
Content Management for Declarative Web Site Design

Richard Cooper ? and Michael Davidson

? Computing Science, University of Glasgow, 17 Lilybank Gardens, Glasgow G12 8QQ
rich@dcs.gla.ac.uk

Abstract. Web site design and construction is characterised by the use of a
number of poorly integrated technologies – mark-up languages, databases,
server side middleware, client side scripting languages, etc. The absence of an
integrated structure means that reusability and site maintenance are difficult to
achieve. Instead of this, we are building a component-based declarative web
site design system, in which all aspects of a site (whole sites, pages, style
sheets, layouts, data sources, scripts, HTTP objects and XHTML fragments) are
described uniformly using a high level component model and the site is gener-
ated automatically from the component description. Managing content is
clearly a vital part of this and this paper describes how a high level model is
used to describe content.

Topics. New Architectures for Data Integration. Declarative Web De-
sign. Relational and XML Data. Component Based Systems

1 Introduction

In many ways the advent of the web, which provides relatively easy ways to program
complex distributed applications, has set back the application of software engineering
principles considerably. There has been a rapid evolution of programming techniques
from static HTML to the use of client-and server-side scripting, dynamic web pro-
gramming, the inclusion of data drawn from a database and the use of XML[1]. This
has meant firstly that web sites have evolved in an ad hoc manner and secondly that
even the construction of a web site consists of detailed programming using multiple
programming systems with little or no emphasis on an overall structure or capability
of overall integration. The tasks involved in web site design now include the con-
struction of site structure, the creation of web page structures, the design of a data-
base, programming the interaction between dynamic pages and the databases, provid-
ing content management, designing the interaction of the site visitor with the site, and
adding client side scripts. Each of these tasks is carried out with varying degrees of
separation, little or no integration and with a multiplicity of programming tools.
Maintainability and re-use suffer as a consequence.

Alternatively, web design is carried out using tools (such as Dreamweaver and
FrontPage) which support the specification of the surface of the site in an unsystem-
atic manner, from which an implementation is generated. Furthermore, the web ac-

cessed through a PC, is just one of an array of emerging channels of interaction, such
as PDAs, interactive telephone and interactive TV. To build a system which can only
be deployed over the web is a less and less useful achievement. Finally, implementa-
tion decisions permeate the design, which is particularly problematic since the specific
technology used to implement the site is itself subject to rapid change with new lan-
guages, data management systems and middleware products emerging regularly. The
only clear benefit from the way sites are currently built, is that there is scope for the
separation of concerns, since individuals can concentrate on the development of one
aspect of the site.

What is lost in all of this is a coherent and maintainable high level view of the site,
capable of being implemented using a variety of techniques. A modern site is essen-
tially a large and complex piece of software and as such should be subject to accept-
able software engineering practice. Declarative Web Site Design [2, 3, 4, 5, 6, 7, 8]
takes the view that the implementation technology used should not drive the design of
the web site, but rather the design should start with a high level specification which is
easily maintainable and from which one or more implementations can be derived.
This means that little time is spent on the implementation of minor detail and that the
site can be re-engineered to take advantage of emerging implementation products
without requiring a complete redesign or having to reprogram each component explic-
itly.

The particular approach taken here is to create the design in terms of components,
each of which being drawn from one of the aspects listed above. Thus any of the
following are components in our model: web pages, XHTML elements, data sources,
style sheets, layouts, scripts and HTTP constructs such as cookies and session vari-
ables. Components are created in terms of a component hierarchy, with the most
abstract component being at the top, immediately below which are abstract forms of
the different categories of component – XHTML element, data source, style sheet, etc.
At any time, a designer can add fresh components by specialising any component
which exists. For instance, there is a component for the XHTML table element, which
can be specialised to one particular to football leagues, and further to a concrete com-
ponent specific to a particular football league.

The main purpose of this approach is that components built using this model will be
able totally to describe a web site and be used to generate an implementation in one of
a range of implementation technologies. This provides the benefits of re-usability,
maintainability and late commitment to specific implementation techniques.

This paper concentrates on the data source aspect of the overall model. We start
from the notion that information to be disseminated over the web will normally be
stored either as XML or in relational databases (RDBs), but may be held in a variety
of other structures. Furthermore, we note that each technology has a different mix of
strengths and weaknesses and that perhaps the storage of data arising in an enterprise
will typically benefit from using a combination of XML and relational representations.
We therefore propose to use an abstract data model for content which can be mapped
to any single implementation technology or combination thereof. A secondary aim is
for the system to suggest an appropriate mix of implementation techniques.

