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Nonlinear Modeling of FES-Supported Standing-Up
in Paraplegia for Selection of Feedback Sensors
Roman Kamnik, Member, IEEE, Jian Qing Shi, Roderick Murray-Smith, and Tadej Bajd, Fellow, IEEE

Abstract—This paper presents analysis of the standing-up
manoeuvre in paraplegia considering the body supportive forces
as a potential feedback source in functional electrical stimulation
(FES)-assisted standing-up. The analysis investigates the signifi-
cance of arm, feet, and seat reaction signals to the human body
center-of-mass (COM) trajectory reconstruction. The standing-up
behavior of eight paraplegic subjects was analyzed, measuring
the motion kinematics and reaction forces to provide the data for
modeling. Two nonlinear empirical modeling methods are imple-
mented—Gaussian process (GP) priors and multilayer perceptron
artificial neural networks (ANN)—and their performance in ver-
tical and horizontal COM component reconstruction is compared.
As the input, ten sensory configurations that incorporated dif-
ferent number of sensors were evaluated trading off the modeling
performance for variables chosen and ease-of-use in everyday
application. For the purpose of evaluation, the root-mean-square
difference was calculated between the model output and the
kinematics-based COM trajectory.

Results show that the force feedback in COM assessment in FES
assisted standing-up is comparable alternative to the kinematics
measurement systems. It was demonstrated that the GP provided
better modeling performance, at higher computational cost. More-
over, on the basis of averaged results, the use of a sensory system
incorporating a six-dimensional handle force sensor and an instru-
mented foot insole is recommended. The configuration is practical
for realization and with the GP model achieves an average accu-
racy of COM estimation 16 1.8 mm in horizontal and 39 3.7
mm in vertical direction. Some other configurations analyzed in
the study exhibit better modeling accuracy, but are less practical
for everyday usage.

Index Terms—Artificial neural network (ANN), center of
mass (COM), feedback, functional electrical stimulation (FES),
Gaussian process (GP), mixture models, paraplegia, position
tracking, standing-up.
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I. INTRODUCTION

R ISING from a sitting to a standing position is a common
daily activity in human living. Individuals experiencing

rising difficulties have problems living independently, while
their prolonged immobilization results in physiological prob-
lems. Spinal-cord-injury patients have particular difficulties in
standing-up, due to their lower-limb paralysis. To alleviate this,
paraplegic patients are trained how to stand up and compensate
for the missing action of their lower extremities during the
rehabilitation process. The lifting and stabilizing forces are
provided by the arm support, requiring strength and motor
skill from the upper body. For support, a walker frame, parallel
bars, simple stationary standing frame, or even chair arm rests
are normally used. However, people practicing a fully arm
supported standing-up risk later complications of the upper
limb joints [1].

In addition to the arm support, standing-up in paraplegia can
be facilitated by functional electrical stimulation (FES). FES is a
method of eliciting the action potential in the nerves innervating
the paralyzed muscles. This way, the muscle contractions are ar-
tificially evoked and motor functions recovered [2]. Bajd et al.
proposed a simple approach to the FES supported standing-up
of paraplegic subjects [3]. Within this strategy, which is now
widely used in home and clinical practice, the stimulation is
based on an open-loop surface stimulation of the knee extensors.
In the preparation phase, the paraplegic subject brings his body
to an initial pose with the upper body leaning forward, arms
almost fully flexed at the elbows and supported by the walker
frame, while the hip joints resting in the chair are pulled forward
toward the edge of chair as much as possible and feet brought
backward. For the start of rising, the stimulation is voluntarily
triggered by the subject, and the body is lifted upward from the
initial to the extended upright position. As the stimulation of
the knee extensors is open-loop and on/off triggered with max-
imum stimulation amplitudes throughout the rising process, the
current method for standing up is suboptimal in terms of the ap-
plied forces and torques in the upper and lower extremities [4].
On the other side, at the end of the standing-up, when the knees
are almost fully extended, the excessive knee joint torques cause
high terminal velocities in the knee joints, which can result in
ligament injuries [5].

