
A FRAMEWORK AND TOOLSET FOR THE DEVELOPMENT OF
SOFTWARE TEACHING TOOLS

Richard Cooper
Computing Science

University of Glasgow
G12 8QQ

rich@dcs.gla.ac.uk

ABSTRACT
For the past few years we have been developing
software which can be used by students learning
about a variety of techniques of database use and
internet programming. Examples include the use
of ER modelling and normalisation for database
design, the development of web services, the way
in which HTTP and middleware programming
underpins dynamic web sites and the use of XML
programming. It has become clear that all of
these applications use the same set of techniques
- namely the mapping from one formulation to
another, allowing the student to step through
procedures, visualising the behaviour of complex
process components and giving access to a
hyper-linked glossary and a help system. This
paper presents a proposal to isolate the
techniques from the specific programs and to
build a collection of abstract techniques which
may be re-used in the construction of new
programs, together with a framework and
methodology for their use.

Keywords
Teaching Applications. Software Support
Systems. Active Learning

1. INTRODUCTION
Introducing students to the range of concepts
involved in software engineering is greatly
facilitated by the availability of interactive software
to allow the student to interact with the concepts.
Software development revolves around the
creation of successive descriptions of the
software which range from highly abstract designs
to precise implementations. A complete

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires
prior specific permission.
Teaching, Learning & Assessment in Databases, Edinburgh
2004

© 2004 LTSN Centre for Information and Computer Sciences

appreciation of the development process depends
on an understanding both of the way the
descriptions produce their effect and of the ways
in which the descriptions are transformed into one
another. Teaching is hampered because effects
at the low level are not accessible to observation
and the transformations must either be performed
by the software engineer or are carried out
automatically with no explanation. At the same
time, many software systems are constructed as
complex assemblages of components whose
inter-relationship is not always easy for the
student to understand.
As a consequence, attaining mastery over the
software engineering process is hard to achieve.
One solution is to involve the student in active
learning (e.g. [1], [2]) by creating interactive
software that gives the student access to that
which is usually hidden, being irrelevant and
indeed distracting to end users and software
developers alike.
There are three particular uses for such software:
1. Allowing the student to observe the

transformations being made facilitates
understanding of those transformations. For
instance, the process of transforming an ER
diagram into an appropriate set of relational
tables can be shown by program as a series of
steps.

2. Providing interactive software which
demonstrates what is happening at the lower
levels to allow the student to try out concepts
and techniques which can usually only be
practiced off-line. For example, allowing the
student to issue relational calculus or relational
algebra queries and observe the results can
give practical experience of these languages.

3. Providing a schematic view of a component-
based system can show the processes that the
system carries out and allow the student to
query the state of the components at any time.
For instance, a visualisation of the structure of
user interaction with an internet site is used
can be used to show the messages which are
sent and to support querying the state of the
browser, the server and the data source, as

well as HTTP objects such as cookies and
request and response objects.

We have been developing a set of software tools
to support the teaching of database and internet
programming techniques, and these are further
described in Section 2. In doing so, a common
set of techniques has emerged. For instance, it is
useful in showing the equivalence of two
representations to display them both and to permit
the student to select components of one and to
see the equivalent component highlighted.
Similarly, it is useful to permit the student to step
through the execution of an executable
description and observe the resulting effect on a
data structure.
This paper identifies a set of such practices in
Section 3 and proposes a set of Java-based
abstractions which can be configured to produce
further specific tools as Section 4. The paper
ends with some closing observations.

2. SOFTWARE FOR TEACHING ABOUT
DATABASE AND INTERNET
PROGRAMMING CONCEPTS

To illustrate the techniques which will be identified
in the next section, a number of examples will be
given. More examples are available in a previous
paper [3], including the use of the HTTP protocol
and server-side middleware to support dynamic
web sites, the use of ER diagramming and
normalisation to develop relational databases and
the use of relational algebra and calculus to query
relational databases. This section restricts itself
to three further examples which each illustrate the
use of different techniques.

2.1 Web Services
In order to demonstrate the development and use
of web services, a program has been developed
with following features:

• an animated diagram which shows how a web
service is developed, deployed, located and
bound into an application;

• staged development of a normal application,
in which an application method calls a service
method, into a web service in which the
service method is now a web service and the
application method is in an application which
wishes to be bound to the service;

• visualisation of the code of both the
application and the service which highlights
the use of the SOAP communication protocol.

