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Abstract
This paper investigates new ways of inferring nonlinear dependence parsimoniously from measured data.  The existence of
unique linear and nonlinear sub-spaces which are structural invariants of general nonlinear maps is established for the first
time.  Necessary and sufficient conditions determining these sub-spaces are derived.  In addition to being of considerable
interest in their own right, the importance of these invariants in an identification context is that they provide a tractable
framework for minimising the dimensionality of the nonlinear modelling task.  Specifically, once the linear/nonlinear sub-
spaces are known, by definition the explanatory variables may be transformed to form two disjoint sub-sets spanning,
respectively, the linear and nonlinear sub-spaces.  The nonlinear modelling task is confined to the latter sub-set, which will
typically have a smaller number of elements than the original set of explanatory variables.  Constructive algorithms are
proposed for inferring the linear and nonlinear sub-spaces from noisy data.

1. Introduction
This paper is concerned with the structure identification task for nonlinear dynamic systems.  Model structure

selection/identification is widely recognised as a key aspect of any system identification campaign, impacting directly on
the bias/variance trade-off which lies at the heart of empirical modelling theory and practice (e.g Ljung 1987) and largely
determining the degree of interpretability and transparency achieved.   One particularly important aspect of model structure
in many contexts is the nonlinear dependence of the dynamics.  Of course, the nonlinearity of any dynamics may be
characterised in terms of all the explanatory variables (for example, all the inputs and states).  However, this is rarely the
most parsimonious, or insightful, approach.  Instead, it is usually much more useful to be able to characterise the nonlinear
dependence in terms of the least possible number of variables.  For example, it is often the case that dynamics involve a
significant linear component, in which case knowledge of the nonlinear dependence can considerably reduce the
dimensionality of the nonlinear modelling task (e.g. Chen et al. 1991, Johansen & Foss 1993, Johansen & Murray-Smith
1997, Young 2000).  Related to this, the use of appropriate co-ordinate axes (determined by knowledge of the nonlinear
dependence) can greatly reduce the number of centres/operating regions required in radial basis function networks, Takagi-
Sugeno fuzzy systems, local model networks and other types of blended multiple model representation (e.g. Bishop 1995,
Johansen & Foss 1995, Johansen & Murray-Smith 1997).  Parsimonious knowledge of the nonlinear dependence of
dynamics also plays a key role in analysis and design: it is, for example, known that the use of an appropriate scheduling
variable is often of great importance in gain-scheduling controllers (e.g. Shamma & Athans 1990, Hunt & Johansen 1997,
Leith & Leithead 2000), and similarly with regard to the parameter dependence in LPV/quasi-LPV modelling and design
approaches (e.g. Leith & Leithead 2000).

Methods for inferring nonlinear dependence from measured data are presently almost entirely confined to analysis of the
dependence with respect to explanatory variables selected a priori .  Inference of nonlinear dependence is usually outwith
the scope of principal components and analysis of variance techniques.   Relevant methods include series expansion
approaches whereby the coefficients of first few terms in some series expansion are estimated, perhaps in a stepwise manner
(e.g. Korenberg et al. 1988, Sjoberg et al. 1995).  The linearity or non-linearity with respect to each explanatory variable
may then be inferred by inspection of the estimated coefficients.  Alternatively, when the model has the additive form,

ϕϕϕϕ i iu( )
i

�
(where ui denotes the ith element of the input vector and ϕϕϕϕi is an associated nonlinear, possibly vector, function),

back-fitting methods can be used to directly estimate the ϕϕϕϕi, and thereby linearity or nonlinearity with respect to each
explanatory variable, ui, without necessarily postulating a particular series expansion (e.g. Hastie & Tibshirani 1990, Young
2000).   Similarly with automatic relevance determination methods in the context of probabilistic neural network and non-
parametric Gaussian Process prior models (e.g. Neal 1996).  In the case of blended multiple model representations based on
decomposition of the operating space into a number of operating regions, a similar situation also holds when the local
models associated with each operating region are sufficiently rich that they can directly embody any linear component
(although this excludes the constant local models employed in standard radial basis function networks).  In such situations,
algorithms to search for appropriate operating region decompositions (e.g. Johansen & Foss 1995) can indirectly detect
linearity with respect to particular input elements.



As noted previously, existing methods are focussed on situations where the nonlinear dependence is determined with
respect to variables which are aligned with some particular choice of co-ordinate axes that has been selected in advance.
Obviously, the effectiveness of such methods in inferring a parsimonious dependence may be strongly dependent on the
choice of co-ordinate axes. For example, when the nonlinearity is dependent on some scalar function of all the chosen
explanatory variables, the nonlinear dependence may be inferred to involve every explanatory variable, and thus be far from
parsimonious, yet with a different choice of co-ordinate axes the true scalar nature of the dependence would become
apparent.   In principle, it is, of course, possible to extend axes aligned methods to incorporate estimation of, for example,
an input transformation in order to adjust the axes as indicated by the data.  However, such an approach is generally
unattractive.  Even a simple linear transformation matrix involves m2 parameters, where m is the number of explanatory
variables, and so estimation can be expected to quickly become unwieldy and intractable introducing, for example, an
additional 100 parameters into an estimation problem involving 10 explanatory variables.  Any attempt, furthermore, to nest
current model fitting algorithms, which may already be rather complex and computationally intensive, within an outer axes-
estimation iteration which is itself non-trivial are likely to be subject to local minima issues and similar associated
difficulties quite apart from computational considerations.