The disadvantages of the traditional approach have led to the
development of new approaches to stimulation control, prin-
cipally based on closed-loop control theory. In the first place,
simple control algorithms have been proposed, such as “bang-
bang” controllers tracking the reference trajectory in the phase
plane of variables. As state variables, the knee-joint angle and
angle velocity were used in [5], [6], while in [8], the relationship
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between the knee and hip-joint angle velocities was controlled.
In some of these studies, the process of the standing-up was di-
vided into phases and the constant stimulation output provided
during the particular phase. The tasks of the phase start event
detection and the stimulation amplitude alteration were accom-
plished by the finite state controller [6], [7]. Linear proportional,
integral derivative (PID) and nonlinear fuzzy controllers con-
trolling the knee joint angle have also been proposed [9], [10].
Common to these solutions is that the reference values to the
controller were determined corresponding to the standing-up of
healthy subjects. More advanced proposals, incorporating the
paraplegic subject’s volition into the stimulation control during
rising, have been given in [11], [12]. In both proposals, the stim-
ulation sequences were determined on the basis of subject’s ac-
tivity, i.e., known subject body position and arm reactions. The
approaches have been evaluated experimentally and proved ef-
ficient in providing the “patient-driven” nature of the stand-up
[13], [14]. However, the difficulty in closed-loop stimulation
control is that the information fed back to the controller is sup-
posed to be provided by the sensors, normally goniometers and
accelerometers, attached to the subject’s body. Mounting, dis-
mounting, and wiring of the sensors is a tedious job and is not
practical for daily use.

For this reason, we are proposing a method for assessing the
subject’s body state during rising based on feedback informa-
tion acquired in a more practical manner. We have chosen the
supportive forces acting at the interaction points with the para-
plegic’s environment as an alternative feedback source. Seat,
foot, and arm reactions can be far more easily measured than
joint angles: seat and arm support forces can readily be mea-
sured using multidimensional load cells mounted in the arm sup-
port frame and the seat. An even more practical alternative for
instrumenting the subject’s environment, is commercially-avail-
able shoe insole sensors for the ground reaction forces. Further-
more, the employment of the natural sensory nerve signals from
the feet is expected to be functional in the future [15]. As an
objective characterizing the body state during rising we have
chosen the total body center-of-mass (COM) motion trajectory.
In [16], the position of COM in the sagittal plane was found to
be the main controlled variable in sit-to-stand task of a healthy
subject. Several other studies have examined the position of the
COM relative to the base of support (BOS) during activities
such as lifting and the initiation and termination of gait [17],
[18]. The studies suggest the relationship between the COM and
the center of pressure (COP) is one of the principles of balance
control by the central nervous system during activity. Lately,
some authors proposed that the horizontal velocity of the COM
should also be considered in describing the movements for the
control of balance, because it governs the destiny of the hor-
izontal position of the COM over the BOS [19]. However, in
the standing-up of paraplegic patient, the body is supported by
arms and feet in four points forming the larger BOS than that
in bipedal activities. Besides, in movement initiation the hori-
zontal velocities are lower because of the typical starting pose
taken prior to rising with the upper body leaned forward. As-
suring the stable pose and fall prevention are, therefore, less de-
manding and are already controlled by the subject’s voluntary
activity of the upper body. For this reason, balance control is not

considered the objective task for the FES system, and the COM
velocity becomes less important for feedback. In this study, the
trajectory of the COM in the sagittal plane is used to charac-
terize the whole body position and the phase of the process in
which in the first phase body segments accelerate anteriorly, in
the transition phase decelerate anteriorly and accelerate verti-
cally, and in the third phase achieve standing pose by decelera-
tion in the vertical direction [20]–[22]. The use of the COM tra-
jectory for feedback control is appropriate for continuous and
for finite state FES control approaches.

According to Newton’s second law, the external forces acting
on the body are proportional to the body COM acceleration.
Hence, the COM displacement in human transient activities can
be estimated by a second time integral of the sum of reaction
forces. This method is, however, prone to cumulative integration
errors, i.e., drift [23], [24]. To overcome this problem, two non-
linear modeling techniques are implemented in this paper. An
ANN model and a GP mixture model were designed for the pur-
pose of mapping the interaction forces to the COM trajectory. In
the paper, the model input variable selection, the structure, and
the performance evaluation are presented and compared.

II. METHODS

A concept of the sensory-driven FES-supported standing-up
is presented in Fig. 1. The amplitude and frequency of the knee
extensors’ stimulation are varied according to the COM position
while the body is rising. To exploit the support force signals, it
is vital that the model is capable of mapping the reaction forces
to the COM trajectory. The objective of this study was to build a
model for predicting the COM vertical and horizontal displace-
ments on a basis of a limited number of input signals provided
by the artificial force sensors.

A. Data Set

To provide the representative data set for modeling, we an-
alyzed the standing up maneuver of eight paraplegic patients.
Five men and three women participated in the study. Their ages
ranged from 17 to 57 years, weights from 58 to 95 kg and heights
from 159 to 185 cm. The sample group included patients with
different levels of spinal-cord injury and different experience of
FES usage as summarized in Table I. The kinematic and kinetic
variables of the standing-up trials were assessed with a specially
built measurement setup. The data acquired were used in the
model design and evaluation.