A brief description of the component model is given as Section 2 in order to pro-
vide context for the data source model. Section 3 then describes a structure of the

data source components, in which hybrid data sources can be defined and maintained.
Section 4 describes a prototype tool that has been constructed to manage such data
sources and Section 5 gives our conclusions and how we plan to proceed.

2. A Component Model for Declarative Web Site Design

In order to provide a more straightforward and tightly integrated mechanism for web
site design, the model being developed is both high level and comprehensive. Each
constituent part of a web site is described in a uniform way as an instance of a compo-
nent hierarchy. Among the components that can be described are web pages, XHTML
elements, style sheets, layouts, scripts and data sources. Each component is param-
eterised and takes part in an inheritance hierarchy at the top of which is the most ab-
stract component, Component, below which are abstract components for each of the
main types of constituent listed above. Moving down the hierarchy is a process of
fixing parameters from the parent and adding fresh parameters. At the bottom of the
hierarchy lie concrete components, (i.e. ones in which no mandatory parameters are
left uninstantiated) from which a web site can be generated. Each component is de-
scribed in XML and maintains a set of documentary meta-data such the name of the
component, the author, date of creation and a brief description.

The second level of the hierarchy comprises the most general component of each of
the main kinds of component. For instance, the abstract component, Web Site, is de-
scribed by the parameters which hold the uri, an optional site wide style sheet, a front
page and the whole collection of pages in a site. Similarly, Web Page is the generic
component for all web pages. It has parameters for the title, meta-tags, style sheet,
layout and a collection of Visible components. Visible components are essentially
abstract descriptions of XHTML fragments, so the abstract component, Visible, gener-
alises over all XHTML fragments, having only a style parameter. Immediately below
this lie abstract components representing each of the XHTML element types arranged
according to the XHTML DTD [10]. For more details on the component model and
the other tools for managing it, see [11] and [12].

Data Source is the component type for any source of site content which will be dy-
namically included into the pages. This may be a database, XML file, spreadsheet or
other file structure – or indeed a mixture of these. In web site construction, the Data
Source component is used when constructing dynamic pages or content management
software. As such, it must reveal connectivity details and the range of data that can be
used for page content, i.e. a set of queryable tables. In fact, to simplify the automatic
generation process and to exploit query optimisation where available, the model ex-
pects a Data Source to expose a set of views and for all queries embedded in dynamic
web pages to be of the form “select * from view”.

Therefore, a Data Source component is parameterised by which kind of implemen-
tation structure it uses (i.e. relational database, XML file, spreadsheet, etc.), the con-
nection parameters and the set of views which are accessible. The abstract data model
underlying a data source is an entity based model capable of being implemented in any
of the structures listed above and is described in more detail in Section 3. View is the

component type for a method of extracting a collection of data from a data source. It
includes a query (expressed in the query language described in Section 4), a descrip-
tion of the type of data returned (at present just a list of attribute names and types) and
whether one or more entities will be returned.

As an illustration of the Component Model, here are the steps needed to describe a
page which is intended to hold a sports league table:
1. A data source is set up, with a view which returns the values found in the table –

team name, games played, winds, draws, losses and points, say.
2. In the component hierarchy will be found the abstract component, Table, which

will be parameterised by a set of column names, and below this is Dynamic Table,
which is parameterised instead with a view.

3. We create the concrete component MyLeagueTable, by instantiating the parameter
with the view set up in step 1.

4. This component is embedded in the appropriate page component.
5. The generation software creates a dynamic web page which selects the view data

and embeds it into the Dynamic Table template.
The next section describes the abstract structure of a data source and how this can

be implemented in a mixture of relations and XML, while the subsequent section
describes generic content management for this abstract model.

3. A Typed and Tightly Integrated Structure

The software being developed for data source description uses an abstract model
based on entity types. This section describes the model, how it is mapped into the
implementation technologies (we choose relations, XML and a mixture of the two, a
examples) and an algorithm for automatically determining which technology to use for
each fragment of the information to be stored.

3.1 The Abstract Data Model

The data model we have used is a standard entity-based model. A schema consists of
a set of entity types each of which can a number of typed properties. Property types
can either be base types or other entity types, can be single valued or multi-valued,
and can have inverse relationships enforced on them. As such the model resembles
the ODMG data model [13], among many others. Each property can be indicated to
be part of the primary key or separately as non-null or uniquely valued. The structure
is such that additional constraints on properties can be added. For instance, in our
collaborative web site design tool [14], content placement on dynamic web pages is
specified by additional constraints on the properties. Shown here is the use of a spe-
cial Gender base-level domain used to distinguish pronouns in a data extraction appli-
cation [15].