The objective of the present paper is to investigate new ways of inferring nonlinear dependence parsimoniously from
measured data. A key enabling technology for this work are the recent developments in systems theory relating to non-
parametric nonlinear representations.  In an identification context only discrete measured data points are available and it is
therefore necessary to determine a suitable representation for the underlying nonlinear function which is tractable yet does
not a priori assume the nonlinear dependence.  Standard parameter estimation techniques necessarily require the postulation
of a parametric model with a specific structure.  In particular, parametric models inevitably entail structural assumptions
regarding the nonlinear dependence (as noted previously, when these assumptions are inappropriate, for example a poor
choice of explanatory variables in a radial basis function network, a great many parameters may be needed in order to obtain
an accurate model).  Parametric models do not, therefore, seem well suited to the present structure identification context. In
contrast, non-parametric approaches are characterised by drawing inferences directly from the measured data using
smoothness information but without assuming an underlying parameterisation (e.g. Green & Silverman 1994).  Non-
parametric approaches are thus well suited to initial data analysis and exploration due to their ability to model data well
while making few structural assumptions.  Non-parametric approaches are also attractive from the viewpoint that they
permit direct inference of model structure, reducing the need for iterative postulation of model structure followed by
hypothesis testing. An example of a non-parametric model for nonlinear dynamics is a Gaussian Process prior, as reviewed
in Williams (1998) and initially proposed in O’Hagan (1978).  This is a Bayesian form of kernel regression model (Green &
Silverman 1994).  We concentrate on Gaussian Process priors in this paper in order to fix ideas and because of their high
performance and analytic properties, but other non-parametric representations could also be used (e.g. support vector
machines, locally weighted regression; see also Juditsky et al. 1995).

2. Structural Decomposition

This paper studies nonlinear maps, F: D →R, with open domain D⊆ℜn+m, range R⊆ ℜn and F continuously twice
differentiable. While this setting is general, the particular interest here (and reflected in the examples chosen) is in dynamic
systems applications where the nonlinear map might typically be the right-hand side of a differential/difference equation

Dx(t) = F([xT(t)   r T (t)]  T) (1)
where the input is r  ∈Dr ⊆ ℜm, the state x ∈Dx ⊆ ℜn and D denotes an appropriate operator; for example, the derivative
operator d/dt (corresponding to continuous-time dynamics), the shift operator q (corresponding to discrete-time dynamics)
or perhaps some combination of these.  The nonlinear dependence of the right hand side can be made explicit by
reformulating as

F z Az f z( ) ( ( ))= + ρρρρ (2)

with z=[xT(t)   r T(t)]T and where A  is an appropriately dimensioned constant matrix, f(•) is a nonlinear function, and
ρρρρ(z)∈Dρ⊆ℜq, q≤m+n.  As it stands, the decomposition (2) is, of course, not unique. Non-uniqueness is, for example,
associated with the freedom available in the choice of ρρρρ and the assignment of the linear component of the dynamics
between the A matrix and the mapping f. The requirement is therefore to determine a canonical decomposition, or class of
decompositions, for which the dimension of ρρρρ is, in some sense, minimal.

 Consider the class of decompositions, (2), for which ρρρρ is a linear function of z; that is, ρρρρ(z)= Mz  with M  a constant
matrix.  Trivially, such a reformulation can always be achieved by letting ρρρρ = z, in which case q=m+n.  However, the
nonlinearity of the system is frequently dependent on only a subset of the states and inputs, in which case the dimension, q,
of ρρρρ may be less than m+n.

Proposition (minimal decomposition)  Consider a twice differentiable nonlinear function F and a decomposition
F z Az f Mz( ) ( )= + (3)



where M  has full row rank.  M  is said to be of minimal degree when there exists no choice of M  with lower full row rank
such that a nonlinear function f can be found satisfying the equality in (3).  Let HF (z1) denote the Hessian
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with Fi denoting the ith element of the vector function F.  Then M  is of minimal degree if an only if there exists no vector
v∈{ v∈ℜn+m: Mv≠0} for which H z v zF ( ) = ∀ ∈0 D .

Proof  First of all, observe that HF(z)= H f  (z) since H zAz ( ) is identically zero. It is then straightforward to verify that the

conditions of the proposition are satisfied when M  is minimal.  Conversely, suppose M  is non-minimal, then by definition f
can be decomposed  as f M z Az( ) +  where M has full column rank lower than that of M .  Evidently, f M z( ) is constant for

z=zo+v: v∈ Vo  ={  v∈ℜn+m : zo+v∈D, M v=0} while f Mz( )  is constant for z=zo+v: v∈Vo={  v∈ℜn+m: zo+v∈D, Mv =0} but

may vary for z=zo+v: v∈ Vo .  This variation is necessarily linear and so there exists v∈ Vo ⊃ V o  for which

H z v zf ( ) = ∀ ∈0 D , thus violating the assumed conditions.

Corollary   (subspace partitioning) Consider the class of decompositions
F z Az f Mz( ) ( )= + (5)

with M  minimal.   Let Ψnl (M ) denote the sub-space spanned by M .  This sub-space is identical for every minimal M ; that

is, ∃ a unique sub-space Ψnl defined by Ψnl (M )=Ψnl ∀M : ∃ no vector v∈Vo={ v∈ℜn+m: Mv ≠0} for which

H z v zF ( ) = ∀ ∈0 D .

Proof  This corollary is a direct consequence of the definition of minimality and the foregoing proposition.  Proceeding by

contradiction, consider two minimal decompositions, M o and M 1, spanning different sub-spaces, Ψo and Ψ1 , of  ℜn+m.

Assume, for the moment, that the domain D is ℜn+m.  Assume also that Ψ Ψ Ψo o/ { }∩ 1  and Ψ Ψ Ψ1 1/ { }o ∩  are not empty.