1) Measurement Instrumentation: The measuring setup
used in the standing-up analysis incorporated two systems, one
for determining the forces acting to the human body and the
second for measuring the body motion trajectory. An assump-
tion of human body symmetry during the standing-up task was
made. Hence, measurements were restricted to the patient’s
right side and were calculated for the left side. To assess the
reaction forces, two measuring frames were built as copies
of a wheelchair seat and a conventional walker. The seating
frame was instrumented by the use of a six-axis AMTI force
plate (AMTI, Inc., Watertown, MA), while the force and torque
vectors on the right walker handle were assessed by the six-axis
JR3 sensor (JR3, Inc., Woodland, CA) usually utilized as wrist
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Fig. 1. Sensory-driven control concept in the FES-supported standing-up of paraplegic patient.

TABLE I
DATA OF PARAPLEGIC PATIENTS PARTICIPATING IN THE STUDY

sensors in robotics. An additional AMTI force plate was used
for measuring the ground reaction forces under the right foot.

The motion kinematics of the body segments was assessed
by the OPTOTRAK optical system (Northern Digital Inc., Wa-
terloo, ON, Canada) measuring the three-dimensional (3-D) po-
sitions of active markers (infrared LEDs). Markers, about 1 cm
in diameter, were attached to the body anatomical landmarks
with doublesided tape. Two redundant sets of cameras were
used in the measurements positioned 4 m right from the subject.
The first set was positioned at a posterior angle of 45 and the
second at an anterior angle of 45 . With this setting, occlusions
of markers caused by the walker frame or hand were minimized.
Fig. 2 presents the standing-up manoeuvre of paraplegic patient
performed in the measuring setup. Optotrak optical markers at-
tached to the knee, elbow, and shoulder joints are well seen in
Fig. 2.

2) Measurement Protocol: The subject was seated on the
instrumented seat with the arms resting on the arm support
frame. The height of the seat coincided with the height of a
wheel chair, while the arm support frame height was adjusted
according to the patient’s preferences. Prior to measurements,
three test standing-up trials were accomplished, followed by
a certain amount of FES-assisted standing afterwards. This
exercise enabled the subject to get used to the measuring equip-

Fig. 2. Standing-up of paraplegic patient and a measurement setup.

ment and relieved the spasticity in paralyzed legs. No further
consideration of spasticity effects was encountered since there
was no significant evidence of spasticity during standing-up
measurements in any of the subjects.

Surface stimulation of the M.quadriceps muscle group was
used; they were stimulated open-loop with constant stimulation
amplitude throughout the rising phase. The stimulation intensity
was the level which brought the legs to their fully-extended po-
sition during sitting. The stimulation was voluntarily triggered
on/off by the subject via the push-button mounted at the support
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handle. In measurement trials, the subject was asked to take the
initial position and, after approximately 2 s from starting the
data collection, he or she was asked to stand up in their pre-
ferred manner and speed. Five rising trials were recorded, with
a 50-Hz sampling rate, for each participant, each measurement
lasting for about 10 s. By taking into consideration only five
successive standing-up trials the results for each subject were
consistent, because there was little muscle fatigue.

3) Measured Data Analysis: The signals were collected
from active markers, force plates and a handle sensor. The
signals were low-pass filtered using a fourth-order, dual-pass
Butterworth filter with 5-Hz cutoff frequency. The positions of
markers that had not been seen by cameras in short intervals
were estimated by the cubic spline interpolation. The coor-
dinate systems of all sensors were transformed to coincide
with the reference coordinate system placed on the floor in
the center of the support frame. The signal derivatives were
calculated by differentiating the data followed by additional
filtering. Using data, the motion of 3-D, 15 segment models
of the subjects were calculated. The models embodied feet,
shanks, thighs, pelvis, trunk, head, upper arms, lower arms, and
hands. Each segment of the body had six degrees of freedom
and was considered rigid. Each body joint was represented as
a perfect ball-and-socket joint with no translation. From the
marker positions, the joint center locations were determined
and from them, the vectors along the segment longitudinal axes.
Segmental masses and centers of mass locations were estimated
using anthropometric relationships from the De Leva’s study
[25]. Masses were expressed as a percentages of total body
mass, and the COM, lying on the segment’s longitudinal axis,
were estimated as percentage of the distance between proximal
and distal joints. The total body COM location in each time
instant was determined as a weighted sum of individual COM
positions of all segments. The horizontal and vertical com-
ponents of the body COM location in the sagittal plane were
determined according to (1), where is the mass, while and

are the horizontal and vertical displacements of particular
segment

(1)

The accuracy of the COM assessment was verified by com-
parison with the COP determined from the measured support
forces. The COP represents the point of application of the resul-
tant of seat, arm, and foot ground reactions. In static conditions,
the COP corresponds to the vertical projection of the body COM
to the ground. The comparison was only possible in the hori-
zontal plane. In this verification, all the measurement trials were
analyzed considering the first 25 samples force record. Thus,
the first half second of the measurement was analyzed when the
subjects had been stationary in the initial position, waiting to
be instructed to stand up. The resulting root mean square dif-
ference between horizontal COM and COP position among pa-
tients varied from 5.66 1.11 mm (subject AK) to 18.16 3.13
mm (subject SB). The average difference was 8.08 4.11 mm.

