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Abstract
This thesis presents a new approach to multi-rate sensor fusion for (1) user matching and
(2) position stabilisation and lag reduction. The Microsoft Kinect sensor and the inertial
sensors in a mobile device are fused with a Gaussian Process (GP) prior method. We present
a Gaussian Process prior model-based framework for multisensor data fusion and explore the
use of this model for fusing mobile inertial sensors and an external position sensing device.

The Gaussian Process prior model provides a principled mechanism for incorporating the
low-sampling-rate position measurements and the high-sampling-rate derivatives in multi-
rate sensor fusion, which takes account of the uncertainty of each sensor type. We explore
the complementary properties of the Kinect sensor and the built-in inertial sensors in a mo-
bile device and apply the GP framework for sensor fusion in the mobile human-computer
interaction area.

The Gaussian Process prior model-based sensor fusion is presented as a principled proba-
bilistic approach to dealing with position uncertainty and the lag of the system, which are
critical for indoor augmented reality (AR) and other location-aware sensing applications.
The sensor fusion helps increase the stability of the position and reduce the lag. This is of
great benefit for improving the usability of a human-computer interaction system.

We develop two applications using the novel and improved GP prior model. (1) User match-
ing and identification. We apply the GP model to identify individual users, by matching
the observed Kinect skeletons with the sensed inertial data from their mobile devices. (2)

Position stabilisation and lag reduction in a spatially aware display application for user per-
formance improvement. We conduct a user study. Experimental results show the improved
accuracy of target selection, and reduced delay from the sensor fusion system, allowing the
users to acquire the target more rapidly, and with fewer errors in comparison with the Kinect
filtered system. They also reported improved performance in subjective questions. The two
applications can be combined seamlessly in a proxemic interaction system as identification
of people and their positions in a room-sized environment plays a key role in proxemic in-
teractions.
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Chapter 1

Introduction

This introductory chapter gives an introduction to context-aware sensing by proposing sce-
narios of two people using a proxemic interaction system in a room, and then presents the
research problems and motivations. We briefly discuss the problems of position sensing
for indoor mobile Augmented Reality (AR) and other location-aware sensing applications.
We argue the need for dealing with the uncertainty of different sensor measurements and
the latency in the conventional Kinect system. We discuss the complementary properties of
the Kinect sensor and mobile inertial sensors, and summarise the sensor fusion theme that
will run through this thesis. Meanwhile, we highlight the role of Gaussian Processes (GPs)
in dynamical system modelling, and finally present the contributions and the outline of the
thesis.

1.1 Introduction

In recent years, advanced sensors have become ubiquitous. The human-computer interac-
tion systems are composed of a variety of sensors. These sensors work at a range of sam-
pling rates and often have very different noise characteristics. They may measure different
derivatives of measurands (e.g. position, velocity, acceleration) in the world. If we can fuse
information from such systems in an efficient and principled manner, we can potentially
improve the context sensing capability of the system without adding extra sensing hard-
ware. A concrete example of this is integration of inertial sensor data from mobile devices
such as phones or tablets with position sensing from an embedded Microsoft Kinect sensor
(Wikipedia, 2014; Livingston et al., 2012), but the same principle can be found in many sys-
tems. The Microsoft Kinect is a human motion sensing device that can be used for human
body tracking, and is low-cost, portable and unobtrusive in a room. If the Kinect can sense
multiple people in the room and each has a device in the hand or pocket, which person car-
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ries which device? If we successfully associate a person with a device, can the inertial sensor
data sensed by this device be used to improve the person’s skeleton position tracking?

The identification and tracking of people in an indoor environment plays an important role
in human-computer interaction systems. When there are multiple persons in the room, the
identification of people allows the system to provide personalized services to each of them.
The tracking of a person using a handheld device is critical to the effective use of a mobile
augmented reality (AR) or a spatially aware display application.

Identification of people and their positions in a room-sized environment plays a key role in
proxemic interactions. Proxemics is the theory proposed by Edward Hall about people’s un-
derstanding and use of interpersonal distances to mediate their interactions with others (Hall
& Hall, 1969). Greenberg et al. operationalized the concept of proxemic within ubiquitous
computing and proposed five proxemic dimensions including: distance, orientation, identity,
movement and location for proxemic interaction (Ballendat et al., 2010; Marquardt et al.,
2011; Greenberg et al., 2011). Knowledge of the identity of a person, or a device is critical
in proxemic-aware applications (Ballendat et al., 2010).

When several users are in a sensor-augmented room (e.g. using a Microsoft Kinect depth
sensor) and each of them carries a sensor-enhanced mobile device (e.g. with accelerome-
ters), it is possible to find the matching relationship between individual users and the mo-
bile devices. A personal device can then provide the means to associate an identity with a
tracked user (Ackad et al., 2012), implicitly providing a way for user identification through
user matching, i.e. finding the correlation between the multiple skeletons (users) and the
mobile devices. In practice, this can be challenging because the different types of sensors
have different noise and sampling properties, as well as measuring different physical quanti-
ties. In this work, we apply a novel and improved Gaussian Process prior model to fuse the
low-sampling-rate position measurements sensed by the Kinect and the higher frequency ac-
celeration measured by the mobile inertial sensors. Firstly, the sensor fusion combines data
from multiple sensors (Hall & Llinas, 1997), and can be applied to improve the accuracy
and speed of measuring the match between a set of users’ skeletons and a set of candidate
mobile devices. This is the first application, i.e. user matching and identification. Secondly,
the Kinect sensor data and the mobile inertial sensor data can be fused to improve the ac-
curacy of the Kinect skeleton joint position tracking and to reduce the lag of the system.
This enables the user to better interact in a spatially aware display or augmented reality (AR)
application in a room. This is the second application.

User Matching Scenario

To illustrate this, we propose a scenario of two people using a proxemic interaction system
in a room, as shown in Figure 1.1. The system can display the users’ favorite books and
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also make personalized recommendations for them (Funk et al., 2010). The Kinect and the
interactive vertical display surfaces are fixed on the wall. Two people (Jim and Tom) walk
into the room. Each carries a mobile device in the trousers pocket or in the hand. Jim likes
classic literature and Tom likes contemporary books. The Kinect starts tracking and assigns
a user ID to each person. Jim is user 1 and Tom is user 2. As a personal device can provide
the means to associate an identity with a tracked user (Ackad et al., 2012) and the system
can detect the identities of the personal devices, we know who the user is if we can link
a particular skeleton with one of the mobile devices. This enables the system to provide a
personalized service when a user approaches a display surface through proximity interaction.

Designing technologies that are embedded in people’s everyday lives plays an important
role in context-aware applications (Bilandzic & Foth, 2012). The process mentioned above
may involve a variety of people’s everyday movements, including moving with a device in
the trousers pocket, the subtle hand movements or walking with a device held in the hand
(Barnard et al., 2005). Vogel & Balakrishnan (2004) proposed an interaction framework for
ambient displays that support the transition from implicit to explicit interaction by identi-
fying individual users through registered marker sets, and argued the need for marker-free
tracking systems and user identification techniques.

Figure 1.1: A scenario of two people using a proxemic interaction system in a room. Prox-
emic interaction relates the two users to their personal devices by matching the motion sensed
by the Kinect with the motion sensed by the devices when they carry the devices and move
in the field of the Kinect’s view. The personalized content will be displayed when the user
approaches the surface as the system knows the identity of the user through matching the
user with the personal device. The device can be held in the hand, as shown in the figure, or
in a trouser pocket. The user matching application will be presented in Chapter 5.
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Location-Aware Sensing Application Scenario

In the above scenario, the system can achieve user matching and identification implicitly,
and customise services appropriately for them. A spatially aware display or an augmented
reality (AR) application in the room is an example of a proxemic-aware application, which
enables the user to use explicit hand motion-based interaction to acquire information in this
room. This is illustrated in Figure 1.2. Jim walks a few steps forward with the device held in
the hand. When he approaches the vertical screen, more contents, e.g. book category labels,
become visible to him as it zooms out. At certain spatial locations near the surface, we
can design a spatially aware display application that links the digital books with the spatial
locations. This enables Jim to browse the detailed content of a book by placing his device
there.

Figure 1.2: A scenario of a person (e.g. Jim) using a proxemic interaction system in a
room. After user matching and identification in Figure 1.1, we can use the mobile device
as an aiding sensor to augment the Kinect, stabilising the user’s skeleton joint (e.g. hand)
positions and reducing the latency of the conventional Kinect system in an augmented reality
(AR) or a spatially aware display application, which can be a part of this proxemic interaction
system.

An important issue in this proxemic interaction system is the accuracy of position tracking.
In order to reduce the joint position uncertainty and improve the interaction performance
and experience of the users (Jim and Tom), we proposed a sensor fusion approach to stabil-
ising the hand position and reducing the lag of the system in the Kinect space by fusing the
Kinect sensor and the mobile inertial sensors (Feng et al., 2014). After user matching, we
can apply the acceleration sensed by Jim’s device to compensate for the effects of position
uncertainty and lag in Jim’s skeleton tracking sensed by the conventional Kinect system,
giving a smoother, more responsive experience.
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1.2 Research Problems and Motivations

1.2.1 Research Problems

The identity and position of the user in an indoor environment is critical to the effective use
of a proxemic-aware interaction system. The accuracy of position tracking and the respon-
siveness of an interaction system play a key role in a Kinect-based spatially aware display or
mobile augmented reality (AR) application.

When there are multiple users in a room, we cannot determine the identity of each user with
only a Kinect sensor. Besides, the two problems with the Microsoft Kinect skeleton tracking
(Azimi, 2012) include:

1. The joint position uncertainty

2. The latency of the Kinect system

To address these problems, we need to apply sensor fusion techniques as the filtering tech-
niques will induce lags. Multisensor data fusion requires interdisciplinary knowledge and
techniques. We focus on building a Gaussian Process (GP) prior model to fuse the Kinect
sensor and the built-in inertial sensors in a mobile device. This Gaussian Process prior
model-based probabilistic approach helps improve the usability of a proxemic-aware system
by improving the accuracy of state estimation and reducing the lag, i.e. the latency. More-
over, this model can be used to compute the joint log-likelihood of the low-sampling-rate
position and the high-sampling-rate acceleration. The highest log-likelihood indicates the
best match of the skeleton and the device. Thus, this is beneficial for user matching and
identification.

The main applications include:

• Fusion of the Microsoft Kinect sensor and mobile inertial sensors for user matching
and identification

• Fusion of the Microsoft Kinect sensor and mobile inertial sensors to improve the joint
(e.g. hand) position estimation and reduce the lag of the system in a location-aware
sensing application (spatially aware display)

In this thesis, we apply a novel and improved Gaussian Process prior model to fuse the
low-sampling-rate position measurements sensed by the Kinect and the higher frequency
acceleration measured by the mobile inertial sensors. Sensor fusion combines data from
multiple sensors (Hall & Llinas, 1997), and can be applied for matching a particular user’s
skeleton with a mobile device. The first application of the sensor fusion system is user
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matching, i.e. finding the correlation between the multiple skeletons and the mobile devices,
presented in Chapter 5. The second application is to stabilise the joint (hand) position and
reduce the lag in a spatially aware display application for user performance improvement,
described in Chapter 6.

1.2.2 Research Motivations

In order to solve the accuracy and latency problems of the conventional Kinect system, we
need additional sensors to augment the Kinect sensor. Location-aware sensing applications
require the researchers to combine indoor position tracking devices and aiding sensors, and
to fuse multiple sensor data. Firstly, we discuss the complementary sensing in a proxemic in-
teraction system composed of a Kinect and mobile devices. In order to fuse multiple motion
sensors, we need a multisensor data fusion method. We highlight the two key advantages
of sensor fusion with Gaussian Processes (GPs), and discuss the two applications of the GP
prior model-based sensor fusion.

The Kinect-augmented system can enhance a user’s interaction through context-aware sens-
ing, e.g. identify the user implicitly through the user’s everyday movements and provide a
personalized service on the screen. In addition, the Kinect-based sensor fusion system can
improve the user’s spatial interaction experience by stabilising the user’s hand position and
reducing the lag of the tracking system in a spatially aware display application.

Complementary Sensing in Proxemic Interaction

Sensors provide a way to capture proxemic data in a proxemic-aware system. The Microsoft
Kinect is a successful sensor for sensing human skeleton joints positions (Greenberg et al.,
2011). The Kinect skeleton tracking opens a rich design space for Human-Computer Interac-
tion (HCI) researchers. However, for human motion tracking with a Kinect, the uncertainty
in position measurement limits the styles of interactions that are possible (Casiez et al.,
2012). Besides, the latency is also a problem for the Kinect system. In order to use it for
location-aware sensing, we need to augment the Kinect with additional sensors, e.g. the
built-in inertial sensors in a mobile device.

The combination of the Kinect and a mobile device has been studied in the literature and
this will be reviewed in section 2.2.2. In this thesis, the fusion of the Kinect sensor and
mobile inertial sensors focuses on data-level fusion. The mobile inertial sensor data can
compensate for the effects of position uncertainty and latency in the conventional Kinect
skeleton tracking.

Inertial sensors are becoming ubiquitous in a smartphone, which has become an essential
part of our everyday life. Nowadays, a smartphone is usually equipped with a wide range
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of sensors, such as an accelerometer, a gyroscope, a magnetometer, camera and GPS. These
sensors measure people’s everyday motion, for instance, walking, running, answering the
phone etc. Thus, the sensors can be used to monitor the daily activities of a person and
profile their preferences and behaviour, making personalized recommendations for services,
products, or points of interest possible (Lane et al., 2010). If we want to augment the Kinect
system with such a mobile device, we need to find the connection between these sensors.

The Kinect sensor and the inertial sensors have complementary properties. The Kinect senses
human pose and can be used for human skeleton tracking. However, the inferred joint po-
sitions are subject to significant uncertainty (Casiez et al., 2012). Inertial sensors, which
have been widely used for sensing human movement (Luinge, 2002), can be used to measure
the skeleton joint acceleration. The higher frequency acceleration can augment the noisy,
low-sampling-rate positions sensed by the Kinect. Thus, the inertial sensors can be used
to compensate for the shortcomings of the Kinect sensor. Meanwhile, the Kinect sensor
can provide the absolute position information in 3D space, where the inertial sensors suffer
from integration drift problem for position changes estimation. In this thesis, our focus is to
augment the Kinect with mobile inertial sensors.

Firstly, we can apply the proposed novel and improved Gaussian Process (GP) prior model
for computing the joint log-likelihood of the low-sampling-rate position and the high-sampling-
rate acceleration for user matching. Secondly, we can fuse the Kinect position and the accel-
eration measured by mobile inertial sensors for position prediction with the GP prior model.
The sensor fusion helps increase the stability of the skeleton joint position and reduce the lag.
Responsiveness is a critical factor for a real-time interaction system (Wachs et al., 2011). The
sensor fusion helps improve the position tracking and reduce the overall lag of the system,
improving the usability of the system.

Probabilistic Approach

In order to explore the complementary properties of the Kinect sensor and mobile inertial
sensors, we need a sensor fusion approach. In multisensor data fusion area, Hall & Llinas
(1997) proposed a data fusion process model, which uses a variety of data processing lev-
els to extract data from sources, and provides information for Human-Computer Interaction
(HCI). The first level processing combines multisensor data to determine the position, veloc-
ity, attributes, and identity of individual objects or entities (Hall & Llinas, 1997). To apply
this concept for human motion tracking and analysis in human-computer interaction area,
the human body tracking and the identity of the user are two important aspects that we need
to deal with using multisensor data fusion approaches. The researchers in robotics and HCI
area prefer Bayesian probabilistic approaches, among which the Kalman filters (KF), Hidden
Markov Models, Dynamic Bayesian Network and particle filters are popular methods.
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In order to fuse the Kinect sensor and the inertial sensors for state estimation, we need
dynamical system modelling techniques. Bayesian filtering is a general framework for re-
cursively estimating the state of a dynamic system (Ko & Fox, 2009). The basic idea of
Bayesian filtering is that we estimate the state of the system with probabilistic models, in-
cluding the state transition model and the observation model. For instance, the Kalman filter
and its variants (EKF and UKF) have been widely used for filtering and sensor fusion (Welch
& Bishop, 1995, 1997).

Although Bayesian parametric filters, e.g. the Kalman filter, are efficient, the data flexibil-
ity and the predictive capabilities are limited (Ko et al., 2007). In recent years, Bayesian
nonparametric models have become popular. Gaussian Process (GP) priors are examples
of nonparametric models and have been applied for classification and regression problems,
such as robotics and human motion analysis (Wang et al., 2008; Ko & Fox, 2009).

Considering the complementary properties, the different sampling rates and different noise
characteristics of the Kinect sensor and mobile inertial sensors, we present a novel and im-
proved Gaussian Process prior model that provides a principled mechanism for incorporat-
ing the low-sampling-rate position measurements and the high-sampling-rate derivatives in
multi-rate sensor fusion, which takes account of the uncertainty of each sensor type. We
chose a Gaussian Process (GP) prior model-based sensor fusion approach as this model sat-
isfies the requirements for (1) user matching and identification (2) position stabilisation and
lag reduction in a location-aware sensing application. The proposed GP prior model has two
beneficial aspects that correspond with the two applications. On one hand, the model can
be applied for computing the joint log-likelihoods of matching a particular user’s skeleton
with multiple time-series of acceleration signals sensed by the mobile devices. The highest
log-likelihood indicates the best match of a user and a device. On the other hand, we can
fuse the low-sampling-rate positions sensed by the Kinect and the higher frequency acceler-
ations measured by the mobile devices with the proposed GP prior model for improving the
skeleton joint position estimation. This satisfies our second requirement.

1.3 Thesis Aims and Contributions

This research aims to present a multi-rate sensor fusion system for (1) user matching and
identification and (2) position stabilisation and lag reduction in a spatially aware display
application. The approach we adopt is to apply a Gaussian Process (GP) prior model-based
sensor fusion approach to fusing the Microsoft Kinect sensor and the built-in inertial sensors
in a mobile device.

The main contributions of this research include:
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1. We describe the use of transformations of Gaussian Process (GP) priors to improve
the context sensing capability of a system composed of a Kinect sensor and mobile
inertial sensors. We propose a variation of a Gaussian Process prior model (a type
of Bayesian nonparametric model) (Rasmussen & Williams, 2005) that provides a
principled mechanism for incorporating the low-sampling-rate position measurements
and the high-sampling-rate derivatives in multi-rate sensor fusion, which takes account
of the uncertainty of each sensor type. This is of great benefit for implementing a
multi-rate sensor fusion system for novel interaction techniques.

This will be presented in Chapter 4 The Sensor Fusion System.

2. We propose the use of Gaussian Processes prior model-based sensor fusion approach
for user matching and identification. We apply the GP model to identify individ-
ual users, by matching the observed Kinect skeletons with the sensed inertial data
from their mobile devices using the GP prior model-based sensor fusion algorithm.
We apply the proposed GP model for calculating the joint log-likelihood of the low-
sampling-rate sensor measurements and the high-sampling-rate derivatives. This is
beneficial for associating the motion sensed by the measurement sensor (e.g. a posi-
tion sensor) with the motion sensed by the derivative sensor (e.g. a velocity sensor or
an acceleration sensor).

This will be introduced in Chapter 5 Transformations of Gaussian Process Priors for
User Matching.

3. The novel and improved GP prior model-based sensor fusion helps stabilise the skele-
ton joint position, and reduce the lag of the system, thus improve the usability of an
interaction system composed of a position sensing device (Kinect) and the mobile in-
ertial sensors in a spatially aware display application.

This will be described in Chapter 6 Experiment – User Performance Improvement in
Sensor Fusion System

4. Coordinate system transformation. We propose a method for converting the coordi-
nates from the body frame to the Kinect frame. Experimental results in section 3.4.2
show that the hand accelerations estimated with the Kinect sensor and the inertial
sensors are comparable. In this way, the high-sampling-rate movement acceleration
estimated with the mobile inertial sensors can be used to augment the noisy, low-
sampling-rate Kinect position measurements.

This will be introduced in Chapter 3 Sensor Fusion with Multi-rate Sensors-based
Kalman Filter.

5. Fusing the low-sampling-rate position measurements sensed by the Kinect sensor and
the high-sampling-rate accelerations measured by the mobile inertial sensors with a
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multi-rate sensors-based Kalman filter. The sensor fusion helps improve the accuracy
of the system state estimation, including the position, the velocity and the acceleration.

This will be introduced in Chapter 3 Sensor Fusion with Multi-rate Sensors-based
Kalman Filter.

1.4 Thesis Outline

The remainder of the thesis is organised as follows:

Chapter 2 Context-Aware Sensing and Multisensor Data Fusion

This chapter presents a literature review. We introduce the context-aware sensing systems,
the indoor positioning technologies that can be used for human motion tracking. We discuss
the Kinect sensor and the inertial sensing of human movement, and describe the multisensor
data fusion and the Gaussian Process framework for sensor fusion.

Chapter 3 Sensor Fusion with Multi-rate Sensors-based Kalman filter

In this chapter, we present a coordinate system transformation method for converting the
acceleration estimated with inertial sensors from the body frame to the Kinect coordinate
system, and design a multi-rate sensors-based Kalman filter for fusing the low-sampling-rate
positions and the high-sampling-rate accelerations.

Chapter 4 The Sensor Fusion system

This chapter presents the novel GP prior model-based sensor fusion system composed of
a Kinect sensor and mobile inertial sensors. We give a detailed description of the GP prior
model-based sensor fusion approach and apply it for fusing the Kinect sensor and the built-in
inertial sensors in a mobile device.

Chapter 5 Transformations of Gaussian Process Priors for User Matching

This chapter presents the first application of the proposed sensor fusion system. In this
chapter, we apply the novel and improved GP prior model for user matching application.
We conducted three experiments and investigated the performance of the proposed GP prior
model in these situations: (1) subtle hand movement (2) with a mobile device in the user’s
trouser pocket (3) walking with a mobile device held in the hand. We compared our work
with the state-of-the-art work presented in the literature and demonstrated that our method
achieves successful matches in all 3 contexts, including when there are only subtle hand
movements, where the direct acceleration comparison method fails to find a match.

Chapter 6 Experiment – User Performance Improvement in Sensor Fusion System
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This chapter presents a user study on the sensor fusion system in a spatially aware display
application, where the user performed the trajectory-based target acquisition tasks. Experi-
mental results show that the improved accuracy of target selection, and reduced delay from
the sensor fusion system, compared to the filtered system means that users can acquire the
target more rapidly, and with fewer errors. They also reported improved performance in
subjective questions.

Chapter 7 Conclusions drawn from the thesis, and discussions of the benefits of the proposed
sensor fusion system. We propose a coordinate system transformation method to estimate the
skeleton joint acceleration in the Kinect frame, and use a multi-rate sensors-based Kalman
filter approach to fusing the Kinect and mobile inertial sensors. We design a novel and
improved GP prior model-based sensor fusion approach for user matching and identification,
and position stabilisation and lag reduction.
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Chapter 2

Context-Aware Sensing and
Multisensor Data Fusion

In this chapter, we present a brief survey on the context-aware sensing and multisensor data
fusion. We highlight the importance of identification of people and their positions in an
indoor environment. Following this, we introduce the context-aware systems dealing with
location information, i.e. the location-aware sensing applications. We discuss the challenges,
including the position uncertainty and the lag problem, and emphasize the importance of
accurate position tracking and fast system response. Following this, we present the position
sensing technologies. After that, we give an introduction to mobile interaction in space.
As the indoor human motion tracking plays a key role in a proxemic interaction system,
we discuss the human motion tracking techniques. We focus on the inertial sensing and
the Kinect skeleton tracking, the fusion of which will run through the thesis. After this,
we give a brief introduction of the multisensor data fusion and its applications. Following
this, we discuss the probabilistic approaches for sensor fusion. We introduce the Bayesian
filters, including the Kalman filter and its variants. Moreover, the Gaussian Processes (GPs)
framework is described. We emphasize the benefits of GPs, including the GP log-likelihood
and the GP prediction.

2.1 Context-Aware Sensing

Context-aware sensing plays a key role in Ubiquitous Computing (UbiComp), where in-
formation processing has been thoroughly integrated into everyday objects, activities, and
computing is everywhere. The applications in UbiComp are based on the context, which can
include a person’s location, goals, resources, activity and state of people, and nearby people
and objects (Salber et al., 1999; Krumm, 2009).
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Context is very important in sensing-based interactions and interest in context-aware com-
puting is high (Abowd et al., 2002). Context plays a crucial role in understanding of human
behavioural signals, since they are easily misinterpreted if the information about the situ-
ation in which the shown behavioural cues have been displayed is not taken into account
(Pantic & Rothkrantz, 2003). In (Dey, 2001), context was defined as any information that
can be used to characterise the situation related to the interaction between users, applications
and the surrounding environments. Dey et al. (2001) introduced four essential categories
of context information, including identity, location, status (or activity) and time. Context is
often inferred with sensors (Fraden, 2004), which include wearable sensors and environment
sensors. Micromachined sensors such as accelerometers and gyroscopes are small enough to
be attached to human body, and have thus been widely used for measuring human movement
(Luinge, 2002). Context inferencing is the act of making sense of the data from sensors and
other sources, to determine or infer the user’s situation (Krumm, 2009). For example, to
determine who the user is, or what he is doing. Based on this information, the appropriate
action could be taken by the system.

The sensor-based and context-aware interaction system could use the information gathered
from sensors and adjust to a user’s behaviour. In a location-aware sensing application, e.g.
a digital book library application (Norrie et al., 2013), the system could detect the user’s
location in a room and enable the user to browse the virtual information, i.e. the different
digital books embedded in the physical space.

In context-aware computing, human-computer interaction is more implicit than ordinary in-
terface use (Dix, 2004). Schmidt (2000) proposed that implicit human-computer interaction
is an action, performed by the user that is not primarily aimed to interact with a system but
which the system understands and takes as input. Thus, implicit interactions are based not on
explicit action by the user, but more commonly on the user’s existing patterns of behaviour.
For example, the user identification in smart home (Kadouche et al., 2010). Vogel & Bal-
akrishnan (2004) proposed an interaction framework for ambient displays that support the
transition from implicit to explicit interaction by identifying individual users through regis-
tered marker sets, and argued the need for marker-free tracking system and user identification
technique. The concept of implicit and explicit interaction has been regulated by proxemics
in proxemic interaction (Ballendat et al., 2010).

In context-aware computing, an important type of interaction system is the proxemic inter-
action system. As discussed in section 1.1, Greenberg et al. proposed that proxemic interac-

tions relate people to devices, devices to devices, and also relate the objects in the room-sized
environment to people and devices (Ballendat et al., 2010). Knowledge of the identity of a
person, or a device is critical in proxemic-aware applications (Ballendat et al., 2010).

The user identification is beneficial for service personalization, e.g. how the system responds
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to that particular user. The context-aware applications are built to facilitate people’s usage.
In order to make computer technology more usable by people, we need to build a system that
can understand who the user is, who interacts with it (Jaimes & Sebe, 2007). In this way,
the system can provide personalized services or make personalized recommendations to the
user. For example, in a family environment, the system can help family members personalize
their own TV programs and multimedia services.

Another essential part of proxemic interaction is indoor position tracking. Ballendat et al.
(2010) proposed that the tracking system should return the four dimensions in order to de-
termine the basic proxemic relationships between entities, including position, orientation,
movement and identity.

Therefore, identification of people and their positions in a room-sized environment plays a
key role in a proxemic interaction system. Identifying the user implicitly and tracking the
user for location-aware sensing applications in an indoor environment are the crucial parts
of context sensing in context-aware applications.

2.1.1 Location-Aware Sensing

Context-aware systems dealing with location information, i.e. location-aware sensing sys-
tems, have widespread applications, e.g. mobile tour guides (Salber et al., 1999), augmented
reality (Azuma et al., 2001), mobile spatial interaction (Strachan & Murray-Smith, 2009) and
spatially aware display (Fitzmaurice, 1993). Hightower & Borriello (2001) presented a sur-
vey of the basic techniques used for location-sensing and described a taxonomy of location
systems for ubiquitous computing. The rapidly developing sensing techniques and pervasive
computing applications provide people access to information everywhere and anywhere.

Mobile devices equipped with GPS, digital camera and multiple sensors are becoming ubiq-
uitous, enabling researchers in HCI to explore the use of mobile devices to access and aug-
ment information related to the user’s surroundings. The combination of GPS and mobile
devices can be used for outdoor applications, e.g. navigation (Robinson et al., 2012) and
bearing-based target selection (Strachan & Murray-Smith, 2009).

In this thesis, our work focuses on indoor position sensing. In particular, we study the human
skeleton joints position tracking and the indoor joint location-aware applications. We explore
the use of mobile inertial sensors to improve the Kinect skeleton tracking. Now we give a
brief introduction to the location-aware sensing applications.
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Location-Aware Sensing Applications

Nowadays, augmented reality (AR) is a popular location-aware sensing application, espe-
cially the mobile AR. Augmented reality (AR) supplements the real world with computer
generated graphics to create a seamless environment for enhancing a user’s interaction with
the real world (Azuma et al., 1997, 2001). With the development of advanced sensors and
powerful computing devices, the mobile phone is becoming a tool for accessing ubiquitous
information. For instance, a mobile device can be used as a handheld display for mobile
augmented reality system, which exploits the person’s surrounding context and provides a
powerful user interface to context-aware computing environments (Höllerer & Feiner, 2004).

Mobile spatial interaction is an emerging field in location-aware applications (Fröhlich et al.,
2007; Strachan & Murray-Smith, 2009). The three main categories of mobile spatial interac-
tion include orientation and wayfinding, access and creation of spatial data and augmented
reality (Froehlich et al., 2008). Strachan et al. (2007) proposed BodySpace, where positions
on the body were assigned to specific functions. Virtual Shelves (Li et al., 2009) allowed a
user to trigger programmable shortcuts by orienting a spatially-aware mobile device within
the circular hemisphere in front of the user.

Spatially aware displays provide access to more information by mapping the physical move-
ment of the device to the movement in virtual space. In this way, the screen of the handheld
device is like a window, through which the user can see the virtual information stored in the
physical space. Fitzmaurice proposed this idea in (Fitzmaurice, 1993). In such a spatially
aware display application, people would browse and interact with electronic information
within the context with a small, portable, high-fidelity display and spatially aware palmtop
computer, which could act as a window onto the 3D-situated information space. This kind
of spatially aware display application allows the user to access, modify and interact with the
information in a matter of seconds.

Challenges

A central problem in mobile augmented reality (AR) and other location-aware computing
applications is location sensing. For outdoor applications, GPS is a popular location sens-
ing technique. In this thesis, the location sensing refers to the indoor position tracking. In
particular, we study the human skeleton joints position tracking. For any location-aware
system, position uncertainty and inaccuracy is critical to the effective use and acceptance
of the system (Strachan & Murray-Smith, 2009; Azuma et al., 1997). For example, in an
augmented reality application, accurately tracking the user’s position is crucial for AR reg-
istration. Accurate registration and positioning of virtual objects in the real environment
requires accurate position tracking (Azuma et al., 1997). However, the static and dynamic
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errors exist and seriously influence the user’s interaction and experience in an AR system
(Azuma et al., 1997).

Besides the position uncertainty, another key problem in location-aware sensing applications
is the latency. For instance, the temporal mismatch of real and virtual view in AR will cause
problems due to the system delay, which is often the largest source of registration errors in
AR systems (Azuma et al., 2001).

Therefore, accurate position tracking and fast system response play key roles in augmented
reality (AR) and other location-aware sensing applications. For indoor location-aware sens-
ing applications, we need position sensors and tracking devices. Although advanced position
sensing devices are being developed and used for tracking, uncertainty always exists. In or-
der to improve the accuracy of the position tracking and reduce the lag of the system, we
need additional sensors to augment the position tracking device.

We need multisensor data fusion techniques to fuse the data from different sources. Differ-
ent sensors often have different sampling rates and different noise characteristics. A major
challenge in determining the location is to make sense of a large amount of sensor data.
The sensor fusion techniques provide support for location-aware applications (Hazas et al.,
2004). Two important issues in sensor fusion are uncertainty and lag.

Uncertainty Uncertainty is a well-known topic in robotics and human-computer interac-
tion (HCI) area. Sensors have limited perceiving capabilities and are subject to noise, which
perturbs sensor measurements. Uncertainty should be handled appropriately for robust in-
teraction in the human-computer interaction area (Strachan & Murray-Smith, 2009; Schssel
et al., 2013).

The Microsoft Kinect is a motion sensing input device, which provides 3D human body
tracking that enables whole-body input (Shotton et al., 2013). It contains a RGB camera,
3D depth sensors and multi-array microphones. It is low-cost, portable and has enabled
new styles of human-computer interaction. The Kinect has attracted much interest since its
release. In 2010, Microsoft released the Kinect as a gaming platform. Researchers in HCI
started to use it for Natural User Interface (NUI) and have explored the use of the Kinect
sensor for novel interaction applications, e.g. dancing evaluation (Alexiadis et al., 2011),
sports science and physical rehabilitation (Chang et al., 2011; Velloso et al., 2013), and
convenience improvement for everyday life (Panger, 2012; Oh et al., 2012). In addition to
putting the Kinect in a fixed location in a room, the researchers also used the Kinect as a
wearable device for hand gesture recognition. Bailly et al. (2012) developed the ShoeSense
system, a wearable system that used the Kinect as a depth sensor and aimed to recognize
relaxed and discreet as well as large and demonstrative hand gestures.