Bearing in mind that both decompositions embody the same mapping F:z→R , with regard to case (i) it follows that in the

region Ψ Ψ Ψo o/ { }∩ 1 the realisation of the mapping F provided by the decomposition in terms of M 1 is linear.  Similarly,

the mapping must also be linear in the region Ψ Ψ Ψ1 1/ { }o ∩ .  Since Ψ Ψo ∩ 1  is itself a linear sub-space, it follows that

there exists a decomposition in terms of M  spanning Ψ Ψo ∩ 1  which is also a realisation of the mapping F but with M
lower full row rank than both M o and M 1; that is, M o and M 1 are not minimal.  By a similar argument, when

Ψ Ψ Ψo o/ { }∩ 1 (respectively Ψ Ψ Ψ1 1/ { }o ∩ ) is empty, M o (respectively M 1) is minimal but M 1 (respectively M o ) is not.

Hence, when M o and M 1 are minimal then Ψo and Ψ1 must be the same sub-space.  A similar argument applies when the
domain D is open.

Let Ψl denote the complement of the sub-space Ψnl.  The sub-spaces Ψl and Ψnl  are structural invariants which capture
the linear and nonlinear dependencies of the function; specifically, the function can always be decomposed into linear and
nonlinear components with Ψnl∩D and Ψl∩D  the domains of, respectively, the linear and nonlinear components (with, of
course, (Ψnl∩D) ∪ (Ψl∩D)=D).

2.1Remarks
(i) Equivalent minimality condtions

The minimality condition in the above proposition is that that there exists no vector v∈Vo={v∈ℜn+m: Mv ≠0} for which
H z vF ( ) = ∀ ∈0 z D .  First of all, since HF(z)v is linear in v, it is sufficient to confine consideration to the class of

normalised vectors v∈{ v∈ℜn+m: Mv ≠0, vTv=1}.  It is this linearity, moreover, which focuses attention on the sub-spaces
Ψl and Ψnl as the quantities generally of interest rather than the regions Ψnl∩D and Ψl∩D.  Secondly, let N denote the
intersection of the null spaces of the Hessian maps, HF(z) as z ranges over D.  Hence, the minimality condition
H z v z v MvF ( ) , := ∀ ∈ ∈ℜ =+0 0 D n m is equivalent to the requirement that N is the null space of M .



(ii)  Non-uniqueness of minimal realisations
While the linear and nonlinear sub-spaces Ψl and Ψnl are unique, there exist many possible realisations of minimal
decompositions.  This arises from the freedom which exists (a) in the decomposition of the nonlinearity into functions
f(•) and Mz and (b) in the assignment of the linear component of the dynamics between the A matrix and the mapping f.
With regard to (a), since a non-singular linear transformation applied to M  can be absorbed into the nonlinear function,
the mapping f:z∈D→R embodied by a nonlinear function f(Mz) can be realised by any function fT(M Tz) with
M T=TM  and such that fT=f°T-1. It is straightforward to verify that HF is invariant with respect to such transformations.
One consequence of this non-uniqueness is a shift in emphasis, evident also in the previous analysis, away from a
particular choice of basis M  for this sub-space and towards more geometric viewpoint.  With regard to (b), consider two
minimal decompositions

F z A z f Mz( ) ( )= +o o (6)
and

F z A z f Mz( ) ( )= +1 1 (7)

Provided
A A XMo − =1


 �
(8)

then the domains of fo, f1 are the intersection with D of the subspace spanned by M  as required yet the mappings
fo:z∈D→R, f1:z∈D→R may differ by a linear term.  However, this is an essentially trivial non-uniqueness which may be
removed by, for example, calibrating f(ρρρρo) to be zero for some suitable value of ρρρρ, say ρρρρo.

 (iii)  Relationship to Regularisation.
A certain complementarity can be observed between the methods discussed here and the regularisation techniques which
are widely employed in nonlinear curve fitting and regression analysis. Linearity is usually defined in terms of satisfying
superposition, with affine maps defined as translates of the linear maps.  Nevertheless, the class of affine scalar maps

can also be defined in terms of the solutions to the ordinary differential equation,
d f z

dz

2

2
0

( ) = ∀ ∈ℜ z .  The

corresponding vector generalisation is HF(z)=0 ∀z∈ℜn×ℜm, where HF is the Hessian defined by (4).  In regularisation
theory, a penalty term involving HF(z) is commonly included in the objective function measuring the "goodness of fit"
achieved so as to penalise any nonlinearity of the fitted function while leaving the cost of linear/affine terms unchanged.
Conversely, the present objective is not fitting but the analysis of a function to infer its decomposition into linear and
nonlinear components.  A further important aspect here is that we only seek sub-spaces on which linearity/affinity holds,
corresponding to determining directions, v, in which HF(z)v is zero rather than seeking to uniformly minimise all
elements of HF(z).

(iv) Interpretation in terms of Velocity-based Linearisations.
The tangent map corresponding to an equilibrium operating point is associated with the classical series expansion
linearisation and provides rich information concerning the dynamic characteristics in the vicinity of the specific
equilibrium point considered.  Indeed, because it enables the considerable wealth of methods developed for the analysis
of linear systems to be brought to bear on the nonlinear analysis task, it is standard engineering practice to investigate
the dynamic behaviour of a nonlinear system, at least initially, by studying the dynamic characteristics of representative
equilibrium linearisations.  The limitations of classical equilibrium linearisations are, however, well known.  In
particular, they provide little information regarding the dynamics during transitions between operating points or during
operation far from equilibrium.  These limitations are directly addressed by the recently developed velocity-based (VB)
linearisation framework (Leith & Leithead 1998a,b, 1999) which utilises tangent map information for every operating
point, not just equilibrium points. When D denotes the continuous-time d/dt operator, an alternative representation of the
nonlinear system (1), obtained by differentiating , is�

x=w (9)
w = ∇xF(x,r ) w + ∇rF(x,r ) �r (10)

(note the minor change in notation here to accord with that of Leith & Leithead 1998a,b, 1999). The relationship
between (9)-(10) and (1) is evidently direct and, furthermore, extends rather more deeply than might initially be
expected. Consider the linear system, obtained by “freezing” (9)-(10) at an operating point (x1,r 1),� �

x = �w (11)� �
w =  ∇xF(x1,r 1) �w  + ∇rF(x1,r 1) �r (12)