This result is less accurate than that reported for quiet standing,
where the difference was around 1 mm [26], however, it shows
that our method of COM estimation is relatively good. Compare
this with Lenzi [27], who demonstrated that in the standing-up
task the root-mean-square error (RMSE) in kinematics-based
COM estimation can reach up to 38.3 mm when a 10% error
in body segment parameters’ estimation had been made.

In the final step of data processing, the body COM trajectory
assessed in the inertial coordinates was transformed to the COM
relative displacement according to the subject’s initial position.
This transformation enabled comparability of the measured data
among subjects. Resulting trajectories of the lower extremity
joints, the upper trunk inclination, and lower and upper body
supportive forces are shown in Fig. 3 representing sample rising
trials of eight paraplegic subjects. From the figure, it is evident
that the duration of the sit-to-stand phase, rising speed, initial
posture and the upper and lower extremity action varied consid-
erably among the subjects.

Fig. 4 presents the COM displacements in sagittal plane with
respect to the subject’s initial position. Again, considerable vari-
ation in the approach to the sit-to-stand transfer can be observed
among the subjects. Some of the patients transfer the upper body
forward in the preparation phase and then rise vertically, while
in others a dynamic horizontal transfer of the trunk occurs be-
fore the vertical lift.

From the measurements, three data sets were formed. For
each of the subjects, the data from three standing-up trials was
randomly assigned to two equal-sized sets; one the primary
data set, for the model training procedure, and the other for
validation during training. Measurements from the other two
standing-up trials were designated test data set, and used in
trained model evaluation.

B. Input Variable Selection

To be practicable for everyday usage, FES systems needs to
employ as few physically-separate sensors as possible. Every
feedback channel contributes to the complexity of the sensory
device and to the wiring and mounting difficulties. Therefore,
the question: what feedback information is just sufficient for
recognition of the body state—in our case, the body COM tra-
jectory—is crucial. We investigated the minimal requirements
for feedback information. We divided the potential feedback
sources into ten groups, each group incorporating different num-
bers of variables. The groups were formed so that we could ex-
amine the functionality, practicality and feasibility of various
configurations of sensors.

The empirical input variable groups are listed in Table II.
Group 1 encompasses all the possible signals acquired in the
measurement setup, i.e., arm, seat and foot reactions. Addition-
ally the derivatives of signals were incorporated to verify their
information significance to the output: we expected better mod-
eling of dynamic movements. In the case of ground reactions,
beside the three components of the reaction force, the position
of foot center of pressure was used. The position is expressed
in the coordinates of the foot sole and normalized to the foot
length. The components are denoted as and . The seat
reaction force, assessed by the force plate, is a 3-D vector, while
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Fig. 3. Motion trajectories and supporting actions of the upper and lower extremities in sample trials of eight paraplegic subjects. The portion of the data between
the dotted lines belongs to one sample standing-up of one subject.

Fig. 4. Sample COM displacements in sagittal plane for eight paraplegic
subjects.

the arm reactions, when assessed by the JR3 force sensor, con-
sists of three force and three moment components. For compar-
ison, Group 2 excludes the derivatives of the signals. Group 3
excludes the seat reaction force signals since sensors attached
to the seat or wheelchair are less practicable. Group 4 incor-
porates only the vertical component of the foot reactions, since
this is the variable when shoe insole sensors can be used instead
of the force plate. Group 5 investigates the usage of simpler
and less expensive sensors for measuring arm support forces.

Only vertical and horizontal handle reaction components were
used in this case in combination with the shoe insole sensory
signals. Group 6 investigates the use of only the shoe insole
sensor. Additionally, the possible combinations of the shoe in-
sole sensor with the goniometers, inclinometer or accelerome-
ters were investigated. Thus, the ankle joint angle was incorpo-
rated in Group 7 and the knee joint angle in Group 8. Group 9
verifies the combination with inclinometer mounted at the upper
body, while Group 10 verifies the shoe insole combination with
the accelerometers attached to the trunk.