For human motion tracking with the Kinect, the position uncertainty is a common problem
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(Casiez et al., 2012). Thus, we need to apply filtering or sensor fusion techniques. How-
ever, filtering will induce lag, which reduces the system responsiveness (Casiez et al., 2012),
potentially causing lower satisfaction and poor productivity among users (Shneiderman &
Plaisant, 2005). For instance, in Virtual Reality (VR), a high latency can induce motion
sickness and unpleasant user experience (Preece et al., 1994; Conner & Holden, 1997).

The inertial sensors equipped in a mobile device can be used to compensate for the position
uncertainty. In recent years, inertial sensors have become ubiquitous and have been equipped
in consumer devices, e.g. smartphones and tablets. The inertial sensors have been widely
used in inertial navigation systems. However, drift happens for position estimation with
inertial sensors by double-integrating acceleration. The additional position sensing device
can be used to compensate for the effect of drift that the inertial sensors suffer from in an
inertial navigation system. In this work, we focus on using the built-in inertial sensors in a
mobile device to estimate the acceleration, which can augment the noisy, low-sampling-rate
position measurements sensed by the Kinect.

Uncertainty in interaction arises for many reasons, including the inherent limitations of a par-
ticular model of the world, the noise in sensor measurements and perceptual limitations of
the sensors , and the approximate nature of many algorithmic solutions (Thrun et al., 2005).
In (Strachan & Murray-Smith, 2009), uncertainty was divided into two main categories in-
cluding sensor sources and human sources. For handheld display applications, hand tremor
will also induce uncertainty.

The uncertainty needs to be handled appropriately in multisensor data fusion. Due to the
complexity of human motion and the difficulty of efficiently fusing information from differ-
ent sensors, human motion analysis based on sensor data is challenging.

Lag The lag, which is the delay between input action and output response, can be attributed
to properties of input devices, software and output devices (MacKenzie & Ware, 1993). In
this thesis, the lag refers to the delay lag. The lag, latency and delay are used interchangeably.
Latency is the end-to-end measure of the time elapsed between the moment a physical action
is performed by the user, versus the moment the system responds to it with feedback that the
user can perceive (Hinckley & Wigdor, 2002). Source of latency may include the hardware
sampling rate; the time it takes to report samples to the operating system as well as report
events to applications; the processing time required by software; the time to refresh the frame
buffer; and the physical screen refresh rate.

The lag reduces the system responsiveness. The system response time is a topic of interest
in computer science (Dabrowski & Munson, 2011). The general conclusion is that faster
is better. For human motion sensing device, there are delays between the user’s input and
the output of the computer system, e.g. the Kinect. It is well-known that users dislike delay,
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which may cause dissatisfaction and frustration. The user will not get a good user experience
when computer systems do not response quickly enough to their input.

Delays in computer systems have a great impact on a user’s performance, e.g. the user’s
accuracy and error rates, and the performance (Dabrowski & Munson, 2011). The delay may
lead directly to decrease in satisfaction with computer systems and increase in frustration,
annoyance and irritation with the system.

Lag is inevitable and is a problem for all interactive systems. For instance, the system delay
is often the largest source of registration errors in augmented reality (AR) systems (Azuma
et al., 2001). The lag is negligible in some traditional computing systems, e.g. text entry
or cursor movement. With the development of sensor techniques and computing devices,
smartphones and tablets are augmented with accelerometers, gyroscopes and other sensors,
which allow novel styles of interaction. Although the Microsoft Kinect (version 1) has many
advantages, e.g. low-cost and portable, it still has some fundamental limitations with the
latency (0.1s) and frame rate (30Hz) (Azimi, 2012; Livingston et al., 2012).

To reduce the position uncertainty and minimize the lag with a filter in the Kinect system is
challenging. However, with additional, aiding sensors sampled at higher rates, e.g. inertial
sensors, we can improve the usability of the system by increasing the stability of the position
and reducing the overall lag of the system.

2.1.2 Positioning Technologies

A key issue in location-aware sensing applications is position tracking. For outdoor appli-
cations, Global Positioning System (GPS) is a well-known outdoor positioning technique,
but usually not suited for indoor positioning. GPS technology has been widely used for
providing location information for the navigation system. However, these applications are
limited to outdoor conditions. Reliable positioning of a user in a room plays a key role in
indoor location-aware applications. In this thesis, the Microsoft Kinect is used for indoor
positioning tracking, which will be introduced in section 2.2.2.

Indoor Positioning

The positioning systems have two main application areas including the outdoor and indoor
applications. In this thesis, we focus on indoor position tracking and location-aware sens-
ing applications. The indoor positioning techniques include the InfraRed (IR) radiation,
Radio-Frequency IDentification (RFID), ultrasound and ultra-wideband radio, Wireless LAN
(WLAN), mobile cellular network and computer vision techniques (Liu et al., 2007; Wood-
man & Harle, 2008). For indoor mobile interactions, the conventional position tracking
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technologies require instrumented environment, e.g. markers and expensive cameras fixed
in a room. An alternative option is to use an inertial navigation system.

Inertial Navigation

Navigation is essentially about travel and finding the way from one place to another (Titterton
et al., 2004). Inertial navigation has a wide range of applications, including the military
applications, e.g. the navigation of aircraft, missiles and ships, and the civilian applications,
e.g. the pedestrian tracking (Foxlin, 2005).

Inertial navigation is the process of determining the position and orientation of an object
relative to a known starting point using the measurements provided by accelerometers and
gyroscopes (Titterton et al., 2004). By combining the two sets of measurements, it is possible
to define the translational motion of the vehicle within the inertial reference frame and to
calculate its position within it. The inertial sensors are mounted rigidly onto the device in a
strapdown system.

The Inertial Measurement Unit (IMU) is typically composed of 3−axis gyroscopes and
3−axis accelerometers, sometimes also 3−axis magnetometers. The 3-axis accelerometer
measures the acceleration of the body, and the 3-axis gyroscope measures the changing rate
of the body’s orientation. The linear velocity, position, and angular position can be obtained
by integration. This is the principle behind inertial navigation system (INS), which is widely
used in aerospace and naval applications (Corke et al., 2007). By integrating these sensor
data, it is possible to track the position, the velocity, the acceleration and the orientation of a
device. The availability of accurate knowledge of vehicle position at the start of navigation is
a pre-requirement for the inertial navigation systems. An Inertial Navigation System (INS)
employs these sensors to calculate the state (position, velocity and orientation) of the moving
object without the need for external references.

Orientation estimation plays a key role in inertial navigation. In order to compute the changes
of position, velocity and acceleration in a real-world coordinate system, we need orientation
information to convert the coordinates from one frame to another. The popular ways of rep-
resenting orientation include direct cosine matrix, Euler angles (Roll, Pitch and Yaw) and
quaternion (Titterton et al., 2004). In order to determine a complete orientation with re-
spect to Earth frame, we need magnetometers. The Attitude and Heading Reference System
(AHRS) fuses the accelerometer data, gyroscope data and magnetometer data to provide the
object’s orientation including the attitude (Roll and Pitch) and azimuth information (Madg-
wick et al., 2011).

Inertial Sensors Accelerometers and gyroscopes are known as inertial sensors since they
exploit the properties of inertia, i.e. resistance to a change in momentum. The accelerometer
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senses changes in linear motion and the gyroscope senses the angular motion (Corke et al.,
2007). Now we introduce the accelerometer, the gyroscope and the magnetometer.

Accelerometer Accelerometers have a wide range of applications, e.g. in inertial naviga-
tion systems, automotive industry and consumer devices (Wilson, 2007). The accelerometers
are widely used in automotive air bag systems. The smartphones and tablets equipped with
accelerometers can facilitate and enhance a user’s interaction through automatically rotating
the phone screen to the landscape or portrait mode (Tuck, 2007). Moreover, the built-in hard
disks in laptops are usually equipped with accelerometers to detect the external force and
protect the disks. These are all example applications in our everyday lives.

The accelerometer measures the total external specific force acting on the sensor. This force
includes the movement force plus a force due to the earth’s gravitational field. Thus, the
accelerometer measures the acceleration due to motion, i.e. the linear acceleration, plus the
acceleration due to gravity. In an inertial navigation system, the accelerometer is combined
with the gyroscope to provide position changes and orientation information.

Gyroscope The gyroscope is also called an angular rate sensor, which measures angular
velocities resolved in the body frame. Gyroscopes have been used in stabilizing handheld
cameras and in the Gyromouse product (Wilson, 2007). A gyroscopic mouse uses a gyro-
scope to sense the movement of the mouse as it moves through the air.

Magnetometer The magnetometer detects the strength of the earth’s magnetic field. It is
useful for determining the absolute orientation of an object. The fusion of the magnetometer
and the accelerometer can provide pose information. In an AHRS system, the magnetometer
is used to compute the azimuth (compass heading) information.

Fusion of Inertial Sensors and Aiding Positioning System One disadvantage of
inertial navigation systems is drift error. The drift due to the bias and errors is a common
problem for inertial sensors. The errors in the accelerometers propagate through the double
integration and the errors in the gyroscopes also cause drift.

One way to overcome the shortcoming of inertial navigation, i.e. the drift problem, is to use
an aiding position sensing system, which can provide absolute position data. For example,
the GPS data can be fused with an INS in outdoor applications. However, the fusion with
GPS is unsuitable for indoor applications. The fusion of inertial sensors and visual sensors
has been investigated and this will be introduced in section 2.2.2.
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2.1.3 Spatial Interaction

Recent progress in sensor technology and computing devices has introduced novel and nat-
ural styles of human-computer interaction. The technology embedded in a modern smart-
phone enables the user to interact with the surroundings and acquire the context information.
Moreover, the Microsoft Kinect, which is a motion sensing input device that can be used
for skeleton tracking, has received interest in HCI. It can be used as a hand tracking sys-
tem, which can be combined with a mobile device for augmented reality (AR) and other
location-aware sensing applications. Hand tracking systems have been widely used in HCI,
e.g. virtual reality and athletic performance measurement (Rehg & Kanade, 1994).

Situating Interaction in Space

The researchers in HCI have much interest in situating interactions in space in order to over-
come the limitations of screen size display. The interaction space of a mobile device is not
limited to the touchscreen. It can be expanded beyond the physical boundary of the device
to the 3D space around the device through aiding sensors.

One type of the expanded interactions is the around-device interaction (Kratz & Rohs, 2009a;
Kratz et al., 2012a). The mobile devices with proximity sensors or augmented with a depth
sensor enables them to sense the proximity space. Kratz & Rohs (2009a) presented an
around-device interaction interface that allowed mobile devices to track coarse hand ges-
tures performed above the device’s screen by using infrared proximity sensors to track the
hand. Kratz et al. (2012a) proposed PalmSpace, the 3D space by the reach of the user’s arm
and around the device that allowed manipulating 3D virtual objects via hand gestures. This
style of mobile interaction increased the number of degrees of freedom and alleviated the
limitations of touch interaction with mobile devices through mid-air gestures in proximity
of the device. The interaction space was further expanded in later work. Bailly et al. (2012)
proposed ShoeSense, a wearable system that used a Kinect as a shoe-mounted depth sensor
pointing upward at the wearer to sense gesture input.

Besides the around-device interaction, the interactions can be situated on the body or around
the body. We discussed BodySpace (Strachan et al., 2007) and Virtual Shelves (Li et al.,
2009) in section 2.1.1. A body-centric design space that reflects how different body parts en-
hance or restrict movement within particular interaction techniques was proposed in (Wagner
et al., 2013). Kratz et al. (2012b) proposed Attjector, an attention following wearable micro-
projector, which can be put on the user’s shoulder. It is a Kinect-based prototype of the
wearable and steerable projector system composed of a Kinect sensor and inertial sensors.
The Kinect sensor is used to track the hand position. Meanwhile, the mobile inertial sensors,
including an accelerometer and a gyroscope, are fused to maintain level orientation. The
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combination of these sensors provides a stabilized mobile projector that allows the projected
image to follow the user’s locus of attention. This system can be used for peephole pointing
applications in a Kinect-augmented environment.

The interaction space can be further expanded to include 3D space beyond the reach of the
user’s arm. Exploring the use of a handheld device to provide enhanced interaction and
information in space has been thoroughly researched in the literature, such as spatially aware
display (Fitzmaurice, 1993) and mobile augmented reality (Höllerer & Feiner, 2004). As a
handheld device has a limited display size, it is beneficial to improve a user’s information
navigation with a handheld device.

Spatially aware displays allow the user to access the virtual information embedded in a phys-
ical environment through a window, such as a handheld display. Spatially aware handheld
devices can serve as bridges between the real and virtual information space (Fröhlich et al.,
2007). For outdoor augmented reality applications, a spatially aware display application can
serve as a window to the virtual information, augmenting the user’s interaction with the real
world, e.g. a place of interest (Froehlich et al., 2008). A mobile context-aware tour guide for
indoor and outdoor applications was proposed in (Abowd et al., 1997). Peephole displays
(Yee, 2003) show a movable window on the large 2D virtual space and augment the physical
space around a user with digital information. Dynamic and static peephole navigation on
handheld displays were compared in (Mehra et al., 2006). Olwal & Feiner (2009) proposed
a method for using a tracked mobile device for direct interaction on large digital displays.
Magic lens, which acts as a see-through tool, is a type of mobile augmented reality applica-
tions, which improve a user’s information navigation (Bier et al., 1993; Rohs & Oulasvirta,
2008).

Peephole interaction allows users to treat their handheld devices as a window (peephole) into
a larger information space. In order to display a larger virtual information space on a small
screen interface, Rohs & Essl (2006) investigated and compared information navigation tech-
niques, including pan, halo, zoom, and halo & zoom for small-screen interfaces in spatially
aware handheld display applications. In recent years, peephole pointing has been studied in
the literature (Cao & Balakrishnan, 2006; Cao et al., 2008; Kaufmann & Ahlström, 2012).
Cao & Balakrishnan (2006) explored the dynamically defined information spaces using a
handheld projector and a pen. Kaufmann & Ahlström (2012) presented a study of target
acquisition with a handheld projector in a peephole pointing application, and studied spatial
memory and map navigation performance on projector phones with peephole interaction.

Mobile augmented reality becomes increasingly feasible and popular nowadays because of
the mobile devices, which grow in power, capabilities and features (de Sá & Churchill, 2012).
Mobile augmented reality integrates virtual information into a person’s surrounding environ-
ment without constraining a person’s whereabouts to a specially equipped area (Höllerer &
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Feiner, 2004). Mobile handheld devices are popular displays that present the information in
physical space to the user. Nowadays, the smartphones equipped with multiple sensors (e.g.
camera and inertial sensors) can be combined with location positioning service, enabling the
user to gain easy access to the information about their surroundings.

The Kinect-based spatial interaction has received some recent interest in HCI. The Kinect has
an interaction space, which is the area that is located in the Kinect field of view. The Kinect-
based spatially aware display application explores the use of a handheld mobile device for
situated interaction in this space.

2.2 Human Motion Capture and Analysis

Automatic motion capture and analysis is an active research area and has a variety of applica-
tions. Moeslund et al. (2006) roughly grouped these applications to three categories, includ-
ing surveillance, control and analysis. In control applications, the human motion estimation
is to enable the user to control something, e.g. mobile augmented reality in human-computer
interaction (HCI).

Interest in human motion goes back very far in human history, and human motion capture
and analysis have been developing and have widespread applications. The inherent curiosity,
needs and methods motivate humans to explore and understand (Klette & Tee, 2008). Human
motion capture goes back to at least nineteen century (Moeslund & Granum, 2001). Human
motion analysis plays an important role in many fields, such as athletic performance analysis,
video surveillance, video conferencing and human-computer interaction (Aggarwal & Cai,
1997).

The human motion analysis has attracted much interest and the standard functional taxon-
omy for human motion analysis has been established. In (Moeslund & Granum, 2001) and
(Moeslund et al., 2006), the human motion analysis includes four parts, including initializa-
tion, tracking, pose estimation and recognition. Human motion recognition is a high level of
analysis. It covers the recognition of individuals’ identities, actions, activities and behaviors
performed by one or more people (Moeslund et al., 2006). Thus, user identification is an
important issue in human motion analysis area.

Human motion analysis is still challenging due to the high dimensionality of human pose data
and the complexity of the motion. Automatic tracking and recognition of human behavior is
a common requirement of potential applications of human motion analysis (Moeslund et al.,
2006).
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2.2.1 Human Motion

Human motion consists of a variety of motion levels. Bobick (1997) used a different taxon-
omy of human motion: movement, activity, action. Movements are atomic primitives, requir-
ing no contextual or sequence knowledge to be recognized. Activity refers to a sequence of
movements or states, where the only real knowledge is the statistics of the sequence. Actions

are larger scale events which typically include interaction with the environment and causal
relations.

Human motion (e.g. body movement, gesture and gaze) plays an important role in HCI. With
the development of advanced sensors and computing devices, the human motion capture
becomes feasible in people’s everyday lives. This could benefit the researchers to develop
novel interaction techniques. In contrast to the traditional input devices, such as the keyboard
and the mouse, the novel sensing devices allow the user to use the hand or the whole body as
the input, e.g. the Kinect sensor. The availability of new inputs and outputs devices provide
us more information about how the user moves. These devices open a rich design space for
HCI researchers to develop novel interaction techniques and applications.

The combination of position tracking and human motion brings us a human motion track-
ing system. In the above section, we discussed the position tracking techniques. Now we
introduce the human motion capture systems.

2.2.2 Human Motion Capture Systems

In order to analyse the human motion, we need the equipment that can be used to capture
human motion. Human motion tracking systems play an important role in sport sciences
(Velloso et al., 2013), film industry and consumer-level motion tracking applications, e.g.
Nike+Kinect Training.

Human motion tracking systems can be divided into two categories: (1) optical motion cap-
ture systems, including marker-based optical motion capture systems and markerless motion
capture systems; (2) non-optical motion capture systems.

Optical Motion Capture Systems

Optical motion capture system uses computer vision techniques for human motion tracking.
(1) The marker-based system uses the markers attached on the body. For example, the image-
based systems use multiple cameras to track the markers on the subject’s body segments.
The infrared (IR) LED is used in reflective systems. The conventional marker-based optical
motion capture systems are expensive and obstructive (Poppe, 2007). (2) The markerless
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systems track human motion using advanced computer vision algorithms without the aid of
markers.

There are some challenges with motion tracking with optical systems. Computer vision-
based tracking systems often suffer from sensitivity to illumination and occlusion problems.
The lighting conditions often influence the tracking results and the tracking reliability.

Commercial tracking technologies have been used for human motion tracking and applica-
tions in the literature. A Vicon motion tracking system was applied for human body location
and orientation tracking in (Vogel & Balakrishnan, 2004). Ballendat et al. (2010) used a Vi-
con infrared camera tracking system to sense a room-sized environment, including people,
objects and digital devices moving around an interactive wall display. However, such a cam-
era tracking system is expensive, and it requires the user to attach markers on the body for
tracking. Ballendat et al. (2010) proposed that proxemic interaction requires cheaper tracking
technology for sensing proximity and orientation. Vogel & Balakrishnan (2004) discussed
the two challenges involved in proxemic interaction design, that is, the marker-free tracking
and user identification techniques.

Non-optical Motion Capture Systems

An alternative to vision-based tracking is sensor-based wearable computing technology. The
use of sensors enables us to capture human behavioral signals including facial expressions,
body gestures, non-linguistic vocalizations, and vocal intonations (Pantic et al., 2007). With
the development of computing devices, such as a mobile device equipped with inertial sen-
sors, a revolution has been happening in sensor and measurement technologies, enabling
measurement devices to be deployed comfortably without encumbering daily activity (Pi-
card, 2010).

The recent progress in sensor technology and computing devices could benefit human mo-
tion analysis and its applications in HCI by providing intuitive human motion data. The
rapid development of micro-machined electromechanical system (MEMS) technology has
led to smaller and cheaper inertial sensors. A lot of wearable sensors and devices are avail-
able on the market. For example, the electronic badges, mobile phones, wrist-mounted
devices, head-mounted devices and electronic textiles (Olguı́n-Olguı́n & Pentland, 2010).
These wearable devices could function as self-contained monitoring devices. For instance,
the built-in inertial sensors in a mobile device can be used in an inertial navigation system to
detect the changes of position and orientation. With a known starting point, the sensors can
detect the location and orientation of a body part. Moreover, these sensors may also com-
municate with each other or radio base stations in a wireless sensor network. The wearable
sensing devices should have a small form factor, be comfortable to wear over long periods
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of time, and have a long battery life. The motion detection sensors may include accelerom-
eters, gyroscopes, magnetometers and inclinometers. With these sensors, we could get a lot
of measurements, such as the body movement detection, the body position and orientation,
body postures (e.g. sitting, standing and lying down) and physical activities (e.g. walking
and running) (Olguı́n-Olguı́n & Pentland, 2010). The wrist-mounted inertial sensors can be
used for forearm and hand gesture recognition (Morganti et al., 2012). The recent develop-
ment in wearable computing has been enabling people’s digital lives. Park et al. (2014) gave
an introduction to the fundamentals of wearables and the recent advancements, and discussed
the future of wearables.

In addition to the wearable sensors, the environment sensors (e.g. temperature, light, sound,
movement and activity), which capture the current conditions in an office environment, can
be placed in fixed locations inside a building in order to detect and track the location of
interaction events and subjects (Olguı́n-Olguı́n & Pentland, 2010).

Inertial Sensing Micro-machined inertial sensors have been widely used for human mo-
tion analysis. The most common approach is to attach multiple inertial sensors on the sub-
ject’s body segments. The complementary inertial sensors are fused to estimate the orienta-
tion and position of each body segment, and provide six Degree-Of-Freedom (DOF) tracking
of the human body.

The use of inertial sensors for human motion tracking is a common practice and has been
studied in the literature (Luinge, 2002; Zhu & Zhou, 2004; Roetenberg, 2006; Roetenberg
et al., 2009). Zhu & Zhou (2004) used tri-axis microelectromechanical inertial sensors and
presented a Kalman-based fusion method to track the orientations and positions of human
body segments. Roetenberg (2006) combined inertial sensors with an optical tracking system
for improving motion tracking performance, and inertial sensors could also be combined with
magnetic sensors for position and orientation tracking. However, due to the drift, the inertial
sensing systems for human body tracking cannot provide accurate and complete positions of
body segments without the extra aiding sensors. The additional position sensing device is
needed for a reliable full body tracking.

Inertial sensing has many advantages for human motion capture. The inertial sensors are
small enough to be attached on the human body. Moreover, the built-in inertial sensors
in consumer devices are becoming ubiquitous, making human motion sensing implicitly
available in people’s everyday lives. The inertial sensors are sampled at a higher rate in
comparison with the Kinect (sampling rate 30Hz). The inertial sensor data are accurate for
analyzing the rapid changing of hand motion, e.g. the hand pose estimation, which cannot be
sensed by the Kinect. Also, inertial sensing has the potential to be sampled more frequently,
leading to much lower lags in comparison with the latency (0.1s) of a Kinect. Moreover,
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the acceleration can be estimated through inertial sensor fusion, which will be described in
section 3.4.

Nowadays, the mobile device equipped with advanced sensors can adjust the sampling rates
of the inertial sensors to maximize the battery life. For example, the sampling rate of inertial
sensors will be high when the phone is moving fast while the sampling rate will be low when
the phone is stationary. The sampling rate of mobile inertial sensors influences the battery
life of the phone. The automatic adjustment of sampling rates increases the usage of the
phone by maximizing the battery life.

Microsoft Kinect Skeleton Tracking Figure 2.1 illustrates that the Kinect skeleton
tracking provides human skeleton joints positions in 3D space.

Figure 2.1: The Microsoft Kinect sensor can be applied for human skeleton tracking, which
provides a stick figure in 3D space.

The Kinect skeleton tracking provides a way of representing the human pose in 3D space.
The stick figure is shown in Figure 2.1. In a skeleton tracking, a human body is represented
by a number of joints representing body parts, such as head, shoulders and hands. The
skeleton tracking gives the 3D coordinates of each joint. By connecting these joints in 3D
space, we get a “stick” figure. The movement of the human body is represented with the
moving joints connected with lines. This is one of the conventional methods used to analyse
the human body. Other methods include 2D contours, or volumetric models (Aggarwal
& Cai, 1997). The human body can be represented at various levels of detail, involving
bounding boxes, stick figures, 2D contours, or 3D volumes, based on the complexity of
model required in an application.

Fusing Position Sensing and Inertial Sensors Previous work on fusing an inertial
navigation system with other systems, such as position sensing systems, is well established
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in traditional navigation applications (Brown et al., 1992).

Sensor fusion, combining position sensor and inertial sensors has been applied in inertial
navigation system (INS) and the motion control of robots (Jeon et al., 2009). For inertial nav-
igation applications, an INS-GPS integration system combines INS measurements with GPS,
providing greater precision than any single system alone (Titterton et al., 2004). For motion
control of robots, the combination of vision sensors and inertial sensors has been investigated
in the literature (Corke et al., 2007; Hol et al., 2007; Armesto et al., 2007; Gemeiner et al.,
2007; Grewal et al., 2007). Corke et al. (2007) gave an introduction to inertial and visual
sensing, where they showed the complementary properties of inertial and vision sensors and
integrated information to provide a robust and non-ambiguous representation of robotic mo-
tion. Hol et al. (2007) proposed a method for estimating the position and orientation (pose)
of a camera by fusing measurements from inertial and vision sensors. Integration of visual
sensing and inertial sensors opens a rich design space for robotics and HCI. The fusion of the
Kinect sensor and inertial sensors enables the HCI researchers to explore the use of mobile
devices for enhanced spatial interaction in a Kinect-augmented environment.

Combination of Microsoft Kinect and Mobile Device The advanced sensing tech-
niques bring novel and natural styles of human-computer interaction. The Kinect has been
used as a popular platform for developing NUI. Besides, the modern smartphones are being
equipped with advanced sensors, which can improve the context sensing capabilities of a
system, e.g. the accelerometer-based user identification, and provide rich feedback informa-
tion through screen display, e.g. the visual feedback in peephole interaction enables the user
to control the device.

In the literature, the combination of the Kinect and other mobile devices has attracted some
recent interest. In (Vera et al., 2011), the Kinect was combined with a Gyroscope and Wi-
iMote for an augmented mirror application. However, each component was used separately
without a sensor fusion algorithm. Rofouei et al. (2012) combined the Kinect and mobile
devices for user matching application. They proposed the ShakeID method, which is a tech-
nique for associating multi-touch interactions with individual users and their mobile devices.
Kratz et al. (2012b) proposed a Kinect-based prototype of a wearable and steerable projector
system composed of a Kinect sensor and inertial sensors. The Kinect was used to track the
user’s hand position and the inertial sensor data were fused to maintain level orientation.
Bailly et al. (2012) proposed the ShoeSense system that can enhance the capabilities of the
mobile device by serving as an input device and providing more degrees of freedom. Norrie
& Murray-Smith (2011) proposed that the Kinect can be combined with a modern mobile
phone to rapidly create digitally augmented environments. In (Norrie et al., 2013), situated
interactions with digital book collections on a smartphone were studied. The prototype uses
the Kinect depth sensor to detect a user’s position and the mobile application allows users to
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browse and organise the digital books.

Although the Kinect sensor and the mobile device can be combined for enhanced interaction,
the Microsoft Kinect, a commercial motion tracking system, is essentially a Black Box to
developers (Ashby, 1957). The user moves in the field of the Kinect’s view and the system
gives the user’s skeleton tracking. Not all of the system is accessible to direct observation.
In order to provide access to more information about the user’s motion, we need additional,
aiding devices and data fusion techniques.

We have discussed the complementary properties of the Kinect sensor and mobile inertial
sensors in section 1.2.2. In order to adapt this Black Box for use in other services, we
explore the use of a mobile device to augment the Kinect sensor. We can develop mobile
interaction applications by fusing multiple sensor data.

For an indoor location-aware sensing application, the system can make use of the sensor data
and provide useful information on the device, such as a smartphone or a tablet, allowing the
user to get access to more information in the Kinect space. The combination of the Kinect
sensor and mobile inertial sensors allows the user to get feedback on their movement with
a mobile device in a Kinect-augmented system. The visual feedback on a phone screen
enables the user to see information on the movement and to control, bringing an enhanced
interaction experience. By providing real-time feedback to the user, the system facilitates the
user’s action when the user wants to explore the digital information space embedded in the
physical environment. This kind of real-time feedback enables the user to better control the
system, to improve the user’s experience in the mobile spatial interaction. The work in this
thesis aims to enhance the user’s interaction through improved sensing accuracy and reduced
delay with a multisensor data fusion approach.

In general, the commercial sensing system in HCI is a Black Box to the developers and the
users. In this thesis, we present a view that this kind of Black Box system can be adapted for
interaction development.

2.2.3 Human Motion Analysis

Human motion analysis requires sensor data processing techniques. The multiple sensors
in a human motion tracking system bring a large amount of data. Although more and more
advanced sensors are being developed, the data acquired from the sensors may be influenced
by several factors, such as environment noise, sensor noise and the limitation of the sensor’s
transducer. Hence, we need data processing techniques.

The sequential sensor data processing techniques can be used to reduce noise and infer con-
text beyond what the sensor actually measures (Krumm, 2009). Mean and median filters,
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the Kalman filter, the particle filter, and the Hidden Markov Model are commonly used tech-
niques for processing sequential sensor data. Among these methods, the mean and median
filters do not have a dynamic model of the measured process. For the Kinect skeleton joint
position tracking, a dynamic model can be applied for state estimation. The state variables of
interest may include those that are not sensed by the sensor. For instance, a Kalman filter can
be used for filtering and prediction. In the meantime, it can be used to estimate the position,
the velocity and the acceleration of the target based only on the position measurements.

Multiple sensors combined with a mathematical model can be viewed as a “virtual sensor”
that gives information about variables of interest, which cannot be observed or measured
directly. The process of reconciling signals from many sensors with mathematical models is
also called sensor fusion (Aström & Murray, 2010).

The sensor data from multiple sources need to be fused using multisensor data fusion method.
The multiple sensors, e.g. the Kinect sensor and the inertial sensors, make human motion
tracking feasible in people’s everyday lives and provide a large amount of data. The fusion of
the Kinect and inertial sensors is a multisensor data fusion problem. Sensor fusion combines
different sensor sources and provides significant advantages over a single sensor source (Hall
& Llinas, 1997). Following this, we introduce the multisensor data fusion techniques.

2.3 Multisensor Data Fusion

2.3.1 Introduction

Multisensor data fusion exists in many areas, e.g. the human and the robot. Humans and
animals have evolved the capability to use multiple senses to improve their ability to survive
(Hall & Llinas, 1997). With the development of advanced sensors and processing techniques,
the researchers in HCI are developing multisensor data fusion approaches for novel styles of
human-computer interaction.

Multisensor data fusion combines data from multiple sensors, and related information from
associated databases, to achieve improved accuracies and more specific inferences than could
be achieved by the use of a single sensor alone (Hall & Llinas, 1997). It requires interdis-
ciplinary knowledge, and techniques to fuse data are drawn from digital signal processing,
statistical estimation and probability, control theory and artificial intelligence (Hall & Llinas,
1997; Luo et al., 2011). It has widespread applications including military applications, e.g.
multitarget tracking (Smith & Singh, 2006), and civilian applications, e.g. robotics (Thrun,
2002; Siciliano & Khatib, 2008).

The role of sensor fusion is to minimize the user’s uncertainty of information (Llinas et al.,
2009). The uncertainty problem in sensor fusion needs to be handled appropriately. Strachan
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& Murray-Smith (2009) proposed that the uncertainty could reduce the usability of a system
if it is not handled properly, and it could also benefit the user’s interaction if the uncertainty
is taken into account. The position uncertainty in a tracking system composed of multiple
sensors needs to be handled with sensor fusion techniques.

Fusion can be adopted in several ways. The sensor data can be combined at the data level,
the feature level and the decision level (Hall & Llinas, 1997). The data level fusion means
that the sensor data can be directly integrated. The feature level fusion extracts and uses
representative features from sensor data for sensor fusion. The decision level fusion fuses the
decision information that each sensor gives, i.e. combines the decision each sensor makes.

Multisensor data could be processed separately and only combined at the end. A better
way is to use different sensors in a complementary way. In Chapter 1, we discussed the
complementary properties of the Kinect sensor and inertial sensors in section 1.2.2. The
sensor fusion process could be considered as an inference problem, and could be dealt with
the probabilistic approaches. Now we give a review of the popular probabilistic approaches
in sensor fusion area.

2.3.2 Probabilistic Approaches

The probabilistic approaches, which represent uncertainty using probability theory, have
been widely used to process sensor data. Probabilistic data fusion methods, e.g. the Kalman
filter and its variants, the Monte Carlo and the Sequential Monte Carlo, are widely used in
robotics. Alternatives to the probabilistic methods include interval calculus, fuzzy logic and
evidential reasoning (Dempster-Shafer theory) (Siciliano & Khatib, 2008). Although many
sensor fusion algorithms exist in the literature, there is no standard and well-established
evaluation framework to assess the performance of data fusion algorithms (Khaleghi et al.,
2011).

Now we give a detailed description on the widely used sensor fusion techniques, i.e. the
Bayesian filters, including the Kalman filter and its variants. Following this, we discuss the
Gaussian Processes framework and emphasize the sensor fusion application.