The system (11)-(12) is referred to as the velocity-based (VB) linearisation of (1) associated with the operating point
(x1,r 1).  Evidently, the coefficients, ∇xF(x1,r 1) and ∇rF(x1,r 1), of the linearisations are simply the appropriate elements
of the tangent map associated with the operating point (x1,r 1) (which, it is emphasised, need not be an equilibrium



point). The linear system (11)-(12) has a direct interpretation in relation to the nonlinear system (1); namely, the solution
to (11)-(12) is an accurate approximation to the solution of (1) locally to the operating point (x1,r 1) (Leith & Leithead
1998a). Furthermore, while the solution to an individual VB linearisation is only a locally accurate approximation, there
exists a VB linearisation, (11)-(12), for every operating point (x,r ) and thus a VB linearisation family, with members
defined by (11)-(12), can be associated with the nonlinear system, (1).  The solutions to the members of the family of
VB linearisations may be pieced together to approximate the solution to the nonlinear system (1) to an arbitrary degree
of accuracy (Leith & Leithead 1998a).

With regard to the present structure identification context, it seems natural to expect that linearity of the dynamics
with respect to some function or combination of x and r  might manifest itself in terms of a simplification of the structure
of the associated VB linearisation family and indeed this turns out to be the case.  Reformulating (1) as a minimal

decomposition,Dx A
x

r
f M

x

r
=

��� �� � + ��� �� �( ) , the VB linearisation, (11)-(12), becomes� �
x = �w (13)� �

( )

� �w A f M
w

r
= + ∇

��� �� �ρρρρ1

� �
(14)

Evidently, the quantity, ρρρρ, embodying the nonlinear dependence of the dynamics, also serves to parameterise the VB
linearisation family and indeed it is this observation which originally motivated much of the development in the present
paper.

The structure of the VB linearisation family implies that the VB linearisations are identical at all points, (x1,r 1), such
that ρρρρ(x1,r 1) has the same value; that is, at all points lying on a surface of constant ρρρρ.  The derivative of a vector or

matrix function, ΛΛΛΛ(z), in direction v is defined as lim
( ) ( )

h o

h

h→

+ −ΛΛΛΛ ΛΛΛΛz v z
.   It follows from the foregoing discussion that,

at any point (x1,r 1) the directional derivative of the matrix A+∇f(ρρρρ)M  vanishes in directions aligned with the surface of
constant ρρρρ passing through that point.  Equivalently, since the directional derivative can be expressed (stacking the
elements) as HF(z1)v, where HF(z1) is the Hessian map (4) and z1 is (x1,r 1), the null sub-space of HF (z1) is precisely the
surface of constant ρρρρ passing through the point z1 ( i.e. (x1,r 1)).  The complement of this sub-space thus embodies the
nonlinear dependence of the dynamics.

3.   Nonlinear Structure Identification
The foregoing analysis is deterministic in nature and, since measured data can, in general, be expected to be noisy it is

necessary to extend the analysis to include probabilistic considerations.

3.1 Probabilistic Structural Decomposition
Consider the output y of a stochastic process, the pdf of which is conditional on explanatory variable z∈ℜn.  To avoid

cumbersome notation, assume that y is scalar (the generalisation of the results which follow to processes with multiple
outputs is straightforward).  Let µ(z) denote the mean of the process ( i.e. µ(z)=E(y(z)) ) and assume that µ(z) is
differentiable.  It is a standard results that the mean of the associated derivative process is

E
y

E y
i i

( ( )) ( ( ))
∂
∂

= ∂
∂z

z
z

z (15)

where zi denotes the ith element of z ; that is, the expected value of the derivative process is just the derivative of the mean
of y (assuming this exists).  Let Q(zo,z1) denote the covariance of y (i.e. Q(zo,z1)=E(y(zo)y(z1)) ) and assume that Q is
continuously twice differentiable. Then the variance of the derivative process is

E
y y

Q
i

o
j

i j o( ( ) ( )) ( , )
∂
∂

∂
∂
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z

z
z

z z z1
1 2

1 (16)

where ∇ i
1Q denotes the partial derivative of Q with respect to the ith element of its first argument,  etc.  The mean and

variance of the Hessian maps associated with y can be similarly derived by application of (15) and (16) to (4)..
At this point it is perhaps worth emphasising that, as in the case of parametric models, differentiation of smooth non-

parametric models is entirely admissible and certainly does not require differentiation of the raw, noisy data.  The latter is,
of course, highly inadvisable.  The model is a smooth fit through the measured data and the associated derivative model is
well-defined. Consequently, once a model has been fitted to measured data, the probability distributions of the tangent and
Hessian maps associated with the nonlinear dynamics are also immediately available.  The results of section 2 can now be
directly generalised to the probabilistic context.  In particular, while the probability distribution of the minimal nonlinear
subspace may be summarised/visualised in many ways, a useful metric is provided by the following definition.



Definition (MAP, or maximum a posteriori, minimal  nonlinear subspace). Ψnl
MAP is defined as the subspace spanned by

the matrix M  for which the posterior probability is greatest that there exists no vector v∈{ v∈ℜn+m: Mv ≠0, vTv=1} for which
H z v zF ( ) = ∀ ∈0 D .   