The significance of each group was evaluated using a mod-
eling approach. Two different nonlinear models were used to
predict the body COM trajectory from the input signals of each
group. The RMSE between the actual COM trajectory and the
model-predicted output were calculated to assess the model per-
formance for each group. RMSE values were calculated sepa-
rately for the horizontal and vertical component of the COM
trajectory as

RMSE

RMSE (2)

where superscript stands for actual and for modeled value
of the COM trajectory in a sample . In (2), parameter rep-
resents a number of data points in particular test data set.
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TABLE II
FEEDBACK SIGNALS IN TEN INPUT GROUPS

C. Artificial Neural Network (ANN) Model

As an example of a well-established approach, a multilayer
perceptron ANN was trained and the network performance char-
acteristics examined [28]. The size of the network was kept con-
stant to make sure that the comparison is valid. The neural net-
work was built in the Mathworks Matlab software environment
as a two-layer feedforward network. The first layer incorporated
six neurons with a hyperbolic tangent sigmoid activation func-
tion, while the second layer consisted of two neurons with a
linear activation function. The back-propagation learning algo-
rithm, based on Levenberg–Marquardt optimization was used
for training the network. In training, the error cost on the vali-
dation set was used to stop training early if further training on
the primary training set would hurt generalization to the vali-
dation set. The network was trained for up to 300 epochs to an
error tolerance of 10 . Performance on the third, test set was
then used to measure how well the network generalizes beyond
primary and validation sets.

D. Gaussian Process (GP) Prior for Regression and
Hierarchical Mixture Models

As an alternative to neural networks, we also used a GP prior
regression model. An introduction to this approach is given in

reviews by [29] and [30]. The key equations are included in the
following.

Given data points of training data ,
where is a -dimensional vector of inputs, and is the output.
A Gaussian process is defined in such a way that has a
Gaussian prior distribution with zero mean and covariance func-
tion . An example of such a
covariance function is

(3)

where , and if
and 0 otherwise. This covariance function is often used in prac-
tice [32]—it has several terms which describe the variability in
the data. The first term
indicates that points close together are more correlated than
points far apart—a smoothness assumption, where the param-
eter reflects the lengthscale parameter for the th input. The
smaller , the less the output changes as is changed. The
term is the covariance associated with a linear
model—a practical assumption. The term is associated
with measurement noise, representing noise of variance on
the observations. More discussion about the choice of covari-
ance function and the details of the implementation of the model
can be found in [30]. The parameters of the covariance func-
tion can be optimized by maximizing the log-likelihood

(4)

using standard optimization techniques such as conjugate-gra-
dient approaches, or by integrating over them using numerical
methods such as Markov–Chain Monte Carlo methods.

We form a covariance matrix , the elements of which are
, and we can say that the probability of the

observed data is

(5)

To find the conditional distribution for the model, conditioned
on , , and a new test input , we have a mean and variance
of

(6)

(7)

where is the vector of covariances between the output at
and the training data, i.e., . An alterna-

tive expression for (6) is to use

(8)

which emphasizes that the mean predictions are a linear smooth
of the training data, where that smoothing function is dependent
on the current input .
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Fig. 5. (Left) GP modeling of the noisy observations (crosses). Mean predictions at x = 1 and x = 9 (circles) with their associated �2� error-bars, along
with the true function (continuous line). (Right) covariances between the test and the training inputs (upper plots), and smoothing kernels ��� (bottom plots). The
crosses correspond to x = 1 and the circles to x = 9.

1) Illustrative Examples of the Use of GP Models: The fol-
lowing example1 illustrates the GP modeling of noisy data. In
this particular case, we choose the data to actually come from a
realization of a zero-mean Gaussian Process with Gaussian co-
variance function, where (corresponding to a correla-
tion length of 5) and , given a one-dimensional argument

in [0,10]. We select training cases at random and cor-
rupt the outputs with a white noise with variance 0.01. Starting
the optimization of the minus log-likelihood with an initial es-
timate of 1 for all parameters, it converges to
after 100 iterations. The ML parameters found are ,

, and . Both and are underes-
timated, whereas is overestimated, but these values are satis-
factory, considering the very few number of data points and their
unevenly spread in the input space. We then make two predic-
tions, at and . Fig. 5 (left) shows the underlying
function (that is the realization of the ‘true’ underlying GP), the
training cases (crosses) and the predictions (circles) with their

error-bars. The upper-right plot corresponds to the covari-
ances between the test and training cases (for , crosses
and , circles) and the bottom-right plot to the smoothing
kernels. For , which is between training points, the pre-
dictive variance is small, as the model is confident about its pre-
diction but for , the error-bars are significantly larger,
as the test input lies in a region where there are few or no
training inputs. Indeed, the plot of the covariances between the
test and training inputs indicates that, for , the covari-
ances diminish more rapidly and to smaller values than those
with .