2.3.3 Bayesian Filters and Sensor Fusion

The Kalman Filter

In a dynamic system, the state of the system cannot be observed directly. We need to infer
the system state based on the measurements sensed by the sensors. The problem is that there
is always uncertainty, which may be due to noise, biases, and device inaccuracies. Different
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sensors may have different sampling rates and different noise characteristics. A Kalman
filter is a technique that has been widely used for fusing all available measurement data, with
prior information about the system and measuring devices, to produce a statistically optimal
estimate of the underlying system state.

The classical Kalman filter was first introduced by Kalman in his famous paper on the
discrete-data linear filtering problem (Kalman et al., 1960). Since then, the Kalman filter has
played an important role in numerous applications, particularly in the area of autonomous or
assisted navigation.

The Kalman filter can be seen as a special case of a Gaussian Process (GP) (Roweis &
Ghahramani, 1999; Leith et al., 2004; Bishop, 2006). However, they differ in the way the
models need to be thought about (i.e. physical state based versus covariance function) that
describing the underlying process (Reece & Roberts, 2010). The Gaussian Process provides
a useful unifying framework which encompasses a variety of popular models (Rasmussen &
Williams, 2005).

The Kalman filter is a technique for filtering and prediction in linear Gaussian systems
(Thrun et al., 2005). It consists of a process model and a measurement model. The process
model, as defined in equation (2.1), describes the transition of the process state, assuming
that the next state is a linear function of the previous state. The measurement model, which
is also linear and defined in equation (2.2), assumes that observations are linear functions of
the state.

xk = Axk−1 +Buk−1 + wk−1 (2.1)

where xk is the system state at time instant k. A is the state transition matrix. Matrix
B relates the optional control input uk to the state and wk represents the process noise.
p(w) ∼ N (0, Q), where Q represents the process noise covariance matrix.

The measurement model is
zk = Hxk + vk, (2.2)

where zk is the measurement at time instant k. H relates the state to the measurement. vk
represents the measurement noise. p(v) ∼ N (0, R), where R represents the measurement
noise covariance matrix. wk and vk are independent Gaussian white noise.

Thus, the Kalman filter estimates the state of a discrete-time system based on the time update
equations and the measurement update equations (Welch & Bishop, 1995). Besides the mean
estimation of system state, Kalman filter also gives the uncertainty of the estimation, which
can be found in the posteriori estimate error covariance Pk, as defined in equation (2.7).

The discrete Kalman filter time update equations include:

x̂−k = Ax̂k−1 +Buk−1 (2.3)
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Pk
− = APk−1A

T +Q (2.4)

and the measurement update equations include:

Kk = Pk
−HT (HPk

−HT +R)−1 (2.5)

x̂k = x̂−k +Kk(zk −Hx̂−k ) (2.6)

Pk = (I −KkH)Pk
−, (2.7)

where Kk is the gain matrix. x̂−k is the priori state estimate at time step k and x̂k is the
posteriori state estimate. Pk− is the priori estimate error covariance and Pk is the posteriori
estimate error covariance.

The Extended Kalman Filter and Unscented Kalman Filter

The classic Kalman filter is a Bayesian technique for linear Gaussian systems. Unfortunately,
the state transitions and the measurement model are rarely linear in practice. In order to solve
the state estimation problem in nonlinear Gaussian systems, we need to apply variants of the
Kalman filter. The Extended Kalman filter (EKF) and the Unscented Kalman filter (UKF)
have been widely used to solve the state estimation problem in nonlinear Gaussian systems
(Thrun et al., 2005).

The Extended Kalman filter (EKF) is a nonlinear version of the Kalman filter that linearizes
about the mean and covariance (Welch & Bishop, 1995). It is probably the most widely used
estimation algorithm for nonlinear systems. However, it is difficult to implement and difficult
to tune (Julier & Uhlmann, 2004). An alternative filter is the Unscented Kalman filter (UKF)
(Julier et al., 1995; Julier & Uhlmann, 2004), which represents a derivative-free alternative
to the EKF and provides superior performance at an equivalent computational complexity
(Wan & Van Der Merwe, 2001).

The key idea underlying the EKF and the UKF is linearization (Thrun et al., 2005). The
difference between EKF and UKF is the linearization method. EKF utilizes the Taylor series
expansion method for linearizing the nonlinear functions while UKF applies the unscented
transform. The UKF performs a stochastic linearization through the use of a weighted sta-
tistical linear regression process.

2.4 Gaussian Processes and Sensor Fusion

The Kalman filter and other variations are all Bayesian parametric filters. However, in many
practical applications, parametric models may be efficient, but they have limited data flexi-
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bility and predictive capabilities (Ko et al., 2007). In recent years, Bayesian nonparametric
models have become popular. Gaussian Process (GP) prior is such a nonparametric model
and has been applied for regression and classification problems (Rasmussen & Williams,
2005).

GPs are flexible nonparametric models that are capable of modelling complex nonlinear
systems. The use of Gaussian Process models for dynamic system modelling has been in-
vestigated in the literature (Williams & Rasmussen, 1996; Kocijan et al., 2005). Kocijan
et al. (2005) described the identification of nonlinear dynamic systems with a Gaussian Pro-
cess (GP) prior model. The idea of Gaussian Process modelling is to place a prior directly
on the space of functions. A Gaussian Process is defined as a set of random variables, any
finite number of which have a joint Gaussian distribution. A GP can be used as a prior
probability distribution over functions in the function space. When we place a prior on the
function space, this prior is taken to represent our prior beliefs. That is, we incorporate
prior knowledge on the latent function. The combination of the prior and the observation
data leads to the posterior distribution over functions. This is the Gaussian Process prior
method (MacKay, 1998; Rasmussen & Williams, 2005). It is an example of a probabilistic
nonparametric model that provides not only the mean prediction, but also the uncertainty
information, which are difficult to evaluate appropriately in nonlinear parametric models.
The Gaussian Process prior method for curve fitting was first introduced in (O’Hagan &
Kingman, 1978). The prediction and regression using GP priors was studied in (Williams,
1998).

Gaussian Processes (GPs) are useful for human motion data analysis. Lawrence (2003) pro-
posed an algorithm called Gaussian Process Latent Variable Model (GP-LVM) for dimen-
sionality reduction. Lawrence & Moore (2007) extended the GP-LVM through hierarchies
and applied the hierarchical GP-LVM to the visualisation of human motion data. Grochow
et al. (2004) proposed an inverse kinematics system based on a Scaled GP-LVM of human
poses. The GP-LVM was applied for human pose estimation in (Ek et al., 2008). Gaussian
Process Dynamical Model (GPDM) (Wang et al., 2008; Urtasun et al., 2006) proved useful
for nonlinear time series analysis, with applications to learning models of human pose and
motion from high-dimensional motion capture data.

2.4.1 Gaussian Processes

Gaussian Processes (GPs) are useful machine learning techniques that have been applied for
regression and classification (Williams & Rasmussen, 1996; Rasmussen & Williams, 2005),
and dimensionality reduction (Lawrence, 2005). Over the last decade, Gaussian Processes
(GPs) have been widely used as non-parametric regression models in a wide range of appli-
cations, e.g. dynamic system identification (Kocijan et al., 2005), model predictive control



2.4. Gaussian Processes and Sensor Fusion 35

(Kocijan et al., 2004), sensor fusion (Murray-Smith & Pearlmutter, 2005) and human motion
analysis (Wang et al., 2008). An overview of recent advances in GPs for nonlinear signal pro-
cessing is presented in (Pérez-Cruz et al., 2013). In our work, we focus on the applications
of Gaussian Process Regression (GPR).

Gaussian Processes for Regression

In a dynamic system composed of multiple sensors, we want to estimate the system state
from the noisy sensor measurements, and also make predictions in order to predict the future
states of the system. Instead of using a specific parametric model for regression, we can
apply a nonparametric method. This is a Gaussian Process regression problem. Consider the
simplest form of a GPR model,

y = f(x) + ε, (2.8)

where ε is a zero-mean Gaussian noise, i.e. ε ∼ N (0, σ2). x is the input, y is the output and
f(x) is the latent function that follows a GP. It can be drawn from a Gaussian Process prior,
as defined in equation (2.9). The GP predicts the mean and the variance at any data-point in
its input space, conditioned on the training data. It can be completely characterized by its
mean function and covariance function.

The Covariance Function

The covariance function plays a key role in GP modelling. It represents the covariance be-
tween each pair of data-points in the input space. In order to model a continuous dynamic
system, we assume that the covariance function is stationary. A stationary covariance func-
tion is a function of x− x′. A covariance function is isotropic if it is a function of |x− x′|.

Assuming a relationship of the form y = f(x) between input x and output y,

Y ∼ N (0,Σ), (2.9)

where Σ is the N × N covariance matrix, the elements of which are functions of inputs X .
Y denote the outputs. Σpq = Cov(yp, yq) = C(xp, xq) gives the covariance between output
points corresponding to input points xp and xq. A common choice is

C(xp, xq) = v0 exp

(
−1

2

D∑
d=1

wd
(
xdp − xdq

)2

)
+ v1, (2.10)

where Θ = [w1, · · · , wD, v0, v1]T are the hyperparameters of the covariance function and D
represents the input dimension.
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The parameters of the covariance function are optimised using standard optimisation algo-
rithms, to maximize the likelihood of the model.

The Gaussian Process Log-Likelihood

In the Bayesian analysis of regression models, we have

posterior =
likelihood× prior

marginal likelihood
. (2.11)

The likelihood is the probability density of the observations given the parameters. The
marginal likelihood is the integral of the likelihood times the prior. Under the Gaussian
Process model,

p(Y |X) =

∫
p(Y |f, X)p(f|X) df, (2.12)

where Y are the noisy outputs. A noisy version of the relationship between the input x and
the output y is y = f(x) + ε, where the additive Gaussian noise ε ∼ N (0, σ2

n).

The log marginal likelihood

logL = −1

2
log
∣∣K + σ2

nI
∣∣ − 1

2
Y T
(
K + σ2

nI
)−1

Y − 1

2
N log 2π, (2.13)

where K = C(X,X), Y represent the observations and Y ∼ N (0, K + σ2
nI).

The Gaussian Process Prediction

One of the main objectives in time series data analysis is prediction. A Gaussian Process
is an example of the use of a flexible, probabilistic, nonparametric model which provides
us not only the mean prediction, but also the uncertainty. Now we introduce the Gaussian
Process prediction. Prediction with Gaussian Processes has many applications. Dynamic
system identification and model predictive control with Gaussian Process models have re-
ceived much interest (Murray-Smith et al., 1999; Girard et al., 2003a,b). GP prior models
provide a probabilistic and non-parametric approach to modelling complex non-linear dy-
namical systems (Kocijan et al., 2005). In comparison with the conventional parametric
models described in the literature, GP prior method has the advantage of being able to pro-
vide not only the mean estimation, but also the uncertainty information, which is in general
difficult to obtain in a parametric model.

Given a set of N training data-points {xi, yi, i = 1, · · · , N}, where X = [x1, · · · , xN ]T is
a D−dimensional vector of inputs. In this work, the time instants are used as the training
inputs, thus D = 1. Y = [y1, · · · , yN ]T is a vector of output data.



2.4. Gaussian Processes and Sensor Fusion 37

The covariance function is of the form

cov(f(xi), f(xj)) = v0 exp

(
−
∑
k

ωk(xi,k − xj,k)2

)
+ σ2

nδij, (2.14)

where {v0, ωk, σ
2
n} are the hyperparameters. v0 represents the signal variance. As D = 1,

k = 1 here. ω1 is related with the length scale and σ2
n represents the noise variance.

Based on the training inputs X , the covariance matrix C can be determined according to
equation (2.14). Given a new input vector x∗, we can find the predictive distribution of the
corresponding output y∗ according to equations (2.15) and 2.16.

µ(x∗) = C(x∗, X)
[
C(X,X) + σ2

nI
]−1

Y (2.15)

σ2(x∗) = C(x∗, x∗)− C(x∗, X)
[
C(X,X) + σ2

nI
]−1

C(X, x∗), (2.16)

where C(x∗, x∗) represents the covariance matrix between the test inputs and themselves.
C(x∗, X) represents the covariance matrix between the test inputs and the training inputs.
C(X,X) represents the covariance matrix between the training inputs and themselves.

2.4.2 Sensor Fusion with Gaussian Processes

Gaussian Processes (GPs) have proved useful and have been widely used for sensor fusion.
In (Solak et al., 2003), Gaussian Processes provide an approach to nonparametric modelling
which allows a straightforward combination of function and derivative observations in an
empirical model. Murray-Smith & Pearlmutter (2005) generalized arbitrary transformations
on GP priors through linear transformations and proposed the use of transformed Gaussian
Process priors for estimating the derivatives of noisy sensor measurements, and fusing in-
formation from multiple sensors. Recent work (Vasudevan, 2012) addressed the problem
of fusing multiple sets of heterogeneous sensor data using Gaussian Processes, which were
applied for terrain data fusion.

Data fusion in the context of Gaussian Processes has been investigated in the literature. El-
Beltagy & Wright (2001) presented the use of Gaussian Processes for the fusion of results of
computational simulations with varying degrees of accuracy and computational loads. Giro-
lami (2006) applied Gaussian Process priors method to large scale bioinformatics problems
and illustrated this with a protein fold prediction problem.
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2.5 Conclusions

In Chapter 1, we present that the Kinect can be used for indoor context-aware sensing ap-
plications. It is a human motion tracking system, where the position uncertainty and latency
are two main issues. It can be augmented by mobile inertial sensors through sensor fusion.
The probabilistic approaches, i.e. GPs, are well suited for fusing the Kinect sensor and mo-
bile inertial sensors as GPs provide useful results, on the basis of which we develop two
applications.

In this chapter, we describe the context-aware sensing systems, among which the location-
aware applications play an important role. We briefly discuss the positioning technologies
and then present the techniques used for human motion capture and analysis. Considering
the advantages and disadvantages of different sensors, and the need for fusing data from
multiple sensors, we give a brief introduction to multisensor data fusion. We describe the
probabilistic approaches for sensor fusion and introduce the widely used sensor fusion tech-
niques, including the Kalman filter and its variants methods. Considering the limitations of
Bayesian parametric models, we present the Gaussian Processes (GPs) framework. We dis-
cuss the work on sensor fusion with GPs in the literature and highlight the benefits of sensor
fusion with GPs, i.e. the log-likelihood and the prediction.
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Chapter 3

Sensor Fusion with Multi-rate
Sensors-based Kalman Filter

In this chapter, we propose a new coordinate system transformation method for estimating
the skeleton joint acceleration in the Kinect coordinate system through inertial sensor fusion.
We present a multi-rate sensors-based Kalman filter approach to fusing the low-sampling-
rate positions sensed by the Kinect and the high-sampling-rate accelerations measured by
the built-in inertial sensors in a mobile device. We conduct an experiment to test this. By
comparing the accelerations measured by different sensors, we conclude that these accelera-
tions are comparable and the coordinate conversion method is effective. We propose that the
high-sampling-rate acceleration can augment the low-sampling-rate position measurements
and present a multi-rate sensors-based Kalman filter for fusing the Kinect sensor and inertial
sensors equipped in a mobile device. This improves the system state estimation, i.e. the
position, the velocity and the acceleration of the skeleton joints. We conduct an experiment
to test the proposed multi-rate sensors-based Kalman filter sensor fusion approach and draw
the conclusions.

3.1 Introduction

As discussed in Chapter 1, a Kinect can be used for position tracking in the location-aware
sensing applications, where the accuracy of position tracking is critical. Due to the position
jitter in the Kinect skeleton tracking, we need additional sensors to augment the Kinect. We
discussed the complementary properties of the Kinect sensor and mobile inertial sensors in
section 1.2.2. We need sensor fusion techniques that take account of all the sensor charac-
teristics to deal with the Kinect position uncertainty.

In this chapter, a multi-rate sensors-based Kalman filter is designed and applied for fus-
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ing the low-sampling-rate (30Hz) uncertain positions sensed by the Kinect sensor and the
high-sampling-rate (90Hz) accelerations measured by a sensor pack composed of inertial
sensors. Only one sensor pack is on the body, e.g. held in the hand. These sensors have
complementary properties. The Kinect can be applied for skeleton tracking, which gives the
joints positions. Meanwhile, the built-in inertial sensors in the mobile device sense the hand
motion. The hand acceleration can be estimated through inertial sensor fusion. The high
frequency acceleration measurements can compensate for the effect of position uncertainty,
thus augment the low-sampling-rate, noisy positions sensed by the Kinect. In addition to
the different sampling rates, these sensors have different noise characteristics. A multi-rate
Kalman filter is well suited for this sensor fusion.

In this section, we will give an introduction of using a Kinect for location-aware sensing
applications and discuss the importance and benefits of robust estimation of position, velocity
and acceleration in HCI.

In addition to the position, the velocity and acceleration estimation also play an important
role in HCI, e.g. a velocity control for exploring 3D graphical environments (Paton & Ware,
1994), velocity control cursor mechanisms (Crossan et al., 2009) and pointing tasks (Gallo &
Minutolo, 2012). Moreover, the benefits of acceleration measurements in velocity estimation
were introduced in (Jeon & Tomizuka, 2007).

We need to augment a Kinect sensor with mobile inertial sensors in order to get a robust
estimation of position, velocity and acceleration. With only a Kinect sensor, the velocity
and acceleration estimation are not robust. With only inertial sensors, drift happens for
velocity estimation by integrating acceleration and position estimation by double-integrating
acceleration. The Kinect sensor measures the joints position while the inertial sensors in
a handheld device can be used for estimating the acceleration. Fusion of these sensors can
improve the system state estimation, including the position, the velocity and the acceleration.

In this chapter, we will discuss the problem of fusing the Kinect sensor and the inertial
sensors for improving the system state estimation with the proposed multi-rate sensors-based
Kalman filter method. As an example, we analyse the hand motion. Our goal is to explore the
complementary properties and fuse these sensors for improving the system state estimation.
We focus on indoor augmented reality (AR) application by fusing the inertial sensors and
external position sensing for the location-aware application.



3.2. The Kalman Filter and Multi-rate Sensors-based Kalman Filter 41

3.2 The Kalman Filter and Multi-rate Sensors-based

Kalman Filter

In this section, we first give an introduction of the Kalman filter framework and its applica-
tions. Then we discuss the literature work on using the multi-rate Kalman filter for sensor
fusion.

3.2.1 Background

The Kalman filter and its variants have been widely used for sensor fusion. Some variants
of the classic Kalman filter have been developed to take into account the different noise
characteristics of multiple sensors. The multi-rate Kalman filter is a popular method for fus-
ing data sampled at different sampling rates. The integration of global positioning system
(GPS) and inertial navigation system (INS) with a multi-rate Kalman filter has been thor-
oughly researched in the literature (Caron et al., 2006; Qi & Moore, 2002). In addition to
the systems with no delays, several works have been done for coping with the delayed mea-
surements in the Kalman filter framework (Peñarrocha et al., 2012). Position uncertainty and
lag have been two common problems for the interactive systems (Foxlin, 1996). In (Fried-
mann et al., 1992), the delay in computer systems was coped with an optimal linear filter
method. The Kalman filter method was presented for predicting the future user position. In
the virtual reality application (Liang et al., 1991), a predictive Kalman filter was designed to
compensate for the delay in orientation data and a low pass filter was designed to reduce the
noise in position data. Lu et al. (2005) presented a reorganization technique of studying the
linear minimum variance estimation in discrete-time systems with delayed measurements.
In (Gopalakrishnan et al., 2011), the Extended Kalman filter was applied for state estima-
tion in the presence of delayed and infrequent measurements. In recent years, Peñarrocha
et al. (2012) addressed the state estimation problem in linear time-varying systems with sev-
eral sensors with different availability, randomly sampled in time, and whose measurements
have a time-varying delay.

The multi-rate Kalman filter has been widely used for sensor fusion. Different sensors may
have different sampling rates and different noise characteristics. The multi-rate Kalman
filter is well suited for sensor fusion. Niwa et al. (1999) proposed a sensor fusion system that
combined the visual sensor and inertial sensors using a modified Kalman filter. The obvious
difference between this filter and the standard Kalman filter is the use of time-varying filter
gain matrix. Armesto et al. (2007) applied the multi-rate EKF and UKF for fusing vision and
inertial measurements. Smyth & Wu (2007) proposed a multi-rate Kalman filter for fusion
of displacement and acceleration response measurements in dynamical system monitoring.
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Caron et al. (2006) proposed a GPS/IMU multisensor fusion algorithm, taking context into
consideration. Lee & Tomizuka (2003) considered optimal state estimation problems with
a multi-rate Kalman filter, where the position sensor data and accelerometer measurements
were utilized. The multi-rate Kalman filter proved effective.

Integration of visual and inertial sensing modalities opens new application directions for
robotics and other fields (Corke et al., 2007). Hol et al. (2007) proposed a method for esti-
mating the position and orientation (pose) of a camera by fusing measurements from inertial
and vision sensors. In particular, position measurements are vital for end-effector control in
industrial robots. Kinematic Kalman filter based on the kinematic model is called the Kine-
matic Kalman Filter (KKF) (Jeon & Tomizuka, 2007). Jeon et al. (2009) applied the KKF
for fusing vision sensor and inertial sensors. Wang et al. (2012) used the vision sensor for
robot end-effector position sensing and applied the KKF to fuse the position measurements
and inertial sensor data.

3.2.2 Sensor Fusion with Multi-rate Sensors-based Kalman Fil-
ter

We consider the problem of fusing the low-sampling-rate positions sensed by the Kinect
sensor and the high-sampling-rate accelerations measured by the mobile inertial sensors with
a multi-rate Kalman filter.

We have given a brief description on the Kalman filter in section 2.3.3. To continuously
estimate the motion state of the hand in 3D space with a KF, we need a process model
and a measurement model. For the moving target tracking problem, the state refers to the
physical state, which can be described by dynamic variables, such as position, velocity and
acceleration of a moving object. The noise in the measurements means that there is a certain
degree of uncertainty in them. The dynamical system evolves as a function of time, and there
is also noise in the dynamics of the system, that is, the process noise.

Due to the different sampling rates and different noise characteristics of these sensors, we
need a multi-rate fusion technique. The idea behind the multi-rate fusion is to build up a
size-varying output vector, containing only those measurements that have been sampled at
each time instant (Gemeiner et al., 2007). The Kalman filter is such a technique that fuses
sensor data from multiple sources and prior information about the behaviour of the system in
order to make a most-likely estimate of the system state (Luinge, 2002). Thus, the multi-rate
Kalman filter is well suited for fusing the Kinect sensor and inertial sensors.

As an example, we analyse the hand motion along x−axis. To continuously estimate the
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motion state of the hand, we apply the following discrete-time state space model:

xk = Axk−1 + wk−1. (3.1)

In our method, the state vector is composed of position, velocity and acceleration. xk =[
pk ṗk p̈k

]T
, that is xk =

[
pk vk ak

]T
.

The Kinect measures the hand position. The acceleration can be estimated through inertial
sensor fusion. The accelerometer measures the total external force. The rotation is measured
by the gyroscope. The accelerations sensed by the inertial sensors and expressed in the
Kinect frame are the second derivatives of the positions in the high-sampling-rate space.

We define the following state transition matrix:

A =

 1 ∆t 1
2
∆t2

1 ∆t

1

 , (3.2)

where ∆t = 1
90

s.

We apply the continuous Wiener process acceleration model (Bar-Shalom et al., 2004). The
acceleration is perturbed with a white noise process with power spectral density q, which is
determined based on the experiment training data. The process noise covariance matrix is

Q =


1
20

∆t5 1
8
∆t4 1

6
∆t3

1
8
∆t4 1

6
∆t3 1

2
∆t2

1
6
∆t3 1

2
∆t2 ∆t

 q. (3.3)

The Kinect sensor and inertial sensors are sampled at a rate of 30Hz and 90Hz, respectively.
For the multi-rate Kalman filter, ∆tm = 1

90
s. In order to compare the sensor fusion system

with a position-only system (Kinect), we design a single rate Kalman filter, which only
uses the Kinect position measurements for updating the system state. ∆ts = 1

30
s. Due to

the availability of the different measurements, the measurement model should be changed
accordingly.

pk = H1xk + v
′

k (3.4)

ak = H2xk + v
′′

k , (3.5)

where v′

k and v′′

k are the position observation noise and the acceleration measurement noise
respectively, as defined in equation (2.2).
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When the position observation is available,

H1 =
[

1 0 0
]
. (3.6)

During the time period when only the acceleration measurement is available,

H2 =
[

0 0 1
]
. (3.7)

Besides the mean estimation, we can also get the uncertainty of the mean estimation through
the posteriori estimate error covariance matrix Pk, as defined in equation (2.7).

3.3 System Overview

Equipment

The equipment consists of the Microsoft Kinect and a SHAKE SK7. The Sensing Hardware
Accessory for Kinaesthetic Expression (SHAKE) SK71 sensor pack (Williamson et al., 2007)
contains triple axis accelerometer, triple axis Angular Rate Sensor (Gyroscope) and triple
axis magnetometer. Besides the inertial sensors, the Microsoft Kinect is used for skeleton
tracking, which gives the skeleton joints positions. In our work, the Kinect sensor is applied
for sensing the hand positions.

The frame rate of the Kinect sensor is 30Hz, whereas the inertial sensors are sampled at a rate
of 90Hz. The OpenNI drivers and the motion tracking middleware NITE are used (OpenNI,
2014).

3.3.1 Sensor Noise Characteristics

Kinect Sensor Uncertainty

Figure 3.1 illustrates that the uncertainty of the position measurements sensed by the Kinect.
The right panel shows the noisy hand position measurements of uncertainty and the right
panel shows the histogram of the position uncertainty and its Gaussian fit. The uncertainty
is measured to be (SD) σp = 8mm.

1http://code.google.com/p/shake-drivers/
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Figure 3.1: The uncertainty of the position measurements sensed by the Kinect. Left panel:
position measurement of uncertainty. Right panel: The histogram of position uncertainty
and its Gaussian fit (σp = 8mm).

Inertial Sensor Uncertainty

Figure 3.2 illustrates the uncertainty of the acceleration measured by mobile inertial sensors.
The left panel shows the noisy acceleration measurement of uncertainty and the right panel
shows the histogram of this uncertainty and its Gaussian fit. The uncertainty of acceleration
measurement is (SD) σa = 100mm/s2 in the Kinect coordinate system.

3.3.2 The Coordinate Systems

When fusing the Kinect sensor and SK7 inertial sensors, several coordinate systems need to
be introduced:

• Earth’s North-East-Down (NED) frame (e): This is SK7’s reference frame. Our algo-
rithm uses data from accelerometer, gyroscope and magnetometer to calculate SK7’s
attitude (Pitch and Roll angles) and magnetic azimuth (compass heading) with respect
to Earth’s North-East-Down frame of reference.
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Figure 3.2: The uncertainty of the acceleration measured by mobile inertial sensors (SK7).
Left panel: acceleration measurement of uncertainty. Right panel: The histogram of accel-
eration uncertainty and its Gaussian fit (σa = 100mm/s2).

• Kinect frame (k): The skeleton joint positions, i.e. the 3D coordinates of the joint, are
expressed in this coordinate system.

• SK7 body frame (b): This is the coordinate system of the SK7. Accelerometer data,
gyroscope data and magnetometer data are all expressed in the SK7 body frame.

The Relationships between Different Coordinate Systems

In order to convert coordinates from one coordinate system to another, we need to find the
relationships between different coordinate systems (Titterton et al., 2004). We propose a
coordinate system transformation method for converting the linear acceleration from the
body frame to the Kinect frame.

Coordinate Conversion from SK7 Body Frame to Earth’s NED Coordinate Sys-
tem

The inertial sensor data is filtered with a Kalman filter and then fused with a complementary
filter. With the Euler angles, we compute the rotation matrix for converting the coordinate
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from SK7 body frame to Earth’s NED coordinate system.

The accelerometer measures the linear acceleration plus the acceleration due to gravity. The
linear acceleration expressed in Earth’s NED frame could be computed in the following way:

linearAcce=R
e
b × ab−ge. (3.8)

Gravity ge is a constant vector in earth frame. When expressed in the body frame, the altered
gravity depends on the orientation of SK7.

linearAcce=R
e
b × (ab−gb). (3.9)

In our method, we infer the effect of gravity on accelerometer data by estimating the gravity
components in the SK7 body frame with equation (3.18). Gravity expressed in the SK7 body
frame is denoted as gb in equation (3.9). We use the rotation matrix Re

b to convert the linear
acceleration ab−gb from SK7 body frame to Earth’s NED frame. The rotation matrix Re

b

is computed with equation (3.10), where φ, θ and ψ represent the Roll, Pitch and Heading,
respectively,

Re
b =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 . (3.10)

Coordinate Conversion from Earth’s NED Coordinate System to the Kinect Co-
ordinate System

Due to the fact that Earth’s NED reference frame does not coincide with the Kinect coordi-
nate system, they are separated by a constant rotation. In order to convert the 3D coordinates
from Earth’s NED reference frame to the Kinect coordinate system, we need to determine
this rotation matrix. The calibration process is as follows:

We measure the rotation angles between Earth’s NED frame and the Kinect coordinate sys-
tem. Here the Earth’s NED frame is the reference frame. Firstly, rotate through angle ψ̂
about reference z−axis. Secondly, rotate through angle θ̂ about the current y−axis. Finally,
rotate through angle φ̂ about the current x−axis. We get

Rk
e =

 1 0 0

0 cos φ̂ sin φ̂

0 − sin φ̂ cos φ̂


 cos θ̂ 0 − sin θ̂

0 1 0

sin θ̂ 0 cos θ̂


 cos ψ̂ sin ψ̂ 0

− sin ψ̂ cos ψ̂ 0

0 0 1

 . (3.11)

With the rotation matrix Rk
e in equation (3.11), we can calculate the linear acceleration ex-
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pressed in the Kinect coordinate system:

linearAcck = Rk
e × linearAcce. (3.12)

The accelerometer output data is scaled to 1000 units per g (g = 9.81m/s2). The rotation
matrix Rk

e will not change unless the Kinect is moved and the rotation angles are changed.
Thus, we only need to do this calibration once.

3.3.3 The Multi-rate Sensors-based Fusion System

Figure 3.3: The diagram illustrates the process of fusing the Kinect sensor and the inertial
sensors with the multi-rate sensors-based Kalman filter. It also shows that how we estimate
the acceleration through inertial sensor fusion.

The system uses the Microsoft Kinect and the SHAKE SK7. In the multi-rate Kalman filter-
based sensor fusion system, the skeleton tracking positions sensed by the Kinect are sent to
the system. Meanwhile, the inertial sensor data is sent to the system via Bluetooth. The iner-
tial sensor data is filtered with a Kalman filter and then fused in a complementary filter. We
compute the rotation matrix based on the Euler angles (Roll, Pitch and Heading). With this
rotation matrix, we convert the linear acceleration from SK7 body frame to Earth’s North-
East-Down (NED) coordinate system. There is a constant rotation matrix for converting the
coordinates from Earth’s NED coordinate system to the Kinect coordinate system. With the
proposed orientation calculation and coordinate transformation methods, we get the hand
acceleration estimated with inertial sensors and expressed in the Kinect frame.
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Following this, we fuse the Kinect position and the estimated acceleration in a multi-rate
Kalman filter. Due to the different sampling rates of these sensors, we adjust the measure-
ment models based on the availability of the observations. This is the multi-rate Kalman
filter. The flowchart of the sensor fusion approach is shown in Figure 3.3.

3.4 Inertial Sensor Fusion

Since we cannot determine a rotation matrix for converting the movement acceleration from
the body frame to the Kinect coordinate system directly, we need to use the proposed co-
ordinate system transformation method described in section 3.3.2. In order to compute the
rotation matrix Re

b in equation (3.10), we need to compute the Euler angles, including Roll,
Pitch and Heading. In this section, firstly, we present the inertial sensor fusion approach. Fol-
lowing this, we conduct an experiment and test the proposed inertial sensor fusion method
for estimating the hand acceleration in the Kinect coordinate system.

3.4.1 Orientation Estimation

In this part, we discuss how to fuse the inertial sensor data with a complementary filter. The
estimated Euler angles are used to calculate a rotation matrix for distinguishing the effect of
gravity from the accelerometer data and estimate the linear acceleration in the body frame.
How to convert the linear acceleration, i.e. the movement acceleration, from the body frame
to the Kinect frame has been discussed in section 3.3.2.

Orientation Estimation with Accelerometer

Now we introduce how to calculate Roll and Pitch with a 3-axis accelerometer. For Roll φ
calculation:

tanφ =
ay
az
. (3.13)

A slightly modified version (equation (3.14)) can be found in (Pedley, 2013).

tanφ =
ay

sign(az)
√
µ · ax2 + az2

, µ = 0.01, (3.14)

where sign(az) has a value +1 if az is non-negative and −1 if az is negative. For Pitch θ
calculation:

tan θ = − ax√
ay2 + az2

, (3.15)
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where ax, ay and az represent the filtered accelerometer data along x−axis, y−axis and
z−axis respectively. When there is no visible and vigorous movement and the accelerome-
ter mainly measures the acceleration due to gravity, this method works well. When there is
visible and vigorous movement, we need additional sensors including gyroscope and magne-
tometer to get a complete orientation estimation with respect to the Earth’s NED coordinate
system.