Entity Property Domain Imp PKey Card Null Unique Inverse
Book ISBN String(20) R v SV
Book Title String (30) R SV v
Book PubDate Date R SV v
Book PageLength Integer R SV v
Book Author Author R MV Author.Works
Book PublishedBy Publisher R SV v Publisher.Publishes

Author ID Integer R v SV
Author Name String (20) R SV
Author Nationality String (10) R SV v
Author BirthDate Date R SV v
Author DeathDate Date R SV v
Author Gender Gender R SV v
Author Photograph Image F SV v v
Author Works Book R MV Book.Author

Publisher ID Integer X v SV
Publisher Name String (20) X SV
Publisher Address String (50) X SV v
Publisher Phone String (20) X MV v
Publisher Publishes Book X MV Book.Publisher

Figure 1 An Example Model

Figure 1 shows a sample schema constructed using the model for a repository of

book information. Most of the columns have an obvious meaning but the fourth col-
umn, labelled Imp, indicates the implementation technology expected to be used for
this property – R(elational), X(ML) or F(ile). The latter is used for multimedia prop-
erties. The entry in this column is not absolutely required, as will be seen, since the
schema editor has the capability of automatically determining the appropriate mecha-
nism for each property.

3.2 Mapping to Implementation Structures

The model just described is an excellent starting point for implementing a repository
as a relational database or as one or more XML files, or as a combination of both.

3.2.1 Mapping to Relations
As the model is similar in many respects to the Entity-Relationship model. the stan-
dard technique for mapping an ER model to a set of tables can be used [5]. Entity
types become tables, single valued base type properties become columns, while multi-
valued properties become tables in their own right. Entity-typed properties become
foreign keys, creating intersection tables if the properties are multi-valued in both
directions. Thus the schema could be rendered for Oracle as a database called Li-
brary:

create table Book(ISBN Varchar2(20) Primary Key,
 Title Varchar2(30) Non Null,
 PubDate Date,
 PageLength Number2,
 PublishedBy Number2 references Publisher.ID)

create table Author(ID: Number2 Primary Key,
 Name Varchar2(20) Non Null,
 Nationality Varchar2(10),
 BirthDate Date,
 DeathDate Date,
 Gender Char1 check = “F” or = “M”,
 Photograph BLOB unique)

create table Writes(Book Varchar2(20) references Book.ISBN,
 Author Number2 references Author.ID,
 Primary Key (Book, Author))

create table Publisher(ID: Number2 Primary Key,
 Name Varchar2(20) Non Null,
 Address Varchar2(50))

create table PubPhone(ID Number2 references Publisher.ID,
 Phone Varchar2(20),
 Primary Key (ID, Phone))

3.2.2 Mapping to DTD
Alternatively, the schema turns easily into a DTD in a similar manner to that described
in [6]. Fundamentally, the mechanism is to turn entity types into XML element types
and properties into attributes using ID and IDREF types to manage the foreign keys.
A DTD for the example if implemented entirely in XML is:

<!ELEMENT Library (Book*, Author*, Publisher*)>

<!ELEMENT Book EMPTY>
 <!ATTLIST Book ISBN ID #REQUIRED>
 <!ATTLIST Book Title CDATA #REQUIRED>
 <!ATTLIST Book PubDate CDATA #IMPLIED>
 <!ATTLIST Book PageLength CDATA #IMPLIED>
 <!ATTLIST Book Authors IDREFS #IMPLIED>
 <!ATTLIST Book PublishedBy IDREF #IMPLIED>

<!ELEMENT Author EMPTY>
 <!ATTLIST Author ID ID #REQUIRED>
 <!ATTLIST Author Name CDATA #REQUIRED>
 <!ATTLIST Author Address CDATA #IMPLIED>
 <!ATTLIST Author BirthDate CDATA #IMPLIED>
 <!ATTLIST Author DeathDate CDATA #IMPLIED>
 <!ATTLIST Author Gender CDATA #IMPLIED>
 <!ATTLIST Author Photograph CDATA #IMPLIED>
 <!ATTLIST Author Works IDREFS #REQUIRED>

