prices of a number of items, and Count contains the number of items. Write an assignment that calculates the average and places it into Average.

7.6
What values do A and B have after each of the following code fragments has executed?

(i)

A, B : Integer;

A := 5;

B := 0;

while A >= 1 loop
 B := B * 2;

 A := A - 1;

end loop;

(ii)
A, B : Integer;

E := 12;

F := 4;

while E > F loop
 E := E – 1;

 if E – F > 2 then
 F := F + 1;

 end if;

end loop;

7.7
Write down

(a)
an if statement that assigns R to the larger of the values of P and Q;

(b)
an if statement that assigns R to be zero if it is currently negative, and otherwise leaves it unchanged;

(c)
an if statement that makes the values of both P and Q equal to whichever of them currently has the smaller value;

(d)
a while statement that doubles the value of P until it exceeds Q;

Lecture 8

8.1)
Using the JEWL drawing procedures described in Lecture Guide 8, write code to draw the simple diagram shown below. You can do this away from the machine.

Note/remember the following:

· The coordinate system starts in the top left corner of the drawing area

· The bottom right hand corner of the house could be at around (200,400)

· See if you can make all the drawing relative to one point in the house. Why would you want to do this?

You will find a template program under AMS in Submission3 called Picture.adb. In the slot shown in the body of this program, you can enter your house drawing code to see if it works.

8.2)
Without having to write down five consecutive versions of this code, how could you draw five houses in a row? Consider:

· Your code for exercise 1 was written to be relative to a single point (either because you got this right first time, or because the answer at the end of the pack guided you there).

· What kind of an action is this, drawing five houses in a row? Sequence? Condition? Repetition? What kind of language construct do you need then?

· How will you control the language construct? How will you ensure that each house is drawn in the right place?

Extend your code to do this.

Lecture 9
9.1)
Assume the integer variables A, B, C, and D have initial values 4, 10, 20, and –5 respectively. Write down the values of the following expressions, taking particular care over the precedence of the different operators, as discussed in Lecture 9. Note also that some of the expressions give Boolean results, some give Integer results.

vii) B rem A

viii) B / (A - 1)

ix) B > A

x) C * B rem A

xi) A * (B + 7 * A) – D + C rem 3

xii) C / (B – 7 rem 4)

xiii) A + B / 3 <= 6

xiv) C * -A + D

9.2)
Assume the integer variables X and Y have the values 7 and 12 and the Boolean variables M and N have the values True and False respectively. Write down the value of the following Boolean expressions, again taking care over precedence.

i) M and N

ii) M or N

iii) N or (X < Y)

iv) M and Y < 12

v) not N and M

vi) X < 7 and Y <= 12

vii) X /= 3 or Y rem X > 5

viii) X + Y = 19 and (not M or N or X = 7)

9.3)
Write down

 (a) a while statement that determines P, the smallest power of 2 that is greater than or equal to Q (for example, if Q = 17, the required power, P, is 5, since 25 = 32 (17 whereas 24 = 16 < 17);

 (b)
a while statement that evaluates the sum of the first P positive integers (i.e. 1+2+ ... +P), leaving the result in R.

9.4)
Write down

 (a)
A Boolean expression that has the value True if New_Length is greater than the average of Length_1 and Length_2, and has the value False otherwise (where all the variables are of type Integer);
 (b)
A Boolean expression that has the value True if either of P or Q is zero, and has the value False otherwise (where P and Q are Integer variables).

Lecture 10

10.1
Complete the case study started in the lecture – first for just the horizontal lines, then for the vertical lines also. Make it run on a machine. Extend it so that you get the number of rows and columns from the user.
Lecture 11

11.1
Identify five different repetitive activities that are operating over a logically different item of data on each repetition, as discussed in Lecture 11.