This application requires the staged animation of
the service use, the staged development of code
and the ability to identify one piece of code and
highlight an equivalent section in another.

Figure 1. XML Programming Tutor

2.2 XML Programming
Several programming systems have been
proposed for managing XML programs including
DOM, SAX and XSLT. To demonstrate these, an
application (Shown in Figure 1) has been
developed which displays an XML file and a
program file. The student can step through the
program and in doing so, the current XML entity is
displayed and a commentary is displayed in a
panel at the bottom of the screen.
This program depends on the ability to highlight
fragments of a piece of text (shown in purple in
the figure) and to show successive program
statements as they are executed (e.g. the SAX
statements in the panel on the left. The program
is designed to work with a variety of XML files and
programs and must capture the equivalence of
data and program statements acting on the data.
This program also has a feedback panel shown at
the bottom describing what is happening in each
step. The steps are controlled by the cassette
player style buttons in the toolbar.

2.3 JDBC Programming
This application shows how a Java program uses
JDBC to interact with relational data. The
program works by displaying the database in one
panel and the program in another. As the
successive steps unfold, program statements are
added and a graphical representation of the
connection between the code and the database
appears which illustrates the various program
components. The diagram is queryable by
selecting a component in order to display its state.

Figure 2. JDBC Programming Tutor

This application demonstrates the gradual
development of a program, a queryable diagram,
a feedback panel and staged execution.
Of course, each of these would also benefit from
an integrating help and glossary system, which is
at best available in a rudimentary form at present.

3. A SET OF COMPONENTS FOR
DEVELOPING TEACHING TOOLS

In this section, a number of techniques are
identified and isolated, so that they can be re-
implemented in an abstract and configurable
form. In this section, it is assumed that there is
an underlying data structure and program which
must make use of it. The section starts with the
static components and then moves on to the
dynamic components.

3.1 The Components Required
Interactive Text Panels. A program or textual
data representation is a piece of structured text.
Thus a Java program or the description of a
database is a text document in which individual
fragments such as statements or table names
need to be identified clearly, so that they can be
selected and visualised in different ways.
Fortunately Java has the Swing text framework to
assist with the visualisation of such documents.

Interactive Diagrams. Similarly, a diagrammatic
representation is required for database design or
the display of networks. In the same way as the
texts mentioned above, it will be necessary to
allow the user to select diagram components and
for the teaching tool to highlight them. This
means we need software which matches each
kind of icon and line with software which manages
the appearance and which reacts to selection.

Correspondence Structures. The process of
illustrating the relationship between two
representations must be supported by an
underlying structure in which the fragments of one
representation are linked to the equivalent
fragments of others.

Staged Execution. In order to permit the student
to explore the effects of a dynamic process, it is
useful for that process to be executed in stages.
There are two ways in which the execution could
be controlled – manually or automatically. The
component here will permit either the program
designer or the student to select between the two.
If automatic execution is selected, there will be a
facility for controlling the speed. If manual
execution is chosen, a panel of forward and back
buttons, similar to those found in a cassette
recorder, appear for use. The buttons are tied to
a collection of do and undo actions. Specific
versions will also be available - one of which
displays the whole of the executed code from the
outset (as in the XML program) or adds to it to
demonstrate progress (as in the JDBC example).

Feedback Panel. A feedback panel is just an
example of the structured text panel, to which text
can be added.

Hyperlinked Glossaries. As well as a help
system, these programs benefit greatly by the
addition of a hyperlinked glossary. Each
important concept of the technique should be
added to the glossary so that any time an icon is
added to a diagram or text is added to a text
panel, if it illustrates a glossary entry, it will be
made into a hyperlink. The module which builds
up structured texts manages this.