Orientation Estimation with Complementary Filter

In our work, we use a complementary filter to calculate the Euler angles including Roll, Pitch
and Heading. The angle complementary filter is

ϕ = α1 × (ϕ+ ω × dt) + α2 × (ϕacc), (3.16)

where ϕ denote the Euler angles, α1 = 0.98 and α2 = 0.02.

With a 3−axis accelerometer and a 3−axis magnetometer, we can calculate the Roll, Pitch
and Heading (Caruso, 1997; Ozyagcilar, 2012). The 3−axis gyroscope can be used to up-
date the angles. This is the angle complementary filter. We apply a Kalman filter for filtering
the inertial sensor data first and then fuse the filtered inertial sensor data in a complemen-
tary filter to calculate the device’s attitude (Roll and Pitch) and magnetic azimuth (compass
heading) with respect to Earth’s North-East-Down frame of reference. The heading ψ is cal-
culated using the horizontal components of the transformed magnetometer vector according
to equation (3.17).

tanψ =
mz sinφ−my cosφ

mx cos θ +my sin θ sinφ+mz sin θ cosφ
, (3.17)

where mx, my, mz represent the 3−axis magnetometer data, φ denotes Roll and θ denotes
Pitch.

In this way, we get the Euler angles, which are in the order XY Z. They describe the orien-
tation of the device relative to the earth frame of reference in terms of a rotation first by Roll
about its X axis followed by a rotation of Pitch about its Y axis, and finally a rotation by
Heading about its Z axis.

Estimation of Gravity and Linear Acceleration

Since we have the orientation information, we can estimate the effect of gravity in SK7 body

frame. Gravity is a constant vector in earth frame. We denote it as ge =
[

0 0 1000
]T

.
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When expressed in the SK7 body frame,

gb = Rb
e · ge =

 − sin θ

cos θ sinφ

cos θ cosφ

× 1000, (3.18)

where θ denotes Pitch and φ denotes Roll. Rb
e is the rotation matrix for converting the coor-

dinates from the earth frame to the body frame. We can compute Rb
e with equation (3.19).

Rb
e = (Re

b)
T , (3.19)

where Re
b is the rotation matrix defined in equation (3.10).

In this way, we find the gravity components expressed in the body frame. The linear accel-
eration is ab−gb, which is expressed in the body frame. The following work is to convert
this linear acceleration from the body frame to the Kinect frame. This has been introduced
in section 3.3.2.

3.4.2 Experiment: Comparison of Acceleration Estimated with
Kinect Sensor and Inertial Sensors

Experiment Set-up

To test the feasibility of estimating the hand acceleration with the proposed method, we
conducted an experiment. The user stood in front of the Kinect with the mobile device
(SK7) held in the hand. At the beginning, the user put the hand at the side of the hip. Then
the user raised the hand and walked a few steps towards the Kinect. Finally, the user stopped
and lowered the hand. The whole process took 30s.

For this experiment, the calibration parameters for calculating the constant rotation matrix
Rk
e are ψ̂ = −30

180
× π, θ̂ = 0, φ̂ = −π

2
.

Experimental Results

Position Measurements The hand motion data includes the position measurements
sensed by the Kinect, which is shown in Figure 3.4, and the inertial sensor data. In Fig-
ure 3.4, we show that the whole process can be divided into 6 time periods, each of which
corresponds with a movement. We can see clearly that these periods include the 1st period
(the hand was motionless), the 2nd period (raise the hand), the 3rd period (the hand was mo-
tionless), the 4th period (walk), the 5th period (the hand was motionless) and the 6th period
(lower the hand).
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Figure 3.4: The hand position along the y-axis (the vertical axis) measured by the Kinect
sensor. The changing of the hand position measured by the Kinect during the 6 time periods
is illustrated clearly.
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Figure 3.5: The accelerometer data shows the changes of the total acceleration (the linear
acceleration plus the acceleration due to gravity) during the different time periods: (1) hand–
motionless (2) raise the hand (3) hand–motionless (4) walk (5) hand–motionless (6) lower
the hand.

Inertial Sensor Data In addition to the Kinect position measurements, we also have the
motion data sensed by the mobile inertial sensors.

Figure 3.5 illustrates the changes of accelerometer data (the total acceleration equals the
linear acceleration plus the acceleration due to gravity) during the different time periods: (1)
hand–motionless (2) raise the hand (3) hand–motionless (4) walk (5) hand–motionless (6)
lower the hand.

The gyroscope data and the magnetometer data are shown in Figure 3.6 and Figure 3.7,
respectively.

Euler Angles We calculate the orientation through inertial sensor fusion. The Euler an-
gles, including Roll, Pitch and Heading, are shown in Figure 3.8.
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Figure 3.6: The gyroscope data during the different time periods: (1) hand–motionless (2)
raise the hand (3) hand–motionless (4) walk (5) hand–motionless (6) lower the hand.
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Figure 3.7: The magnetometer data during the different time periods: (1) hand–motionless
(2) raise the hand (3) hand–motionless (4) walk (5) hand–motionless (6) lower the hand.
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Figure 3.8: The Euler angles (Roll, Pitch and Heading) calculated with the proposed inertial
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hand–motionless (2) raise the hand (3) hand–motionless (4) walk (5) hand–motionless (6)
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Figure 3.9: Acceleration along x−axis in the body frame: The raw acceleration along
x−axis, the filtered results and the estimated effect of gravity along x−axis.

Estimation of Gravity and Linear Acceleration in SK7 Body Frame The Euler
angles can be used to calculate the rotation matrix Re

b in equation (3.10) and Rb
e in equa-

tion (3.19).

With the proposed method discussed in section 3.4.1, we infer and subtract the effect of
gravity from the accelerometer data, and estimate the linear acceleration in the body frame.
The accelerometer data, the filtered accelerometer data and the estimated gravity in the body
frame are shown in Figure 3.9 (along x−axis), Figure 3.10 (along y−axis) and Figure 3.11
(along z−axis), respectively.

By subtracting the effect of gravity from the accelerometer data, we get the linear accelera-
tion in the body frame. The result is shown in Figure 3.12.
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Figure 3.10: Acceleration along y−axis in the body frame: The raw acceleration along
y−axis, the filtered results and the estimated effect of gravity along y−axis.
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Figure 3.11: Acceleration along z−axis in the body frame: The raw acceleration along
z−axis, the filtered results and the estimated effect of gravity along z−axis.
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Figure 3.12: The estimated linear acceleration in the body frame with the effects of gravity
inferred and subtracted from the accelerometer data. Plots show the changes of the linear
acceleration during the different time periods: (1) hand–motionless (2) raise the hand (3)
hand–motionless (4) walk (5) hand–motionless (6) lower the hand.
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Comparison of the Accelerations The hand acceleration in the body frame needs to
be converted into the acceleration in the Kinect frame for comparison with the hand accel-
eration of the Kinect positions. With the method proposed in section 3.3.2, we convert the
linear acceleration (Figure 3.12) from the body frame to the Kinect coordinate system.
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Figure 3.13: Comparison of the hand acceleration (along y−axis) estimated with different
sensors: the second derivatives of Kinect positions (the dashed line) and the acceleration es-
timated with inertial sensors (the solid line). The changes of the hand acceleration estimated
with the inertial sensors during the 6 time periods are illustrated. The 6 time periods: (1)
hand–motionless (2) raise the hand (3) hand–motionless (4) walk (5) hand–motionless (6)
lower the hand.

Figure 3.13 illustrates the acceleration comparison results. The converted acceleration (the
solid line) and the second derivatives (the dashed line) of the Kinect positions are shown.
The changes of the hand acceleration estimated with the inertial sensors during the 6 time
periods are illustrated. The 6 time periods include (1) hand–motionless (2) raise the hand
(3) hand–motionless (4) walk (5) hand–motionless (6) lower the hand. By comparing this
acceleration with the second derivatives of the Kinect positions, we can see that the hand
acceleration estimated with inertial sensors and those estimated with the Kinect sensor are
comparable and match well.

We can estimate the displacement (position), denoted as d, by double integrating the accel-
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eration a measured by the mobile inertial sensors.

d =

∫ t

0

∫ t

0

a dtdt. (3.20)

However, we found the drift problem with this displacement (position) estimation. Fig-
ure 3.14 illustrates the drift for position estimation by double integrating the acceleration
measured by mobile inertial sensors.
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Figure 3.14: By double integrating the hand acceleration (along y−axis) estimated with iner-
tial sensors, we found drift problem with position estimation (the dashed line) in comparison
with the position measurements (the solid line).

Conclusion

In this experiment, we tested the feasibility of estimating the hand acceleration with iner-
tial sensors in the Kinect coordinate system. The hand movements are the typical human
movements, e.g. the hand is motionless, raise or lower the hand, the hand movement during
walking, in people’s everyday lives. Experimental results show that the proposed method
can be successfully applied for estimating the hand acceleration in the Kinect coordinate
system. The accelerations estimated with the Kinect sensor and those estimated with inertial
sensors are comparable and match well. This proves that our method is effective for hand
acceleration estimation with inertial sensors in the Kinect coordinate system.



3.5. Experiment: Fusing Kinect Sensor and Inertial Sensors with Multi-rate
Sensors-based Kalman Filter 61

3.5 Experiment: Fusing Kinect Sensor and Inertial

Sensors with Multi-rate Sensors-based Kalman

Filter

We conducted this experiment to test the sensor fusion with the multi-rate Kalman filter,
specifically, the multi-rate sensors-based Kalman filter.

3.5.1 Experimental Set-up

The Kinect was put in a fixed place in the room. We pre-defined two spatial location points
1 and 2, which were located on the x−axis of the Kinect frame. A user stood in front of the
Kinect with the mobile device held in the right hand. When the Kinect started tracking, the
user put his hand at location 1 and kept the hand as motionless as possible for a while, then
moved the hand to location 2 and stayed motionless for a while. The whole process took 5s.
Figure 3.15 illustrates the diagram of this hand movement experiment.

Figure 3.15: The diagram of hand movement experiment for the multi-rate Kalman filter
sensor fusion. It illustrates that the user moves the hand from location 1 to location 2. The
mobile device equipped with inertial sensors is held in the hand during the whole process.

3.5.2 Experiment Design

For comparison, we designed a single rate Kalman filter, which only used the Kinect position
measurements. The Kinect position uncertainty is estimated to be σp = 8mm. For the single
rate Kalman filter and the multi-rate Kalman filter, the position measurement noise variance
R = 82.

For estimating the process noise covariance matrix, we applied the continuous Wiener pro-
cess acceleration model. The power spectral density of the white noise process is estimated
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to be q = 2000 based on the experiment training data. For the single rate Kalman fil-
ter, the process covariance matrix Qs was computed according to equation (3.3) by setting
∆t′ = 1

30
s. For the multi-rate Kalman filter (∆t = 1

90
s), we denoted the process noise covari-

ance matrix asQm. When the target (hand) moved faster and the motion changed rapidly, the
process noise was larger (Welch & Bishop, 1995). We set a threshold for the hand velocity,
i.e. vthreshold = 150mm/s. When the velocity of the hand was larger than the threshold,
we changed the process noise covariance matrix accordingly. During the periods when the
hand was motionless, the measurement noise was smaller in comparison with that during the
moving period. For the motionless period, the measured noise variance for the accelerations
is Ra1 = 102 and Ra2 = 1002 for the moving period.

3.5.3 Position Estimation

We fused the Kinect low-sampling-rate position and the high-sampling-rate acceleration
in the multi-rate sensors-based Kalman filter. For comparison, we designed a single rate
Kalman filter and also got the state estimation results. The single rate KF estimated the state
with only position measurements sensed by the Kinect. The position comparison results are
shown in Figure 3.16. The Kinect position measurements, the filtered positions from the sin-
gle rate KF and the sensor fusion result with the multi-rate KF are all illustrated. For better
visualisation, we show the magnified plots of Figure 3.16 in Figure 3.17 and Figure 3.18.
We can see that there is an overshoot problem and the lag with position estimation with the
single rate KF. The sensor fusion with the multi-rate KF helps increase the accuracy of mean
position estimation and reduce the uncertainty of this estimation, and also helps reduce lag in
response and the overshooting. The average uncertainty of position estimated with the single
rate Kalman filter was (SD) 3.18mm. For the multi-rate KF, it was 2.08mm. The standard
deviation was reduced by 34.6%.

Therefore, the multi-rate Kalman filter is superior to the single rate Kalman filter in position
estimation. Fusing the Kinect sensor and inertial sensors with the multi-rate Kalman filter
helps increase the stability of the position and reduce lag in response, giving a smoother and
more responsive experience when the user interacts with a location-aware sensing application
in the room.
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Figure 3.16: Position estimation results with the multi-rate Kalman filter and the single rate
Kalman filter are shown and illustrated. Plots show the mean estimation and mean ±2σ (We
get the uncertainty of the mean estimation through equation (2.7). For the single rate KF, σ
will be constant after the convergence. For the multi-rate KF, σ changes dynamically.). The
position measurements are also shown. It can be seen that there is an overshoot problem
with the single rate KF and the sensor fusion with the multi-rate KF helps stabilise the hand
positions and reduce the uncertainty of position estimation.
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Figure 3.17: The magnified plot of position comparison in Figure 3.16. Plots show the
position estimation results (0 − 2s). We can see that the uncertainty of position estimation
with the single rate KF is larger in comparison with that with the multi-rate KF.
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Figure 3.18: The magnified plot of position comparison in Figure 3.16. Plots show the
position estimation results (3− 5s).
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3.5.4 Velocity Estimation

In both Kalman filters, the state vector is composed of position, velocity and acceleration.
In addition to the position estimation, we also investigated the performance of the proposed
sensor fusion method for estimating the velocity.

In Figure 3.19, we show the first derivatives of the Kinect positions, the velocity estimated
with a single rate Kalman filter and the velocity estimated with the designed multi-rate
Kalman filter. With only inertial sensors, we cannot get a reliable estimation of velocity
as drift happens. With only a position sensing device, e.g. the Kinect, the velocity estimation
results are not robust. The first derivatives of the Kinect positions and the velocity estimated
with a single rate Kalman filter are illustrated clearly in Figure 3.19. We can see that the
sensor fusion with the multi-rate Kalman filter helps estimate the mean velocity more ac-
curately and the uncertainty is also reduced. The average uncertainty of velocity estimated
with the single rate Kalman filter was (SD) 12.26mm/s. For the multi-rate Kalman filter, it
was 4.52mm/s. The standard deviation was reduced by 63.1%.

We conclude that the sensor fusion with the proposed multi-rate Kalman filter helps improve
the accuracy of the velocity estimation. This is a very useful by-product of position estima-
tion. It is beneficial for interaction applications that require robust velocity sensing when
only position sensing and inertial sensors are available.

3.5.5 Acceleration Estimation

In addition to the position and velocity estimation, we also get the acceleration estimation
with both Kalman filters. In Figure 3.20, the second derivatives of the Kinect positions,
the accelerations sensed by the inertial sensors, the acceleration estimated with a single rate
Kalman filter and the acceleration estimated with the proposed multi-rate Kalman filter are
all shown and illustrated clearly. We can see that the sensor fusion with the proposed method
improves the accuracy of the mean acceleration estimation and reduce the uncertainty of this
estimation. The average uncertainty of acceleration estimated with the single rate Kalman fil-
ter was (SD) 33.60mm/s2. For the multi-rate Kalman filter, it was 29.25mm/s2. The standard
deviation was reduced by 13.0%.

Thus, the sensor fusion helps improve the acceleration estimation by fusing the low-sampling-
rate position measurements sensed by the Kinect and the high-sampling-rate accelerations
measured by the inertial sensors embedded in the mobile device.
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Figure 3.19: Velocity estimation with the multi-rate Kalman filter and the single rate Kalman
filter. Plots show the mean estimation and mean ±2σ. The first derivatives of Kinect posi-
tions are also shown. It can be seen clearly that the sensor fusion with the multi-rate KF
helps improve the accuracy of velocity estimation. The mean velocity is more accurate and
the uncertainty is reduced.

3.5.6 Conclusion

In this section, an experiment was conducted to test the multi-rate sensors-based Kalman
filter method. We fused the positions sensed by the Kinect and the accelerations measured
by the inertial sensors with the proposed method. Experimental results show that the sensor
fusion with the proposed method helps improve the accuracy of the system state estimation,
including the position, the velocity and the acceleration. Firstly, we investigated the position
estimation. We compared the performances of the proposed multi-rate sensors-based Kalman
filter and the single rate Kalman filter. Experimental results show that there is lag and also an
overshoot problem with the single rate Kalman filter. The proposed method helps increase
the stability of the hand position, reduce the uncertainty of position estimation, and reduce
overshooting and lag in response. Secondly, we studied the velocity estimation and compared
the results of the two filters. The proposed method is superior to the single rate Kalman
filter in improving the accuracy of velocity estimation. Finally, we show the acceleration
estimation results. The proposed method is also superior to the single rate Kalman filter in
improving the accuracy of acceleration estimation.
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Figure 3.20: Acceleration estimation with the multi-rate Kalman filter and the single rate
Kalman filter. Plots show the mean estimation and mean ±2σ. The second derivatives of the
Kinect position measurements and the accelerations sensed by the inertial sensors are also
shown. It can be seen clearly that the sensor fusion with the multi-rate KF helps improve
the accuracy of acceleration estimation. The mean acceleration is more accurate and the
uncertainty is also reduced.

3.6 Conclusions

In this chapter, we have presented a method of fusing the Kinect sensor and inertial sensors
equipped in a mobile device for improving the system state estimation, i.e. the position, the
velocity and the acceleration of the skeleton joints. As an example, we analysed the hand
motion. The approach we adopt is to fuse the low-sampling-rate, noisy positions sensed by
the Kinect and the high-sampling-rate accelerations measured by the inertial sensors with a
multi-rate sensors-based Kalman filter. Firstly, we fused the inertial sensor data for estimat-
ing the skeleton joint acceleration in the Kinect coordinate system. We proposed a coordinate
system transformation method for converting the accelerations from the body frame to the
Kinect frame. Secondly, we fused the Kinect sensor and the inertial sensors with the pro-
posed method.

Two experiments were conducted to test the proposed acceleration estimation method and
the sensor fusion method respectively.
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In the first experiment, we tested the feasibility of estimating the hand acceleration with the
mobile inertial sensors in the Kinect coordinate system. Experimental results show that the
proposed method can be successfully applied for estimating the hand acceleration during the
typical everyday hand movements. The accelerations estimated with the Kinect sensor and
those measured by the inertial sensors are comparable and match well.

In the second experiment, we fused the positions sensed by the Kinect and the accelerations
measured by the inertial sensors with the proposed multi-rate sensors-based Kalman filter
method. Experimental results show that the sensor fusion with the proposed method can
help improve the accuracy of the system state estimation, including the position, the velocity
and the acceleration. As an example, we used the Kinect for skeleton tracking and analysed
the hand motion. The sensor fusion helps the user better interact in the information space
embedded in a physical environment by stabilising the hand position. This is of great benefit
for the interaction systems that aim to fuse the external position sensing and the built-in
inertial sensors in a mobile device for indoor augmented reality (AR) and other location-
aware sensing applications.
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Chapter 4

The Sensor Fusion System

This chapter presents a novel Gaussian Process (GP) prior model-based sensor fusion system
composed of a Kinect sensor and mobile inertial sensors, where the model provides a prin-
cipled mechanism for incorporating the low-sampling-rate position measurements and the
high-sampling-rate derivatives in multi-rate sensor fusion which takes account of the uncer-
tainty of each sensor type and the latency of the Kinect system. In Chapter 3, we explored the
complementary properties of these sensors and designed a multi-rate sensors-based Kalman
filter for fusing the synchronized sensor data. In this chapter, we propose that (1) the GP
prior model can be applied for calculating the joint log-likelihood of position and accelera-
tion. The user matching and identification application will be presented in Chapter 5; (2) the
GP prior model-based sensor fusion approach can be used to deal with position uncertainty
and lag problem in the conventional Kinect system. A user study in a spatially aware display
application will be presented in Chapter 6.

We give an introduction of the sensor fusion system first. We present that the Kinect can be
augmented with mobile devices, including SK7 and a mobile phone. Following this, we give
a detailed description on the novel and improved GP prior model and apply it to fuse the
Kinect sensor and mobile inertial sensors. We also present an alternative view of the sensor
fusion and discuss the relationship between the GP method and the multi-rate Kalman filter.
Finally, we conduct an experiment to test the performance of the proposed sensor fusion
system. The experimental results show that fusing the Kinect sensor and the built-in inertial
sensors in a mobile device with the proposed GP prior model-based sensor fusion approach
helps improve the accuracy of position estimation and reduce the lag.
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4.1 Introduction

The Microsoft Kinect sensor can be augmented with the built-in inertial sensors in a mobile
device. We introduce the complementary properties of the Kinect sensor and mobile inertial
sensors in section 1.2.2. In this chapter, we explore the use of a mobile device to augment a
Kinect system. We propose a novel and improved Gaussian Process prior model for fusing
the low-sampling-rate Kinect position measurements and the higher frequency accelerations
sensed by mobile inertial sensors. The inertial sensor fusion gives us the skeleton joint
acceleration, thus the mobile device can be used as an acceleration sensor. In the meantime,
the Kinect is a skeleton joint position sensor. The fusion of the Kinect sensor and mobile
inertial sensors using appropriate probabilistic approaches can improve the position tracking,
thus significantly improve the usability of a human-computer interaction system. For human
motion tracking with the Kinect, the noisy position measurement is a common problem
(Casiez et al., 2012). Advanced sensor fusion techniques could improve the usability by
providing more accurate position data, but external states cannot be known with absolute
accuracy and uncertainty always persists (Williamson, 2006). Besides sensor sources, hand
tremor and human motor variability will also affect the sensor measurements and induce
uncertainty (Strachan & Murray-Smith, 2009).

To address this problem, we need to apply filtering or sensor fusion techniques. However,
filtering will introduce lags, which reduce the system responsiveness (Casiez et al., 2012).
Besides, to minimize both jitter and lag with a filter in the Kinect system is challenging.
However, with additional, complementary sensors, e.g. the inertial sensors, we can improve
the position estimation, reducing the jitter and the lag of the system. The ubiquitous inertial
sensors can be used as aiding sensors for position tracking.

In order to fuse the Kinect sensor and mobile inertial sensors for state estimation, we need
dynamical system modelling techniques. Bayesian filtering is a general framework for re-
cursively estimating the state of a dynamic system (Ko & Fox, 2009). The basic idea of
Bayesian filtering is that we estimate the state of the system with probabilistic models in-
cluding the state transition model and the observation model. For instance, the Kalman filter
and its variants (EKF and UKF) have been widely used for filtering and sensor fusion (Welch
& Bishop, 1995, 1997).

One of the drawbacks of applying Gaussian Processes for dynamical system modelling is
that it is computationally expensive. The major computation in a GP is the inversion of the
covariance matrix. However, our model is an autoregressive model so the covariance matrix
is a fixed matrix for a constant sampling rate (90Hz), making it computationally efficient, as
the inversion only needs to be done once.

In this chapter, we propose a novel and improved GP prior model-based sensor fusion ap-
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proach to dealing with the position uncertainty and lags problem in an interaction system
composed of external position sensing and inertial sensors. We propose a variation of a
Gaussian Process prior model (Rasmussen & Williams, 2005) that incorporates the low-
sampling-rate measurements and the high-sampling-rate derivatives in multi-rate sensor fu-
sion. It takes the different sampling rates and the different noise characteristics of the Kinect
sensor and the inertial sensors into account. The relationship between the novel GP prior
model and the Kalman filter is described. Based on the GP model, the system can infer the
position (and its uncertainty) more accurately and with less delay than other filters.

4.1.1 Hand Motion Tracking with Kinect Sensor and Inertial Sen-
sors

The hand is one of the skeleton joints sensed by the Kinect sensor. As an example, we
analyse the hand motion tracking when the mobile device is held in the hand in this Kinect-
augmented system.

The hand can be used as an input device and provides natural human-computer interaction
(Erol et al., 2007). Hand motion tracking has many applications, such as virtual reality or
augmented reality with a handheld display. Glove-based devices have been used for mea-
suring the location and shape of a user’s hand (Sato et al., 2001). However, this may inhibit
the user’s movement. The Kinect benefits HCI by providing a simple way for hand tracking.
However, position uncertainty is a common problem. Besides, due to occlusion or very fast
movement, the skeleton tracking may fail. These are the challenges for HCI applications that
use the Kinect for hand tracking. Besides, the hand pose estimation is not currently available
in the standard Windows SDK API and the OpenNI driver.

Nowadays, mobile phones equipped with inertial sensors are becoming ubiquitous. When
people hold the phones in their hands, the phone orientation indicates the hand pose. Mean-
while, the Kinect sensor is low-cost, portable and unobtrusive in a room. By combining a
Kinect sensor and the built-in inertial sensors in a mobile device, we can build a more robust
system, which can track not only the hand position, but also the hand pose. Compared with
“data gloves”, this system does not limit a user’s movement. Thus, it provides a more natural
way of human-computer interaction.

In the circumstances mentioned above, the Kinect and the phone are used separately. The
former provides the hand position while the latter indicates the hand pose and fine movement.
Although the overall system has more functions than each single system, these sensors are
not used in a complementary way. We discussed the complementary properties of these
sensors in section 1.2.2. In this chapter, we will describe the approach to this sensor fusion
problem.
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We will discuss the transformations of Gaussian Process priors in section 4.3.2. With the
noisy, low-sampling-rate Kinect position measurements, we can estimate the derivatives in-
cluding the velocity and the acceleration. In this chapter, we will present the sensor fusion
approach using the transformed GP priors.

4.1.2 Challenges

The accuracy of position tracking is critical in the location-aware systems (Khoury & Kamat,
2009). In robotics, a primary challenge is to deal with uncertainty, which arises for many
reasons, including the limitations of the model, the limited perceptual capabilities of the sen-
sors and the noisy measurements, and the approximate nature of the algorithm. Probabilistic
approaches, among which Kalman filter is a popular method are described in (Thrun, 2002).

The skeleton tracking with a Kinect has two major problems, the position uncertainty and
the latency, as introduced in section 1.2.1. The Kinect position measurement is subject to
significant uncertainty (Casiez et al., 2012). Besides, there is latency in the Kinect system
(Azimi, 2012). The filtering technique can be applied for noise reduction. However, this will
induce the lag. With only a Kinect sensor, to minimize both jitter and lag is challenging as
we need to find a trade-off between increasing the position accuracy and reducing the lag
for the interactive system. To reduce both the position uncertainty and the latency, we need
additional sensors.

To address these challenges, we thought about fusing the Kinect sensor and mobile inertial
sensors by exploring their complementary properties with sensor fusion method. Sensor
fusion combines different sensor sources and provides significant advantages over a single
sensor source (Hall & Llinas, 1997). The Kinect sensor measures the skeleton joint position
while the inertial sensors in a handheld device can be used for estimating the acceleration.
Thus, these sensors have complementary properties. We propose a novel Gaussian Process
prior model-based sensor fusion approach.

4.1.3 Applications

To investigate the performance of the GP prior model-based sensor fusion system, we apply
this model for fusing the low-sampling-rate position and the high-sampling-rate acceleration,
and use the sensor fusion system for two applications, which will be presented in Chapter 5
and Chapter 6, respectively.

One benefit of the GPs sensor fusion is that GPs can provide the joint log-likelihood given
different combinations of position signals and acceleration signals. This can be used to
associate a particular user with a mobile device. The user matching application will be
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described in Chapter 5. The fusion of the Kinect and the mobile devices equipped with
inertial sensors with the proposed GP prior model is beneficial for interaction systems that
require user matching and identification in context-aware applications.

The second application is based on the GPs position prediction. Based on the GP prior
model, the system can infer the position and higher derivatives (and its uncertainty) more
accurately and with less delay than other filters. The performance of the system was tested
in an experiment. A spatially aware display application was developed for a user study. This
will be presented in Chapter 6. The proposed GP prior model-based sensor fusion approach
helps increase the stability of the position and reduce the lag of the system. It is of great
benefit for combining external position sensing device and inertial sensors embedded in a
mobile device for augmented reality (AR) and other location-aware sensing applications.

4.2 System Overview

The equipment includes the Microsoft Kinect, a SHAKE SK71 (Williamson et al., 2007)
and Nokia N9. The different coordinate systems involved in this sensor fusion have been
introduced in section 3.3.2.

The sensor fusion system architecture is shown in Figure 4.1. It illustrates that the Kinect
is applied for skeleton joint position tracking. In the meantime, the mobile inertial sensors
measure the joint acceleration. The joint position is fused with the acceleration with the pro-
posed GP prior model. The benefits of fusing the Kinect sensor and mobile inertial sensors
with the proposed GP prior model have been introduced in section 1.2.2. The GP sensor fu-
sion results include (1) the log-likelihood given the position and the acceleration, and (2) the
GP predictive position. Thus, the sensor fusion system can be used for two applications, i.e.
(1) user matching and identification in Chapter 5; (2) a spatially aware display application in
Chapter 6.

4.2.1 Augmenting the Kinect System with SK7

The Kinect system can be augmented with SHAKE SK7, allowing us to calculate the orien-
tation of the device with respect to the Kinect. In the Kinect-augmented system, the human
motion is observed by multiple sensors. The Kinect senses the skeleton joint positions and
sends them to the PC. Meanwhile, the SK7 communicates with the PC via Bluetooth. By
matching the motion sensed by the Kinect with the motion sensed by the mobile device, we
can find the matching relationship between the multiple skeletons and the mobile devices in
a room. This is the first application, i.e. user matching.

1http://code.google.com/p/shake-drivers/
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Figure 4.1: System architecture. A wireless connection is set to connect the PC with the
mobile device. The OpenNI and NITE middleware are used. The Kinect senses the hand
position and sends it to the PC. The inertial sensor data sensed by the mobile device is also
sent to the PC. Our novel GP sensor fusion model is applied for fusing the position and
the acceleration. Depending on the GP sensor fusion results, the system can be used for
two applications. (1) The GP log-likelihood of position and acceleration can be used for
user matching and identification. (2) The GP helps improve the system state estimation in
a spatially aware display application. This facilitates the user’s targeting by stabilising the
hand position and reducing the lag of the system.

Applying the novel GP model for sensor fusion consists of two steps. Firstly, fuse the inertial
sensor data for estimating the hand acceleration. This has been discussed in section 3.4.
Secondly, calculate the joint log-likelihood of the Kinect position and the higher frequency
acceleration measured by SK7 with the novel and improved GP prior model. A detailed
description will be presented in Chapter 5.

The user matching and identification can be achieved implicitly by augmenting the Kinect
system with SK7. The implicit interaction system does not require a user’s explicit intention,
but can take a user’s movement as input and then output useful information. Exploring the
use of personal devices for user matching and identification in a Kinect-augmented room
is feasible in people’s everyday lives. It is beneficial for any interaction systems that aim
to identify individual users through matching the motion sensed by the positioning device
and the motion sensed by mobile inertial sensors. This enables the system to provide a
personalized service to individual users in a proxemic interaction system.

4.2.2 Augmenting the Kinect System with a Mobile Phone

We can augment the Kinect with a mobile phone equipped with inertial sensors. The phone
screen can be used as a handheld display for providing visual feedback information that we
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get from the Kinect-augmented system.

For mobile augmented reality (AR) and other location-aware sensing applications, e.g. a
spatially aware display, the user needs to use explicit hand motion-based interaction to access
the digital information embedded in the room. The screen display and feedback information
can facilitate the users’ interaction when they browse or explore the virtual information, e.g.
a digital bookshelf library application, embedded in a physical environment. This motivates
us to develop a phone application with screen display.

The Kinect system can be augmented with a mobile device (Nokia N9). The Nokia N9 is a
phone with 3.9 inches display (480 pixels × 854 pixels or 48 mm × 86 mm). It is equipped
with 3−axis accelerometer, which can be used to estimate the hand acceleration. The fusion
of the Kinect and the phone accelerometer is a Kinect-augmented system, where the position
tracking is improved as the high-sampling-rate acceleration can augment the low-sampling-
rate position measurements. This sensor fusion system helps increase the stability of the
position and reduce the lag of the system, thus enables the user to better control the mobile
device for enhanced interaction, giving a better performance and experience. This allows
us to build a spatially aware display application that benefits from the GP sensor fusion.
The GP predictive positions enable the user to better control the device in order to browse
the information embedded in a physical environment. An example application is shown in
Figure 6.2.

We designed a 2D (the vertical XY plane) version of a spatially aware display application in
Chapter 6. We aim to test whether the GP prior model-based sensor fusion system improves
user performance by designing a trajectory-based target acquisition task in this application.
The acceleration sensed by the phone is sent to the PC via a Wireless Local Area Network
(WLAN), which is used for User Datagram Protocol (UDP) connection. The GP sensor
fusion results are used to locate the phone and update the screen display.

Accurate positioning and feedback are critical to this application. The use of filtering tech-
nique to deal with Kinect position jitter will introduce lags. Besides, the overshoot problems
occur when we apply a position-only Kalman filter for filtering the fast jitter on the hand
movement data. The novel GP prior model-based sensor fusion helps improve the accu-
racy of position estimation, and reduce the lag. This enables the user to select the targets
more accurately and quickly, improving the user’s performance and bringing a better user
experience.
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4.3 Gaussian Process Prior Model For Fusing Kinect

Sensor and Inertial Sensors

4.3.1 Problem Statement for Dynamical System Modelling

We consider the situation when the user holds a mobile device in the hand and tries to explore
the digital information stored in the Kinect space in the room. The low-sampling-rate Kinect
position measurements and the high-sampling-rate acceleration measured by mobile inertial
sensors are available. The problem is that the Kinect position measurements are noisy and
delayed. The GP model needs to take into account the different sampling rates and different
noise characteristics of these sensors, and the delay.