Lectures 12 & 13
12.1) In each of the following parts, there is both an array type declaration, and an array variable declaration. Describe the fundamental characteristics of the arrays created by the declarations – include the name of the array variable, the number of elements, the indices of the first and last elements, and the type of the values held in each element.

i)
type Int_Array is array (Integer range 1..7) of Integer;

X : Int_Array;

ii)
type Bool_Array is array (Integer range –3..4) of Boolean;

Y : Bool_Array;

iii)
type Point_Array is array (Integer range 77..87) of Point_Type;

Z : Point_Array;

12.2)
Write down declarations for the following data collections similar to those given in each part of Question 1. Consider carefully the name of the array type and the array variable itself, the range of the indices, and the type of the values held in the elements.

i)
Marks in an exercise for tutorial group J consisting of 21 students;

ii)
The colours to be used on the four walls in a room (using the colour type from JEWL);

iii)
The value of x2 for x values in the range of integers from -100 to 100;

iv)
An indication of whether it rained or not on each day in a single (non-leap) year.

12.3)Assume the arrays X, Y, and Z from Question 1 above. Additionally, assume the following declarations

Index : Integer;

Finished : Boolean;

Explain the effect of the following code fragments

·
if the fragment is an expression, identify how to derive the value that would result from evaluating it

·
if the fragment is a statement or sequence of statements, summarise the effect caused by executing it

·
if you think the fragment contains an error, identify the error

(The answer for part (i) is given to show what is intended.)

i)

Y(0)

Expression: the result of evaluating the expression is the Boolean

value stored in the element of the array Y indexed by 0.
ii)

Z(77)

iii)

Z(X(3))

iv)

Y(-2) := False;

v)

X(4) := 3;

vi)

Z(78) := 7;

vii)

Y(X(1)) := 44;

viii)

Z(86) := (4, 5);

ix)

Index := 1

while Index <= 7 loop

X(Index) := 0;

Index := Index + 1;

end loop;
x)

Index := 1;

Finished := False;

while not Finished loop

Get(X(Index), "Enter a number, zero to finish");

if Index = 7 or X(Index) = 0 then

Finished := True;

end if;

Index := Index + 1;

end loop;
xi)

Index := -3;

while Index <= 4 loop

Y(Index) := (Index rem 2) = 0;

Index := Index + 1;

end loop;
xii)

Index := 87;

while Index > 77 loop

Draw_Line(C, Z(Index), Z(Index–1)); -- C is a canvas

Index := Index – 1;

end loop;
12.4)
Again assume the declarations of X, Y, Z and Index from earlier. Write down code fragments to

i)
access the value in the element with index 2 of array Y

ii)
assign the value (3, 2) to the element with index 79 in array Z

iii)
add 1 to every value stored in array X

iv)
draw a segmented line connecting the points in array Z in sequence, but omitting

every other point; i.e. connect Z(77) to Z(79), Z(79) to Z(81), etc.

v)
[harder] draw a line between every point and every other point in array Z
12.5)
Write simple plans for each of the following problems. Remember to use the steps that have been covered in lectures for writing plans. As always, look to see if these problems, or the way you might think of solving them, are related to earlier work you have already completed.

a)
Write a plan for a program that reads numbers in from the user, storing them in an array, stopping when the value zero is entered. Assume no more than 20 numbers will be entered.

b)
Write a plan for a program that reads up to a possible maximum of 30 numbers from the user, stopping when a number entered is exactly the same as a number that was entered earlier.

c)
Write a plan for a program that reads 8 numbers from the user and then draws a neat barchart/histogram of the values. This should contain 8 bars, one for each of the numbers, and the height of each bar should correspond to the number’s value. You should ensure the graph fits neatly on the canvas, not too small, and not too big.

12.6)
Convert your plan for problem (b) in Question 12.5 into a program, by writing the solution on paper. This is a very important exercise as it simulates what you are required to do in a written exam such as the Class Test in January, or the Degree Exam in June, where you must be able to write down on paper a plan and a program to solve a problem, away from a machine.