3.3Estimation of Nonlinear Dependence in a Region

The task considered in this section is the inference of Ψnl
MAP.  Assuming that the dimension, q, of the minimal nonlinear

subspace is known, by straightforward application of Bayes' Rule, the posterior probability distribution is

p( )
p p

pnl
nl nlΨ Π

Π Ψ Ψ
Π

=
( ) ( )

( )
(17)

where Π  is the information at z1 provided by the non-parametric model embodying the measured data. The denominator,
p( )Π , is invariant with respect to Ψnl.  The prior distribution, p(Ψnl), embodies prior knowledge of the likely nonlinear

dependency (assigned large variance when little prior knowledge is available). The likelihood p nl( )Π Ψ , embodying the

information contained within the measured data, can be expressed as

p p ( )nl( ) : : , ,ΠΨ = = ∈ = = ∈H z v v v Mv v v 1 zF
T0 0

� �� �
D (18)

The MAP estimate, Ψnl
MAP  is the subspace which minimises the risk

J( ) = -logp pnl nl nlΨ Π Ψ Ψ( ) log ( )− (19)

(taking the negative log of (17) and neglecting the term involving p( )Π  since this does not alter the location of the

minimum).
Since v and z range over a continuum of points, evaluation of (18) may be relatively difficult.  However, a useful

approximation is

p p ( )nl( ) , .. , ..ΠΨ = = = =H z vF j i v xi N j N0 1 1
 !

(20)

where vi, i=1,2,..Nv are N v representative unit vectors from the null space of M ,  zj, j=1,2,..Nx are N x representative
operating points.  This approximation is readily calculated directly from a Gaussian Process model and under mild
continuity conditions, converges to (18) as the number of points used is increased.  This can be seen as follows.  Let C

denote the compact set v Mv v v 1T: ,= =0
" #

) and Vi
Nv , i=1..Nv denote a collection of open sets with ∪

i
i
NV v =C (it follows

from the compactness of C that N may be assumed finite) and let vi be a point in Vi
Nv .  Similarly, let D be a compact region

of ℜn×ℜm and X j
N x , j=1..Nx denote a collection of open sets with ∪

j
j
NX x =D (it follows from the compactness of D that Nx

may be assumed finite) and let zj be a point in X i
N x It follows that
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Hence, provided the limit exists and

lim lim , / { } , / { } , .. ..
N N i

i
N

i
j

j
N

j j i v x
x v

v xV X i N j N
→∞ →∞
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345 67 8

=p ( )  ( ) ,H z v v v z z H z vF F0 0 1 1 1
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(22)

then p ( ) p ( ) DH z v H z v v C zF Fj i oi N j N= = = → = ∈ ∈0 1 1 01, .. , .. , ,
< = > ?

 as Nx, Nv →∞. The condition (22) imposes a continuity

requirement that the values of HF are similar in similar directions and at nearby operating points.  It should be noted that this
is a mild requirement which is, in general, automatically satisfied by the regularisation conditions employed in non-
parametric models such as the Gaussian Process approach.  The operating region D is required to be compact and so cannot
encompass the whole of ℜn×ℜm

.   However, in practice, it seems unrealistic to expect to estimate the global nonlinear
dependence over the whole space ℜn×ℜm on the basis of a finite number of measured data points and approximation in
terms of a compact operating region is certainly not restrictive.

Even with the simplification provided by the approximation (20), however, the computational complexity of determining
the mean and/or MAP estimates using (19) clearly rises quite rapidly as the dimension, q, of the scheduling variable
increases. An alternative iterative approach which, by exploiting orthonormal basis' of Ψnl

MAP, scales better is obtained by
determining candidate basis vectors for Ψnl

MAP in turn, leading to the following iterative estimation procedure.

Iterative Estimation Procedure



1. Let i=1, Ψnl
i=ℜn+m.

2. Determine the most likely unit direction v i , lying within the current estimate,Ψnl
i, of the nonlinear subspace; that is, the

direction which minimises

J D pi nl
i

i i( ) log , , log ( )v H z v v v v 1 z vF
T

i i i ip ( )= − = ∈ = ∈ −0 Ψ
< =

(23)

Letting the rows of M i be an orthonormal basis spanning Ψnl
i, then vi may be parameterised as λλλλM i and the minimisation

of Ji(vi) can formulated as an unconstrained minimisation in λλλλ.  This optimisation requires the estimation of the elements
of vector λλλλ; that is, only i parameter values are estimated at each iteration.

3. Let Ψnl
i+1 = Ψnl

i/vi, where vi is the subspace spanned by v i . 
 Specifically, let V i be a orthonormal basis spanning the null

space of M i and V i+1=[V i  v i ].  Letting M i+1 be an orthonormal basis spanning the null space of V i+1, then M i+1 is an
orthonormal basis of Ψnl

i+1.  The risk function, (19) (or its approximation (20)), may be evaluated with M  equal to M i+1

as a diagnostic to confirm the validity of the updated sub-space, Ψnl
i+1.

4. If i<n+m then i=i+1, go to 2

Remarks
(i) Dimension of the minimal sub-space.

In step (2), the incremental risk, Ji(v i ), can be expected to abruptly increase when the row rank of M i becomes less than
the dimension of the minimal nonlinear subspace.  Such a transition can be utilised to estimate the dimension, q, of the
minimal nonlinear subspace.  Transitions can, of course, be obscured by noise and the validity of a choice of dimension,
q, can be further assessed/confirmed using the pointwise estimation methods discussed in section 4 below.

(ii) Simplified procedure applicable when the Hessian is approximately Gaussian with diagonal covariance.
As noted in section 2, the minimal nonlinear subspace is just the complement of N, where N is the intersection of the
null spaces of the Hessian maps, HF(z) as z ranges over D.  In other words, the minimal nonlinear subspace is the
complement of the null space of HF(z).  Of course, the situation is not so straightforward in the case of noisy data.
Matrices are generically full rank and so under noisy conditions the null space of the Hessian map associated with each
operating point z will almost always consist simply of the zero vector.  Instead, the requirement must be to determine the
largest sub-space within with range of the estimated Hessian is, in some appropriate sense, close to zero (rather than
precisely equal to zero as in the noise-free case).  More formally, Ψnl

MAP is the complement of the null space of the most
probable Hessian map having null space of dimension n+m-q.