The human and the environment can be thought of as a combined dynamical system, in
which the human motion is observable with multiple sensors. The skeleton data sensed by
the Kinect and the hand motion data sensed by mobile inertial sensors are shared via Wireless
LAN.

This is a closed-loop system with two subsystems, as illustrated in Figure 4.2. The human
is subsystem 1 while the computing device system, including the mobile phone, the multiple
sensors and the PC used for sensor fusion, can be treated as subsystem 2. The human motion
in subsystem 1 is the input to subsystem 2. The state (the joint position) estimation from
sensor fusion is sent to the mobile phone for updating the screen display, which provides
visual feedback to the human. The visual feedback, which is based on the improved position
estimation, enables the user to better perform a continuous control interaction. It facilitates
the action of the user, i.e. the targeting. Thus, our GP prior model-based sensor fusion
system enables the user to better control the system.

Figure 4.2: Illustration of a closed-loop system with two subsystems including (1) subsystem
1: the human (2) subsystem 2: the computing system consists of the mobile phone, the
multiple sensors and the PC.

In subsystem 2, the phone can be seen as a moving target when the hand is moving. The
user controls the moving of the phone. We can treat the phone as a flying machine, the
input of which is the force of the hand. The operator of this machine is the user. The
motion of the phone is observed by multiple sensors. The trajectory is sensed by the Kinect
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sensor. Meanwhile, the orientation and the acceleration of the phone are observed by the
built-in inertial sensors. The phone position and acceleration measurements are available.
The system is a second-order system since the dynamics depend on the second derivatives of
position.

The subsystem 2 is observable as we can determine the state of the system through the posi-
tion observations and the acceleration measurements. We can use a sensor fusion technique
to fuse the noisy, low-sampling-rate position and the higher frequency acceleration in order
to determine the more accurate position of the target (phone).

Here we approximate and model the whole system as a second-order dynamical system.
This subsystem 2 is a time-delay system as the position is sensed by the Kinect, which has
latency. The acceleration is sensed by the inertial sensors at a much higher sampling rate. We
treat the acceleration as a non-delayed measurement. Our goal is to model this dynamical
system with the GP prior method. The phone (hand) trajectory is defined by the movement
of the user’s muscles which drive nonlinear trajectories of the rigid body. The system we are
modelling is a nonlinear dynamical system g(x) with known inputs x and observed outputs
y. At each time instant i, we get a measurement yi, which is a function of the latent state xi.

yi = g(xi) + εi, (4.1)

where εi denotes Gaussian system noise.

In order to estimate the system state by fusing all the available observations including the
positions and the accelerations, we need to illustrate the data availability in the sensor fusion
system.

Data Availability in the Sensor Fusion System

Now we illustrate the data availability with Figure 4.3. In order to illustrate the availabil-
ity of sensor measurements at different time instants, we need to take account of the time
delay (0.1s) of the Kinect system (Azimi, 2012; Livingston et al., 2012). When we receive
the acceleration measurements sensed by the inertial sensors, we also get the delayed posi-
tion measurements from the Kinect. In order to fuse these sensor data, we need to build a
model that takes account of the time delay and the different noise characteristics, and incor-
porates the different sensor measurements. Now we illustrate the availability of sensor data
at different time instants and how we make use of the delayed position measurements.

In Figure 4.3, we show the timing information and the delayed observations at t = 15
90

s. The
first row represents the timing information and the second row represents the acceleration
measurements from the inertial sensors. In the third row, considering the effect of latency,
the corresponding Kinect outputs are denoted as pdi , i = 1, 2, 3, 4. Due to the 0.1s latency,
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these outputs are the delayed outputs and cannot be treated as the real-time position outputs.
In the fourth row, it is shown that the actual available observations at t = 13

90
s include 13

acceleration measurements and 2 position measurements, which are the noisy version of the
system state (position) at t = 1

90
s and t = 4

90
s, respectively. We denote them as p3 and p4.

The corresponding Kinect outputs become pd3 and pd4, which are acquired at t = 10
90

s and
t = 13

90
s, respectively.
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Figure 4.3: Illustration of data availability: (1) The first row represents the time instants
(90Hz) (2) The second row represents the non-delayed acceleration measurements. (3) The
third row represents the Kinect position measurements. They are the delayed noisy version
of the system state (position). (4) Due to the 0.1s latency, we assume that at t = 13

90
s, the

available position measurements include pd1, pd2, pd3 and pd4. pd3 and pd4 represent the delayed
noisy version of the system state (position) at t = 1

90
s and t = 4

90
s. Considering the latency,

the corresponding Kinect position outputs are denoted as pd3 and pd4.

Autoregressive GP Model

Gaussian Process regression is a linear smoother (Hastie & Tibshirani, 1990; Rasmussen &
Williams, 2005). Our proposed model is an autoregressive model, which acts like a moving
“window”. The AutoRegressive Gaussian Process (ARGP) was applied for time series mod-
elling in (Girard et al., 2003a; Girard, 2004; Turner, 2012). In an ARGP of order L, the past
L values Y(L) are taken as the GP input while the output is

yt = f
(
Y(L)

)
+ εt, (4.2)

where the GP function f ∼ GP (0, k) and the white noise εt ∼ N (0, σ2).

Here we put the ARGP model in a sensor fusion framework. The sensor observations are the
inputs of the ARGP model. The problem is that the sensor observations include the delayed
low-sampling-rate positions sensed by the Kinect and the high-sampling-rate accelerations
measured by the inertial sensors. We want to build a GP prior model that incorporates these
observations and takes the different characteristics of these sensors into account.
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We define the state of interest xt as

xt = f
(
p(L), a(la)

)
, (4.3)

where xt represents the GP predictive positions. The last L position measurements sensed
by the Kinect are denoted as p(L), whereas a(la) are the last la acceleration measurements
sensed by the inertial sensors, and la = 3L + N0 − 2. The past L Kinect positions are
the low-sampling-rate measurements in the assumed high-sampling-rate position space. The
acceleration measured by the inertial sensors corresponds with the assumed high-sampling-
rate position space. The data availability has been illustrated with Figure 4.3 in section 4.3.1.

Considering the different sampling rates of these sensors, we have more acceleration mea-
surements than position measurements. N0 is a number that represents the latency between
the Kinect position measurements and the acceleration measurements.

N0 =
dT

∆t
= dT · f0, (4.4)

where dT denotes the time delay, i.e. 0.1s (Azimi, 2012). f0 denotes the sampling rate of the
inertial sensors, i.e. 90Hz. Thus, N0 = 9.

As defined in equation (4.3), every time the “window” takes the most recent L position mea-
surements and the most recent la acceleration measurements. In this way, we propose an
overall GP prior model for calculating the joint distribution of position and acceleration.
During the time period when the position measurements are unavailable, i.e. the most re-
cent 0.1s latency, the GPs make position prediction based on the most recent L position
measurements and the most recent la acceleration measurements.

Now we have the state equation of the dynamical system, as defined in equation (4.3). Fol-
lowing this, we propose a novel Gaussian Process prior model for the dynamical system
modelling. In this way, we can make predictions based on the previous and current acceler-
ation measurements, and the delayed position measurements.

In our work, the human motion is relatively continuous and smooth in the trajectory-based
target acquisition task. Here the covariance function chosen is a general smoother, the pa-
rameters of which are tuned to typical human motion. The parameters for the model are
learnt from the training data using the maximum likelihood method. As GP regression is
a linear smoother (Hastie & Tibshirani, 1990), the prediction is a linear combination of the
training targets. The GP prediction was discussed in section 2.4.1. We denote the noisy
measurements as Y . The predictive mean of a new input vector x∗ is denoted as µ(x∗). In
order to illustrate this, we put equation (2.15) here.

µ(x∗) = C(x∗, X)
[
C(X,X) + σ2

nI
]−1

Y
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If we denote CY = C(x∗, X)[C(X,X) + σ2
nI]
−1, we get µ(x∗) = CY Y . We can see that the

predictive mean of this new input vector x∗ is a weighted average of the noisy measurements
Y . Therefore, the GP regression is a linear smoother.

For sensor fusion with the GP prior model, the targets include the L positions and the la
accelerations. If we can place an appropriate prior on the combination function space, we
can make position predictions based on the non-delayed accelerations during the 0.1s. In
order to find the joint distribution of the low-sampling-rate position, denoted as Plow, and
the high-sampling-rate acceleration, denoted as Acchigh, we apply the GP prior method and
calculate an overall covariance matrix Call, so[

Plow

Acchigh

]
∼ N (0, Call) . (4.5)

So the following work is to apply GPs in a sensor fusion manner and find this joint distri-
bution of the low-sampling-rate position and the high-sampling-rate acceleration with the
GP prior method. Firstly, we discuss the GP prior prediction. Following this, we present
the transformed GP priors and propose the novel and improved GP prior model for multi-
rate sensor fusion, and give a detailed description on how to apply this model for fusing the
Kinect sensor and inertial sensors.

4.3.2 Transformations of GP Priors and Multi-rate Sensor Fu-
sion

Transformations of Gaussian Process Priors

Gaussian Process priors are increasingly used as flexible nonparametric models in a range of
application areas (Rasmussen & Williams, 2005), including sensor fusion (Murray-Smith &
Pearlmutter, 2005) and human motion analysis (Wang et al., 2008).

Given a set of N training data-points {xi, yi, i = 1, · · · , N}, where X = [x1, · · · , xN ]T is a
D-dimensional vector of inputs (D = 1 in our work), and Y = [y1, · · · , yN ]T is a vector
of output data. When observations include measurements from different sensors, we can
use Gaussian Process priors (Murray-Smith & Pearlmutter, 2005), which proved useful for
sensor fusion.

Y ∼ N (0,Σ) , (4.6)

where Σ is the N ×N covariance matrix, the elements of which are functions of inputs X .

With the covariance function defined in equation (2.14) and a set of training data, we can
maximize the log-likelihood of the parameters-the so called hyperparameters, with the help
of an iterative optimisation method.
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Instead of observing Y directly, we assume that the observation m is a transformation of the
latent variables y. In the continuous case,

output =

∫
Ω

system× input dΩ (4.7)

m(t) =

∫
K(t, x)y(x) dx, (4.8)

which in discrete form is

mk =
N∑
i=1

KkiYi. (4.9)

This is beneficial for considering the relationship between the discrete sensor measurements
and the latent state of the system. Assume we observe the outputs M = KY with known K.
The vector M is drawn from an n-dimensional normal distribution:

M ∼ N
(
0, KΣKT + ΣM

)
, (4.10)

where ΣM is the diagonal matrix of observation variances. In this work, the application of
transformations of Gaussian Process priors mainly consists of two aspects, inferring deriva-
tives and uncertainties of derivatives of noisy position measurements, and performing sensor
fusion of multiple observations in the form of multiple levels of derivatives of a measurand.

Estimating Derivatives of Noisy Measurements

The derivative of a Gaussian Process remains a Gaussian Process (Larson & Shubert, 1979;
Solak et al., 2003). By selecting different kinds of transformation matrices, we can get an
estimation of derivatives of the noisy measurements. As an example application of Gaussian
Process priors, we can estimate the velocity and the acceleration based on the noisy position
measurements according to the method introduced in (Murray-Smith & Pearlmutter, 2005).

For instance, we have noisy, low-sampling-rate position measurements Ylow, and the corre-
sponding timing inputs X1. By setting K1 = In in equation (4.11), we have observations
M1 = Ylow. In order to estimate the acceleration M2 at the inputs X2, we just need to set
K2 = Ka, as defined in equation (4.13). If we want to estimate the velocity, we just need to
set K3 = Kv, as defined in equation (4.12). According to equations (4.14) and (4.15), we
can calculate the conditional mean and variance of the acceleration.

Mi = KiY (4.11)
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Kv =
1

∆t


−1 1

−1 1
. . . . . .

−1 1

 (4.12)

Ka =
1

∆t2


1 −2 1

1 −2 1
. . . . . .

1 −2 1

 , (4.13)

where Kv and Ka are the classic first and second difference (derivative) operator, respec-
tively.

µ2|1 = K2Σ12K
T
1

(
K1ΣKT

1

)−1
M1 (4.14)

Σ2|1 = Σ2 −K2Σ12K
T
1

(
K1ΣKT

1

)−1
K1Σ21K

T
2 , (4.15)

where Σ12 represents the covariance matrix between the training inputs and the test inputs
while Σ21 represents the covariance matrix between the test inputs and the training inputs,
whereas Σ denotes the covariance matrix between the training inputs and themselves. By
setting K2 = Kv, K1 = In and M1 = Ylow, we get the mean prediction, i.e. the velocity
estimation, according to equation (4.14). In the same way, we can get the acceleration es-
timation when we set K2 = Ka. The corresponding predictive variance can be computed
according to equation (4.15).

Multi-rate Sensor Fusion

The Gaussian Process prior framework can incorporate measurements and measurements of
derivative information, and allows GPs to perform sensor fusion through an overall transfor-
mation matrix, which focuses on performing sensor fusion of multiple observations in the
form of multiple levels of derivatives of a measurand. The sensors may include a position
sensor, or the derivative sensor, e.g. a velocity sensor or an acceleration sensor. In realistic
applications, the position sensor and the acceleration sensor may have different sampling
rates and different noise characteristics. In this chapter, we further develop the work on GP
priors in Murray-Smith & Pearlmutter (2005) by proposing a novel and improved GP prior
model, which takes account of the different sampling rates and different noise characteristics
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of the sensors, and the Kinect latency in our problem. We define Yhigh,

Yhigh ∼ N (0,Σ) , (4.16)

where Σ is the N ×N covariance matrix, the elements of which are functions of inputs X .

we denote the Kinect measurements as Ylow, which are the low-sampling-rate observations
in the high-sampling-rate position space. Ylow = [y1, · · · , yn]T is denoted as Mp, and the
high-sampling-rate acceleration measurements Ma = [a1, · · · , aN ]T .

Following this, we assume the observations M = KYhigh, where Yhigh represents the as-
sumed high-sampling-rate position measurements, and K is known. For the Kinect, the
low-sampling-rate position measurements Mp = KpYhigh, where Kp is defined in equa-
tion (4.17). For the mobile device, Ka is defined in equation (4.13), and ∆t is the time step,
which indicates the time difference between two consecutive inputs. Here, ∆t = 1

90
s. The

acceleration measurements Ma = KaYhigh.

The connection between the low-sampling-rate positions and the high-sampling-rate accel-
erations can be expressed in an overall Kall matrix, which is defined in equation (4.18). The
two components Kp and Ka are defined in equation (4.17) and equation (4.13), respectively.
By constructing an overall Kall matrix, we can build a Gaussian Process prior model, which
incorporates the low-sampling-rate position measurements and the high-sampling-rate accel-
eration measurements.

Kp =


1 0 0 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 0 0 1 0 0 · · ·

... . . .

 (4.17)

Now we can construct an overall transformation matrix,

Kall =

[
Kp

Ka

]
. (4.18)

According to equation (4.5), we need to find the joint distribution of low-sampling-rate po-
sition and the high-sampling-rate acceleration. The GP training target Mall includes the
position and the acceleration.

Mall =

[
Mp

Ma

]
= [yn−L+1, · · · , yn, al−la+1, · · · , al]T , (4.19)

where the most recent position yn and the most recent acceleration al are acquired at the
same time instant.
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Meanwhile, the correlation between Mall and Kall is expressed as

Mall =

[
Mp

Ma

]
=

[
Kp

Ka

]
Yhigh = KallYhigh. (4.20)

With the transformed GP prior method, we find this joint distribution expressed through an
overall transformed GP prior

Mall =

[
Mp

Ma

]
∼ N

(
0, KallΣK

T
all +

[
Σp

Σa

])
. (4.21)

The Gaussian Process Prediction According to equations (4.22)) and (4.23), we can
calculate the conditional mean and variance of the predictive position Pfusion with GP sensor
fusion method.

µ2|1 = IlaΣ12K
T
all

(
KallΣK

T
all

)−1
Mall, (4.22)

Σ2|1 = Σ2 − IlaΣ12K
T
all

(
KallΣK

T
all

)−1
KallΣ21I

T
la , (4.23)

Pfusion = IlaΣ12Kall
T

(
KallΣKall

T +

[
Σp

Σa

])−1

Mall. (4.24)

Σ12 represents the covariance matrix between the training inputs and the test inputs, whereas
Σ denotes the covariance matrix between the training inputs and themselves. The Σp and Σa

represent the diagonal matrices of position and acceleration observation variances respec-
tively. Σ is a la× la matrix. Kall is a (L+ la)× la matrix as Kp is a L× la matrix in the form
of equation (4.17) and Ka is a la × la matrix in the form of equation (4.13).

The GP prior model-based sensor fusion can help increase the stability of the position, i.e.
improve the accuracy of mean position estimation and reduce the position uncertainty, and
reduce the lag of the system. We tested the performance of the GP prior model-based sensor
fusion approach in section 4.5.

The Gaussian Process Log-Likelihood In this work, the Gaussian Process likelihood
represents the probability density function (pdf) evaluated at the GP target vector. The target
vector Mall is defined in equation (4.19). The joint likelihood of position and acceleration
represents the joint probabilistic density of the combination of position and acceleration un-
der the GP prior model. The higher the likelihood is, the more likely the target vector is. One
part of the target vector Mall is a particular series of position measurements from a particular
user’s skeleton sensed by the Kinect, the other part is the acceleration measurements, which
are sensed by one of the mobile devices in the room. When we match this position part with
multiple acceleration parts, we get multiple combinations for a particular position signal, i.e.
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a particular user’s skeleton. By comparing the log-likelihoods of matching a particular user’s
skeleton with mobile devices, we can determine the best acceleration match for this time se-
ries of position measurements. The highest joint log-likelihood indicates the best match. In
this way, we achieve user matching for this user. By doing this for each user, we get all user
matching results. This is the way to match the motion sensed by the Kinect with the motion
sensed by the mobile inertial sensors in this thesis.

Another way to associate the acceleration measured by the mobile inertial sensors with the
position sensed by the Kinect sensor is to compare the acceleration distance. This is the
conventional user matching method. In Chapter 5, we compare our method with the straight-
forward acceleration distance comparison method and prove that our method is more robust
and more applicable.

As discussed in section 2.4.1, the GP log marginal likelihood given training data Y is defined
in equation (2.13). When the training data consist of the Kinect low-sampling-rate position
measurements and the high-sampling-rate acceleration measured by the mobile inertial sen-
sors, the training data become Mall, a combination of position and acceleration. We need to
find the joint distribution of the positions and the accelerations. We use the transformations
of GP priors to construct an overall GP prior, which can be put on the combination function
space. We use the joint GP prior method to compute the joint log-likelihood of position and
acceleration. A detailed description on how to fuse Kinect sensor and mobile inertial sensors
for calculating this joint log-likelihood will be presented in section 5.3.2.

How does the Sensor Fusion Model Work? From equations (4.17), (4.13) and
(4.18), we know how to construct the overall Kall matrix. How does it relate to the mea-
surements including the positions and the accelerations here?

In Figure 4.3, by the time we have two observations pd3 and pd4, we will also have 13 acceler-
ations. Here Kp is a 2× 13 matrix and Ka is a 13× 13 matrix. Thus,

Kall,L=2 =



1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0
1

∆t2
−2
∆t2

1
∆t2

. . .
. . .

. . .
1

∆t2
−2
∆t2

1
∆t2


. (4.25)

From equation (4.25), we can see that there are 3L + 7 accelerations (13 here) when there
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are L position observations (2 here). There are 9 more accelerations (a5, · · · , a13 here).

Kall,L=2Yt= 13
90
s = Mall,L=2, (4.26)

where Yt= 13
90
s is the assumed high-sampling-rate position observations and

Mall,L=2 =
[
pd3 pd4 a1 a2 · · · a13

]T
,

are the targets including the low-sampling-rate positions and the higher frequency acceler-
ations. If we set the test inputs to t = 5

90
s, · · · , 13

90
s, the prediction is based on a5, · · · , a13

during the test inputs period and we get 9 predictive positions with GPs according to (4.24).

When we receive the acceleration measurement a10 at t = 10
90

s and the delayed position
pd3, we assume that this delayed position is acquired at t = 1

90
s. For 10

90
s, this is the only

available position measurement. For t = 13
90

s, we have 13 acceleration measurements and 2

position measurements including pd3 and pd4, which are assumed to be observed at t = 1
90
s and

t = 4
90
s, respectively. For 16

90
s, we will have 16 acceleration measurements and 3 position

measurements. For the following time instants, the process goes on like this. In this way, we
apply GPs for real-time position prediction.

Figure 4.4 illustrates how the sensor fusion model works. The position Y measurements
and the GP sensor fusion results are shown. Since there is time delay (0.1s) in the Kinect
system, the position acquired at the current time is the delayed measurement. The real-
time predictive positions with GP are shown. 3 predictive positions, which are based on
the test inputs and denoted with the asterisks, become available as we receive 3 acceleration
during each 1

30
time interval. Whenever we receive a position update, the uncertainty of the

GP prediction is decreased. During the 1
30

s time interval when no position is available, the
uncertainty of GP prediction keeps increasing. It can be seen that the real-time GP prediction
helps stabilise the hand position as the curve (real-time GP predictive positions) is becoming
smoother in comparison with the curve (Kinect position measurements). The GPs also make
use of the past and current observations to estimate all the states including the previous and
current positions. We can see that the results become smoother and the uncertainty is further
reduced.

We have illustrated how the sensor fusion model works through Figure 4.4. The GP prior
model-based sensor fusion incorporates the delayed, noisy and low-sampling-rate Kinect
position measurements and the higher frequency acceleration measured by the mobile inertial
sensors for position prediction, taking account of the different noise characteristics of each
sensor type.
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Figure 4.4: Plots show mean and mean±2σ as solid line and dashed contours. There are 4
signals: (1) The noisy position measurements (2) The real-time GPs: There are 3 predictive
positions, which are based on the test inputs and denoted with the asterisks, each time. (3)
The GPs estimate the previous and current states based on all the available observations
(4) The position measurements used for updating GPs. Whenever we receive a position
measurement, the uncertainty of GP prediction is decreased. During the 1

30
s time interval

when no position is available, the uncertainty of GP prediction keeps increasing. It can be
seen that the real-time GP prediction helps stabilise the hand position.

4.4 Alternative View of the Sensor Fusion – Multi-rate

Kalman Filter

Since the Kalman filter has been widely used for sensor fusion, we put our problem in a
Kalman filter framework in order to better illustrate this concept. We consider the autore-
gressive model in the state space here. This is a time-delayed system as there is 0.1s latency
in the Kinect system. Also, this is a multisensor data fusion problem as the Kinect sensor and
the inertial sensors have different sampling rates and different noise characteristics. Recent
work on using a Kalman filter to solve the state estimation problem for multisensor systems
with irregular sampling and time-varying delays is introduced in (Peñarrocha et al., 2012).

Let us denote the system state as xk at time instant k, where the state of the moving target
includes the position pk, the velocity vk and the acceleration ak. This is defined in equa-
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tion (4.27)
xk = [pk, vk, ak]

T . (4.27)

Note that the time step ∆t = 1
90
s and pk is the position in the high-sampling-rate position

space. In the target tracking area, the solution for state estimation is to build a process model
and a measurement model. By extending the order of the state and building a new state
vector, we can employ the following autoregressive (AR) model:

xk+1 = A0xk + A1xk−1 + · · ·+ Am−1xk−(m−1) + wk, (4.28)

where Ai (i = 0, 1, · · · ,m − 1) denotes the corresponding state transition matrix for xk−i.
p(w) ∼ N (0, Q), where Q represents the process noise covariance matrix.

The state process model equation (4.28) can be written as
xk+1

xk
...

xk−(m−1)+1

 =


A0 A1 · · · Am−1

0

I
...
0




xk

xk−1

...
xk−(m−1)

+ wk. (4.29)

The equation (4.29) can be rewritten as

xk+1
′ = Ak

′xk
′ + wk. (4.30)

Considering the availability of observations in Figure 4.3, we also define the available mea-
surements include the most recent L positions and the la accelerations. Here we define xk ′

in equation (4.30) as

xk
′ =


xk

xk−1

...
xk−(m−1)

 (4.31)

That is,

xk
′ =
[
pk vk ak pk−1 vk−1 ak−1 · · · pk−(m−1) vk−(m−1) ak−(m−1)

]T
, (4.32)

where m = 3L+N0 − 2.

We can see that the number of elements in the extended order state vector xk ′ is 3 ·m, among
which there are m positions, m velocities and m accelerations.

In our GP prior model, the available observations include the L low-sampling-rate positions
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and the la high-sampling-rate accelerations. We set m = 3L + N0 − 2 here. Among these
available measurements at time instant k, there are L positions and m accelerations.

Hpl =
[

1 0 0 0 0 0 0 0 0
]

(4.33)

HpL =
[

1 0 0
]

(4.34)

Hai =
[

0 0 1
]
, (4.35)

where l = 1, 2, · · · , L−1 and i = 1, 2, · · · ,m. Hp is a L×(3N0 +9(L−1)+3) = L×3 ·m
matrix. Ha is a m× 3 ·m matrix.

Hp =



Hp1

Hp2

0L×3N0

. . .

Hp(L−1)

HpL


(4.36)

Ha =


Ha1

Ha2

. . .

Ha(m)

 (4.37)

Hk
′ =

[
Hp

Ha

]
(4.38)

The extended measurement model is

yk
′ = Hk

′xk
′ + vk, (4.39)

where yk ′ =
[
pk−N0 pk−(N0+3) · · · pk−(m−1) ak ak−1 · · · ak−(m−1)

]T
represents

the available measurements at time instant k. ak denotes the most recent acceleration mea-
surement while pk−N0 represents the most recent position measurement. xk ′ is the extended
state vector (3 ·m × 1) as defined in equation (4.31). p(v) ∼ N (0, R), where R represents
the measurement noise covariance matrix. wk and vk are independent Gaussian white noise.

The Kalman filter estimates the system state by building a state transition model, i.e. the
process model, and a measurement model. A simple case (m = 1 in equation (4.28)) is not
applicable for the time-delayed system. Thus, we need to use the extended order model in
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equation (4.29) (m > 1). We define Ai,

Ai = αi

 1 ∆t 1
2
∆t2

1 ∆t

1


i+1

, i = 0, 1, · · · ,m− 1. (4.40)

Now we explain the reason why we set Ai in the form of equation (4.40). If there is no delay
in the system, we can rewrite equation (4.28) as

xk+1 = B0xk + wk. (4.41)

It also means
xk = B0xk−1 + wk−1. (4.42)

Thus, we get
xk+1 = B2

0xk−1 +B0wk−1 + wk. (4.43)

If we define B0 as

B0 =

 1 ∆t 1
2
∆t2

1 ∆t

1

 , (4.44)

we can find the connection between Ai defined in equation (4.40) and B0.

Ai = αiB
i+1
0 , i = 0, 1, · · · ,m. (4.45)

αi is a weight that defines how much influence the associated state, i.e. xk−i, has on the state
prediction.

The Kalman filter can be seen as a special case of a GP, as discussed in section 2.3.3. In
a Kalman filter, the state transition model, i.e. the process model, is applied for predicting
the future state and the measurements are used for updating the system state. In our GP
prior model, we employ the covariance function, as defined in equation (2.14). For position
prediction, the influences of the available observations depend on the distances, that is, the
closer observations have higher influences on the predictive positions than those that are far
away. The distance is based on the time instants when the observations are received. The
predictive position is a weighted sum of the recent available observations including the L
low-sampling-rate positions and the la high-sampling-rate accelerations.

The key problem in correlating our proposed novel GP prior model with this Kalman filter so-
lution is how to formAk

′ in equation (4.30) such that the xk ′ has the desired covariance func-
tion KallΣK

T
all. The problem of reformulating temporal Gaussian Process regression models

as linear-Gaussian state space models has been investigated in (Hartikainen & Sarkka, 2010;
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Särkkä et al., 2013). In this work, we focus on the GP prior model for sensor fusion.

4.5 Experiment

We conducted an experiment to test the performance of the proposed GP prior model-based
sensor fusion system. In this experiment, we used a Leap Motion Controller to sense the
hand position (90Hz). The V2 Tracking Beta SDK provides the hand tracking with high
accuracy and near-zero latency (Motion, 2014). This was used as the baseline for evaluating
the performance of the GP sensor fusion method. Meanwhile, we collected the hand position
data sensed by the Kinect and the hand acceleration measured by the mobile inertial sensors.
We compared the sensor fusion approach with the position-only Kalman filter prediction
method and the position-only GP, and concluded that the GP prior model-based sensor fusion
is superior to the two methods. The proposed approach can be used to improve the accuracy
of position estimation and reduce the lag.

4.5.1 Experiment Design

Before starting the experiment, we calibrated the position tracking systems including the
Leap Motion Controller and the Kinect sensor. The inertial sensors have also been calibrated.
We aligned the Kinect frame and the Leap Motion tracking frame, and analysed the hand
movement along the x−axis as an example. In this way, the two frames have the same origin
along the x−axis in the space.

In this experiment, the user’s right hand motion was sensed by the Leap Motion Controller,
the Kinect and the inertial sensors pack. The user put the hand above the Leap Motion Con-
troller (the height is approximately 20cm), and performed a hand movement with a mobile
device (SK7) held in the hand in the Kinect field of view. The distance between the Kinect
and the Controller is 1.5m. At the beginning, the user put the hand above the controller, then
moved the hand along the +x−axis (the distance is approximately 20cm) and then stopped.
The process took 2s. The hand position sensed by the Controller is used as the baseline data
for comparison. We also recorded the hand position sensed by the Kinect. The hand motion
data sensed by mobile inertial sensors were fused to estimate the hand acceleration.

The proposed GP prior model was applied for fusing the low-sampling-rate Kinect position
and the high-sampling-rate acceleration measured by mobile inertial sensors.



4.5. Experiment 92

4.5.2 Experimental Method

In this experiment, we test the GP prior model-based sensor fusion approach. We chose
L = 5 as this is very computationally efficient and can give a good prediction result. When
the number of the available assumed non-delayed position measurements, denoted as n, is
smaller than L, we adaptively change the Kp defined in equation (4.17) and Ka defined in
equation (4.13) as this equals to the situation that n is a smaller L. When n ≥ L, a fixed Kall

matrix is used. The method is presented in the following algorithm.

Algorithm 1 Illustration of how the proposed Autoregressive GP model works

1. Measure the acceleration with mobile inertial sensors and the Kinect position.

2. The number of the assumed non-delayed position (the fourth row in Figure 4.3) is de-
noted by n. According to n, construct Kp and Ka accordingly (see (4.17) and (4.13)).

When n < L, adjust Kp and Ka accordingly (This equals a smaller L). Kp is a
n× (3 · n + N0 − 2) matrix and Ka is a (3 · n + N0 − 2)× (3 · n + N0 − 2) matrix,
where (n = 1, · · · , L− 1).

When n ≥ L, Kp and Ka are both fixed matrices.

3. Construct the target vector Mall according to (4.19)

4. Start the GP fusion. Make prediction according to (4.22) and (4.23).

We compared the proposed approach with the position-only Kalman filter and the position-
only GP method. We built a position-only KF, which uses a continuous Wiener process
acceleration model as discussed in section 3.2.2. This position-only KF makes 1 step ( 1

30
s)

prediction first, then the Kinect position measurement is used to update the system state.
Based on the updated state, this KF makes 3 steps ahead prediction to deal with the 0.1s
delay. We also compared the GP sensor fusion with the position-only ARGP method, which
uses the most recent L position measurements for multi-step ahead prediction. As there is a
0.1s delay and the sampling rate of the Kinect is 30Hz, the position-only GP makes 3 steps
prediction. The position-only GP and the GP sensor fusion use the same hyperparameters,
the maximum likelihood estimate of which can be calculated using the time-stamped human
motion training data and the standard optimisation algorithm. The hyperparameters are tuned
to typical human motion, which is relatively continuous and smooth.

The uncertainty of the Kinect position and the acceleration measured by the mobile in-
ertial sensors have been discussed in section 3.3.1. The GP hyperparameters are set to
v0 = 5.66× 104, ω1 = 4.19, σ2

y = 64 and σ2
a = 1002.
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Figure 4.5: Upper panel: The position X measurements and the baseline data. Lower panel:
acceleration X estimated with inertial sensors and expressed in Kinect coordinate system.

4.5.3 Experimental Results

Measurements

In the experiment, the hand position measurement was sensed by the Kinect sensor and the
acceleration was measured by mobile inertial sensors held in the hand. The hand position
sensed by the Leap Motion Controller was used as the baseline. Figure 4.5 illustrates the
position X measurements (in the upper panel) and the corresponding acceleration X mea-
surements (in the lower panel). We can see that the Kinect position measurements are noisy
and delayed. The GP sensor fusion is to fuse the noisy, delayed low-sampling-rate posi-
tion observations and the higher frequency acceleration measurements with the proposed GP
prior model.