<!ELEMENT Publisher EMPTY>
 <!ATTLIST Publisher ID ID #REQUIRED>
 <!ATTLIST Publisher Name CDATA #REQUIRED>
 <!ATTLIST Publisher PubDate CDATA #IMPLIED>
 <!ATTLIST Publisher PageLength CDATA #IMPLIED>
 <!ATTLIST Publisher Phones CDATA #IMPLIED>
 <!ATTLIST Publisher Publishes IDREFS #IMPLIED>

3.2.3 Mapping to the Hybrid Model
There is a wide range of commercial software that has been produced for integrat-

ing XML and relational databases. Oracle, DB2 and SQL Server are typical of prod-
ucts which have sophisticated extensions and SQL/XML and XQuery promises prod-
uct independent methodologies [9]. What we find when looking at the facilities pro-
vide by commercial software falls far short of full integration. In most cases this sup-
port extends to covering a number of key features:

• mapping from relations to XML and vice versa,
• input and output using XML data formats,
• storage of whole XML documents within tables,
• support for XML queries over RDBs, and
• support for DTDs and/or XML schema.
The most important weakness of the approach that is taken by these products is that

they provide no way to type check a reference to an XML document. Thus if one
were to create an XML document full of conferences articles, it is not possible to have
a cell in the relational database refer to one of those articles or to assert that the col-
umn contains only references to XML fragments tagged <Article>. Yet a table such
as this might be a very suitable part of the database that is used to manage the infor-
mation arising out of the conference.

Furthermore, the references between the two types of data storage are essentially
one-way. It is not possible to refer to a record in a table from a point in an XML
document. Yet, again, a reference to a supporting record might be the ideal way in
which to add citations to an article. Taken together, this means that is impossible to
enforce relational integrity between data held in an XML document and data held in a
relational table using current technology.

To integrate the two implementation technologies in this way requires two design
decisions – how to represent the references in each direction.

Referring to a relational record in an XML entity is straightforward. The XML file
must include a reference to the table and the primary key of the record. This could be
achieved by including the reference as a child component using a special tag, but we
have decided instead to use a specially named attribute, so that the management soft-
ware can recognise that the reference is external to the XML file. Thus is the Book
entity type was implemented as XML and the Publisher entity type as a table, then the
PublishedBy property would appear as follows in the DTD:

<!ATTLIST Book RDB$PublishedBy CDATA #IMPLIED>

and a typical attribute would appear as:

 RDB$PublishedBy = “Publisher:23”

Referencing XML from a relational database has a wider variety of possibilities.
Storing XPATH and XPOINTER expressions are one possibility and storing
XQUERY queries another. We have opted here for what is essentially the same tech-
nique used above, we place a character string in a conventionally named column
which holds references to the XML element type and its ID. Thus the inverse of the
above column requires an extra column in the Publisher table:

:create table Publisher(ID: Number2 Primary Key,
 Name Varchar2(20) Non Null,
 Address Varchar2(50)
 XML$Publishes Varchar2(100))

in which the column XML$Publishes might hold:

 “Book:1224, 3456, 5678”

The management software works by identifying the conventionally named components
and redirecting its attention to the appropriate implementation engine to follow links.

3.3 An Algorithm for Automatically Choosing the Implementation Structure

A secondary aim is to avoid the need for the designer to determine which types of data
should use relational tables and which should use XML data sources. Database prod-
ucts typically require a database designer to specify which data should be stored in
XML formats at design time. It is a central goal to our work that such decisions should
be delayed to the last possible moment and to be achieved automatically if at all pos-
sible. The Schema Editor used to create a data source can remove the need for the
designer to make the decision of where to use XML and where to use relations. We
provide an algorithm for making the choice which could be used automatically, but in
reality should be regarded as a first approximation to the final choice. We therefore
give the designer the ability to modify the decisions made by the algorithm. Making
the choice in some cases the choice between XML and RDBMS tables appears to be
very clear-cut:

• If we have few elements containing large blocks of unstructured text we want
XML.

• If we have many elements with a variety of small data types we want a relational
table

• If we have complex constraints we want a relational table.
However this very simplistic approach will not work in all cases, for example what

if we have large numbers of elements containing large blocks of unstructured text?
Similarly, we might expect that the implementation decision made on a particular type
be affected by the implementation decisions made on related types. The approach
actually taken is that the choice between XML and RDBMS tables is determined using
a weighting system. Each type will have a number of XML and RDBMS weights
applied to it from the following table:

SQL Property XML property
Each non text property in type 5 Each long text element in type 20

Each short text element in type 1 Each reference to another type (1-
M) 1

Each simple constraint 1 All element types are text (N =
number of types 2N

Has check constraints 50

In addition the heuristic will take into account foreign key references. In this case a
weight of 10 will be added to the XML or SQL property as appropriate depending on
the chosen implementation of the type that is being referred to. The XML or RDBMS
property will be set according to which property gains the greatest weight. In the case
of a tie XML will be chosen.