3.2 Interfaces for a Java Framework
All of the programs which can be developed using
our proposed system work by controlling a set of
document descriptions visible through a number
of interacting windows. Each document consists
of fragments which may be selected, highlighted,
hidden or revealed, etc. Much of the implem-
entation of the following designs is simplified by
the existence of the wide range of Java packages,
notably Swing and the Swing text framework. The
Java Teaching Tool Framework consists of an
interface structure described in this.
Programs are built by implementing the following
interfaces (standard implementations will be
provided as is usual with Java):

Fragment. A fragment is a component of a
document which has a distinctive existence – i.e.
a fragment can be selected, have the style of its
presentation changed, can be hidden or revealed,
or can be associated with a set of other actions.
There are sub-interfaces for textual fragments
and iconic fragments, the latter being the

elements of a diagram. Fragments have a kind
(text or icon in the first instance) and a type. The
type indicates the role the fragment plays in the
document – e.g. a textual fragment may be a
keyword, while an icon may represent an entity
type in an ER diagram. Fragments may be
nested – e.g. lexemes in a program can be
grouped into lines, expressions, methods and so
on, while an entity type and all of its attributes may
be a useful grouping.

Document. A document is a collection of
fragments. It supports methods to add and
remove fragments and also operations over all
fragments of a particular type. There are
specialised forms of Document which are
hypertext documents (appearing in a browser
window) and feedback documents (essentially
documents which can be replaced by a new piece
of text, or to which text can be appended).

Parser. A parser manages a document ensuring
that it accords to the syntax of a formal language.
There are two kinds of parser. A static parser
takes a file in the formal language and turns it into
a document, while an interactive parser permits
the user to enter and edit the document. A
diagrammatic static parser permits the input of a
completed diagram from a textual description,
while a textual static parse creates a textual
document with fragments identified for code
statements, keywords, constants and variables,
together with any other fragment types specific to
the application – e.g. for SQL, table and column
names. A diagrammatic interactive parser
permits the input and editing of the diagram
components in a drawing window, while a textual
interactive parser provides a command line
interface for a language (for instance, SQL).
Interactive parsers provide a method to validate
the entry – syntax direct control of document entry
has not been included.

Correspondence. A correspondence links the
fragments of two or more documents, so that
mappings can be revealed. Correspondences
support operations which permit the selection of
one fragment to cause an action on a
corresponding fragment, such as altering its
appearance. Among the methods provided are
search operations for corresponding elements,
methods which highlight corresponding fragments
and so on.

Staged Execution. This is a process which
consists of a series of actions which are
controlled by a panel with forward and back
buttons. Each action makes some change to the
windows on display.

Action. An action is the description of a change
made to a document or which bring up or remove
a frame or a panel. Actions can be part of staged

executions or be tied to user actions on fragments
or through the use of menus and toolbars.

Style. A component will be available to manage
style. The font of textual fragments, colours for
distinguishing kinds of data or for highlighting
items. As shown rather garishly in Figures 2 and
3), line styles and icons for the diagram and
overall layout will be managed by a controlling
module. Java’s Attribute Set forms the basis of
this.

Panels and Frames. A document appears in a
frame or a panel inside a frame. Designing the
structure of these is the first step to creating the
application.

Framework. A framework is a collection of
panels and frames which constitute the interface
to the application. By separating off a framework
interface, it will be possible to reuse previous
frameworks for new applications.

4. A PROGRAMMING METHODOLOGY
FOR DEVELOPING TEACHING
TOOLS

This section describes a methodology which can
be described for developing a teaching tool.

4.1 A Programming Methodology
The development of an interactive piece of
teaching software can now be described as a
series of implementation tasks.
1. Firstly, an overall interface must be set up in

terms of a framework, i.e. a series of panels,
either as separate frames or grouped within a
single frame.

2. The use of each panel must be identified. It
may be a browser, feedback panel or
represent one of the document types being
used in the application.

3. A parser for each language involved must be
developed as implementations of the Parser
interface. These will allow documents to be
read in or create the interactive editing panels
required.

4. Correspondences between each of the
documents on display must be established in
order to support the interaction.

5. The set of actions to be supported on the
documents must be created.

6. The set of menus and toolbars must be
specified as calls to these actions.

7. Staged execution as a series of calls to actions
must similarly be set up.

4.2 Example
The example developed here is the creation of a
program to illustrate how ER diagrams are used
to design relational databases. The application
permits ER diagrams to be constructed in one
window, while another window is available for the
display of the equivalent SQL create table
statements. The application provides menu
options to verify the structural correctness of the
diagram and then permits the SQL to be created
one phase at a time – entity types first, attributes
next and so on [3]. The example requires five
panels: a diagram drawing panel; a panel
containing the SQL statements to create the
database; a feedback window; a staged execution
panel; and a hypertext browser. The placement
of these must be decided – for instance, the
feedback might be placed at the top of a window
which also contains the ER diagram panel and the
SQL panel on the left and right and the staged
execution panel at the bottom. The hypertext
browser could be a separate window which
appears on demand. The main window is shown
as Figure 3.