Sensor Fusion and Comparison

In this part, the Kinect position observations and the acceleration measurements are fused
with the GP prior model-based sensor fusion approach. In order to illustrate the benefits of
the proposed approach, we compare it with the position-only Kalman filter prediction and
the position-only GP method.
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Figure 4.6: The position-only Kalman filter prediction. Plots show the mean ±2σ. The
figure shows 3 signals: (1) the baseline data (2) the position measurements (3) the predictive
positions with the position-only KF. Plots show the mean ±2σ.

The Position-only Kalman Filter Prediction Figure 4.6 shows 3 signals, including
(1) the baseline data, (2) the position measurements and (3) the predictive positions with the
position-only KF. We can see that there is an overshoot problem with the position-only KF
prediction. We analysed the accuracy of the position predicted with this position-only KF
by comparing the prediction results with the baseline data. The results are summarised in
Table 4.1.

Comparison with the Position-only GP In addition to the position-only KF, we also
compare the GP sensor fusion with the position-only GP. The experimental results are shown
in Figure 4.7, which shows 4 signals, including (1) the baseline data, (2) the position mea-
surements, (3) the position-only GP prediction result and (4) the predictive positions with the
GP sensor fusion method. We use the method described in the Algorithm 1 in section 4.5.2.
We can see that the position prediction with the GP sensor fusion is smoother in comparison
with the position-only GP result. Besides, the uncertainty of position prediction with the GP
sensor fusion is much smaller than that of the position predicted with the position-only GP
method. The comparison results are summarised in Table 4.1. Moreover, the system lag is
reduced with the GP sensor fusion approach. This proves that the high-sampling-rate accel-
eration can compensate for the effect of position uncertainty and lag in the Kinect system.
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Figure 4.7: Comparison of position-only GP and sensor fusion with GP (L=5). Plots show
the mean ±2σ. The figure shows 4 signals: (1) the baseline data (2) the position measure-
ments (3) the position-only GP prediction (4) the prediction with the GP sensor fusion.

Accuracy of Position Estimation In order to analyse the accuracy of the mean position
prediction, we calculate the RMSE based on the baseline data. For the KF, the position-only
GP and the GP sensor fusion approach, this RMSE is the root of the average of the squares
of the difference between the mean predictive positions and the baseline data. We compared
the GP sensor fusion approach with the position-only KF prediction and the position-only
GP prediction method. The results are summarised in Table 4.1.

In comparison with the baseline position data, the RMSE of the noisy and delayed position
measurements sensed by the Kinect is 19.75mm. The measured uncertainty (standard devi-
ation SD) is 8mm. The RMSE of the mean position predicted by the position-only Kalman
filter is 29.19mm. The uncertainty (SD) after the KF converges is 15.84mm. The RMSE
and uncertainty of the mean position predicted with the GP approaches are illustrated in Ta-
ble 4.1. We can see that the sensor fusion with GP helps reduce the error of mean position
prediction and the uncertainty of the prediction. In comparison with the position-only GP,
the RMSE of the mean position prediction is reduced by 35.8% and the uncertainty of the
mean position prediction was reduced by 59.7%.

Thus, the proposed approach is superior to the position-only KF and the position-only GP
method. The KF is a special case of a GP and the proposed approach can be put in a KF
framework and implemented by carefully designing a customised variant of the multi-rate
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KF. This has been discussed in section 4.4. We conclude that the proposed GP prior model-
based sensor fusion helps improve the accuracy of the position estimation.

Table 4.1: Comparison of accuracy – compare the GP sensor fusion approach with the
position-only KF and the position-only GP method.

Accuracy
RMSE(mm) of mean prediction Uncertainty(SD σ)(mm)

Methods
Position-only KF 29.19 15.84
Position-only GP 10.76 29.89
GP sensor fusion 6.91 12.04

Lag Reduction Besides the improved accuracy of the position estimation, the proposed
approach can also help reduce the system lag. We can see this in Figure 4.7. Now we use
the unbiased estimate of the cross-correlation function to analyse the time delay between the
GP predictive position signal and the Kinect position measurement signal. Figure 4.8 shows
the cross-correlation sequence in a length 359 vector, where the GP predictive position sig-
nal and the Kinect measurement signal are both vectors of length 180 (interpolation 90Hz),
respectively. The peak was acquired at 190. Thus, the lag was reduced by 0.11s.
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Figure 4.8: The GP sensor fusion helps reduce the lag. Plot show the cross-correlation
sequence in a length 359 vector, where the GP predictive position signal and the Kinect mea-
surement signal are both vectors of length 180 (interpolation 90Hz). The peak was acquired
at 190. Thus, the lag was reduced by 0.11s.
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4.5.4 Conclusion

In this experiment, we tested the proposed GP prior model-based sensor fusion approach. We
applied the novel and improved GP prior model to fuse the noisy, low-sampling-rate position
measurements sensed by the Kinect and the high-sampling-rate accelerations measured by
the mobile inertial sensors. We compared the proposed approach with the position-only
KF and the position-only GP method. Experimental results show that the mean position
prediction with the proposed GP prior model-based sensor fusion is more accurate and the
uncertainty of the position prediction is much smaller. Moreover, the lag of the Kinect system
is reduced by 0.11s with the GP sensor fusion approach. Thus, the sensor fusion with the
proposed GP prior model helps improve the accuracy of position estimation, and reduce the
lag of the conventional Kinect system.

4.6 Conclusions

In this chapter, we present a sensor fusion system composed of a Kinect sensor and a mobile
device for improving the accuracy of the skeleton joint position estimation and reducing
the lag by fusing the Kinect sensor and the built-in inertial sensors in a mobile device. We
explore the complementary properties of the position sensing device (Kinect) and the mobile
inertial sensors.

The sensor fusion system is based on a novel and transformed Gaussian Process prior model,
which incorporates the low-sampling-rate measurements and the high-sampling-rate deriva-
tives, and takes the different noise characteristics of these sensors into account. In order to
better illustrate the sensor fusion approach, we discussed the relationship between our GP
prior model and the Kalman filter in detail. It is beneficial for multi-rate sensor fusion in a
non-linear dynamical system.

The GP prior model-based sensor fusion approach can be used for user matching and identi-
fication. In section 4.3.2, we described the use of the proposed GP prior model to calculate
the joint log-likelihood of the Kinect positions and the accelerations measured by the mobile
inertial sensors. This allows us to identify individual users, by matching the observed Kinect
skeletons with the sensed inertial data from their mobile devices using the GP-based sensor
fusion algorithm.

Moreover, the GP prior model-based sensor fusion approach is very beneficial for improving
the usability of a location-aware interaction system by increasing the stability of the position
and reducing the lag. We have discussed how to apply this model for position prediction in
section 4.3.2. Firstly, the sensor fusion can improve the quality of inferred joint positions, as
the high-sampling-rate acceleration signal can augment the low-sampling-rate, noisy posi-
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tion measurements. It can also help to reduce lags, as the inertial sensing has a lower latency
than the position sensed by the Kinect.

We conducted an experiment to test the GP prior model-based sensor fusion system. In this
experiment, the user’s hand movement was sensed by the Leap Motion Controller, the Kinect
sensor and the mobile inertial sensors. We applied the proposed sensor fusion method to fuse
the Kinect position and the higher frequency acceleration. Experimental results show that the
proposed GP prior model-based sensor fusion approach is superior to the position-only KF
prediction and the position-only GP prediction method. The GP sensor fusion helps increase
the accuracy of the position estimation, and reduce the lag of the conventional Kinect system.

The GP prior model-based sensor fusion approach is of great benefit for combining mobile
inertial sensors and external position sensing device for mobile augmented reality (AR) and
other location-aware sensing applications, in which the human movement is typical of ev-
eryday movement, relatively continuous and smooth. The increased stability of the position
and the faster response of the sensor fusion system give the user a smoother experience and
a faster response.



99

Chapter 5

Transformations of Gaussian
Process Priors for User Matching

In this chapter, we apply the Gaussian Process prior model-based sensor fusion approach to
user matching. Firstly, we give an introduction to user matching and identification in human-
computer interaction (HCI). Secondly, we describe how to calculate a joint log-likelihood of
the low-sampling-rate position and the high-sampling-rate acceleration with the proposed
GP prior model. Thirdly, we test the use of the transformations of GP priors in a simulation
experiment. Fourthly, we conduct three experiments including (1) subtle hand movement
(2) mobile device in the user’s trouser pocket and (3) walking with the device held in the
hand. We investigate the performance of the joint log-likelihood comparison method using
the proposed GP prior model and compare the proposed approach with the direct acceleration
comparison method in all 3 contexts.

5.1 Introduction

As discussed in the proposed scenario in section 1.1, user matching and identification plays
a crucial role in providing user-specific information and services in a proxemic interaction
system. In this chapter, we investigate the usability of the proposed sensor fusion system
for user matching and identification through people’s everyday movements. We apply the
proposed Gaussian Process prior model for fusing the low-sampling-rate position measure-
ments sensed by the Kinect and the high-sampling-rate acceleration measured by the mobile
inertial sensors. The sensor fusion combines data from multiple sensors (Hall & Llinas,
1997), and can be applied for matching a particular user’s skeleton with a mobile device.
When several users are in a room and each of them carries a mobile device, we can find the
matching relationship between the users and the mobile devices.
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The advanced human motion tracking techniques and ubiquitous sensors enable the HCI
researchers to exploit the mobile device-based user identification techniques (Guna et al.,
2012; Rofouei et al., 2012). In addition to the Kinect, the inertial sensors provide another
way of sensing human movement. An increasing number of consumer devices, such as
tablets and smartphones, are equipped with advanced inertial sensors, which can be used to
sense how the device is moved. If the Kinect can sense multiple people in the room and each
has a device in the hand or pocket, which person carries which device?

In order to identify the correlation between the person and the device, we need to associate
the motion sensed by the Kinect sensor with the motion sensed by the mobile inertial sen-
sors. The Kinect sensor and inertial sensors have complementary properties, as discussed
in section 1.2.2. Solving this efficiently by exploring the complementary properties of these
sensors, minimising the extent of the movement needed for matching, would allow a system
to rapidly link the Kinect sensed people with their devices equipped with inertial sensors,
and customise services appropriately for them.

User matching and identification has been studied in the literature, e.g. proxemic interaction
(Greenberg et al., 2011) and human-computer interaction (HCI) (Shahidi et al., 2010). The
user matching and identification systems in the literature will be introduced in section 5.2.

The fusion of the Kinect sensor and the mobile inertial sensors enables us to build a context-
aware application. For example, by matching the skeletons sensed by the Kinect and the
accelerations measured by the mobile devices carried by the family members using the GP
prior model-based sensor fusion method, we can build a user matching and identification
system. A potential application is to help family members personalize their own multimedia
services and TV programs. Besides user matching, another benefit of the model is that
we can apply the high-sampling-rate accelerations sensed by the mobile inertial sensors to
augment the noisy, low-sampling-rate positions measured by the Kinect. Imagine this is a
family environment and each member carries a mobile phone. Everyone can use his/her own
phone for an augmented reality (AR) application in the room. The fusion of the hand position
and acceleration increases the stability of the position and reduce the lag, improving the user
experience. In order to fuse the position from a skeleton (a specific user) and the acceleration
from a phone, we need to associate this particular user with one of the mobile phones in the
room. After that, we can apply the acceleration sensed by this particular mobile phone to
augment the noisy position from this specific user’s skeleton tracking. In this chapter, we
focus on user matching, i.e. finding the correlation between the multiple skeletons and the
mobile devices.

Addressing these problems, we apply the GP prior model proposed in Chapter 4 for fus-
ing the low-sampling-rate position sensed by the Kinect sensor and the high-sampling-rate
acceleration measured by the inertial sensors. In section 4.3.2, we briefly introduced the
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application of the GP model for user matching and identification. In this chapter, we give a
detailed description on how to apply the GP prior model for matching the skeletons sensed
by the Kinect with the time series of acceleration signals measured by the mobile devices.

We show how to calculate the log-likelihood of the low-sampling-rate position sensed by the
Kinect and the high-sampling-rate acceleration sensed by the mobile inertial sensors using
the GP prior model, which allows you to match the most likely combinations of sensors,
consistent with the uncertainty in each sensor channel, instead of comparing the accelerations
estimated with different sensors. An approach to this is described in (Rofouei et al., 2012), in
which the authors proposed the ShakeID method, which is a technique for associating multi-
touch interactions with individual users and their mobile devices. However, this method
requires the user to perform a vigorous and visible hand movement.

In this work, we investigate the feasibility and usability of the GP prior model-based sensor
fusion approach to associating a particular user with a mobile device carried by the user,
based on the data from an embedded Kinect, and acceleration information from a mobile
device, which can be held in the user’s hand or be in the user’s trouser pocket. We test
the performance of our system in different contexts, including (1) subtle hand movement;
(2) with the mobile device in the user’s trouser pocket; (3) walking with the device held in
the hand. Experimental results show that 6 users can be correctly matched and identified
in all the contexts with our approach. We compared the proposed approach with the direct
acceleration comparison method in all 3 contexts.

5.2 Background

We consider the problem of fusing the Kinect sensor and the built-in inertial sensors in a
mobile device for user matching and identification in a proxemic interaction system using a
novel GP prior model. We cover related work on user matching and identification systems.

Although user identification can be dealt with computer vision approaches, e.g. face recog-
nition and gait (Kale et al., 2004; Chellappa et al., 2007), the focus of our work is not on
identifying different users, but on the method of user matching, i.e. finding the correlation
between multiple skeletons (users) and the mobile devices. Specifically, the user matching is
to associate a particular skeleton sensed by the Kinect with one of the mobile devices. The
matching results can be easily applied for user identification. Although the Kinect skeleton
tracking only gives a user ID for each user, we can find who the user is when we know which
mobile device the user is carrying, assuming each user carries his/her own mobile device and
we know who the mobile device belongs to.
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User Matching and Identification Systems

User matching and identification plays an important role in many fields, such as proxemic in-
teraction (Greenberg et al., 2011), human-computer interaction (HCI) (Shahidi et al., 2010),
smart environments (Kadouche et al., 2010), multimedia services and applications (Guna
et al., 2012), and the multi-touch interactive displays for personalization and collaboration
(Ramakers et al., 2012; Blažica et al., 2013).

User matching and identification in multi-touch interactive displays has attracted much in-
terest (Rofouei et al., 2012; Ackad et al., 2012; Ramakers et al., 2012). Ackad et al. (2012)
presented a system that could identify users and keep track of their actions around interactive
tabletops. They explored the use of combining personal devices and the Microsoft Kinect
sensor to provide a method for continuous user identification on tabletop surfaces. Ramakers
et al. (2012) introduced a technique for user identification by observing the dorsal region of
their hands with a high-resolution camera mounted above the interactive surface.

There is relatively little research effort on acceleration-based gesture for user identification
(Guna et al., 2012). Farella et al. (2006) studied the use of inertial sensors embedded in
mobile devices for personal identification. The implicit gesture-based user identification
using a 3-axis accelerometer was studied in (Guna et al., 2012). Conti et al. (2011) focused
on the movement that a user performs when answering (or placing) a phone call, and assessed
the feasibility of using this movement as a biometric authentication measure.

The combination of the Kinect and inertial sensors for user matching and identification was
studied in the literature (Rofouei et al., 2012). An accelerometer-equipped mobile phone was
combined with a Kinect for associating the users with the devices. A Kalman filter (Welch
& Bishop, 1995) was applied for estimating the acceleration of hand position. However, no
detailed process noise covarianceQ and the measurement noise covarianceRwere indicated.
The acceleration estimated with the phone sensor was compared with that estimated with the
Kalman filter over a time window. The ShakeID method requires the user to perform a
vigorous and visible hand movement. As mentioned in (Rofouei et al., 2012), an important
limitation of this method involves the case where the hand holding the phone is stationary.
When the hand (phone) movement is subtle, it will be difficult for the ShakeID method to
work because of the low signal strength.

5.3 Fusing Kinect Sensor and Inertial Sensors for User

Matching

The proposed GP prior model presented in Chapter 4 is of great importance for multi-rate
sensor fusion, e.g. fusing the Kinect sensor and the mobile inertial sensors. Firstly, we can
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fuse the position and the acceleration with the GP prior model to improve the accuracy of
position estimation and reduce the lag. This has been described in Chapter 4. Secondly, the
model can be applied for computing the joint log-likelihood given different combinations of
position and acceleration. This can be used for user matching, i.e. associating a particular
user with one of the mobile devices. In this chapter, we match the skeletons sensed by the
Kinect with the time series of acceleration signals measured by the mobile devices. In this
way, we match a skeleton that represents a particular user with a mobile device in the room.
The user matching is achieved.

In this section, we present the problem statement for user matching with GP priors first. Fol-
lowing this, we discuss the multi-rate sensor fusion technique for user matching and identi-
fication. We illustrate how to use the log-likelihood comparison method for user matching
and identification with an example.

5.3.1 Problem Statement for User Matching with GP Priors

In our work, the user motion is typical of everyday movement, i.e. relatively smooth. The
parameters specified by the covariance function are tuned to typical human motion. The
maximum likelihood estimate of the hyperparameters can be calculated given the covariance
function and the time-stamped human motion data using standard optimisation algorithm.
We put a prior on the function space of the combination of position and acceleration. For
the acceleration function, we apply a transformed GP prior, which is based on a GP prior
on the position function space. In this way, we have an overall GP prior on the combination
(position and acceleration) function space. Under the GP prior model, we can calculate the
log-likelihood given different combinations of position and acceleration. We can determine
how likely the different combinations of position and acceleration are under this model by
calculating the joint log-likelihood with GPs.

In order to compare the log-likelihood of different combinations, we introduce the GP log
marginal likelihood, given training data Y .

logL(θ) = −1

2
Y T
(
C(θ) + σ2I

)−1
Y − 1

2
log |C(θ) + σ2I| − N

2
log 2π, (5.1)

where the observations Y ∼ N (0, C +σ2I) and C denotes the matrix of covariances among
the training inputs. θ = {v0, ωk, σ

2
n} are the hyperparameters defined in equation 2.14.

In our work, we study the user matching in these contexts: (1) the subtle hand movement,
(2) with the device in the user’s trouser pocket and (3) walking with the device held in the
hand. The maximum likelihood estimation of the hyperparameters θ gives us a model, based
on which we can compute and compare the log-likelihoods given different combinations of
position and acceleration observations. The joint likelihood represents the joint probability



5.3. Fusing Kinect Sensor and Inertial Sensors for User Matching 104

density function (pdf) evaluated at the joint vector under the model. The higher the likelihood
is, the more likely the combination is, that is, the more likely this position signal is associated
with the acceleration signal.

In order to find the joint distribution of the low-sampling-rate position Plow and the high-
sampling-rate acceleration Acchigh, we apply the GP prior method and calculate an overall
covariance matrix Call, so [

Plow

Acchigh

]
∼ N (0, Call) . (5.2)

In the following section, we will apply GPs in a sensor fusion manner and find this joint
distribution of position and acceleration with the GP prior method. Following this, we give
a detailed description on how to fuse the Kinect sensor and mobile inertial sensors for cal-
culating the log-likelihood of the low-sampling-rate position and the high-sampling-rate ac-
celeration. Finally, we illustrate how to match a particular position signal with time-series of
acceleration measurements through log-likelihood comparison.

5.3.2 Multi-rate Sensor Fusion for User Matching

In this section, we apply the novel and improved GP prior model presented in Chapter 4 for
multi-rate sensor fusion. We emphasize the log-likelihood of GP prior model and describe
how to calculate this log-likelihood given different combinations of the low-sampling-rate
position measurements sensed by the Kinect and the high-sampling-rate accelerations mea-
sured by the mobile inertial sensors. We discuss how to determine a user matching result by
comparing the log-likelihoods of pairing a specific position signal with all the acceleration
signals sensed by multiple mobile devices.

Now we introduce how to fuse multiple observations from different sensors, e.g. the position
sensor (Kinect) and the acceleration sensor (the built-in inertial sensors in a mobile device).
We describe how to fuse the Kinect position and the acceleration sensed by the mobile in-
ertial sensors with the proposed GP prior model, which incorporates the low-sampling-rate
position measurements and the high-sampling-rate acceleration measurements, and takes the
uncertainty of different sensors into account.

Multi-rate Sensor Fusion

As discussed in section 4.3.2, we found the joint distribution of the low-sampling-rate posi-
tion and the high-sampling-rate acceleration, as defined in equation 4.21. Given the observa-
tions, i.e. the combination of position and acceleration measurements, we can apply the GP
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sensor fusion model for calculating the log marginal likelihood

logL = −1

2
log

∣∣∣∣∣KallΣKall
T +

[
Σp

Σa

]∣∣∣∣∣
− 1

2
Mall

T

(
KallΣKall

T +

[
Σp

Σa

])−1

Mall −
1

2
N log 2π. (5.3)

In equation (5.3), the time instants when the inertial sensor samples are acquired are used
as the training inputs (N × 1). This gives the covariance matrix Σ. Mall represents the
overall targets, which include the low-sampling-rate positions and the high-sampling-rate

accelerations. Mall =

[
Mp

Ma

]
= [y1, · · · , yn, a1, · · · , aN ]T . The Σp and Σa represent

the diagonal matrices of position and acceleration observation variances respectively. The
uncertainty of measurements can be found in section 3.3.1. The GP hyperparameters are set
to v0 = 4.69× 103, ω1 = 7.85, σ2

y = 64 and σ2
a = 1002.

Under this model, we calculate and compare the joint log-likelihoods given different combi-
nations of positions and accelerations, and match a specific user’s skeleton with one of the
mobile devices.

Log-Likelihood Comparison for User Matching

Now we illustrate how to use equation (5.3) for associating the position with the accelera-
tion. For example, there are 2 users and each carries a mobile device. There are 2 position
sequences denoted as p1 and p2, and 2 acceleration sequences denoted as a1 and a2. Thus,

there are 4 combinations, i.e.
[
p1 a1

]T
,
[
p1 a2

]T
,
[
p2 a1

]T
and

[
p2 a2

]T
. Our

goal is to find the acceleration match for p1 and p2, respectively.

For user 1, we denote the two combinations as Y11 and Y12. That is, Y11 =

[
p1

a1

]
and

Y12 =

[
p1

a2

]
. By applying equation (5.1), we can evaluate the joint log-likelihood logL11

given the combination Y11, and logL12 given Y12, respectively. If logL11 > logL12, it is
more likely that p1 is associated with a1. If logL11 < logL12, it is more likely that p1 is
associated with a2.

logL11 = −1

2

[
p1

a1

]T
(Call)

−1

[
p1

a1

]
− 1

2
log |Call| −

N

2
log 2π (5.4)

logL12 = −1

2

[
p1

a2

]T
(Call)

−1

[
p1

a2

]
− 1

2
log |Call| −

N

2
log 2π (5.5)
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For the situation when we have n users, there will be n combinations for each user. The
highest log-likelihood indicates the best match.

5.4 User Matching System Overview

The equipment consists of the Microsoft Kinect and a SHAKE SK7. This has been described
in section 3.3. A detailed description of the coordinate systems involved in this sensor fusion
has been presented in section 3.3.2.

The joint positions are sensed by the Kinect. Meanwhile, the inertial sensors communicate
with the computer via Bluetooth and the inertial sensor data are fused for estimating the
hand acceleration. The Kinect positions and the acceleration measurements are fused with
the proposed Gaussian Process prior model. The sensor fusion system compares the joint
log-likelihoods given a position signal from a particular user and multiple acceleration sig-
nals sensed by the mobile devices, and gives the highest joint log-likelihood result, which
indicates the matching of this positional signal and the acceleration signal. The system finds
the matched acceleration sequence for each skeleton position sequence. In this way, we asso-
ciate the motion sensed by the Kinect with the motion sensed by the mobile inertial sensors.
Thus, the user matching is achieved.

User Matching through the Joint Log-Likelihood Comparison

In order to match a specific user’s skeleton with a mobile device, we use the proposed Gaus-
sian Process prior model to calculate the joint log-likelihood of the Kinect position measure-
ments and the accelerations measured by mobile inertial sensors. The joint log-likelihood
function defined in equation (5.3) can be used to associate a position signal with an accelera-
tion signal. How likely is a time-series of acceleration signals associated with measurements
of position signals? We estimate and compare all the log-likelihoods of pairing one specific
position signal with all other acceleration signals, and find the best match. We do this for all
the skeleton position signals, respectively, allowing us to infer a user match.

5.5 Simulation Experiment: Estimation of Position,

Velocity and Acceleration with GP Priors

In this simulation experiment, we used the transformed GP priors to estimate the position,
the velocity and the acceleration. We applied the transformed GP prior method to estimate
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the position, the velocity and the acceleration based on the simulation (position) data. The
real position signal is

y= 10× sin(x), (5.6)

where x= 0 : π
20

: 2π. We set the position measurements equal to the real signal plus Gaussian
white noise (the variance σ2). Two noise levels include (1) σ2 = 1 and (2) σ2 = 25.

(1) Noise level σ2 = 1

Figure 5.1a illustrates the noisy position measurements, the real position signal and the GP
predictive positions. We can see that the GP prior method gives good estimation of positions.

In addition to the position, we also used the transformed GP prior method to predict the
velocity and the acceleration. Figure 5.1b illustrates the predictive velocity results with GPs.
Figure 5.1c shows the predictive acceleration with GPs.

(2) Noise level σ2 = 25

When we increase the noise in the measurement signal, we get the results, including the
position (Figure 5.2a), the velocity (Figure 5.2b) and the acceleration (Figure 5.2c).
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(a) Plots show the noisy position measurements, the real position signal,
and the position prediction with the transformed GP prior method.
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(b) Comparison of velocity: the real velocity and the velocity estimated
with the transformed GP prior method.
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(c) Comparison of acceleration: the real acceleration and the accelera-
tion estimated with the transformed GP prior method.

Figure 5.1: (Simulation experiment) Estimation of position, velocity and acceleration with
the transformed GP priors. σ2 = 1
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(a) Plots show the noisy position measurements, the real position signal,
and the position prediction with the transformed GP prior method.
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(b) Comparison of velocity: the real velocity and the velocity estimated
with the transformed GP prior method.
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(c) Comparison of acceleration: the real acceleration and the accelera-
tion estimated with the transformed GP prior method.

Figure 5.2: (Simulation experiment) Estimation of position, velocity and acceleration with
the transformed GP priors. σ2 = 25
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Conclusion

In this experiment, we used the transformed GP priors to estimate the position, the velocity
and the acceleration of the noisy measurements. We can see that the GP predictive results
are comparable with the noise-free simulation data including the position, the velocity and
the acceleration.

5.6 The User Matching Experiment I: Subtle Hand Move-

ment

5.6.1 Experiment Design

In this experiment, we have 6 participants (2 female, 4 male, aged between 24 and 30, mean
age 26). Each user performed a subtle hand movement in front of the Kinect with a mo-
bile device (SK7 Dimensions 43 mm × 32 mm × 18 mm) held in the right hand. The user
was instructed to stand there, put the hand at the side of the hip and not to move the feet
during the experiment. He/She then swayed the hand naturally and subtly. We analysed the
hand movement along the x−axis, i.e. the horizontal movement. The range of measured
movement magnitude is defined as (0, max(x)-min(x)). In this way, we get the hand move-
ment range for each user, (0, 14.4)cm (user 1), (0, 15.9)cm (user 2), (0, 10.1)cm (user 3),
(0, 24.8)cm (user 4), (0, 11.6)cm (user 5) and (0, 14.3)cm (user 6). The maximum mag-
nitude of measured movement acceleration is 2.25 × 103 mm/s2. The whole process took
10s.

For each participant, we gathered 1 sample. We collected the participant’s skeleton tracking
positions, i.e. the right hand position measurements, and the hand motion data sensed by
mobile inertial sensors. The hand position measurements along the x−axis for the 6 partici-
pants are shown in the left panel of Figure 5.5. For the 6 participants, the hand acceleration
measured by mobile inertial sensors are shown in the right panel of Figure 5.5.

5.6.2 Experimental Results

Kinect Sensor Noise

When the user moves the hand slightly, the Kinect cannot sense the changes of hand positions
due to the noise, as the noise occludes the real slightly-changed hand positions. Before we
started the subtle hand movement experiment, we asked one of the participants to perform a
subtle hand movement.
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Position Sensing We recorded the hand positions sensed by the Kinect and the accelera-
tions measured by the inertial sensors. The whole process took 15s, including 3 time periods:
(1) Hand–motionless (2) Hand–subtle movement (3) Hand–motionless. The hand position
tracking result is shown in Figure 5.3. It can be seen that the Kinect cannot sense the changes
of hand position correctly due to the sensor noise and the subtle hand movement.
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Figure 5.3: (Subtle hand movement) The hand position (along the x−axis) measured by the
Kinect sensor. The changing of the hand position measurements during the 3 time periods
((1) Hand–motionless (2) Hand–subtle movement (3) Hand–motionless) is illustrated. It can
be seen that the hand positions cannot be determined correctly due to the Kinect sensor noise
and the subtle hand movement.

Acceleration Sensing Although the hand position cannot be determined in Figure 5.3,
we still have the accelerations measured by the mobile inertial sensors. The result is shown
in Figure 5.4. It can be seen that the hand motion data sensed by the inertial sensors are less
noisy in comparison with the very noisy Kinect position measurements shown in Figure 5.3.

Subtle Hand Movement Experiment

After illustrating the limitation of the Kinect sensor, we conducted the subtle hand movement
experiment. The 6 participants were asked to perform subtle hand movements with the SK7
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Figure 5.4: (Subtle hand movement) The hand acceleration (along the x−axis) sensed by
the inertial sensors. Although the hand positions cannot be correctly sensed by the Kinect
(Figure 5.3), the hand accelerations can be measured with the inertial sensors. The changing
of the accelerations during the different time periods is illustrated. We can see the difference
between the accelerations during different time periods: (1) Hand–motionless (2) Hand–
subtle movement (3) Hand–motionless.

held in the right hand when they stood in front of the Kinect. Figure 5.5 illustrates the
position observations and the acceleration measurements for all 6 participants.

Comparison with the State-of-the-art Work In order to compare our method with
the ShakeID method (Rofouei et al., 2012), we associated the motion sensed by the Kinect
with the motion sensed by the mobile inertial sensors for user 1 and user 2 with the direct
acceleration comparison method.

In order to simulate the acceleration distance comparison method proposed in the literature
(Rofouei et al., 2012), we applied a Kalman filter for estimating the hand acceleration based
on the Kinect positions. No detailed parameters including the process covariance matrix Q
and the measurement covariance matrix R were given in (Rofouei et al., 2012). Here we set
the state vector

xk =
[
pxk pyk pzk vxk vyk vzk axk ayk azk

]
. (5.7)

The measurements include 3−axis positions. We estimated the 3−axis accelerations of the



5.6. The User Matching Experiment i: Subtle Hand Movement 113

0 2 4 6 8 10
−100

0

100

p 
(m

m
)

position − user 1

0 2 4 6 8 10
−2000

0

2000

a 
(m

m
/s

2 ) acc − user 1

0 2 4 6 8 10
−100

0

100

p 
(m

m
)

position − user 2

0 2 4 6 8 10
−2000

0

2000
a 

(m
m

/s
2 ) acc − user 2

0 5 10 15 20
−100

0

100

p 
(m

m
)

position − user 3

0 2 4 6 8 10
−1000

0

1000

a 
(m

m
/s

2 ) acc − user 3

0 2 4 6 8 10
−200

0

200

p 
(m

m
)

position − user 4

0 2 4 6 8 10
−2000

0

2000

a 
(m

m
/s

2 ) acc − user 4

0 2 4 6 8 10
−100

0

100

p 
(m

m
)

position − user 5

0 2 4 6 8 10
−1000

0

1000

a 
(m

m
/s

2 ) acc − user 5

0 2 4 6 8 10
−100

0

100

p 
(m

m
)

position − user 6

Time (s)
0 2 4 6 8 10

−2000

0

2000

a 
(m

m
/s

2 ) acc − user 6

Time (s)

Position and Acceleration Measurements − 6 Users

Figure 5.5: (Experiment 1: Subtle hand movement) Left column: the hand position X mea-
surements (all 6 users). Right column: the acceleration X measurements sensed by the
mobile device (all 6 users).
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Figure 5.6: (Experiment 1: Subtle hand movement) Simulation of ShakeID method. The
user 1 matching results are illustrated. The two shade areas (during 3−4s and 6−7s), which
represent the time periods of correct match, are clearly illustrated. It can be seen that the
direct acceleration comparison method gave the wrong results during the periods in 1 − 3s,
4− 6s and 7− 10s respectively.

Kinect positions for user 1 and user 2 respectively. The 3−axis acceleration estimated with
the inertial sensors in the mobile device was compared with the 3−axis acceleration esti-
mated with a Kalman filter based on Kinect positions over a time window (1s). The squared
Euclidean distance D was calculated.

D = arg min
t∑
t−1

(
‖ax − ax,device‖2 + ‖ay − ay,device‖2 + ‖az − az,device‖2), (5.8)

where ax, ay and az represent the 3−axis acceleration of the Kinect positions in the 1s
time window. ax,device, ay,device and az,device denote the 3−axis (x−axis, y−axis, z−axis)
acceleration measured by mobile inertial sensors, respectively. For identifying the user who
held the device 1, we compared the acceleration of Kinect position (user 1) with the two
acceleration signals measured by the devices 1 and 2. In Figure 5.6, we show the squared
distance between the acceleration of Kinect position (user 1) and the acceleration measured
by device 1 and device 2, respectively. The ground truth is that user 1 was associated with
device 1. It can be seen that the ShakeID method does not give the correct pairing result. For
user and device association for user 2, we show the results in Figure 5.7. The ground truth is
that user 2 was holding device 2. We can see that the ShakeID method does not work for the
subtle hand movement situation.
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Figure 5.7: (Experiment 1: Subtle hand movement) Simulation of ShakeID method. The
user 2 matching results are illustrated. The time periods when user 2 was matched with
device 2 are denoted as shade areas. It can be seen that the direct acceleration comparison
method gave the wrong results during the periods in 3− 4s and 6− 7s respectively.