Fig. 6 shows samples drawn from the zero-mean GP prior
(dashed lines) and from the predictive-posterior process, condi-
tioned on the training data and 100 test inputs in [0,10] (that
is, the realizations are drawn from a 100-dimensional normal
distribution, with mean vector and covariance matrix

, computed for 100 values of . Notice the “edge
effect” from , where no more training points are present.

1Many thanks to A. Girard for providing this example and figures.

Fig. 6. Samples from the prior process (dashed lines) and from the posterior
(dotted lines), conditioned on the training data (crosses), for x 2 [0; 10].

2) Example of GPs in Use for the Standing-Up Data: To il-
lustrate the prediction of uncertainty provided by GP models,
we use an example of prediction of and for five
separate standing-up trajectories of patient BJ. Fig. 7 shows the
mean and 2 standard deviation uncertainty bands from a single
GP. The GP included some data from each of the first three tra-
jectories in the training set, and the second two were test data.
Note that the uncertainty is low on the predictions on data close
to the training data, but increases for the data points further from
the training data. The uncertainty also varies within individual
batches, depending on the input state, reflecting variations in
model complexity, and training data density.

3) Comparison With Neural Networks: An empirical com-
parison in [32] showed that GPs were usually as good as or better
than neural networks in test comparisons. GPs tend to have a
clearer advantage in problems with smaller data sets. The major
difference is that the training data are retained by the model and
predictions are inferred from those data, rather than the para-
metric approach of neural networks, where the data points are
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Fig. 7. Example of GP prediction, showing mean and two standard deviations for five separate standing-up trajectories of patient BJ. The x axis indicates time.
The first three sets were included in the training set, and the second two were test data. Actual COM trajectory is represented by bold solid line, the GP model
response is represented by dashed line and its 95% confidence interval is represented by dotted line.

represented by a finite number of parameters, and discarded.
This means that prediction uncertainty in GPs can be made to
increase as we make predictions further from the training data
(in terms of the input space), but it also has storage and com-
putational issues, compared to neural networks, as training set
sizes increase. It also means that models can include new data
points relatively easily, without major retraining.

4) GPs and Input Subset Selection: GPs allow a “soft
model-structure selection,” where the complexity of the model,
as measured by the effective degrees of freedom [33] can vary
automatically with the hyperparameters. It also provides an
automatic relevance detection, as the length-scale parameters

associated with input give an indication of how important
any given input is—if an element of input vector does not help
predict outputs accurately, the will tend to go toward zero,
as likelihood is maximized [30].

5) Hierarchical GP Regression Model: The implementation
of a GP regression model requires the inversion of a covariance
matrix, the dimension of which is the sample size of the training
data. It becomes computationally expensive for large sample
sizes 1000 , because the computational cost scales as

. For the data discussed in this paper, if we consider a
single standing-up, a single GP regression model is not compu-
tationally problematic. However, if we want to combine the data
collected from the different standings-up and from the different
patients, the sample size may be as large as a few thousand data
points, and the use of a hierarchical mixture model, as proposed
in [31] is recommended. This model also allows for the hetero-
geneity for the data-set combining from the different sources,

which is a particularly nice property for data acquired in human
motion, as is the case in our study.

The proposed hierarchical GP regression model has the fol-
lowing two-level structure: a lower-level single GP regression
model defined around (4) is used to fit the data corresponding
to each replication (different standing-up) separately, and the
structures of the basic models are similar but with some mu-
tual heterogeneity; a higher-level model is defined to model the
heterogeneity among different replications. Specifically, sup-
pose that there are different replications. In the th group,

observations are collected. Let the observation be ,
, . In a hierarchical mixture

model of Gaussian processes for regression, we have

(9)

where is an unobservable latent indicator variable. If
is given, the model for group is a GP regression model

, as defined around (4). The association among the dif-
ferent groups is introduced by the latent variable , for which

(10)

for each . is the number of components of the mixture
model. We assume that has a fixed value. For the details of
the theory and implementation refer to [31].

III. MODELING RESULTS

In the following section, the prediction results from the non-
linear models are presented. The performances of the proposed
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Fig. 8. Comparison of resulting ANN model predictions and the COM displacements measured in the fourth (testing) trial of real standing-up for eight paraplegic
subjects and ten different groups of input variables.

ANN and GP regression models are verified on prediction of
the body COM position. For each subject and for each input
group, an individual model was built and verified with the sub-
ject’s test data set. The model structure depended on the specific
subset sensors used to provide the input vector. The input vari-
ables were organized as described in Section II-B.

