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Abstract. In this paper a novel approach for black-box identification of non-linear dynamic systems
is described. The Gaussian process prior approach is a statistical model, representative of probabilistic
non-parametric modelling approaches. It offers more insight in variance of obtained model response, as
well as fewer parameters to determine than other models. The Gaussian processes can highlight areas of
the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating
the higher variance of the predicted mean. The Gaussian process modelling technique is demonstrated
on a simulated example of a non-linear system.

1. Introduction

Most control engineering applications are still based on parametric models, where the functional form is
fully described by a finite number of parameters. The information about uncertainty is usually expressed
as uncertainty of parameters and does not take into account uncertainty about model structure, or
distance of current prediction point from training data used to estimate parameters. This paper describes
modelling based on Gaussian processes which is an example of a non-parametric model that gives also
the information about prediction uncertainties which are difficult to evaluate appropriately in nonlinear
parametric models. Gaussian processe approaches can be applied to many of the problems currently
modelled by artificial neural networks.

The use of Gaussian processes to tackle many of the standard problems usually solved by artificial neural
networks has been introduced recently e.g.[9]. It was shown that neural networks and Gaussian processes
were closely related, in the limit of an infinite number of neurons in hidden layer [7]. Nevertheless, the
majority of work on Gaussian processes shown up to now considers modelling of static non-linearities.
Fragments on the use of Gaussian processes in modelling dynamic systems have been published recently,
e.g. [4,3,2,6,10] and propagation of variance in dynamic systems has just been presented in [1]. The
purpose of this paper is to bring aspects from these recent contributions together with an illustrative
example, as a brief tutorial example on dynamic systems identification by means of Gaussian process
models.

The paper is organised as follows. In the next section, we introduce the use of Gaussian processes for
modelling static systems. How this approach can be used for dynamic systems identification is described
in Section 3. An illustrative example in Section 4 presents an application of the method. The last section
gives some concluding remarks.

2. Modelling with Gaussian process

A Gaussian process [8] is an example of the use of a flexible probabilistic non-parametric model with
uncertainty predictions. Its use and properties for modelling are given in [11]. A Gaussian process is a
collection of random variables which have a joint multivariate Gaussian distribution: f(z!),..., f(z") ~
N(0,X), where ¥, gives the covariance between points z” and z?. Mean u(f(z?)), which can be removed
(u(f(2P)) = 0), and covariance function ¥,, = Cov(z?,27?) determine a Gaussian process. Assuming a
relationship of the form y = f(x) between the inputs z and outputs y, we have Cov(y?,y?) = C'(zP, x?),
where C(.,.) is some function with the property that it generates a positive definite covariance matrix.
This means that the covariance between the variables that represent the outputs for cases number p and



q is a function of the inputs corresponding to the same cases p and ¢. In general, a stationary (depends
only on the distance between points in the input space') Gaussian processes can be effectively used for
identification of static nonlinear regression model which is described below.

Consider a set of N D-dimensional vectors containing noisy input data X = [x1,X2,...,Xp] and a
vector of output data y = [y(1),y(2),...,y(N)]T representing the static system. The aim is to construct
the model, namely function f(-) depending on X and y, and than at some new input vector x* =
[21(N +1),22(N 4+ 1),...,24(N + 1)] find the distribution of the corresponding output y(N + 1). The
model is determined according to f(.), X and y and not on parameter determination within fixed model
structure. That is why this is a probabilistic non-parametric approach. The probability of hypothesis
f(x*) according on data set X and y can be written as
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p(y | f(x*,X)) is the conditional likelihood of model and represents model output in the form of mean
and variance. p(f(x*)) represents prior knowledge contained in the model. Based on the covariance
function, the parameters of which (the so called hyperparameters) are determined from training set
X,y, the a posteriori value y(N + 1) can be determined.

An appropriate covariance function has to be chosen for model identification. Any choice of the covariance
function, which will generate a non-negative definite covariance matrix for any set of input points, can
be chosen. A common choice is

D
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where vg, vy, wq,d = 1,..., D are hyperparameters of covariance functions and D is the input dimension.

Other forms of covariance functions suitable for different applications can be found in [9], however it
is necessary to point out that selection of covariance functions suitable for robust generalisation in
typical dynamic systems applications is still an area open for research. Given a set of training cases
the hyperparameters of the covariance function © = [w; ... wp vy v1]? should be learned (identified).
There is a hyperparameter correponding to each regressor ‘component’ so that, after the learning, if a
hyperparameter is zero or near zero it means that the corresponding regressor ‘component’ has little
impact and could be removed.

Covariance functions hyperparameters are obtained from training set by maximisation of the likelihood
p(f(x*) | X,y). Since the analytic solution is very difficult to obtain other approaches are in place. The
description of one possible approach follows.

Calculation of model output is straightforward for a given covariance function. It can be seen from
equation (1) that posteriori probability depends on hyperparameters through likelihood p(y | f(x*), X).
Its logarithm can be derived analytically.