12.7)
Take all your working from Questions 12.5 and 12.6 and produce executing programs on a machine for the three problems. How close to the final working program was the original solution that you wrote down for each problem?
Lecture 15
15.1)
Given the following declaration of the variable S:

S : String(1..10);

show the contents of S after each line below. Some lines may contain an error. If so, state the error and assume the line has no effect on S.
S := "represents";

S(10) := ' ';

S(4..10) := S(3..9);

S(1..3) := "My ";

S(4) := "C";

S(8..10) := "sie";

S(4..4) := 't';

15.2) Given a string variable S indexed from 1 to 20, write fragments of code to

a. read precisely 20 characters into S and then write them out in reverse order

b. search for the string "the" in S, storing True in variable R if it is found and False otherwise

Note: consider whether you should use a for or while loop in your code fragments

Lecture 16

16.1)
A package called Ada.Characters.Handling contains (amongst other things) two functions with the following specification:

function To_Lower(C : Character) return Character;

-- if C is an upper case letter, returns the corresponding

-- lower case letter, otherwise returns C

function To_Upper(C : Character) return Character;

-- if C is a lower case letter, returns the corresponding

-- upper case letter, otherwise returns C

With the aid of this package, write a plan and a complete Ada program that will read from the user a string of length 10, and will write to standard output the same string, but with every upper-case letter replaced by a lower-case letter and vice-versa.

Again, consider whether any repetitive construct should be implemented using while or for.

16.2)
Write a fragment of Ada code, together with suitable declarations, that will read from standard input a sequence of positive integers, terminated by a zero, and will write to standard output the same sequence of positive integers, but in reverse order. (Assume that there are at most 100 integers in the sequence.)

What would you do if you wanted the input to come from a file? Turn this code fragment into a program and run it on a machine, taking the input from a file. (Instructions on how to take input from a file were given in Lecture 16, and are outlined again in Task 1.)
16.3)
Write a fragment of Ada code that will read from standard input a sequence of nine distinct integers in the range 0 .. 9, and will write to standard output a message indicating which of the ten integers in the stated range was missing from the input. Include any appropriate declarations after considering carefully what kind of array might be most helpful in solving this problem.

16.4)Work out what the following piece of Ada code does, writing a description in a single concise sentence.

Star : constant Character := '*';

Blank : constant Character := ' ';

N : Integer;

. . .

Get(N);

for I in 1 .. N loop

 for J in 1..N-I loop

 Put(Blank);

 end loop;

 for J in 1 .. 2*I-1 loop

 Put(Star);

 end loop;

 New_Line;

end loop;

16.5)
Suppose that the array A is declared as follows:

Max : constant Integer := 100;

type Int_Array_Type is array(1..Max) of Integer;

A : Int_Array_Type;

Write fragments of Ada code

a) to calculate the sum of the values contained in the array A, leaving the answer in an integer variable S;

b) to find the maximum value among the values contained in A, leaving the answer in an integer variable M;

c) to determine the index value (or position) of the maximum value in A (or of one of the maximum values if there are more than one), leaving the answer in an integer variable P.

d) to determine the difference between the maximum and minimum values in A, leaving the answer in an integer variable D.

Once you have written these fragments, embed them in a suitable program and run them on a machine to gain confidence in your coding ability.

Lecture 17

17.1)
Suppose that you are to write an Ada program that is to read from standard input, and produce a frequency count for each of the letters of the alphabet - i.e., determine the numbers of 'a's. the number of 'b's, etc.

(a) Give an array declaration that is appropriate for use in this program (remembering that any type containing discrete values can be used as the index type of an array).

(b) Write the program, assuming, for simplicity, that only lower case letters occur in the input.

(c) Ensure that your program runs correctly on a machine.
17.2)
Given a collection of numbers, the mean is the average value of the numbers, the median is the middle value when the numbers are arranged in ascending order (unique if there are an odd number of values, and the mode is the value that appears most often (this may or may not be unique). For example, if the numbers are {7, 5, 2, 5, 8, 6, 4, 7, 7, 8, 3}, the mean is 5.64, the median is 6, and the mode is 7.

Suppose the input to a program is a sequence of positive integers, terminated by a zero. Would it be appropriate to store the numbers in an array if the requirement for the program was to evaluate (a) the mean, (b) the median, (c) the mode, of the numbers? Give a short explanation for each of your answers.

Clear

Window width and height: 40 units

Door is 40 wide, 75 high, centred.

Windows start 30 from sides and 50 down from top of walls

NB- Remember on a JEWL canvas, point (0,0) is in the top left hand corner.

Notes about the programs/lecture:

 Red

 _Blue

 Yellow

(200, 200)

 200

 200

 50

46