A. Model Predictions Compared to Test Data

Figs. 8 and 9 compare the resulting ANN and GP model pre-
dictions with the COM displacements measured in the fourth
(testing) trial of real standing-up. In the figures, the results for
the horizontal and vertical component of the COM trajectory are
shown separately in the left and right column, respectively. Each
graph in the figure is divided into eight sections, successively
demonstrating the results for eight subjects who participated in

the study. The sections are annotated with the subject’s initials
on top of the figure. For example, the first section in the second
row in the right of Fig. 8 compares the ANN model output with
the real COM vertical displacement in the fourth standing-up
of subject AK when utilizing the model input variables from
Group 2. In Figs. 8 and 9, the deterioration of the model per-
formance as a consequence of decreasing the number of model
input channels can be observed.

B. Relative Importance of Input Signal Groups

To get a better insight into the significance of particular
groups of input signals to the model output, all the test RMSE
values of all the subjects were averaged and compared in two
bar graphs. The RMSE values between the modeled and actual
COM trajectories were calculated according to (2). Other
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Fig. 9. Comparison of resulting GP model predictions and the COM displacements measured in the fourth (testing) trial of real standing-up for eight paraplegic
subjects and ten different groups of input variables.

model evaluation measures such as the 95% confidence interval
or correlation produced similar results. Therefore, only the
RMSE was used for evaluation of the models. The comparison
bar graphs, presented in Fig. 10, illustrate the averaged ANN
model results on the left and the averaged GP model results
on the right. Again, the results are presented separately for the
horizontal and vertical component of the COM trajectory.

IV. DISCUSSION

From Figs. 8–10, we can see that both approaches give quite
good results, although GP modeling seems to provide a more
accurate model. An example of one of these subplots with 2
uncertainty bounds was given in Fig. 7. The bar graphs con-
firm our assumptions about the information importance of the

input groups. The degradation of the model performances with
respect to the number of input channels can be noticed. It is in-
teresting that the pattern of variability among subjects is not sim-
ilar in the ANN and GP results. For example, the worst results
for COMY in ANN modeling were achieved with the subject
ZJ who was standing-up, according to Fig. 4, with the extensive
forward excursion before rising. On the other hand, the worst
results in GP modeling were achieved with the subject MK who
was standing-up in a primarily vertical manner. The GP tends
to be worse in the vertical rather than the horizontal component,
which may be because of a zero-mean assumption in the stan-
dardization used. This seems well-suited to the horizontal com-
ponent, but more information about the patient, such as height,
for example, is needed to improve on the vertical component.

The overall modeling results presented in Fig. 10 illustrate
the information significance of input groups defined in Table II.
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Fig. 10. Overall modeling results for each group of inputs, summed over all patients.

According to the data from literature and the verification re-
sults from static condition, the RMSE between 10 and 20 mm
is considered satisfactory result for the COM assessment in an-
tero/posterior direction. Such a result would qualify the sensory
system for a balance control task also. For the COM assess-
ment in vertical direction, there is no study or data available
for comparison. From the bar graphs it can be observed that the
input information about the knee joint motion (see Group 8)
improves the model performance significantly. Obviously, the
knee joint angle is closely correlated with the body vertical po-
sition. Taking the RMSE result of the Group 8 for a reference,
the double error range, i.e., RMSE up to 37 mm, is considered
an acceptable accuracy for the model.

Observing the results for each particular input group, it is
first interesting that the models exhibit better performance when
the signal derivatives are excluded from the input (compare the
results of Groups 1 and 2). This phenomenon can be attributed
to the numerical differentiation of noisy force signals. On this
basis, we can conclude that the incorporation of the derivatives
of forces is not beneficial for the model performance.

Secondly, it can be seen that the peak of RMSE values is
attained when only the instrumented foot insole information is
used for the feedback in Group 6. Utilization of this sensor alone
apparently does not meet the desired accuracy criteria.

Next, it is interesting to compare the results between Groups
1, 2, and 3, and Groups 4 and 5. The former are based on the
sensory signals that are difficult to acquire in a practical manner
with today’s technology, while the latter incorporate practical
and easy implementable sensors. Excluding the sensory chan-
nels improves the practicality but deteriorates the performance
of models. However, notice that the sensory system based on
the GP modeling and the signals from Group 4 and condition-
ally also Group 5 would meet the accuracy requirements.

Finally, the averaged results demonstrate that in the condi-
tions under which the data was acquired the utilization of in-

formation about force reactions at the input is a comparable al-
ternative to the information about the ankle joint angle, trunk
inclination angle, and trunk acceleration.