£(8) = log(p(y | f(x*,X)) = 3 log(| K |) ~ £y"K"y — ~log(2r) 3)

where y is the N x 1 vector of training targets and K is the NV x N training covariance matrix.
The partial derivative of equation (3) for hyperparameters ©; is
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The approach where hyperparameters are obtained with minimisation of negative value £ is known as
maximum likelihood method. Any optimisation method can be used for the described minimisation.
Nevertheless, it has to be kept in mind that the approach is computationally relatively demanding since
inverse covariance matrix has to be calculated in every iteration.

MCMC (Markov Chain Monte Carlo) approaches to numerical integration [9] provide an alternative to
optimisation.

The described approach can be easily utilised for regression calculation. Based on training set X a
covariance matrix Ky of order N x N is determined. As already mentioned before the aim is to find the

IPoints close together are more correlated than points far apart — a smoothness assumption.



distribution of the corresponding output y(N + 1) at some new input vector x* = [z (N + 1), 22(N +
1),...,zp(N + 1)]T. This means that for new input vector x*, a new covariance matrix Ky or order
(N +1) x (N +1) is calculated in form

Ky k(x*)
KN+1 = (5)
[k(x)T] RG]

where k(x*) = [C(x(1),x*),...,C(x(N),x*)]T is the N x 1 vector of covariances between the test and
training cases and k(x*) = C'(x*,x*) is the variance of the new test case.
A prediction at point y(N + 1) is also a Gaussian process (Figure 1).
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Figure 1: The illustration of a posteriori value determination from Gaussian process model at input
value xo: the output of model is a Gaussian process (left figure) that can be represented by its mean
and variance (right figure)

For a new test input x*, the predictive distribution of the corresponding output is §(N + 1)[|x* ~
N(u(x*),0(x*)) with

For k-step ahead prediction we have to take account of the uncertainty of future predictions which provide
the ’inputs’ for estimating furhter means and uncertainties. We can use a Gaussian approximation to
the uncertainty of inputs. The predictive distribution of the corresponding output at the random input
x* is N (m(z*),v(z*)) where m(x*) and v(x*) are approximations of y(x*) and o2(x*).

m(x") = Ex[p(x")]
~ k(px")TK 'y (8)
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For more detailed derivation see [1].
3. Dynamic systems identification

Gaussian processes can, like neural networks, be used to model static nonlinearities and can therefore
be used for modelling of dynamic systems if delayed input and output signals are fed back and used as
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regressors. In such cases an autoregressive model is considered, such that the current output depends
on previous outputs, as well as on previous control inputs.

X(k) = [y(k—1),y(k—2),...,y(k—L),u(k—1),u(k—2),...,u(k—L)]T
y(k) = [f(x(k)) +e€ (10)

Where k denotes consecutive number of data sample. Let x denote the state vector composed of the
previous outputs y and inputs v up to a given lag L and e is white noise. We wish to make k-step ahead
predictions. Currently, in the framework of Gaussian processes, this has been achieved by either training
the model to learn how to make k-step ahead predictions (direct method) or by simulating the system
(repeated one-step ahead predictions up to k - iterative method). That is, at each time step, by feeding
back the mean prediction (estimate of the output) and its variance as it is illustrated in Figure 2. This
corresponds to

y(k) = flgk=1),9(k—=2),...,9(k = L),u(k — 1),u(k — 2),...,u(k — L)) (11)

where g denotes the estimate.
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Figure 2: Block scheme of dynamical system simulation with iterative method

The iterative approach is preferred to the direct method because it provides us with predictions for any
k-step ahead, unlike the direct method which is only valid for the k-step ahead points.

Using the model (10) and assuming the data is known up to time step 7 the prediction of y at k + i is
computed via

m(x(k+1i—1)) v(x(k+i—1)) +vo - cov(y(k+i—1),u(k+1—L))
x(k+i) ~ N : , : : :
m(x(k+1i— L) cov(u(k +i—L),y(k+1—-1)) - v(x(k+i— L))+ wvo
ylk+1i) ~ N(m(x(k+1i)),v(x(k+1i))+vo)
(12)
where the point estimates m(x(k +i —j));7 =1,..., L are computed using equation (8) and variances

v(x(k+1i—7));7 = 1,...,L associated to each § are computed using equation (9). It is worthwhile
noting that derivatives of mean and variances can be calculated in straightforward manner. For more
details see [1].

As can be seen from the presented relations the obtained model does not describe only the dynamic
characteristics of non-linear system, but at the same time provides also information about the confi-
dence in these predictions. The Gaussian process can highlight such areas of the input space where
prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance of
the predicted mean.