Figure 3. An Example Application

The first step is to construct the framework with
the four panels shown and the browser (not
shown). The document classes for SQL
statements and ER diagrams are created together
with a correspondence between the two. Then an
interactive diagram parser is created which
manages the creation and editing of ER
diagrams. The feedback panel is shown as it is

used when the correspondence is being
demonstrated to locate and highlight the SQL
component of an ER fragment. The verification
option calls the validation method of the parser.
The transformation option brings up the phased
execution panel shown bottom left. As the
phases are requested, a description of what is
happening is produced inside the panel. During
the highlighting option, at any time, a diagram
component or an SQL variable can be selected.
Further information is provided by permitting the
selection of a diagram component or an SQL
keyword to result in explanatory hypertext
appearing in the browser panel.

5. CONCLUSIONS
The paper has presented a plan for a toolset and
accompanying methodology for developing
interacting software teaching tools. The tools
allow for the highlighted display of structured texts
and diagrams, for the highlighting of
correspondences, for the staged execution of
processes and for the integration of help and
glossary systems.
Work on development of the toolset has just
started, but it seems likely that starting to create a
new application given the framework described
would greatly accelerate the development of
applications such as these.

ACKNOWLEDGEMENTS
Thanks are due to James Macrae and a large
number of students who have worked on versions
of these tools. The author would also like to
thank Karen Renaud for commenting on a draft of
this paper.

REFERENCES
[1] Modell, H.I. & Michael J.A. (1993). Promoting

active learning in the life science classroom.
New York: New York Academy of Sciences

[2] Kolb, D., Experiential learning: experience
as the source of learning and development.
London. Prentice Hall (1984).

[3] Cooper, R.L. and Macrae, J. Software
Systems to Support the Teaching of the Use
of Relational Database Systems, Teaching,
Learning and Assessment of Databases,
O’Reilly, James and Jackson (eds), 2003.

A FRAMEWORK AND TOOLSET FOR THE DEVELOPMENT OF
SOFTWARE TEACHING TOOLS

Richard Cooper
Computing Science

University of Glasgow
G12 8QQ

rich@dcs.gla.ac.uk

ABSTRACT
For the past few years we have been developing
software which can be used by students learning
about a variety of techniques of database use and
internet programming. Examples include the use
of ER modelling and normalisation for database
design, the development of web services, the way
in which HTTP and middleware programming
underpins dynamic web sites and the use of XML
programming. It has become clear that all of
these applications use the same set of techniques
- namely the mapping from one formulation to
another, allowing the student to step through
procedures, visualising the behaviour of complex
process components and giving access to a
hyper-linked glossary and a help system. This
paper presents a proposal to isolate the
techniques from the specific programs and to
build a collection of abstract techniques which
may be re-used in the construction of new
programs, together with a framework and
methodology for their use.

Keywords
Teaching Applications. Software Support
Systems. Active Learning

1. INTRODUCTION
Introducing students to the range of concepts
involved in software engineering is greatly
facilitated by the availability of interactive software
to allow the student to interact with the concepts.
Software development revolves around the
creation of successive descriptions of the
software which range from highly abstract designs
to precise implementations. A complete

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires
prior specific permission.
Teaching, Learning & Assessment in Databases, Edinburgh
2004

© 2004 LTSN Centre for Information and Computer Sciences

appreciation of the development process depends
on an understanding both of the way the
descriptions produce their effect and of the ways
in which the descriptions are transformed into one
another. Teaching is hampered because effects
at the low level are not accessible to observation
and the transformations must either be performed
by the software engineer or are carried out
automatically with no explanation. At the same
time, many software systems are constructed as
complex assemblages of components whose
inter-relationship is not always easy for the
student to understand.
As a consequence, attaining mastery over the
software engineering process is hard to achieve.
One solution is to involve the student in active
learning (e.g. [1], [2]) by creating interactive
software that gives the student access to that
which is usually hidden, being irrelevant and
indeed distracting to end users and software
developers alike.
There are three particular uses for such software:
1. Allowing the student to observe the

transformations being made facilitates
understanding of those transformations. For
instance, the process of transforming an ER
diagram into an appropriate set of relational
tables can be shown by program as a series of
steps.