User Matching with Sensor Fusion Method In the above steps, we show that the
ShakeID method does not work for matching the motion sensed by the Kinect and the motion
sensed by inertial sensors for user 1 and user 2, respectively, in the subtle movement situation.

Now we apply the GPs user matching algorithm for associating the skeletons sensed by the
Kinect with the accelerations measured by the inertial sensors for 6 users. The position
measurements and the accelerations sensed by the inertial sensors are shown in Figure 5.5.
The following work is to find the matching relationship between the 6 position signals and the
6 acceleration signals. With the proposed method, we built a GP prior model, under which
we want to compare the log-likelihoods given different combinations of the low-sampling-
rate positions and high-sampling-rate accelerations.

Given a combination of positions and accelerations, i.e. Mall, the log-likelihood is calculated
according to equation (5.3). In order to find the best acceleration match for the position from

user 1, we haveMij =
[
pi aj

]T
,∀i = 1, j = 1, · · · , 6. By comparing logLij,∀i = 1, j =

1, · · · , 6, we can find the highest joint log-likelihood. The joint log-likelihood comparison
results for user 1 are shown in Figure 5.8. It indicates that the log-likelihood of associating
the position of user 1 with the accelerations of device 1 is the highest. Thus, we identify that
user 1 was carrying device 1. This is the correct matching result. In a similar manner, we
find the match between the position and the acceleration for other 5 users respectively. The
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joint log-likelihood comparison results are shown in Figure 5.9, Figure 5.10, Figure 5.11,
Figure 5.12 and Figure 5.13, respectively. We summarise the matching results in Table 5.1.
The row “user i” (i = 1, · · · , 6) represents the matching results for user i. The column j
(j = 1, · · · , 10) denotes the time instant. Thus, user 1 was matched with device 4 at time
instant 1s. The ground truth data is that user k was associated with the mobile device k
(k = 1, · · · , 6). In Table 5.1, we can see that the matching time for user 1, · · · , 6 are 4s, 1s,
3s, 4s, 1s, 2s, respectively.
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Figure 5.8: (Experiment 1: Subtle hand movement) User 1 was associated with the mobile
device 1. The curves represent the joint log-likelihoods given position measurements from
user 1 and 6 acceleration signals sensed by the inertial sensors. The estimate of best match
is indicated by the highest curve.
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Figure 5.9: (Experiment 1: Subtle hand movement) User 2 was associated with the mobile
device 2. The curves represent the joint log-likelihoods given position measurements from
user 2 and 6 acceleration signals sensed by the inertial sensors. The estimate of best match
is indicated by the highest curve.
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Figure 5.10: (Experiment 1: Subtle hand movement) User 3 was associated with the mobile
device 3. The curves represent the joint log-likelihoods given position measurements from
user 3 and 6 acceleration signals sensed by the inertial sensors. The estimate of best match
is indicated by the highest curve.
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Figure 5.11: (Experiment 1: Subtle hand movement) User 4 was associated with the mobile
device 4. The curves represent the joint log-likelihoods given position measurements from
user 4 and 6 acceleration signals sensed by the inertial sensors. The estimate of best match
is indicated by the highest curve.
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Figure 5.12: (Experiment 1: Subtle hand movement) User 5 was associated with the mobile
device 5. The curves represent the joint log-likelihoods given position measurements from
user 5 and 6 acceleration signals sensed by the inertial sensors. The estimate of best match
is indicated by the highest curve.
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Figure 5.13: (Experiment 1: Subtle hand movement) User 6 was associated with the mobile
device 6. The curves represent the joint log-likelihoods given position measurements from
user 6 and 6 acceleration signals sensed by the inertial sensors. The estimate of best match
is indicated by the highest curve.

Here we also compare our method with the direct acceleration comparison method. We
directly compare the acceleration vectors for user matching by calculating the sum of squared
Euclidean distance between the acceleration of the Kinect positions and the acceleration
measured by mobile inertial sensors to determine the matched device for a particular user.

d = arg min
t∑
0

‖aknt − ai,device‖2, (5.9)

where aknt denotes the acceleration of the Kinect positions from a particular user and ai,device
denotes the acceleration measured by the device (i = 1, · · · , 6). The matched device gives
the minimum sum of squared distance. In this experiment, we used the acceleration along
the x−axis. We found that this acceleration comparison method does not work either in
the subtle hand movement situation. We summarise the user matching results in Table 5.2
and the comparison results in Table 5.3. Thus, the direct acceleration distance comparison
method is not applicable for associating the hand accelerations of Kinect positions with the
accelerations estimated with the mobile inertial sensors in the subtle hand movement situa-
tion.
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Table 5.1: (Experiment 1: Subtle hand movement) The user matching results using GP sensor
fusion method.

Users 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s
user 1 4 1 2 1 1 1 1 1 1 1
user 2 2 2 2 2 2 2 2 2 2 2
user 3 5 4 3 3 3 3 3 3 3 3
user 4 4 2 2 4 4 4 4 4 4 4
user 5 5 5 5 5 5 5 5 5 5 5
user 6 5 6 6 6 6 6 6 6 6 6

Table 5.2: (Experiment 1: Subtle hand movement) The user matching results using acceler-
ation comparison method. This method does not give the correct results.

Users 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s
user 1 3 3 4 3 4 4 4 3 3 3
user 2 4 4 4 4 4 4 4 4 4 4
user 3 5 5 3 5 5 5 5 5 5 5
user 4 6 6 6 3 3 3 3 3 3 3
user 5 4 5 4 4 4 3 3 3 3 3
user 6 5 5 5 4 3 3 3 3 3 3

Table 5.3: The user matching results for experiment 1 – Comparison of GP sensor fu-
sion method and acceleration comparison method. Y denotes “Yes”(matched). N denotes
“No”(matching failure).

User ID
Total Matched No.

1 2 3 4 5 6

Subtle movement
GP sensor fusion Y Y Y Y Y Y 6

Acceleration comparison N N N N N N 0

5.6.3 Conclusion

In this experiment, we investigated the performance of the proposed GP prior model for user
matching in a subtle hand movement experiment. We compared our method with the state-
of-the-art work in the literature and conclude that our method can achieve user matching in
seconds (1− 4s in this experiment) while the direct acceleration comparison method fails to
find a match in the subtle hand movement experiment.
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5.7 The User Matching Experiment II: Mobile Device

in User’s Trouser Pocket

5.7.1 Experiment Design

In this experiment, we studied the usability of our sensor fusion system when the users put
their mobile devices in the trouser pockets. We used the same 6 users, who participated in
the experiment 1. We asked each participant to put the mobile device in his/her own trouser
pocket. At the beginning, the participant put the mobile device (SK7 Dimensions 43 mm ×
32 mm × 18 mm) in the right trouser pocket and stood at a distance of approximately 3m
from the Kinect. The participant faced the Kinect and started walking toward the Kinect and
kept moving in an area of 3m × 1.5m in the Kinect field of view. The whole process took
10s. We analysed the position and acceleration measurements along the y−axis (the vertical
axis). We did not define a moving trajectory and did not limit the user’s movement as this
was more realistic. As long as the two joints, including the right knee and the right hip, are
moving, the Kinect can infer the vertical movement of the pocket and the mobile device can
sense the acceleration along the vertical axis, the movement along the other axes will not
influence the vertical movement. Thus, how the user moves along the x−axis and z−axis
does not influence the user matching as we only analyse the inferred pocket movement along
the y−axis.

For each participant, we gathered 1 sample. We collected the participant’s skeleton tracking
positions, i.e. the right hip and the right knee position measurements, and the hand motion
data sensed by the inertial sensors embedded in the mobile device.

The Kinect cannot detect the position of the trouser pocket exactly, as the sensor can only
detect the skeleton joints positions. One way to infer the pocket position is to calculate the
weighted sum of relevant joints positions,

p̂ =
n∑
i=1

ωipi, (5.10)

where n denotes the number of relevant skeleton joints. pi denotes the position of joint i and
ωi is the corresponding weight of joint i. In this work, we assume that the trouser pocket is
located at the middle point between the right hip and the right knee, as shown in Figure 5.14.
That is, the position Y of the pocket is

Ypocket =
1

2
(Yhip + Yknee) . (5.11)

The inferred pocket positions along the y−axis (vertical axis) for the 6 participants are shown
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Figure 5.14: Infer the position of the trouser pocket that is located at the middle point be-
tween the right hip and the right knee.

in the left panel of Figure 5.16. The inferred pocket acceleration is the acceleration measured
by mobile inertial sensors. The acceleration measurements for the 6 participants are shown
in the right panel of Figure 5.16.

5.7.2 Experimental Results

For user 1, we show the relationship between the two joints (the right hip and the right
knee) and the trouser pocket in Figure 5.15. The position measurements along the y-axis
are analysed. The positions of the right hip (dashed line) and the positions of the right knee
(dash-dot line) are shown. We inferred the positions of the trouser pocket (solid line) by
computing the mean of the positions of the right hip and the positions of the right knee.

For the other 5 users, we inferred the positions of the trouser pocket in the same way. For
all 6 users, the inferred positions of the trouser pockets and the acceleration measurements
sensed by the mobile inertial sensors are shown in Figure 5.16. Our goal is to associate the
6 inferred position signals with the 6 acceleration signals, that is, match the pocket position
with the acceleration sensed by the mobile device. In this way, we identified which user
carried which mobile device.

We used our sensor fusion model for calculating the joint log-likelihood of the low-sampling-
rate position measurements and the high-sampling-rate acceleration measurements. By pair-
ing a specific position signal, e.g. the positions for user 1, with the 6 acceleration signals,
we can find the best match, i.e. the joint log-likelihood of pairing the positions from user 1

with the accelerations from user 1. For all 6 users, the matching results are summarised in
Table 5.4. The row “user i” (i = 1, · · · , 6) represents the matching results for user i. The
column j (j = 1, · · · , 10) denotes the time instant. Thus, user 1 was matched with device 2

at time instant 1s. The ground truth data is that user k was associated with the mobile device
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Figure 5.15: (Experiment 2: Mobile device in the trouser pocket) The position measurements
Y (the vertical axis) of the right hip (dashed line) and the right knee (dash-dot line) for user
1 are shown. The inferred positions of the trouser pocket are illustrated (solid line).

k (k = 1, · · · , 6). In Table 5.4, we can see that the matching time for user 1, · · · , 6 are 3s,
3s, 3s, 3s, 1s, 5s, respectively.

In this experiment, we also compared our approach with the direct acceleration comparison
method. The results are summarised in Table 5.5. With the direct acceleration comparison
method, we found that only user 4 and user 5 were successfully matched with their devices.
This is due to the fact that user 4 and user 5 performed vigorous movements, which can
be seen from the inferred pocket positions in Figure 5.16. Thus, the direct acceleration
comparison method works only when there are vigorous inferred pocket movements. By
contrast, 6 users were correctly matched with their devices with our method. Therefore, the
GP fusion method outperforms the direct acceleration method in this experiment.
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Figure 5.16: (Experiment 2: Mobile device in the trouser pocket) Left column: the position
Y measurements of the inferred location of the trouser pocket (all 6 users). Right column:
the acceleration Y measurements sensed by the mobile device located in the trouser pocket
(all 6 users).
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Table 5.4: (Experiment 2: Mobile device in the trouser pocket) The user matching results
using GP sensor fusion method.

Users 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s
user 1 2 5 1 1 1 1 1 1 1 1
user 2 2 1 2 2 2 2 2 2 2 2
user 3 6 2 3 3 3 3 3 3 3 3
user 4 4 6 4 4 4 4 4 4 4 4
user 5 5 5 5 5 5 5 5 5 5 5
user 6 3 3 3 3 6 6 6 6 6 6

Table 5.5: (Experiment 2: Mobile device in the trouser pocket) The user matching results
using acceleration comparison method.

Users 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s
user 1 3 2 2 2 2 2 2 2 2 2
user 2 6 6 3 3 3 3 2 3 3 3
user 3 4 2 3 3 3 3 2 2 2 2
user 4 4 5 4 4 4 4 4 4 4 4
user 5 5 5 5 5 5 5 5 5 5 5
user 6 4 5 3 3 3 3 3 3 3 3

Table 5.6: The user matching results for experiment 2 – Comparison of GP sensor fu-
sion method and acceleration comparison method. Y denotes “Yes”(matched). N denotes
“No”(matching failure).

User ID
Total Matched No.

1 2 3 4 5 6

Device in pocket
GP sensor fusion Y Y Y Y Y Y 6

Acceleration comparison N N N Y Y N 2

5.7.3 Conclusion

In this experiment, we tested the performance of the proposed GP prior model for user match-
ing when the mobile device was in the user’s trouser pocket. The pocket position was inferred
from the Kinect skeleton joints positions. We prove that the proposed GP prior model can
be used for associating the inferred positions with the accelerations sensed by the mobile
inertial sensors. In comparison with the direct acceleration comparison method, which only
matched 2 of the 6 users, our method is more robust and 6 users were successfully matched
with their devices.
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5.8 The User Matching Experiment III: Walking with

Mobile Device in the Hand

5.8.1 Experiment Design

To test the user matching algorithm, a third experiment was conducted. There were 6 partic-
ipants in total (1 female, 5 male). They were aged between 20 and 30 years. We captured
walking samples from these experiment participants who volunteered from the academic
community. In the experiment, at the beginning, the user stood at a distance of approxi-
mately 3m from the Kinect sensor with a mobile device (SK7 Dimensions 43 mm × 32 mm
× 18 mm) held in the right hand. As the Kinect started tracking, the participant walked
toward the Kinect and kept walking in an area of 3m× 1.5m in front of the Kinect. We mea-
sured the user’s hand position along the y−axis (vertical axis). The whole process took 10s.
We were interested in the vertical position measurements, thus we did not limit the user’s
movement trajectory. As long as the user is walking, there will be periodic motion pattern of
the hand along the vertical axis.

For each participant, we gathered 1 walking sample. We collected the participant’s skele-
ton tracking positions, i.e. the right hand position measurements, and the hand motion data
sensed by mobile inertial sensors. The hand position measurements along the y−axis (verti-
cal axis) during the walking for the 6 participants are shown in the left panel of Figure 5.20.
The estimated hand accelerations during the walking for the 6 participants are shown in the
right panel of Figure 5.20.

5.8.2 Experimental Results

In the experiment, we analysed the walking samples from 6 users. Firstly, user 1 is analysed
as an example. We applied the transformed GP priors for estimating the position, the velocity
and the acceleration. Secondly, we show all the position measurements and acceleration
measurements for 6 users, and illustrate how the sensor fusion works. Finally, we compute
and compare the log-likelihoods of different combinations of position and acceleration for
user matching.

Prediction (Position, Velocity and Acceleration) with GPs

In section 4.3.2, we described how to estimate the derivatives, i.e. the velocity and the
acceleration, based on the measurements with the transformed GP priors. Now we apply this
method for system state estimation in a Kinect system. With the walking sample data from
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user 1, we present the applications of the transformed GP priors, i.e. estimating the position,
the velocity and the acceleration of hand movement in this experiment.

Position For user 1, the position measurements and the GP prediction results are shown
in Figure 5.17. We can see that the GP method gives a good mean position prediction and
uncertainty curves.
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Figure 5.17: (Experiment 3: Walking with the device held in the hand – user 1) Position
measurements and position prediction with GPs. Plots show mean and mean ±2σ as solid
line and dashed contours.

Velocity For user 1, the velocity comparison results are shown in Figure 5.18. Plots show
the mean velocity prediction with GPs and the uncertainty curves (mean ±2σ) as solid line
and dashed contours. The first derivatives of Kinect positions are also computed and shown.
We can see that the noisy velocity data-points are within the GPs uncertainty curves. Thus,
the transformed GP prior method is effective for estimating the first derivative of noisy posi-
tion measurements, i.e. the velocity.
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Figure 5.18: (Experiment 3: Walking with the device held in the hand – user 1) The velocity
prediction with GPs. Plots show mean and mean±2σ as solid line and dashed contours. The
first derivatives of Kinect positions are also shown.

Acceleration For user 1, Figure 5.19 shows all the acceleration results including the sec-
ond derivatives of Kinect positions, the predictive acceleration with GPs and the acceleration
sensed by the inertial sensors. It can be seen that the GPs predictive acceleration and the
acceleration measured by the inertial sensors are comparable. In addition, the second deriva-
tives of Kinect positions are within the uncertainty curves of GPs prediction. Therefore, the
transformed GP prior method is useful for estimating the second derivatives of noisy position
measurements, i.e. the acceleration.
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Figure 5.19: (Experiment 3: Walking with the device held in the hand – user 1) Compari-
son of acceleration estimated with different methods. Upper panel: the predictive accelera-
tion with GPs (dashed line), the acceleration estimated with the inertial sensors (solid line).
Lower panel: the second derivatives of Kinect positions and the GP uncertainty contours
(mean ±2σ).

Conclusion In this part, we applied the transformed GP prior method for estimating the
position, the velocity and the acceleration. Experimental results show good estimation results
including the position, the velocity and the acceleration. Thus, the transformed GP priors are
very useful for estimating the derivatives of noisy measurements.

Sensor Fusion with Gaussian Process Model

Now we associate the skeleton data sensed by the Kinect with the motion data sensed by the
mobile inertial sensors. The hand position and the acceleration measurements for 6 users are
shown in Figure 5.20.

In order to illustrate how the user matching algorithm works, we denote the position measure-
ments for the 6 users as p1, p2, p3, p4, p5 and p6, respectively. The accelerations measured
with the inertial sensors are denoted as a1, a2, a3, a4, a5 and a6, respectively. In GPs, we
construct a target vector by combining the position and the acceleration. For user 1, the

targets include

[
p1

ai

]
, ∀i = 1, · · · , 6.
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Figure 5.20: (Experiment 3: Walking with the device held in the hand) Left column: the
hand position Y measurements (all 6 users). Right column: the acceleration Y measurements
sensed by the mobile device (all 6 users).

Since we have all the position and the acceleration observations, we can apply our GP model
for calculating the joint log-likelihoods given different combinations of positions and accel-
erations.

Comparison of Log-Likelihoods for User Matching

The matching results for all 6 users are summarised in Table 5.7. The row “user i” (i =

1, · · · , 6) represents the matching results for user i. The column j (j = 1, · · · , 10) denotes
the time instant. Thus, user 1 was matched with device 1 at time instant 1s. The ground truth
data is that user k was associated with the mobile device k (k = 1, · · · , 6). In Table 5.7, we
can see that the matching time for user 1, · · · , 6 are 1s, 3s, 1s, 1s, 1s, 1s, respectively.



5.8. The User Matching Experiment iii: Walking with Mobile Device in the Hand 131

Table 5.7: (Experiment 3: Walking with the device held in the hand) The user matching
results using GP sensor fusion method.

Users 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s

user 1 1 1 1 1 1 1 1 1 1 1

user 2 3 3 2 2 2 2 2 2 2 2

user 3 3 3 3 3 3 3 3 3 3 3

user 4 4 4 4 4 4 4 4 4 4 4

user 5 5 5 5 5 5 5 5 5 5 5

user 6 6 6 6 6 6 6 6 6 6 6

Table 5.8: (Experiment 3: Walking with the device held in the hand) The user matching
results using acceleration comparison method.

Users 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s

user 1 1 1 1 1 1 1 1 1 1 1

user 2 2 2 2 2 2 2 2 2 2 2

user 3 2 2 2 2 2 3 3 3 3 3

user 4 4 4 4 4 4 4 4 4 4 4

user 5 4 6 4 4 5 5 5 5 5 5

user 6 6 6 6 6 6 6 6 6 6 6

In this experiment, we also compared our method with the direct acceleration comparison
method, which gave the user matching results illustrated in Table 5.8. We found that both
methods gave the correct matching results, which are shown in Table 5.9. In the walking
experiment, the device was held in the hand. The periodic movement of the hand provides a
good estimation of hand acceleration. We concluded that both methods work in the situations
when the users perform vigorous and visible movements.

Table 5.9: The user matching results for experiment 3 – Comparison of GP sensor fu-
sion method and acceleration comparison method. Y denotes “Yes”(matched). N denotes
“No”(matching failure).

User ID
Total Matched No.

1 2 3 4 5 6

Walking
GP sensor fusion Y Y Y Y Y Y 6

Acceleration comparison Y Y Y Y Y Y 6
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Figure 5.21: Histogram shows the distribution of time needed for user matching. From left to
right: (1) subtle hand movement (2) with the device in the user’s trouser pocket (3) walking
with the device held in the hand.

The histogram in Figure 5.21 shows the distribution of time needed for user matching in all
3 contexts.

5.8.3 Conclusion

In this experiment, we collected walking samples from 6 users and matched the hand po-
sition sensed by the Kinect with the acceleration measured by the mobile inertial sensors.
Experimental results show that our method achieves successful matches for 6 users. The
conventional acceleration comparison method also works in this situation as there were large
and vigorous hand movements.

Our method is superior to the conventional acceleration comparison method in the situation
when the user performs less vigorous and visible movements with the device held in the hand
(the subtle hand movement experiment).

5.9 Conclusions

This chapter presents a sensor fusion system for user matching and identification in a prox-
emic interaction environment by fusing the joint positions sensed by the Kinect sensor
(and the inferred positions) and the accelerations measured by the mobile inertial sensors.
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The proposed transformed Gaussian Process prior model incorporates the low-sampling-rate
measurements and the high-sampling-rate derivatives, and takes the different noise character-
istics of these sensors into account. The area focussed on this chapter is that of user matching
and identification, which was achieved by comparing the joint log-likelihoods given differ-
ent combinations of the positions from a fixed base Kinect and accelerations from multiple
mobile devices. The proposed sensor fusion method can significantly improve the context
sensing capability of the system.

The performance of the proposed sensor fusion approach to user matching and identification
was tested in three contexts (1) subtle hand movements (2) with the device in the user’s
trouser pocket and (3) walking with the device held in the hand, respectively. We compared
our approach with the direct acceleration comparison method and summarised the compari-
son results in Table 5.3, Table 5.6 and Table 5.9. Experimental results show that our method
achieves successful matches in all 3 contexts, including when there are only subtle hand
movements, where the direct acceleration comparison method (equation (5.9)) fails to find
a match. The direct acceleration comparison method works only when there are vigorous
and visible movements, which are unique to the user. Thus, our method is more robust and
is more applicable in comparison with the direct acceleration comparison method. We con-
cluded that the matching of the Kinect skeleton and mobile device is feasible through the
human everyday movements, e.g. the subtle hand movement, moving around in the room
with a mobile device in the pocket or held in the hand.

In experiment 1 (subtle hand movements), we studied the performance of the proposed GP
prior model for user matching and identification when the users performed subtle hand move-
ments. The principled nature of the proposed GP prior model is that it can incorporate the
low-sampling-rate measurements and the higher frequency second derivatives, taking ac-
count of the uncertainty of each sensor type. This is beneficial for subtle movements when
the user interacts with a mobile device. In experiment 2 (mobile device in the user’s trouser
pocket), we investigated the user matching problem when the mobile device was in the user’s
trouser pocket. It was a realistic scenario. The inferred position of the phone was based on
the locations of the knee and the hip. Although the Kinect cannot detect the pocket posi-
tion, we can infer this position based on the positions of relevant skeleton joints. The GP
framework provides a consistent mechanism for performing inference in such situations.

In experiment 3 (walking with the device held in the hand), we can see that user 2 requires
a bit longer time (3s) for matching. This is due to the fact that the walking pattern of user
1 and that of user 2 are very similar, that is, their motion were nearly synchronized. The
similarities include the position similarity and the acceleration similarity. This can be seen
in Figure 5.20. Thus, it takes a longer time for the system to distinguish user 2 from other
users. This indicates that it will take the system a longer time to match and identify two
users when they move in the same way, that is, there will be similar motion patterns between
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them. As long as enough data are available, the proposed log-likelihood comparison method
can finally find a best acceleration match for each skeleton.

The sensor fusion approach-based proxemic-aware system enables the user to get a person-
alized service in a comfortable way in a proxemic interaction application. In our approach,
the user does not need to perform any specific gestures. Besides, the user does not need
to wear any additional sensor on the body. The system can match the user with the device
unobtrusively when he/she subtly moves the device in the hand, moves or walks around with
the device in the trouser pocket or held in the hand. Walking is intuitive and unobtrusive and
it does not require the user’s full attention. Thus, the matching of the Kinect skeleton and the
mobile device is feasible through people’s everyday movements. Our method can be used
for user matching and identification in people’s everyday lives.

This study can be of benefit to any context-aware interaction systems that explore the use of
mobile inertial sensors and external position sensing device for user matching and identifica-
tion. In the proposed scenario, e.g. the proxemic-aware system has the potential to be used
in a family environment and provide personalized multimedia services and TV programs to
each family member when the system matches a skeleton with a personal device through
his/her everyday movements.
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Chapter 6

Experiment – User Performance
Improvement in Sensor Fusion
System

In this chapter, we apply the Gaussian Process prior model-based sensor fusion system for a
trajectory-based target acquisition task in a spatially aware display application. We discuss
the challenges in target acquisition and the importance of visual feedback. Following this, we
illustrate the design of the spatially aware display application in detail. Finally, we conduct
a user study on a trajectory-based target acquisition task in the spatially aware display appli-
cation. We implemented the real-time sensor fusion system by augmenting the Kinect with a
Nokia N9. In the trajectory-based interaction experiment, each user performed target selec-
tion tasks following a trajectory in (a) the Kinect system and (b) the sensor fusion system. In
comparison with the Kinect time-delay system, our system enables the user to perform the
task more accurately and more quickly. The MSE of target selection was reduced by 38.3%

and the average task completion time was reduced by 26.7%.

6.1 Introduction

In this chapter, we designed a spatially aware display application to test the proposed sen-
sor fusion system. We built an experimental setup where users followed trajectories and
performed target selection in this spatially aware display application. The GP prior model-
based sensor fusion prediction facilitated the targeting action of the user. Experimental re-
sults show that the improved accuracy, and reduced delay from the sensor fusion system,
compared to the filtered system means that users can acquire the target more rapidly, and
with fewer errors. They also reported improved performance in subjective questions.
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Position Uncertainty, Lag and Target Acquisition

The position uncertainty and the lag are two key problems in indoor location-aware applica-
tions, among which peephole interaction plays an important part nowadays. High precision
and low latency play an important role in a spatially aware display for handheld devices
(Rohs & Essl, 2006; Cao & Balakrishnan, 2006). However, the hand position uncertainty,
i.e. hand jitter, is a common issue in a spatially aware display with a handheld device (Kauf-
mann & Ahlström, 2012). Pavlovych & Stuerzlinger (2009) studied the effects of spatial
jitter and latency on human performance in target pointing tasks.

Target acquisition, in which lag and frame rate play important roles, has been thoroughly
researched in numerous studies (Ware & Balakrishnan, 1994; Rohs & Oulasvirta, 2008; Rohs
et al., 2011). Ware & Balakrishnan (1994) investigated the effects of lag and the frame rate
on human performance in target selection in virtual reality displays and showed that lag is
critical in such applications and is detrimental to performance. Rohs et al. (2011) analysed
target acquisition with camera phones as magic lenses and as dynamic peephole displays,
showing the performance could be adequately modelled with a modification of the standard
Fitts’ law.

Models of trajectory-based interaction have been investigated in (Accot & Zhai, 1997). Ac-
cot & Zhai (1999) investigated the human performance modelling in trajectory-based tunnel
steering tasks.

Latency and jitter adversely affect human performance in 2D pointing tasks with stationary
targets (Pavlovych & Gutwin, 2012). Human movement prediction can help cope with the
latency in real-time tracking systems and gesture applications. Rusdorf & Brunnett (2005)
proposed a prediction method for predicting the movements of the tracked objects in a table
tennis application.

The lag influences the user performance and experience in human-computer interaction. In
experiments, latency typically exhibits strong negative effects on user performance starting
at about 100ms (MacKenzie & Ware, 1993; Hinckley & Wigdor, 2002). User experience
is the broad array of outputs the user perceives and inputs the user gives when interacting
with a user interface, as well as the higher level goals, cognitive states, emotions, and social
interactions that these experiences support and engender (Hinckley & Wigdor, 2002). The
NASA Task Load Index (Hart & Staveland, 1988) questionnaire has been widely used for
gathering subjective assessment of usability of the interaction systems.
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6.2 Background

6.2.1 Feedback Control System

The term “feedback” refers to a situation in which two (or more) dynamical systems are
connected together such that each system influences the other and their dynamics are thus
strongly coupled (Aström & Murray, 2010). The “control” in engineering is the use of
algorithms and feedback in engineered systems. A system that involves a person controlling
a machine is called manual control (Franklin et al., 2001). The study of manual control
focuses on the human’s ability to close-the-loop when a person is in control of a system,
such as a vehicle or a machine (Jagacinski & Flach, 2011). The systems can be divided into
open-loop systems and closed-loop systems. When the controlled output signal is measured
and fed back for use in the control computation, the system is called closed-loop or feedback
control (Franklin et al., 2001).

Feedback plays an important role in control system design. It is essential for the control
of any system subject to uncertainty. It allows a system to be insensitive both to external
disturbances and to variations in its individual elements. Appropriate feedback can help the
user better interact with a system. Without feedback, the system will be like an open-loop
system and the user will be unaware of the interaction effects. Thus, feedback is of great
importance for control system design and is beneficial for improving the user’s performance.

Control theory can be linked to Fitts’ law by viewing the pointing movements towards the
target as a feedback control loop based on visual input and the limb as a control element.
Dynamic system and manual control theory can be used as a theoretical framework for in-
teraction design (Jagacinski & Flach, 2011). In a closed-loop system, the user interacts with
the system through his movement. The system feedback enables the user to better control
the handheld device, thus facilitates the user’s pointing in a targeting task.

6.2.2 Visual Feedback

Visual feedback plays an important role in human-computer interaction (HCI) systems. Feed-
back is a word widely used to denote different meanings in several academic areas, including
engineering, economics, biology, mathematical models or biological systems, formal logic,
and social science (Richardson, 1999). In HCI, feedback is essential as any treatment of in-
put devices without regard to the corresponding visual feedback is like trying to use a pencil
without paper (Hinckley & Wigdor, 2002). An interaction system needs to provide a way for
users to accomplish tasks by combining input with appropriate feedback.

Visual feedback proves useful for gesture interaction (Bau & Mackay, 2008). Bennett et al.
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(2011) investigated the predictive gesture entry and non-predictive gesture entry, and con-
cluded that predictive gestures with visual feedback lead to enhanced performance.

Visual feedback helps a user control the movements. The visual feedback control of hand
movements was investigated in (Saunders & Knill, 2004). Saunders & Knill (2003) con-
cluded that visual feedback from the hand contributes to on-line control of reaching through-
out the full extent of the movement, even for relatively fast movements.

The effects of feedback on targeting performance have also been investigated. It has been
demonstrated that feedback helps improve the user’s targeting performance (Akamatsu et al.,
1995; Mould & Gutwin, 2004).

The real-time feedback plays an important role in assessing and improving the user perfor-
mance (Velloso et al., 2013). The Microsoft Kinect has been used for motion modelling
and analysis. Alexiadis et al. (2011) used the Kinect technology for a project that provided
real-time evaluation of dancers with visual feedback, and also supported evaluation of one
dancer’s performance against another. Velloso et al. (2013) proposed a system that extracted
a movement model from a trainer, assessed the performance of other users and provided
real-time feedback on how to improve their performance.

In our work, the visual feedback provided by the mobile phone helps the user to control the
phone and the hand movement for reaching the visual targets located in the virtual informa-
tion space embedded in the physical environment. We treat this visual feedback as an input
of the human subsystem, which is a part of the overall system.

6.3 Augmenting the Kinect System with Mobile De-

vice in Spatially Aware Display

In this chapter, we conducted a user study to test the performance of the GP prior model-
based sensor fusion system. We augmented the Kinect system with a mobile device (N9) and
developed a spatially aware display application.

6.3.1 System Overview

The equipment includes the Microsoft Kinect and Nokia N9. Details about the sampling rate
of the Kinect and the drivers can be found in section 3.3. The sampling rate of the inertial
sensor embedded in the N9 is 90Hz.

Sensor data should be converted into the same coordinate system before sensor fusion (Tit-
terton et al., 2004). The acceleration sensed by the mobile inertial sensors and expressed in
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the body frame needs to be converted to the acceleration in the Kinect frame. We gave a
detailed description on the coordinate system transformation method in section 3.3.2. In the
spatially aware display application, we also have the N9 phone image frame. For this image
frame (i), the top left corner is (0, 0)(pixels) in the landscape mode. This can be seen in Fig-
ure 6.4. The slider on the axis of the phone image coordinate system indicates the location of
the phone on the virtual information space. There is a mapping between the virtual informa-
tion space and the Kinect skeleton position space. The hand position sensed by the Kinect
should be converted to the coordinates defined on the virtual canvas. The virtual information
defined on the 2D canvas is mapped to the coordinates (pixels) on the phone image frame.
In this way, the virtual information displayed on the phone screen will change accordingly
when the user moves the device (N9) held in the hand.