When the probability distribution of the Hessian, HF(z), is normal (or can be approximated by a normal distribution),
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whereH F
Nx  is the stacked matrix H z H zF F( ) ( )T T

1 H N

T

x
 and ΛΛΛΛ(v) is the covariance of H F

Nx v.  In general, ΛΛΛΛ(v)

depends on v.  However, when the covariance of the Hessian map is diagonal, straightforward algebraic manipulation
confirms that ΛΛΛΛ is invariant with respect to v (and also diagonal).  Since ΛΛΛΛ is, by definition, positive definite, it can be
decomposed as RTR yielding

J( )  pnl nlΨ Ψ∝ + −v W Wv x rTT log| | log ( ( , ))ΛΛΛΛ 1 1 (25)

with W R H F=  E Nx
I J

.  Since log |ΛΛΛΛ| is constant it does not affect the minima of J(Ψnl).  When logp(Ψnl) is sufficiently

small that it can be neglected (i.e. there is insignificant prior knowledge, corresponding to the maximum likelihood
situation) then

J( )  nlΨ ∝ v W WvTT (26)

The minimum of the risk function, (26), under the linear constraint that v v Mv v v 1T∈ ∈ℜ = =q: ,0
@ A

 can be expressed in

closed-form: letting the singular value decomposition of W be W=UTΣΣΣΣU, it follows immediately that (26) is minimised

with v v Mv v v 1T∈ ∈ℜ = =q: ,0
@ A

 when M =Uq, where Uq is the matrix consisting of the first n+m-q rows of U.  When

the foregoing conditions are satisfied, the subspace spanned by Uq is precisely Ψnl
MAP and can be calculated very

efficiently.  More generally, this value can be used to initialise the optimisation in the iterative procedure above,
although experience suggests that, for many purposes, Uq is in fact a sufficiently accurate estimate in its own right with
the refinement provided by further optimisation often of relatively minor significance.



3.4Examples
As noted previously, non-parametric approaches are well suited to initial data analysis and exploration and are a key
enabling technology of the approach proposed here.  This is due to their ability to model the data well with few structural
assumptions, particularly with regard to the nonlinear dependence.  All of the examples studied in the present paper make
use of non-parametric Gaussian process prior models, a Bayesian form of kernel regression model, but other non-parametric
representations could also be used (e.g. support vector machines, locally weighted regression).  For simplicity, the
explanatory variables are assumed to be noise-free; that is, uncertainty is confined to the output of the nonlinear map.

 (i)  Consider the nonlinear dynamic system
y t G tn n( ) . ( ( ))+ =1 05 ρ (27)

where G(ρ)=tanh(ρ)+0.01ρ and ρ=r-y. The plant output in response to a Gaussian input with mean zero and variance 3
units is measured: data is collected for 20 seconds with a sampling interval of 0.1 seconds (200 data points). The
measured data, together with the corresponding predicted mean fit from a non-parametric Gaussian Process prior model
of this data, are illustrated in figure 1a (explanatory variables are (r(tn),y(tn)) and model output is y(tn+1)). The change in
the risk function as the dimension of the nonlinear sub-space is reduced is shown in figure 1b.  It can be seen that, as
expected, the risk rises abruptly when the dimension falls below unity; that is, the dimension of the minimal nonlinear
sub-space.  The estimated basis, M , of the minimal nonlinear subspace is [0.706  -0.709]; that is, ρ is estimated to be
0.706r-0.709y.  Subject to an arbitrary normalisation factor, it is evident that the identification procedure successfully
infers the nonlinear dependence of the plant dynamics.  This is, of course, a simple example selected to have low order
to enable results to be readily visualised.  Nevertheless, it should be noted that working directly in terms of the
explanatory variables r and y requires the development of a model of the two dimensional map relating (r(tn),y(tn)) to
y(tn+1); for example, an RBF model with 10 centres per axes has 100 centres in total and 200 parameters.  Inference of
the scalar nature of the nonlinear dependence during initial data exploration allows the task to be simplified to modelling
a one dimensional map only: an RBF model with 10 centres per axes now has 10 centres in total and 20 parameters.
Hence, even in the case of a simple system the benefits of dimensionality reduction stemming from the identification of
the nonlinear structure are potentially considerable.

(ii)  Wiener-Hammerstein System
Consider the Wiener-Hammerstein nonlinear system illustrated in figure 2a.  Reformulating the dynamics in terms of the
measured variables (the input, r, and output, y) yields

y t n( ) . .= +03 01651
2

2
2ρρρρ ρρρρ (28)

where ρρρρ = − − −M r t r t r t r tn n n n

T
( ) ( ) ( ) ( )1 2 3 with

M = KLM NO P 
0.9184 0.3674 0 0

0 0 0.9184 0.3674
             (29)

and ρρρρi, i=1,2 denotes the ith element of vector ρρρρ. The plant output in response to a Gaussian input is measured: data is
collected for 15 seconds with a sampling interval of 0.1 seconds (150 data points). A non-parametric Gaussian Process
prior model is used with explanatory variables [r(tn) r(tn-1) r(tn-2) r(tn-3)]

T and model output y(tn).  The change in the risk
function as the dimension of the nonlinear sub-space is varied indicates that a minimal nonlinear subspace of dimension
two.  The associated estimate of the nonlinear dependence isQ

M = KLM NO P 
0.9292 0.3694 -0.0008 0.0018

-0.0015 0.0040 0.9282 0.3719
             (30)

The estimate evidently agrees well with the true nonlinear dependence, particularly in view of the small number of data
points on which it is based (150 points from a four dimensional map).