2. Providing interactive software which
demonstrates what is happening at the lower
levels to allow the student to try out concepts
and techniques which can usually only be
practiced off-line. For example, allowing the
student to issue relational calculus or relational
algebra queries and observe the results can
give practical experience of these languages.

3. Providing a schematic view of a component-
based system can show the processes that the
system carries out and allow the student to
query the state of the components at any time.
For instance, a visualisation of the structure of
user interaction with an internet site is used
can be used to show the messages which are
sent and to support querying the state of the
browser, the server and the data source, as

well as HTTP objects such as cookies and
request and response objects.

We have been developing a set of software tools
to support the teaching of database and internet
programming techniques, and these are further
described in Section 2. In doing so, a common
set of techniques has emerged. For instance, it is
useful in showing the equivalence of two
representations to display them both and to permit
the student to select components of one and to
see the equivalent component highlighted.
Similarly, it is useful to permit the student to step
through the execution of an executable
description and observe the resulting effect on a
data structure.
This paper identifies a set of such practices in
Section 3 and proposes a set of Java-based
abstractions which can be configured to produce
further specific tools as Section 4. The paper
ends with some closing observations.

2. SOFTWARE FOR TEACHING ABOUT
DATABASE AND INTERNET
PROGRAMMING CONCEPTS

To illustrate the techniques which will be identified
in the next section, a number of examples will be
given. More examples are available in a previous
paper [3], including the use of the HTTP protocol
and server-side middleware to support dynamic
web sites, the use of ER diagramming and
normalisation to develop relational databases and
the use of relational algebra and calculus to query
relational databases. This section restricts itself
to three further examples which each illustrate the
use of different techniques.

2.1 Web Services
In order to demonstrate the development and use
of web services, a program has been developed
with following features:

• an animated diagram which shows how a web
service is developed, deployed, located and
bound into an application;

• staged development of a normal application,
in which an application method calls a service
method, into a web service in which the
service method is now a web service and the
application method is in an application which
wishes to be bound to the service;

• visualisation of the code of both the
application and the service which highlights
the use of the SOAP communication protocol.

This application requires the staged animation of
the service use, the staged development of code
and the ability to identify one piece of code and
highlight an equivalent section in another.

Figure 1. XML Programming Tutor

2.2 XML Programming
Several programming systems have been
proposed for managing XML programs including
DOM, SAX and XSLT. To demonstrate these, an
application (Shown in Figure 1) has been
developed which displays an XML file and a
program file. The student can step through the
program and in doing so, the current XML entity is
displayed and a commentary is displayed in a
panel at the bottom of the screen.
This program depends on the ability to highlight
fragments of a piece of text (shown in purple in
the figure) and to show successive program
statements as they are executed (e.g. the SAX
statements in the panel on the left. The program
is designed to work with a variety of XML files and
programs and must capture the equivalence of
data and program statements acting on the data.
This program also has a feedback panel shown at
the bottom describing what is happening in each
step. The steps are controlled by the cassette
player style buttons in the toolbar.

2.3 JDBC Programming
This application shows how a Java program uses
JDBC to interact with relational data. The
program works by displaying the database in one
panel and the program in another. As the
successive steps unfold, program statements are
added and a graphical representation of the
connection between the code and the database
appears which illustrates the various program
components. The diagram is queryable by
selecting a component in order to display its state.

Figure 2. JDBC Programming Tutor

This application demonstrates the gradual
development of a program, a queryable diagram,
a feedback panel and staged execution.
Of course, each of these would also benefit from
an integrating help and glossary system, which is
at best available in a rudimentary form at present.

3. A SET OF COMPONENTS FOR
DEVELOPING TEACHING TOOLS

In this section, a number of techniques are
identified and isolated, so that they can be re-
implemented in an abstract and configurable
form. In this section, it is assumed that there is
an underlying data structure and program which
must make use of it. The section starts with the
static components and then moves on to the
dynamic components.

3.1 The Components Required
Interactive Text Panels. A program or textual
data representation is a piece of structured text.
Thus a Java program or the description of a
database is a text document in which individual
fragments such as statements or table names
need to be identified clearly, so that they can be
selected and visualised in different ways.
Fortunately Java has the Swing text framework to
assist with the visualisation of such documents.