We define a 2D virtual space (2 m × 1 m). The phone is like a movable window on this
canvas, which is defined in pixels (20000 × 10000). The part of canvas displayed on the
phone screen is determined by the hand position in the Kinect frame.

6.3.2 Augmenting the Kinect System with a Mobile Device (N9)

The system architecture of our spatially aware display application is shown in Figure 6.1.
Our design focuses on a 2D (the vertical XY plane) version of a spatially aware display. We
aim to test whether the GP prior model-based sensor fusion system improves user perfor-
mance by designing a trajectory-based target acquisition task in the spatially aware display
application.

An example application is shown in Figure 6.2. A user is exploring the digital information
stored in the physical space. By moving his phone to different locations following a trajec-
tory, he can perform a target selection task. Imagine this is a virtual bookshelf application
(Norrie et al., 2013). We store different digital books in different targets’ locations. The user
can search and browse those digital books by category. Since accurate positioning and feed-
back is critical to this application, we need to deal with the Kinect position jitter. The lags
and overshoot problems occur when we apply a position-only Kalman filter for filtering the
fast jitter on the hand movement data. Our novel GP sensor fusion method helps reduce the
lags and deal with the overshoot problems when the user tries to find the target by moving
the hand quickly.

The Nokia N9 is a phone with 3.9 inches display (480 pixels × 854 pixels) (size 48 mm ×
86 mm). It is equipped with a 3−axis accelerometer, which can be used to estimate the hand
acceleration. The Kinect is put on a table. The user stands in front of the Kinect with the
N9 held in the right hand, and is directly facing the XY plane, i.e. the vertical interaction
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Figure 6.1: System architecture. A Wireless LAN is used for UDP connection. The OpenNI
and NITE middleware are used. The Kinect senses the hand position and sends it to the PC.
The accelerometer data from the phone is also sent to the PC. Our novel GP sensor fusion
model is applied for fusing the position and the acceleration. The GP predictive position is
sent to the phone. The phone is a movable window on the 2D virtual canvas, on which we
put a pre-designed trajectory and 6 targets. When the virtual button on the phone screen is
pressed, the target on the canvas is selected and the current hand position is sent back to the
PC.

Figure 6.2: Spatially aware display application. A phone user performs a trajectory-based
target selection task in 2D space.

plane.1 The information (the trajectory and the targets) is spread out on a flat virtual space.
The phone acts as a movable window (size 48 mm × 86 mm) on this much larger 2D virtual

1In this implementation, a fixed rotation matrix between the phone body frame and the Kinect frame is
assumed.
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Figure 6.3: 2D virtual canvas design. The canvas covers a 2 m × 1 m area in the Kinect XY
plane. N9 is a phone with 3.9 inches display (480 pixels × 854 pixels) (size 48 mm × 86
mm). Thus, when the size of the canvas is expressed in pixels, it is 20000 pixels × 10000
pixels. We use the straight line and square wave for modelling the trajectory, on which 6
targets are located.

canvas. The 2D canvas covers a 2 m × 1 m area.

When the user moves the hand in the 2D plane in front of the Kinect, he/she tries to explore
the digital information stored in the physical space. The trajectory and the targets are located
on the virtual canvas, which is shown in Figure 6.3. There is a mapping between the 2D real
world space (mm) and the 2D virtual canvas (pixels). In our application, 1 mm × 1 mm =
10 pixels × 10 pixels. Along the x−axis, the range is (−1000, 1000) mm, whereas (0, 1000)

mm for the y−axis.

The 2D plane is like a big virtual canvas, and the phone screen is a small movable window,
through which we can see a part of the virtual canvas. No visual information is present in the
real world outside the device’s display. The hand position (x, y) indicates the phone position.
When the phone moves, the corresponding part of the canvas will be displayed on the phone
screen. When the user’s hand is moved to the location where the trajectory is stored in the
physical space, the mapped trajectory will be displayed on the phone screen. When the user
moves the hand, the Kinect and the accelerometer sense this. The predictive position from
the GP sensor fusion is sent to the phone to update the display on the phone screen. The user
needs to move the hand along the trajectory. When a target appears on the screen, the user
performs target selection. A selection occurs when the virtual button on the phone screen
is tapped. On the N9, we designed a square virtual button and put it at the right side of
the screen, as shown in Figure 6.4. As soon as the button is pressed, we record this hand
position, where the user believes the target is located. Whenever the user presses the button,
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Figure 6.4: The interface on the Nokia N9 phone screen in the spatially aware display appli-
cation. A user was performing the trajectory-based target selection task. The first target was
shown on the screen. The square box on the right of the screen is the virtual button. When
the button is pressed, the target is selected. Meanwhile, the visual feedback (the color of the
button changes) is provided for the user during the target selection task.

the phone will send a signal and the PC will record the current hand position.

In the augmented system, a UDP connection is applied for sending and receiving data. A
Wireless LAN is used for connecting the computer running the sensor fusion system and
the N9 phone. The hand tracking positions sensed by the Kinect are sent to the N9 via
WiFi. Meanwhile, the accelerometer data from the N9 is also sent to the computer via WiFi.
The hand position measurements and the accelerations are fused with the proposed GP prior
model-based sensor fusion approach for hand position prediction. The data transmission
between the phone and the PC includes three parts:

1. The phone transmits the accelerometer data to the PC.

2. Sensor fusion with our novel GP prior model on the PC. The PC sends the GPs predic-
tive position (x, y)mm to the phone.

3. The phone sends a signal to the PC when the user presses the virtual button to select
the target.

This can be seen in Figure 6.1.
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Trajectory Design Tool

In order to simplify the process of trajectory design, we designed an application that can
simulate the Kinect position output. To draw a trajectory, simply click and drag the mouse
pointer. The position data can be saved and used for trajectory design in the spatially aware
display application. In addition, this application can also be used to simulate the Kinect
position outputs. Simply click and drag the mouse pointer. It will trace the position of the
mouse and send it to the phone application.

6.4 Experiment: User Study – Trajectory-based Tar-

get Acquisition Task

The user study aims to test our sensor fusion system when the user performs a 2D trajectory-
based target selection task in a spatially aware display application. The application diagram
is shown in Figure 6.2.

Experimental results show that our system helps the user perform the task more quickly and
more accurately in comparison with the conventional Kinect system. The real-time visual
feedback shown on the phone screen guides the user’s hand to quickly locate the desired
targets along the pre-designed trajectory.

6.4.1 Participants and Apparatus

There were 12 participants in total (6 male, 6 female). They were aged between 20 and 35

years (mean age 28). Participants were recruited by email, and some volunteered from the
academic community in our school. The task was performed on a Nokia N9, which is a
phone with 3.9 inches display (480 pixels × 854 pixels or 48 mm × 86 mm).

6.4.2 Data Collection and Analysis

We aim at analysing the accuracy of target selection and the task completion time. In the task,
we recorded the hand position sensed by the Kinect and the hand acceleration measured by
the Nokia N9. When the participant performed the target selection task, the hand position
was recorded. We analysed the accuracy of target selection. Besides, we measured and
analysed the task completion time. Following the experiment, the participants completed the
NASA Task Load Index (Hart & Staveland, 1988) questionnaire, which gathered subjective
assessment of usability of the system.
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6.4.3 Experiment Design

The Kinect was put in a fixed location on a table, as shown in Figure 6.4. The participant
stood at a distance of 2m from the Kinect. They were instructed that there were 6 targets
on the vertical virtual interaction space. The task was to find the first target, select it and
then move the phone along the virtual trajectory to find the next target and select it. The
participant kept moving the phone along the virtual trajectory to find and select the remain-
ing targets. When they finished the selection of the sixth target, the experiment was done.
The participants were instructed to interact with the system in a comfortable way. Then
they were instructed to perform the trajectory-based target selection task as accurately and
quickly as possible. Each participant performed the task in (1) the Kinect system (2) the
sensor fusion system. After each session, the user completed the questionnaire. The users
were not informed which system they were using. Task 1 and task 2 were denoted on the
questionnaire.

At the beginning of the experiment, the user stood in front of the Kinect with a mobile device
(Nokia N9) held in the hand and was directly facing theXY plane, i.e. the vertical interaction
plane. Once skeleton tracking locked on, the user moved his hand following the pre-designed
trajectory, which was only shown on the phone screen. There was no visual information
outside the phone. Whenever a target appeared on the trajectory, the user selected it by
pressing the virtual button on the phone screen, as shown in Figure 6.4. Meanwhile, this
position was recorded and sent back to the PC. It was compared with the ground truth data
(we know the real position for the targets) for error rate analysis. The diagram of the system
design is shown in Figure 6.1.

Trajectory Design

We used a combination of a straight line and a square wave curve for modelling the trajectory
for the target selection task. Six targets were located along the trajectory. The pre-designed
trajectory and the targets are shown in Figure 6.3. The arrows on the trajectory indicate the
moving direction.

Data in Spatially Aware Display

The Kinect senses the position of the hand. Meanwhile, the N9 accelerometer is used to
measure the hand acceleration. The accelerometer embedded in the N9 was calibrated before
the experiment started. The hyperparameters for GPs are set to v0 = 5.66× 104, ω1 = 4.19,
σ2
y = 64 and σ2

a = 1002.
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The phone sends the acceleration to the PC. When the PC receives the Kinect position and
the acceleration sensed by the inertial sensor, our novel Gaussian Process model is applied
for sensor fusion. The GP sensor fusion results (the predictive position, i.e. (x, y) mm
coordinates) are sent to the phone for updating the canvas display. The average time needed
for this process was estimated to be 0.017s. In our sensor fusion system, the predictive hand
position is also treated as the position of the screen centre. The digital content (e.g. a part of
the trajectory) located in this area will be displayed on the screen.

We compared our system with the conventional Kinect system, in which a single rate Kalman
filter (Feng & Murray-Smith, 2014) was applied for filtering the noisy position measure-
ments. The filtered position was sent to the phone for updating the canvas display. We
compared this Kinect system with our sensor fusion system.

6.4.4 Experimental Results

Accuracy of Target Selection

We compared the target selection position with the ground truth data, i.e. the real target
position defined on the virtual canvas. In order to compare the accuracy of target selection
in two systems, we calculated the Mean Square Error (MSE).

The comparison results are shown in Figure 6.5. The MSE of target selection in the Kinect
system is 3.7263 × 105 pixel2 (standard deviation SD 2.1096 × 105). For the sensor fusion
system, it is 2.2975× 105 pixel2 (standard deviation SD 1.2452× 105). The MSE is reduced
by 38.3%.

Results were analysed using a repeated measures Analysis of Variance (ANOVA) (Albert
& Tullis, 2013). The sensor fusion system has a statistically significant effect on the target
selection accuracy, F (1, 11) = 10.86, p = 0.0071.
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Figure 6.5: Comparison of target selection accuracy. Plots show the MSE of target selection.
Left column: the Kinect system. Right column: GPs sensor fusion system. It can be seen
that the target selection error is reduced by the sensor fusion.

Task Completion Time

The task completion time for our sensor fusion system (mean=32.41s, SD=12.04s) is shorter
than that for the Kinect system (mean=44.21s, SD=14.77s). The average task completion
time is reduced by 26.7%. A comparison of the average task completion time is shown in
Figure 6.6.

Results were analysed using a repeated measures Analysis of Variance (ANOVA). The GPs
sensor fusion system has a statistically significant effect on the task completion time, F (1, 11) =

12.05, p = 0.0052.
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Figure 6.6: Comparison of task completion time. Left column: the Kinect system. Right
column: GPs sensor fusion system. It can be seen that the average task completion time is
reduced by the sensor fusion.



6.4. Experiment: User Study – Trajectory-based Target Acquisition Task 148

Table 6.1: The NASA Task Load Index

Scale Scores for Different Systems

Kinect System Sensor Fusion System

Mean SD Mean SD

Mental Demand 7.17 3.64 5.08 2.78
Physical Demand 7.75 3.11 7.17 3.54
Temporal Demand 11.25 3.47 9.92 4.01
Performance 6.50 4.06 5.25 3.08
Effort 10.92 4.66 9.33 4.38
Frustration 8.17 4.37 6 4.11

Questionnaire

Following each session of the experiment, each participant was asked to complete the NASA
Task Load Index questionnaire. For each scale, the line is divided into 20 intervals. From
left (low) to right (high), scores range from 0 to 20 (Stanton et al., 2013). The lower score
indicates a better performance. The conventional Kinect system obtained a score of 619,
whereas our sensor fusion system obtained a score of 513. The subjective load varied in line
with the objective measures of speed and accuracy.

We have two systems and need to do a paired sample test. Results were analysed using
a Wilcoxon signed-rank test. We get the following results: (1) The mental demand, p =

0.0137. (2) The physical demand, p = 0.0898. (3) The temporal demand, p = 0.0508. (4)
The performance, p = 0.0249. (5) The effort, p = 0.1611. (6) The frustration, p = 0.0195.
It can be seen that the GPs sensor fusion system has a statistically significant effect on the
mental demand, the temporal demand, the performance and the frustration.

For each scale, we also calculated the mean score and the standard deviation. The results
are shown in Table 6.1. We can see that the average subjective assessment of usability of
our sensor fusion system is better than that of the Kinect system. The histogram comparison
results are shown in Figure 6.7. The Boxplot shows the comparison results of the NASA
Task Load Index for the Kinect system and the sensor fusion system in Figure 6.8. The
lower score of each scale indicates a better performance of the system. It can be seen that the
sensor fusion system outperforms the Kinect system in the subjective assessment of usability
of the system.
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Figure 6.7: Plots show the mean+σ. For each scale, the comparison results of the NASA
Task Load Index are shown. The lower score indicates a better performance. (the Kinect
system and the sensor fusion system)
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Figure 6.8: The Boxplot shows the comparison results of the NASA Task Load Index for
the Kinect system and the sensor fusion system. The 6 scales along the x−axis are (1)
Mental Demand (2) Physical Demand (3) Temporal Demand (4) Performance (5) Effort (6)
Frustration. The “Kinect” (along the x−axis) represents the Kinect system. The “GPs”
(along the x−axis) represents the sensor fusion system. A lower score indicates a better
performance.
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6.4.5 Conclusion

We conducted a user study on a trajectory-based target acquisition task in a spatially aware
display application. We implemented the real-time sensor fusion system by augmenting the
Kinect with a Nokia N9. In the trajectory-based interaction experiment, each user performed
target selection tasks following a trajectory in (a) the Kinect system and (b) the sensor fusion
system. We analysed the accuracy of target selection and task completion time, respectively.
Experimental results show that our system enables the user to perform the task more accu-
rately and more quickly in comparison with the Kinect system. The target selection error and
the task completion time are both reduced by the GP sensor fusion. Moreover, we used the
NASA Task Load Index for subjective assessment of usability of the sensor fusion system.
Experimental results show that the GPs sensor fusion system has a statistically significant
effect on the mental demand, the temporal demand, the performance and the frustration. The
participants reported improved performance in our system.

6.5 Conclusions

This chapter explores the benefits to users of a Kinect-based sensor fusion system for im-
proving the accuracy of joints position estimation and reducing the lag by fusing the Kinect
sensor and the built-in inertial sensors in a mobile device. We conducted an experiment to
test the GP prior model-based sensor fusion system. We built a spatially aware display ap-
plication for user study. The user performed trajectory-based target acquisition tasks in two
systems: (1) the Kinect system; (2) the proposed sensor fusion system. We found that the
GP prior model-based sensor fusion can help users perform the tasks more quickly and more
accurately in the spatially aware display application.

Firstly, we discussed the effects of position uncertainty and the lag on human performance
in target acquisition. We gave a brief introduction to the feedback control system. We
described the visual feedback and emphasized the importance of visual feedback in human
movement control applications. After that, we presented the system overview and gave a
detailed description on the design of the spatially aware display application. We augmented
the Kinect system with a mobile phone (N9). We designed a 2D virtual canvas, where the
trajectory and the targets were located. The mapping between the virtual information space
and the Kinect space was discussed. We designed an interface on the N9 screen, where
the user could perform target selection. We illustrated the data transmission between the
PC and the phone. The Kinect sensed the user’s hand position and the phone measured the
hand acceleration. The position data and the acceleration data were fused for hand position
prediction using the proposed GP prior model-based sensor fusion approach. The predictive
position was sent to the phone for updating the screen display.
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We conducted a user study to test the performance of the proposed sensor fusion system in
this spatially aware display application. Experimental results show that the users can acquire
the target more rapidly, and with fewer errors. The average task completion time was reduced
by 26.7% and the MSE of target selection was reduced by 38.3%. The participants also
reported improved performance in subjective questions. The average subjective assessment
of usability of our sensor fusion system is better than that of the Kinect system.
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Chapter 7

Conclusions

This thesis presents a multi-rate sensor fusion system composed of a Microsoft Kinect and
mobile inertial sensors. We describe the use of Bayesian nonparametric models, i.e. trans-
formations of Gaussian Process (GP) priors, to improve the context sensing capability of a
system composed of a diverse set of sensors. These sensors are used to measure the typical
human movements, which are relatively continuous and smooth, in people’s everyday lives.
The proposed GP prior model provides a principled mechanism for incorporating the low-
sampling-rate position measurements and the high-sampling-rate derivatives in multi-rate
sensor fusion which takes account of the uncertainty of each sensor type.

The Gaussian Process prior model-based sensor fusion approach is of great benefit for ex-
ploring the use of multiple complementary sensors for proxemic-aware sensing applications.
We explore the complementary properties of the Kinect sensor and mobile inertial sensors,
and apply the GP prior model for two applications.

1. User matching and identification, i.e. identify individual users, by matching the ob-
served Kinect skeletons with the sensed inertial data from their mobile devices.

2. Skeleton joint position stabilisation and lag reduction. As an example, the Kinect
was augmented with a mobile device (N9) in a spatially aware display application.
We investigated the performance of the proposed GP prior model-based sensor fusion
system in this application.

In this thesis, we present the literature review in Chapter 2, where we introduce the context-
aware sensing and the multisensor data fusion approaches. In Chapter 3, we describe the
multi-rate sensors-based Kalman filter method for fusing the Kinect sensor and the mobile
inertial sensors. We then give a detailed description on the GP prior model-based sensor
fusion approach in Chapter 4. After that, we present the two applications in Chapter 5 and
Chapter 6, respectively.
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7.1 Sensor Fusion with Multi-rate Sensors-based Kalman

Filter

In Chapter 3, we apply a multi-rate sensors-based Kalman filter to explore the complemen-
tary properties of the Kinect and the mobile inertial sensors. The Kinect can be applied for
skeleton tracking, which gives the skeleton joints positions. Meanwhile, the built-in inertial
sensors in the mobile device sense the skeleton joint motion. When the mobile device is
held in the hand, the hand acceleration can be estimated through inertial sensor fusion. The
complementary properties of these sensors were introduced in section 1.2.2.

We explore the use of mobile inertial sensors to estimate the skeleton joint acceleration in the
Kinect coordinate system. To fuse the position measurements sensed by the Kinect and the
acceleration measured by the mobile inertial sensors, we need to estimate the acceleration
through inertial sensor fusion first. This was described in section 3.4. In order to convert
the linear acceleration from the body frame to the Kinect frame, we proposed a coordinate
system transformation method in section 3.3.2.

The sensor fusion with the multi-rate Kalman filter helps improve the system state estima-
tion. As discussed in section 3.5, we compared our method with a single rate Kalman filter
and presented a clear illustration of using the proposed method to improve the estimation of
position, velocity and acceleration. We conclude that the sensor fusion helps improve the
accuracy of the system state estimation including the position, the velocity and the accelera-
tion.

The sensor fusion with the multi-rate Kalman filter helps increase the stability of the position
sensed by the Kinect (see Figure 3.16). The increased stability of hand position gives the user
a smoother experience, thus helps the user better interact in the information space embedded
in a physical environment. This is important for the interaction systems that aim to fuse
mobile inertial sensors and the external position sensing device for indoor augmented reality
(AR) and other location-aware sensing applications.

The sensor fusion with the multi-rate Kalman filter also helps improve the accuracy of ve-
locity and acceleration estimation by fusing a position sensing device (Kinect) and the in-
ertial sensors equipped in a mobile device. We proposed a robust method for estimating
the velocity and acceleration of the skeleton joint in the Kinect space (see Figure 3.19 and
Figure 3.20).

This robust method is of great use for any interaction system that requires velocity and ac-
celeration sensing. It is not feasible to get robust estimation of velocity and acceleration with
only a Kinect sensor or only mobile inertial sensors. This can benefit the pointing task in
HCI. Gallo & Minutolo (2012) discussed the importance of reducing the effects of spatial
jitters, which were due to the noise in the device signal and the noise from hand tremor,
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and described a velocity-oriented precision enhancing technique for remote pointing. Be-
sides, our method is also beneficial for solving the target overshooting problem, which is a
key characteristic of peephole pointing (Kaufmann & Ahlström, 2012). This proves that our
work in Chapter 3 is beneficial for improving the accuracy of pointing using a mobile device
as a pointer in a room-sized environment by fusing the Kinect sensor and the mobile inertial
sensors for performance improvement.

7.2 The Sensor Fusion System

In Chapter 4, we present the novel Gaussian Process prior model-based sensor fusion system.
This model incorporates the low-sampling-rate measurements and the high-sampling-rate
derivatives, and takes the uncertainty of each sensor type and the Kinect latency into account.
We gave an introduction to the sensor fusion system, and discussed that the Kinect could
be augmented with mobile devices equipped with inertial sensors, including SK7 and the
mobile phone. Firstly, the GP prior model-based sensor fusion approach can be used for user
matching and identification. Secondly, this approach is very beneficial for improving the
usability of an indoor location-aware application by increasing the stability of the position
and reducing the lag.

Following this, we presented the problem statement for this dynamic system modelling, as
discussed in section 4.3.1. In this closed-loop human-computer interaction system, the hu-
man motion is observable by multiple sensors. Considering the joint position uncertainty
with the skeleton tracking and the time delay issue in the Kinect system, we presented a
nonlinear dynamic system modelling problem due to the complexity of human motion. We
described how to fuse the low-sampling-rate position and the higher frequency acceleration
with the novel GP prior model, which is an autoregressive Gaussian Process (ARGP) model.
After that, we gave a detailed description on how to use transformations of GP priors to
fuse the measurements from different sensors. We also presented an alternative view of the
multi-rate sensor fusion problem in the Kalman filter framework to help the readers better
understand this concept in section 4.4.

We conducted an experiment to test the GP prior model-based sensor fusion system in sec-
tion 4.5. Experimental results show that the sensor fusion helps improve the accuracy of
position estimation, and reduce the lag. The system response time is reduced by 0.11s (see
Figure 4.8). This indicates that the high-sampling-rate accelerations can be used to com-
pensate for the effects of the position uncertainty and the latency in a conventional Kinect
system.

The GP prior model-based sensor fusion approach is very beneficial for improving the us-
ability of a location-aware application by increasing the stability of the position and reducing
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the lag. We have discussed how to apply this model for position prediction in section 4.3.2.
Firstly, the sensor fusion can improve the quality of inferred joint positions, as the high-
sampling-rate acceleration signal can augment the low-sampling-rate, noisy and delayed po-
sition measurements. It can also help to reduce the lag, as the inertial sensing has a lower
latency than the position sensed by the Kinect.

In the following chapters, we investigated the performance of the GP prior model-based sen-
sor fusion system. The two key aspects of the GP prior model is (1) the joint log-likelihood
of the low-sampling-rate positions sensed by the Kinect and the high-sampling-rate acceler-
ations measured by mobile inertial sensors; (2) the GP sensor fusion for position prediction.
The two aspects correspond with the first and second application, respectively.

7.3 First Application – User Matching and Identifica-

tion

The first application is user matching and identification, which was described in Chapter 5.
We apply the GP prior model to identify individual users, by matching the observed Kinect
skeletons with the sensed inertial data from their mobile devices using the GP-based sensor
fusion algorithm.

In Chapter 5, we achieved user matching by comparing the GP log-likelihoods of the position
and the acceleration. We presented the problem statement in section 5.3.1 and discussed how
to compute the log-likelihood of a combination of the low-sampling-rate positions and the
higher frequency accelerations in section 5.3.2. By comparing the log-likelihoods of match-
ing a particular user’s skeleton with multiple time-series of acceleration signals sensed by the
mobile devices, we can identify which device this user’s skeleton is associated with, that is,
which device this user carries. We do this for all the skeleton position signals, respectively,
allowing us to infer a match for each user.

We investigate the feasibility and usability of the GP prior model-based sensor fusion ap-
proach to user matching and identification. We conducted three experiments and investigated
the performance of the proposed GP prior model in these situations: (1) subtle hand move-
ment (section 5.6) (2) with a mobile device in the user’s trousers pocket (section 5.7) (3)
walking with a mobile device held in the hand (section 5.8). We compared our work with the
state-of-the-art work presented in the literature and demonstrated that our method achieves
successful matches in all 3 contexts, including when there are only subtle hand movements,
where the direct acceleration comparison method fails to find a match. The study shows that
the GP prior model-based user matching approach is more robust and is more applicable. The
three experiments involve a variety of people’s everyday movements. The experiments in all
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3 contexts indicate that it is feasible to achieve user matching through people’s everyday
movements in a Kinect-augmented room.

This study can be of benefit to any proxemic interaction or context-aware systems that ex-
plore the use of mobile inertial sensors and external position sensing device for user matching
and identification. User matching and identification plays a crucial role in providing user-
specific information and services in a proxemic interaction system. For instance, the system
has the potential to be used in a family environment to provide personalized multimedia ser-
vices and TV programs to each family member when the system matches a skeleton with a
personal device through his/her everyday movements.

Moreover, the proposed GP log-likelihood comparison method is also beneficial for locat-
ing the inertial sensors on the human body. The Kinect skeleton tracking provides the 3D
coordinates of each joint. By matching each skeleton joint position measurements with the
accelerations sensed by a mobile device, we can find the best match of the joint and the de-
vice. For example, we can determine whether the device is associated with the hand, i.e. held
in the hand, or attached on the hip. However, it may be difficult when we want to determine
whether the device is attached on the left hip or the right hip when the user walks. Thus,
the matching of the joints and the inertial sensors on the human body will be difficult in this
case.

7.4 Second Application – Position Stabilisation and

Lag Reduction

Besides user matching, a second application is position stabilisation and lag reduction in a
Kinect-based location-aware sensing application. In Chapter 6, we augmented the Kinect
with a mobile device and developed a spatially aware display application to investigate the
performance of the proposed sensor fusion system.

We conducted a user study to investigate the performance of the novel GP prior model-based
sensor fusion system. We implemented the real-time sensor fusion system by augmenting
the Kinect with a Nokia N9, as discussed in section 6.3.2. In the experiment, each user
performed the trajectory-based target selection tasks following a trajectory in (a) the Kinect
system and (b) the sensor fusion system. Experimental results show that the improved ac-
curacy, and reduced delay from the sensor fusion system, compared to the filtered system
means that users can acquire the target more rapidly, and with fewer errors. In comparison
with the Kinect system, our system enables the user to perform the trajectory-based target
acquisition tasks more accurately and more quickly in the spatially aware display applica-
tion. The MSE of target selection was reduced by 38.3% and the average task completion
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time was reduced by 26.7%. The results show significant decreases in the error rate of target
selection and task completion time in the GP prior model-based sensor fusion system. The
participants also reported improved performance in subjective questions. The results were
presented in section 6.4.4.

This type of sensor fusion system is very useful for improving the usability of an indoor
location-aware sensing application system. By improving the accuracy of skeleton joint
position estimation and reducing the lag of the system, we can significantly improve the us-
ability of a proxemic interaction system. In this spatially aware display application, the GP
prediction facilitated the user’s targeting. We conclude that the enhanced position tracking
can improve a user’s interaction experience in a Kinect-based location-aware sensing ap-
plication. For instance, the improved position tracking can facilitate a user’s browsing in a
digital book library (Norrie et al., 2013).

This research can also benefit the techniques that explore the use of the Kinect as an input
device to enhance the capabilities of the mobile device. For instance, the ShoeSense system
proposed in (Bailly et al., 2012) provided a novel modality for interacting with mobile de-
vices, e.g. 3D control on mobile devices. No matter the Kinect is mounted onto the shoe of
a user or put in a fixed location in a room, the stabilised hand position tracking and the faster
system response enable the user to better perform mid-air input gestures, thus enhance the
user’s interaction.

This research is also beneficial for the pointing tasks in an indoor environment. The com-
bination of position sensing devices and mobile inertial sensors for enhanced pointing has
been studied in the literature. Rahman et al. (2010) proposed a sensor fusion approach that
combined the data from multiple infrared (IR) sensors and mobile phone accelerometer to
locate the position and targeting orientation of a user’s mobile device. Nickel & Stiefelhagen
(2003) studied the pointing gesture based on 3D tracking of face, hands and head orienta-
tion. Imagine a user moves the arm towards a target in front of the Kinect. Given the skeleton
joint positions, we can determine the forearm orientation. However, due to the position jitter,
there will be error. In order to better estimate the pointing direction, we can augment the
Kinect with a mobile device equipped with inertial sensors to facilitate a user’s pointing in a
proxemic interaction system.

Moreover, with the advent of embedded projector being used in a mobile device, our method
is also beneficial for peephole pointing (Fitzmaurice, 1993; Kratz et al., 2012b), which is a
promising interaction technique for visualizing the virtual information space embedded in a
physical environment. This is also a potential application that could benefit from our work.
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7.5 Combination of Two Applications in Proxemic In-

teraction

The fusion of a Kinect sensor and inertial sensors equipped in a mobile device can signifi-
cantly improve the context sensing capability of a system. The fusion can be used for user
matching and identification. Moreover, the fusion can also help stabilise the skeleton joint
position and reduce the lag of the conventional Kinect system. The former enables us to
know who the user is and the latter significantly improves the usability of a location-aware
sensing application, such as a spatially aware display application. Combination of the two
applications brings an enhanced proxemic interaction in a Kinect-augmented room.

The combination of (1) user matching and identification and (2) improved position tracking
and reduced lag in the Kinect skeleton tracking is beneficial for the research on tabletops
systems and interactive surfaces, where the robust tracking of user input with high precision
and low latency needs to be attributed to individual users (Kratz & Rohs, 2009b). A spatially
tracked mobile device on the interactive surface provides a means for input and allows the
surface to imply the user identity from the device’s identity. Imagine multiple users are
using a multi-touch interactive tabletop in a Kinect-augmented room. Each user is holding a
personal device in the hand. Each input action can be attributed to a particular user when the
sensor fusion system matches this particular user’s skeleton with the personal device. The
increased stability of the hand position tracking with the proposed GP prior model-based
sensor fusion approach can provide a reliable input action on the tabletop, thus enhance the
user’s interaction.

This type of sensor fusion system is of great importance for proxemic interactions. Imagine
the proposed scenario in section 1.1 is a family environment. The members can be identified
through their movements in everyday lives. Personalised content will be displayed when
they approach the surface on the wall. Meanwhile, there is an indoor location-aware sensing
application, such as a spatially aware display application. The user matching enables the sys-
tem to use the acceleration sensed by a particular user’s phone to compensate for the effects
of position uncertainty (jitter) and the lag in this particular user’s skeleton tracking sensed
by the conventional Kinect system, giving the user a smoother, more responsive experience.

Therefore, the two applications, including (1) user matching and identification, and (2) po-
sition stabilisation and lag reduction, can be combined seamlessly in a proxemic interaction
system. The proposed GP prior model-based sensor fusion system is of great benefit for
improving the context sensing capability and increasing the usability of such context-aware
sensing applications.
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Appendix A

Acronyms

List of Abbreviations and Acronyms

Notation Description Page
List

2D Two-dimensional 23, 141
3D Three-dimensional 7, 48

AHRS Attitude and Heading Reference System 20, 21
ANOVA ANalysis Of VAriance 147
API Application Programming Interface 73
AR Augmented Reality 1, 16,

70, 75
ARGP AutoRegressive Gaussian Process 80, 94,

157

DOF Degree-Of-Freedom 27

EKF Extended Kalman Filter 8, 34,
72

GP Gaussian Process 5, 8, 35,
36

GP-LVM Gaussian Process Latent Variable Model 35
GPDM Gaussian Process Dynamical Model 35
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Notation Description Page
List

GPR Gaussian Process Regression 36
GPS Global Positioning System 7, 19,

21
GPs Gaussian Processes 1

HCI Human-Computer Interaction 6, 22,
31

IMU Inertial Measurement Unit 20
INS Inertial Navigation System 20, 21
IR InfraRed 19, 25

KF Kalman Filter 7
KKF Kinematic Kalman Filter 44

LED Light-Emitting Diode 25

MEMS Micro-ElectroMechanical System 26
MSE Mean Square Error 147,

148,
154,
159

NED Earth’s North-East-Down 47
NITE Natural Interaction Technology for End-user 46
NUI Natural User Interface 17, 29

OpenNI Open Natural Interaction 46, 73

RFID Radio-Frequency IDentification 19
RMSE Root Mean Square Error 97

SDK Software Development Kit 73
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Notation Description Page
List

SHAKE Sensing Hardware Accessory for Kinaesthetic
Expression

46

UbiComp Ubiquitous Computing 13
UDP User Datagram Protocol 77, 142
UKF Unscented Kalman Filter 8, 34,

72

VR Virtual Reality 18

WLAN Wireless Local Area Network 19, 77
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