Remark Wiener-Hammerstein systems form an important class and the identification of such systems remains a
challenging problem in its own right.  Consider the transversal Wiener-Hammerstein system
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Reformulating the dynamics in terms of the input, r, and output, y yields
y b f b fm m o= + ++ρρρρ ρρρρ1 1
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where
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and ρρρρi, i=1..m+1 denotes the elements of vector ρρρρ.  (Note, when a coefficients bi is zero, the corresponding row in (33) is
deleted and the dimension of ρρρρ correspondingly reduced, see above example).  Using the delayed inputs as explanatory
variables, and assuming that the overall order of the system is known (this might be inferred in an iterative manner), it
can be seen that the nonlinear dependence has a specific block diagonal structure.  By inspection, the coefficients, ai, of
the input filter and the delay taps of the output filter can be directly inferred.  As one of the main task with Wiener-
Hammerstein systems is identifying the partitioning into input and output filters, identification of the remaining system
elements is now relatively straightforward.  Specifically, once the input filter is known, the output filter can be inferred
from the transfer function of the linearisation about any equilibrium point and the system nonlinearity then directly
estimated.

4. Validating Nonlinear Dependence in a Region
The foregoing methods developed for the estimation of the nonlinear dependence in a region can also be immediately

applied to estimate the nonlinear dependence locally to a single operating point.  By studying the local nonlinear
dependence at a number of points drawn from the operating region of interest, the validity of the MAP estimate, Ψnl

MAP, of
the minimal nonlinear subspace in the region can be assessed in a fairly direct manner.  Specifically, for any function (3) we
have that

(i) dim ( ) dimnull lH zF


 �
≥ Ψ

(ii) ∩ =
∈z

FH z
D

lnull ( )
\ ]

Ψ

where null(H) denotes the null sub-space of matrix H and, as before, ψl denotes the complement of the nonlinear subspace
ψnl.  The dimension of the null sub-space of the Hessian HF(z) is greater than that of ψl only at points where H f (i.e. ∇(∇f)T )
vanishes. Typically (but not always), these points form a set of measure zero and almost everywhere dim null(HF(z)) is
uniformly equal to dim ψl with null( HF(z)) necessarily equal to ψl.  Consequently, good agreement between the local
nonlinear dependencies and Ψnl

MAP provides a degree of confidence that the nonlinear dependence is well summarised by
Ψnl

MAP. Conversely, if, for example, it appears that the operation region can be decomposed into sub-regions each exhibiting
consistently different local nonlinear dependence, this might indicate limitations in the use of Ψnl

MAP as a summary of the
nonlinear dependence over the region.

4.1Estimation of Local Nonlinear Dependence
Let Ψnl

MAP(z1) denote the subspace spanned by the matrix M  for which the posterior probability is greatest that there
exists no vector v∈{ v∈ℜn+m: Mv ≠0, vTv=1} for which H z vF ( )1 0=  .  This is just a pointwise version of Ψnl

MAP, the MAP

minimal nonlinear subspace in a region.  Assuming that the dimension, q, of the minimal nonlinear subspace is known, then
following a similar approach to that used in section 3 it follows that the MAP estimate, Ψnl

MAP ( )z1  is the subspace which

minimises the risk
J( ) = -logp pnl nl nlΨ Π Ψ Ψ( ) ( ( )) log ( ( ))z z z1 1 1− (34)

where Π  is the information at z1 provided by the non-parametric model embodying the measured data, the prior
distribution, p(Ψnl ( )z1 ), embodies prior knowledge and p ( )nl( )Π Ψ z1  is the likelihood.  This can be expressed as

p ( ) p ( )nl( ) : : ,ΠΨ z H z v v v Mv v v 1F
T

1 1 0 0= = ∈ = =
^ _` a

(35)

While v generally ranges over a continuum of points in the subspace defined by M , a useful approximation is

p ( ) p ( )nl( ) , ..ΠΨ z H z vF1 1 0 1= = =i i N
b c

(36)

where vi, i=1,2,..Ni are N representative unit vectors from the null space of M .  This approximation is readily calculated
directly from a Gaussian Process model and, following analysis precisely analogous to that in section 3 it can be shown that,
under mild continuity conditions, converges to (35) as the number of points used is increased.  Similarly to section 3, an
efficient iterative  estimation procedure can be derived for estimating Ψnl

MAP(z1).

Iterative Estimation Procedure
1. Let i=1, Ψnl

i=ℜn+m.
2. Determine the most likely unit direction v i , lying within the current estimate,Ψnl

i, of the nonlinear subspace; that is, the
direction which minimises



J pi nl
i

i i( ) log , log ( )v H z v v v v 1 vF
T

i i i ip ( )= − = ∈ = −1 0 Ψ
R S

(37)

3. Let Ψnl
i+1 = Ψnl

i-vi, where vi is the subspace spanned by v i .
 

4. If i<n+m then i=i+1, go to 2

Remarks
(i) Dimension of the minimal sub-space.

In step (2), the incremental risk, Ji(v i ), can be expected to abruptly increase when the row rank of M i becomes less than
the dimension of the minimal nonlinear subspace.  Such a transition can be utilised to estimate the dimension, q, of the
minimal nonlinear subspace.

(ii) Simplified procedure applicable when the Hessian is approximately Gaussian with diagonal covariance.
Specialising the minimality proposition in section 2 to the pointwise case, the minimal nonlinear subspace is just the
complement of the null space of HF(z1).  That is, in probabilistic terms, Ψnl

MAP(z1) is the complement of the null space of
the most probable Hessian map having null space of dimension n+m-q.  Similarly to the analysis in section 3.2, when the
Hessian map when the probability distribution of the Hessian map, HF(z1), is normal (or can be approximated by a
normal distribution) with diagonal covariance, Ψnl

MAP(z1) is the subspace spanned by Uq where Uq is the matrix
consisting of the first n+m-q rows of U with W=UTΣΣΣΣU (the singular value decomposition of W) and W R H zF=  E ( )1

b c
,

RTR=ΛΛΛΛ, the covariance of HF(z1)v. More generally, this SVD approach can be used to quickly obtain an estimate of
Ψnl

MAP(z1) which can be used to initialise the optimisation in the iterative procedure above, although experience suggests
that, for many purposes, this estimate is in fact a sufficiently accurate estimate in its own right with the refinement
provided by further optimisation often of relatively minor significance.