Interactive Diagrams. Similarly, a diagrammatic
representation is required for database design or
the display of networks. In the same way as the
texts mentioned above, it will be necessary to
allow the user to select diagram components and
for the teaching tool to highlight them. This
means we need software which matches each
kind of icon and line with software which manages
the appearance and which reacts to selection.

Correspondence Structures. The process of
illustrating the relationship between two
representations must be supported by an
underlying structure in which the fragments of one
representation are linked to the equivalent
fragments of others.

Staged Execution. In order to permit the student
to explore the effects of a dynamic process, it is
useful for that process to be executed in stages.
There are two ways in which the execution could
be controlled – manually or automatically. The
component here will permit either the program
designer or the student to select between the two.
If automatic execution is selected, there will be a
facility for controlling the speed. If manual
execution is chosen, a panel of forward and back
buttons, similar to those found in a cassette
recorder, appear for use. The buttons are tied to
a collection of do and undo actions. Specific
versions will also be available - one of which
displays the whole of the executed code from the
outset (as in the XML program) or adds to it to
demonstrate progress (as in the JDBC example).

Feedback Panel. A feedback panel is just an
example of the structured text panel, to which text
can be added.

Hyperlinked Glossaries. As well as a help
system, these programs benefit greatly by the
addition of a hyperlinked glossary. Each
important concept of the technique should be
added to the glossary so that any time an icon is
added to a diagram or text is added to a text
panel, if it illustrates a glossary entry, it will be
made into a hyperlink. The module which builds
up structured texts manages this.

3.2 Interfaces for a Java Framework
All of the programs which can be developed using
our proposed system work by controlling a set of
document descriptions visible through a number
of interacting windows. Each document consists
of fragments which may be selected, highlighted,
hidden or revealed, etc. Much of the implem-
entation of the following designs is simplified by
the existence of the wide range of Java packages,
notably Swing and the Swing text framework. The
Java Teaching Tool Framework consists of an
interface structure described in this.
Programs are built by implementing the following
interfaces (standard implementations will be
provided as is usual with Java):

Fragment. A fragment is a component of a
document which has a distinctive existence – i.e.
a fragment can be selected, have the style of its
presentation changed, can be hidden or revealed,
or can be associated with a set of other actions.
There are sub-interfaces for textual fragments
and iconic fragments, the latter being the

elements of a diagram. Fragments have a kind
(text or icon in the first instance) and a type. The
type indicates the role the fragment plays in the
document – e.g. a textual fragment may be a
keyword, while an icon may represent an entity
type in an ER diagram. Fragments may be
nested – e.g. lexemes in a program can be
grouped into lines, expressions, methods and so
on, while an entity type and all of its attributes may
be a useful grouping.

Document. A document is a collection of
fragments. It supports methods to add and
remove fragments and also operations over all
fragments of a particular type. There are
specialised forms of Document which are
hypertext documents (appearing in a browser
window) and feedback documents (essentially
documents which can be replaced by a new piece
of text, or to which text can be appended).

Parser. A parser manages a document ensuring
that it accords to the syntax of a formal language.
There are two kinds of parser. A static parser
takes a file in the formal language and turns it into
a document, while an interactive parser permits
the user to enter and edit the document. A
diagrammatic static parser permits the input of a
completed diagram from a textual description,
while a textual static parse creates a textual
document with fragments identified for code
statements, keywords, constants and variables,
together with any other fragment types specific to
the application – e.g. for SQL, table and column
names. A diagrammatic interactive parser
permits the input and editing of the diagram
components in a drawing window, while a textual
interactive parser provides a command line
interface for a language (for instance, SQL).
Interactive parsers provide a method to validate
the entry – syntax direct control of document entry
has not been included.

Correspondence. A correspondence links the
fragments of two or more documents, so that
mappings can be revealed. Correspondences
support operations which permit the selection of
one fragment to cause an action on a
corresponding fragment, such as altering its
appearance. Among the methods provided are
search operations for corresponding elements,
methods which highlight corresponding fragments
and so on.

Staged Execution. This is a process which
consists of a series of actions which are
controlled by a panel with forward and back
buttons. Each action makes some change to the
windows on display.