4. Managing the Data Sources

The crux of our proposal are the tools which manage the hybrid data source. In order
to provide a generic content management system, we have build a schema editor
which automatically generates the implementation, a browser which allows the data to
be viewed and manipulated and a query processor which transforms a high level query
appropriately into implementation versions.

4.1 The Schema Editor

A screenshot of the editor is shown as Figure 2. The tree on the left contains one or
more schemata, each of which holding a set of entity types. The editor supports the
creation and editing of schemata (shown in the left hand pane) – in this case the
schema is called Library and the entity types which make up the schema appear in the
tree. The right hand pane consists of a table used for editing a type selected from the
tree, by adding and removing properties and editing their features. Note that in this
case, a column has been added to specify the length of particular fields. At the lower
right, is a set of radio buttons for selecting whether the entity type is implemented
using relations or XML, or the choice is left up to the algorithm (Auto).

Figure 2 The Schema Editor

4.2 Manipulating the Data

The data is manipulated by a fully hyperlinked, browser interface. Manipulation
starts by selecting an entity type. The entities of this type are displayed in an editable
table, which allows the addition, deletion and editing of an entity in a uniform manner
to the way in which properties are edited in the Schema Editor. Figure 3 shows a
screenshot of this, with an entity type, Staff, being displayed together with a hyperlink
to a CV entity. Each entry in the table is a property which is either a simple value
(shown in white) or the foreign key of an entity value (shown in grey as the Entity
Type name followed by the key value or null if no value has been given). Multiple
values are displayed as multiple lines in the cell. Selecting an entity value brings up
the display of that entity’s data – as shown, the lower frame was brought up by select-
ing the CV2 button in the upper table. For multi-valued entity properties, an “all”
button is placed at the top to bring up all of the values. The data for Staff was stored
in Oracle, while the CV data came from an XML file.

Figure 3 The Browser

4.3 Querying the Data

The abstract model is used as a basis for querying the hybrid data source. An OQL-
like query language has been implemented so that queries can be expressed. The
queries are then mapped to queries in the implementation systems.

A query in the query language has the following structure:

SELECT path1, path2, …, pathm
 FROM EntityTypeName1, EntityTypeName2, …, EntityTypeNamen
 WHERElogical expression involving paths and constants

The paths are dot separated expressions which may start with an entity type or a
cursor name or if this is unambiguous these can be assumed. Cursor names can op-
tionally be placed after any of the entity type names if the FROM clause. Here is an
example:

SELECT Works.Title, Works.PublishedBy.Name
 FROM Author
 WHERE Name = ‘Jane Austen’;

Queries are mapped fairly straightforwardly into each of the implementation
mechanisms. Relational SQL is created as a new set of clauses. The SELECT clause
is reduced to a cursor name, a dot and the last property name of each path. The
WHERE clause is augmented with foreign key join expressions. The FROM clause is
augmented to refer to whichever tables are required and cursor names are added with
auto-numbering used to distinguish re-use of tables. A complex algorithm is used to
merge the various path expressions. The above query becomes:

SELECT book1.Title, publisher1.Name
 FROM Author author1, Writes writes1, Book book1, Publisher publisher1
 WHERE author1.Name = ‘Jane Austen’ and
 and write1.Book = Book1.ISBN
 and Book1.PublishedBy=publisher1.ID;

The mapping to XML is to XPATH expressions, as has become standard. For ex-
ample, the query above becomes:

Book[child::author=”Jane Austen”]::Title,
Book[child::author=”Jane Austen”]::Publisher::Name

4.4 Managing the Data Source Components

The final step of setting up such a data source is to create the data source component
itself. This will require first of all a name and secondly any specific parameters.
Finally the available queries are expressed in the query language just described.

5. Conclusions

5.1 Summary

The paper has described a generalised content management system designed to fit with
a component-based declarative web site design system. The goal is to have both an
abstract data source description capable of being realised in a variety of implementa-
tion techniques and of a content management system also capable of being used in a
platform independent manner. The software works by providing a high level, seman-
tically rich model with which the user interacts. This interaction is then mapped down
to data manipulation and querying using implementation techniques such as relations
or XML as appropriate. The value of this is that the content manager can concentrate
on the meaning of the data and not on how it is organised.