V. CONCLUSION

We have analyzed the information available from sensors
when paraplegic patients stand up. The analysis focused on
the use of the support force signals for the purpose of body
state estimation. The body COM trajectory has been estimated
utilizing two different nonlinear modeling approaches. The
results of the study proved that a force-feedback-based FES
system is viable and realistic. Regardless of the fact that the
study was accomplished with data acquired in a laboratory
with sophisticated measurement equipment, conclusions can
be drawn for practical portable systems. We searched for the
minimal number and complexity by comparing different sets of
signals. In the study, the accuracy criteria for the COM assess-
ment were assigned having in mind that the balancing task in
FES-supported standing-up in paraplegia is performed by the
subject. The balance control is, therefore, not the objective task
for the FES system allows lower required accuracy. It was also
beyond the scope of the study to search for the optimal feedback
set for a particular sensor-supported FES system. Nevertheless,
the results suggest a feasible and satisfactory configuration.
They show that both the foot and arm reactions are vital for
the COM trajectory reconstruction, but the seat force sensor is
unneccesary. Inclusion of the derivatives of forces was not ben-
eficial since it led to a deterioration in modeling performance.
It can, therefore, be concluded that the combination of sensors
from Group 4, i.e., the multidimensional force sensor used for
handle reactions and the foot insole for the vertical foot reaction
and its COP, would provide sufficient accuracy and would be
also practicable with currently-available technology. For the
future, we may expect progress in the development of wearable
multidimensional force sensors for ground reaction forces. In
that case, the Group 3 arrangement could be implemented. As a
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side comparison, we investigated the significance of kinematic
parameters to the COM trajectory reconstruction and showed
that information about knee joint angle is most descriptive.
Based on this cognition we may speculate, since the example
was not verified in the study, that the combination of the handle
and foot force sensors from Group 4 and the knee goniometer
from Group 8 would form a highly accurate system for the
vertical and horizontal COM assessment. However, increasing
the assessment accuracy on one side, would on the other side
decrease the practicality of the system requiring the attachment
of goniometers.

On one hand, the study provided knowledge of the signif-
icance of the various feedback signals and will thus ease the
design of sensory supported FES systems. On the other hand,
the study is practical comparison between the ANN and GP
nonlinear modeling methods. The modeling performance shows
that although GPs are computationally more expensive, they
provided a better fit to the data. They also have the advantage
that they provide an estimate of the conditional density for pre-
dictions, rather than just the conditional mean, as provided by
the neural network. This is compatible with earlier empirical
comparisons between GP’s and neural networks in [32]. GP’s
tend to perform better than neural nets in cases where training
data is sparse, while neural nets can be better when there is a
large amount of training data, and the function to be learned is
of varying complexity (which would require a nonstationary co-
variance function for the GP).

The hierarchical GP was computationally much more effi-
cient than a single GP, and also coped well with the hetero-
geneity among patients. Since we observed great variability in
standing-up among paraplegic subjects (subjects differed in sex,
age, weight, height, and the level of spinal-cord injury, while
data even varied in the same subject due to variance in initial po-
sition and muscle fatigue), results suggest that the models used
in this paper should be further calibrated to an individual sub-
ject.

In terms of computational requirements, the neural network
has a very small memory footprint, requiring storage only of the
network weights which is the product of the

, while the GP
might be storing several thousand training examples, and infer-
ence to new points involves multiplication of the inverse covari-
ance matrix (which can be calculated off-line, prior to use), by
the covariance with the test point, which for a single test point
would involve floating-point multiplication and addi-
tion operations for training points. For the hierarchical model,
we have , operations where are the sizes of
the subsets.

As a drawback of the proposed approach, individual models
must be build because the level of spinal cord injury, fitness,
body configuration, experience in FES usage, and approach to
the standing-up, all contribute to the variability of COM trajec-
tory between paraplegic subjects: every new subject included
into the group changed the training data set. Thus, it is not
reasonable to expect that a single model would successfully
generalize over a bigger group of subjects. On the other side,
the implementation of individual models requires measurement
and a training procedure for each particular subject prior to
model-making. This requirement can represent a serious ob-
stacle in clinics where no kinematic measurement system is

available. An embedded FES control system on which both the
training and control algorithms would run would be a practical
solution of this problem. Instead of a complex motion anal-
ysis system, a set of goniometers could be used to estimate the
COM motion kinematics. With such a wearable system, incor-
porating force sensors and goniometers directly wired to the
controller, adaptation could take place during standing-up ex-
ercises for each subject. The controller could include the online
model training feature, and in this way, train the model auto-
matically. Practicing for longer in the system adaptation phase
would allow the changes in body dynamics due to muscle fa-
tiguing to be incorporated in the model too.

In conclusion, the advantage of the proposed feedback system
is clear when an estimate of the body COM trajectory during
standing-up is required. This can be accomplished, at no cost to
performance, from body support force signals, whose acquisi-
tion is not cumbersome for practical everyday usage.
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