4. Example

The described approach is illustrated with identification of a system that is described by the equation
y = — tanh(y + u®) (13)

with output signal y and input signal u. The output signal was disturbed with white noise of variance
0.0025 and zero mean. In our case added noise was white, if noise is correlated then the covariance
function (2) can be modified as shown in [5]. Data sampling time, determined according to system
dynamics, was selected to be 0.5 units. Input signal was generated by a random number generator with
normal distribution and rate of 3 units in the range between -1.3 and 1.3. The number of input signal
samples determines dimensions of covariance matrix. To avoid excessive computation time it is sensible
to choose number of samples to be no more than a couple of hundred samples. In our case 200 samples
have been used for identification.

Input, and output signals and these two signals delayed for one sample were chosen as regressors. The
selected model can therefore be written in the form

y(k+1) = f(y(k),u(k)) (14)

where function f(-) represents the Gaussian process model as a two dimensional regression model. Since
the system in equation (13), as well as its discrete equivalent, have order one it is reasonable to expect
that the identified model would also be of the system order, because the order of model spans from the
order of identified system itself. Some extra identification runs with model structure of higher order
were also pursued and results confirmed that choice of the first order structure is the most optimal. The
covariance function (2) was used for the model identification and the maximum likelihood framework was
used to determine the hyperparameters. The optimization method used for identification of Gaussian
process model was in our case a conjugate gradient with line-searches [9] due to its good convergation
properties. The following set of hyperparameters was found:

O = [wy, w3, v0,v1] = [0.1312,0.2948, 6.2618, 0.0045] (15)

where hyperparameters w; and w» allow a weight for each input dimension. The validation signal was
also generated by a random number generator with normal distribution and at different rate than for
the identification signal. Responses of the system and its Gaussian process model are given in Figures 3
and 4. Gaussian process model responses are shown by means of Gaussian processes mean and double
standard deviation (95% confidence interval).

Fitting of the response for validation signal:
e average absolute test error
1 A
AE:NZ|y—y|:0.028 (16)

where N is the number of used data, y is the process response (target) in the test set, and y is the
simulated value;

e average squared test error

— < 2 o
SE=+ > (¥ —y)* =0.0016 (17)
e log density error
LD = 1 Z(log(gﬁ) +log(a?) + M) = —1.6992 (18)
2N 0>

2

where o is a vector of predicted variances.

Results on the validation signal, which was different from the identification one, show that the Gaussian
process model successfully models the system based on chosen identification signals. Moreover the
information about uncertainty which comes with the Gaussian process model indicate the level to which
results are to be trusted.
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Figure 3: Responses of Gaussian process model (dashed line) and process model (full line) on identifica-
tion input signal

The noise free discretised version of the true system in equation (13) can be presented as 3-D surface
y(k+1) = f(y(k),u(k)) as shown in Figure 5. In the same figure the approximation of the surface using
Gaussian process model is also given.

Contour and gradient plots of the true system function and its Gaussian process model are depicted in
Figure 7. It can be seen from the magnified portions of the plot that the model represents the system
well in the region where the model has been trained. Away from that region however the model is
no longer a good representation of the true function. This is indicated in the mesh plots of predicted
standard deviation, shown in Figure 6, which are low where there was data, but rapidly increase as predic-
tions are made away from the data. Note that the selected region contains a fair portion of nonlinearity.

5. Conclusions

Gaussian process models for the modelling of non-linear systems from input-output data was explained in
the paper. This is the approach that is scope of recent work. As with other newly developed approaches
number of advantages and disadvantages are yet to be revealed, but some of them are already apparent.

e Modelling with Gaussian process models is probabilistic non-parametric approach to identification,
which is relatively new to the control community.

e The approach has some overlap with other more widely used approaches to non-linear systems
identification, like the ones with artificial neural networks or fuzzy models. Many similar issues
are present like choice of regressors, signals, sampling time, etc. However, there are differences in
model structure and obtained information that make the Gaussian process models attractive.

e Only a parsimonious set of hyperparameters needs to be identified. Their number depends on the
number of regressors.

e Output of a Gaussian process model to every input data is a Gaussian process determined by its
mean value and variance.

e This kind of output data representation contains the level of confidence to obtained output. This is
undoubtedly a precious piece of information for every robust control design that comes as a bonus
when selecting this modelling approach. Therefore, this method seems to be a very promising
approach for control design.
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Figure 4: Responses of Gaussian process model (dashed line) and process model (full line) on validation
input signal
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Figure 5: True process surface y(k+1)=f(u(k),y(k)) (left figure) and Gaussian process approximation of
the process surface (right figure)

e Derivatives of mean and variance can be relatively easy extracted from Gaussian process models
and used in, for example, optimisation.

e A noticable disadvantage is certainly a fact that the method is computationally relatively demand-
ing, especially for more than a few hundred data, but not enough to prevent its use.
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Figure 6: Uncertainty surface (left plot) o(k + 1) = f(u(k),y(k)) for the GP approximation shown in
Figure 5 and location of training data (right plot)
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Figure 7: Contour and gradient plot of the true process function (upper left figure) and Gaussian process
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operating space where the model was trained (lower left and lower right figure)
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