In web terms, this work fits into a declarative web site design system based on a hi-
erarchy of components. Components can be XHTML elements, style sheets, scripts
and data sources. A data source component is described in terms of the model de-
scribed here and provides a set of views as its main method of interacting with other
components. The views are expressed in terms of the query language described above
– the site generation software will generate the low level implementations to install the
views and add calls to the views into the server side software which implements the
dynamic pages.

5.2 Further Work

This work is in its infancy. The Schema Editor is functioning as well as rudimentary
versions of the querying and browsing tools. Complete integration of the whole sys-
tem is progressing.

More work is required in fine tuning the techniques used here. XML Schema will
replace DTDs in our work and the algorithm which allocates the implementation tech-
niques will be adjusted with experience. Finding the optimal method of connecting
XML and relations requires further work. The mechanism described here works, but
there are other options to explore, notable the emerging XQuery standard. When the
whole system has been completed, attention will turn to assessing efficiency issues.
There will be a need to carry out experiments to compare our implementation with
that of the standard mechanisms that are becoming available in database products.
Only then will we know that our approach has proved to be effective.

Acknowledgements

The authors would like to thank Si Ying Meng and Chengcheng Zhou for work on
parts of the software.

References

[1] http://www.w3.org/ - The World Wide Consortium Web Site
[2] M. F. Fernandez, D. Florescu, A. Y. Levy and D. Suciu, “Declarative Specifi-

cation of Web Sites with Strudel”, VLDB Journal, Vol 9, Number 1, 2000.
[3] C.R. Anderson, A.Y.Levy, D.S. Weld, “Declarative Web-site Management

with Tiramisu”, WebDB-99, ACM SIGMOD Workshop on the Web and Data-
bases - WebDB99, 1999

[4] G. Mecca, P. Merialdo, P. Atzeni, V. Crescenzi, “The (short) Araneus Guide to
Web-Site Development”, WebDB-99, ACM SIGMOD Workshop on the Web
and Databases - WebDB99, 1999.

[5] G. Holland and K. Kumar, “Component-Based Web Page Composition”, Java
Center Services, Sun Microsystems,
www.sun.com/service/sunps/jdc/component-basedwebpagecomp.pdf .

[6] G. Graef and M. Gaedke, “Construction of Adaptive Web Applications from
Reusable Components”, EC-Web 2000, LNCS 1875, Springer Verlag, 2000.

[7] M. Gaedke and G. Graef, “Development and Evolution of Web Applications
Using the WebComposition Process Model”, Wb Engineering 2000, LNCS
2016, Springer Verlag, 2001.

[8] T. Tiedtke, T. Krach and C. Martin, “Infigura: An Integrated Design Tool”,
Proceedings of CADUI, January 2004.

[9] R.P.Bourret, XML and Databases, http://www.rpbourret.com/.
[10] http://www.w3.org/TR/xhtml1/ - The Extensible HyperText Markup Language.

[11] R.Cooper, Declarative Web Site Design Using a Purpose and Component
Model, submitted to the British National Conferences on databases, 2004.

[12] R.Cooper, An Architecture and Methodology for Declarative Web Site Design
Using a Comprehensive Integrated Component Model, in preparation.

[13] R. Catell et al., The Object Database Standard, ODMG 2.0, Morgan Kaufmann,
1997.

[14] R.Cooper, An Architecture for Collaboratively Assembled Moderated Informa-
tion Bearing Web Sites, Web based Collaboration, September, 2002.

[15] R.Cooper and S. Ali, Extracting Database Information from E-mail Messages,
in A.James, B. Lings and M.Younas (eds), “New Horizons in Data Manage-
ment”, Springer Verlag LNCS 2712, July 2003.

[16] T.Teorey, and J.P. Fry., “A Logical Design Methodology for Relational Data-
bases using the Extended Entity-Relationship Model”, ACM Computing Sur-
veys, June 1986.

[17] Carsten Kleiner, Udo W. Lipeck: “Automatic Generation of XML DTDs from
Conceptual Database Schemas” in Kurt Bauknecht, Wilfried Brauer, Thomas
A. Mück (Eds.): Informatik 2001: Wirtschaft und Wissenschaft in der Network
Economy - Visionen und Wirklichkeit, Tagungsband der GI/OCG-
Jahrestagung, 25.-28. September 2001, Universität Wien, ISBN 3-85403-157-
2, Band 1, pp396-405.