Action. An action is the description of a change
made to a document or which bring up or remove
a frame or a panel. Actions can be part of staged

executions or be tied to user actions on fragments
or through the use of menus and toolbars.

Style. A component will be available to manage
style. The font of textual fragments, colours for
distinguishing kinds of data or for highlighting
items. As shown rather garishly in Figures 2 and
3), line styles and icons for the diagram and
overall layout will be managed by a controlling
module. Java’s Attribute Set forms the basis of
this.

Panels and Frames. A document appears in a
frame or a panel inside a frame. Designing the
structure of these is the first step to creating the
application.

Framework. A framework is a collection of
panels and frames which constitute the interface
to the application. By separating off a framework
interface, it will be possible to reuse previous
frameworks for new applications.

4. A PROGRAMMING METHODOLOGY
FOR DEVELOPING TEACHING
TOOLS

This section describes a methodology which can
be described for developing a teaching tool.

4.1 A Programming Methodology
The development of an interactive piece of
teaching software can now be described as a
series of implementation tasks.
1. Firstly, an overall interface must be set up in

terms of a framework, i.e. a series of panels,
either as separate frames or grouped within a
single frame.

2. The use of each panel must be identified. It
may be a browser, feedback panel or
represent one of the document types being
used in the application.

3. A parser for each language involved must be
developed as implementations of the Parser
interface. These will allow documents to be
read in or create the interactive editing panels
required.

4. Correspondences between each of the
documents on display must be established in
order to support the interaction.

5. The set of actions to be supported on the
documents must be created.

6. The set of menus and toolbars must be
specified as calls to these actions.

7. Staged execution as a series of calls to actions
must similarly be set up.

4.2 Example
The example developed here is the creation of a
program to illustrate how ER diagrams are used
to design relational databases. The application
permits ER diagrams to be constructed in one
window, while another window is available for the
display of the equivalent SQL create table
statements. The application provides menu
options to verify the structural correctness of the
diagram and then permits the SQL to be created
one phase at a time – entity types first, attributes
next and so on [3]. The example requires five
panels: a diagram drawing panel; a panel
containing the SQL statements to create the
database; a feedback window; a staged execution
panel; and a hypertext browser. The placement
of these must be decided – for instance, the
feedback might be placed at the top of a window
which also contains the ER diagram panel and the
SQL panel on the left and right and the staged
execution panel at the bottom. The hypertext
browser could be a separate window which
appears on demand. The main window is shown
as Figure 3.

Figure 3. An Example Application

The first step is to construct the framework with
the four panels shown and the browser (not
shown). The document classes for SQL
statements and ER diagrams are created together
with a correspondence between the two. Then an
interactive diagram parser is created which
manages the creation and editing of ER
diagrams. The feedback panel is shown as it is

used when the correspondence is being
demonstrated to locate and highlight the SQL
component of an ER fragment. The verification
option calls the validation method of the parser.
The transformation option brings up the phased
execution panel shown bottom left. As the
phases are requested, a description of what is
happening is produced inside the panel. During
the highlighting option, at any time, a diagram
component or an SQL variable can be selected.
Further information is provided by permitting the
selection of a diagram component or an SQL
keyword to result in explanatory hypertext
appearing in the browser panel.

5. CONCLUSIONS
The paper has presented a plan for a toolset and
accompanying methodology for developing
interacting software teaching tools. The tools
allow for the highlighted display of structured texts
and diagrams, for the highlighting of
correspondences, for the staged execution of
processes and for the integration of help and
glossary systems.
Work on development of the toolset has just
started, but it seems likely that starting to create a
new application given the framework described
would greatly accelerate the development of
applications such as these.

ACKNOWLEDGEMENTS
Thanks are due to James Macrae and a large
number of students who have worked on versions
of these tools. The author would also like to
thank Karen Renaud for commenting on a draft of
this paper.

REFERENCES
[1] Modell, H.I. & Michael J.A. (1993). Promoting

active learning in the life science classroom.
New York: New York Academy of Sciences

[2] Kolb, D., Experiential learning: experience
as the source of learning and development.
London. Prentice Hall (1984).

[3] Cooper, R.L. and Macrae, J. Software
Systems to Support the Teaching of the Use
of Relational Database Systems, Teaching,
Learning and Assessment of Databases,
O’Reilly, James and Jackson (eds), 2003.