(iii) It is important to note that Ψnl
MAP is not equivalent to the mean of the pointwise sub-spaces Ψnl

MAP(z1) over the operating
region, C.

4.2Example
 (i) Returning to the system, (27), considered in Example (i) above, figure 3a shows the variation in pointwise risk function

vs dimension of nonlinear sub-space at 30 operating points selected uniformly from the operating space covered by the
measured data.  It can be seen that, in accordance with the previous results, the risk uniformly rises abruptly when the
dimension falls below unity.  The corresponding estimates of M , a basis for the minimal nonlinear sub-space estimated
at each point are shown in figure 3b.  Evidently, the pointwise estimates are in good agreement with the overall regional
estimate of the nonlinear dependence, indicating that ρ equals r-y, and this helps give some confidence in the regional
estimate.

(ii)  Consider a system also of the form (27) but with ρ satisfying
ρ=r-sin(ay)/a (38)

with a=1.  For values of y close to zero, sin(ay)/a is nearly linear in y and this system accurately approximates the
previous system for which ρ=r-y.  However, when a wider operating region is considered, the distinction between the
two systems can be expected to become more noticeable as the impact of the difference in dimension of the nonlinear
sub-spaces when ρ=r-y and ρ=r-sin(ay)/a (dimension one and dimension two, respectively) becomes significant.
Applying the techniques developed in section 3, and using the operating region considered in Example (i), the variation
in the cost function J with the dimension of the nonlinear sub-space is shown in Figure 4a.  The increase in risk when the
dimension is reduced from 2 to 1 is somewhat greater than in Example (i), as might be expected in view of the additional
nonlinear dependence in (38).  The corresponding estimate of the basis, M , of the minimal nonlinear subspace is
[ 0.756 -0.655 ]. When the input and initial conditions are now constrained such that the data is confined to an operating
region close to the origin, the corresponding estimate of M becomes  [0.708  -0.703].   The latter agrees well with the
results for Example (i), as expected.  However, the results for the larger operating region provide little insight into the
nature, or degree, of the difference between the system in Example (i) and that considered here.

With regard to gaining insight into the differences between these systems, consider the pointwise estimates of the
local nonlinear sub-space as shown in Figure 4b.  This plot uses more data points than the previous plots in order to
reveal the detailed structure of the variation in the pointwise estimates across the operating space. Measurement noise
generally results in uncorrelated variations in the pointwise estimates across the operating space, while a strong spatial
correlation is evident between the estimates in Figure 4b.  This structure is visually quite striking, particularly when
compared with the corresponding plot, Figure 3b, for the system in Example (i). In the vicinity of the line y=0, the
pointwise estimates of M  agree well with those for the system of Example (i); this is not unexpected since, as noted
previously, sin(ay)/a is nearly linear for small y and so the nonlinear dependence is locally similar near to this line. As



the parameter, a, is decreased in (38) the pointwise estimates of M  become more like those observed in Example (i); for
example, the pointwise estimates obtained for a=0.1 are shown in Figure 4c.  This is in accordance with the fact that
sin(ay)/a →y as a→0 and thus ρ→r-y as in Example (i).  Detailed diagnostic analysis of pointwise estimates beyond the
simple observations noted above is not pursued further here as it is not essential in the present context.  That the correct
dimension of ρ has been identified, or not, is validated by the uniformity, or otherwise, of the pointwise estimates and
this example illustrates that pointwise estimates thereby provide a useful tool for validation.

5. Conclusions
The is paper investigates new ways of inferring nonlinear dependence parsimoniously from measured data.  The

existence of unique linear and nonlinear sub-spaces which are structural invariants of general nonlinear maps is established
for the first time.  Necessary and sufficient conditions determining these sub-spaces are derived.  In addition to being of
considerable interest in their own right, the importance of these invariants in an identification context is that they provide a
tractable framework for minimising the dimensionality of the nonlinear modelling task.  Specifically, once the
linear/nonlinear sub-spaces are known, by definition the explanatory variables may be transformed to form two disjoint sub-
sets spanning, respectively, the linear and nonlinear sub-spaces.  The nonlinear modelling task is confined to the latter sub-
set, which will typically have a smaller number of elements than the original set of explanatory variables.  A constructive
algorithm is proposed for inferring the linear and nonlinear sub-spaces from noisy data and its application is illustrated in a
number of simple examples (as the focus of the present paper is on theoretical issues, large scale applications are not
pursued here).  Algorithms for inferring pointwise sub-space estimates are proposed and the use of pointwise estimates for
validating regional estimates of nonlinear dependence is demonstrated.
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Figure 1a Measured data (+) and associated Gaussian Process model in Example (i) of section 3.4.
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Figure 1b Risk function, J, vs dimension of ρρρρ in Example (i) of section 3.4.

Figure 2 Block diagram representation of system studied in Example (ii) of section 3.4.
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Figure 3a Pointwise risk function, J, vs dimension of ρρρρ in Example (i) of section 3.4.
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Figure 3b Point estimates of M , the mapping relating the scheduling variable to the state and input (Example (i) of section
3.4).
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Figure 4a Risk function, J, vs dimension of ρρρρ in Example (ii) of section 4.2 with a=1.
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Figure 4b Point estimates of M , the mapping relating the scheduling variable to the state and input  in Example (ii) of
section 4.2 with a=1.
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Figure 4c Point estimates of M , the mapping relating the scheduling variable to the state and input  in Example (ii) of
section 4.2 with a=0.1.


