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Abstract— We present a control loop framework which
enables humans to flexibly adapt their level of engagement
in human–computer interaction loops by delegating varying
elements of sensing, actuation and control to computational
algorithms. We give examples of the use of deep convolutional
networks in: modelling and inferring hand pose, single pixel
cameras for vision in non visible wavelengths and in a music
information retrieval system. In each case we explore how
the user can adapt the nature of their closed-loop interaction,
depending on context.

I. INTRODUCTION

We will discuss how we can support a human user to have
more control over the level of engagement required of their
interactions with technology by representing the human–
computer interaction process as a control loop. We then use
computational methods to augment the various blocks in the
human–computer control loop. We give specific examples
from touch interaction and music information retrieval and
explore how we can add the ability to flexibly adapt the
nature of the closed-loop interaction in each case.

II. THE HUMAN–COMPUTER CONTROL LOOP

Traditionally, Human–Computer Interaction (HCI) is often
presented as communication of information between the user
and computer, and has used information theory to represent
the bandwidth of communication channels into and out of
the computer via an interface, but this does not provide an
obvious way to measure the communication, or whether the
communication makes a difference.

Fig. 1. Human–Computer Interaction as a closed-loop system

One reason that information theory is not sufficient to
describe HCI, is that in order to communicate the simplest
symbol of intent, we typically require to move our bodies
in some way that can be sensed by the computer, often
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based on feedback while we are doing it. Our bodies move
in a continuous fashion through space and time, so any
communication system is going to be based on a foundation
of continuous control. However, inferring the user’s intent
is inherently complicated by the properties of the control
loops used to generate the information – intention in the
brain becomes intertwined with the physiology of the human
body and the physical dynamics and transducing properties
of the computer’s input device. [1], [2] argue that we need
to focus on how the joint human–computer system performs,
not on the communication between the parts.

Another reason that control theory can be seen as a more
general framework is that often the purpose of communi-
cating information to a computer is to control some aspect
of the world, whether this be the temperature in a room, the
volume of a music player,1 the destination of an autonomous
vehicle or some remote computational system. This can be
seen in the evolution of human–machine symbiosis from
direct action with our limbs, via tools and powered control
to control of computationally enhanced systems where sig-
nificant elements of the information fedback to the human,
the coordination of control actions and the proposals for new
sub-goals are augmented computationally. Over time this has
led to an increasing indirectness of the relationship between
the human and the controlled variable, with a decrease in
muscular strength and an increasing role for sensing and
thought [3]. Computational Interaction will further augment
or replace elements of the perceptual, cognitive and actuation
processes in the human with artificial computation.

A. History of Control in human–computer interaction

Manual control theory [4], [5] seeks to model the in-
teraction of humans with machines, for example aircraft
pilots, or car drivers. This grew from Craik’s early, war-
related work [6], [7], and became more well-known in the
broader framing of Wiener’s Cybernetics [8]. As observed
in [9], the approach to modelling human control behaviour
came from two major schools, the skills researchers and
the dynamic systems researchers. The ‘skills’ group often
focused on undisturbed environments, while the ‘dynamics’,
or ‘manual control theory’ approach (e.g. [3], [10]) tended
to seek to model the interaction of humans with machines,
for example aircraft pilots, or car drivers, usually driven
by engineering motivations and the need to eliminate error,
making it a closed-loop system. The ‘skills’ group tended
to focus on learning and acquisition while the ‘dynamics’

1One might think the reference here is the loudness of the music, but it
is probably the happiness of the people in the room that is being controlled.



group focused on the behaviour of a well-trained operator
controlling dynamic systems to make them conform with
certain space-time trajectories in the face of environmental
uncertainty. This covers most forms of vehicle control, or
the control of complex industrial processes. [11] reviews the
early tracking literature, and an accessible review of the basic
approaches to manual control can be found in [12].

Control theory provides an engineering framework which
is well-suited for analysis of closed-loop interactive systems.
This can include properties such as feedback delays, sensor
noise (see e.g. [13]), or interaction effects like ‘sticky mouse’
dynamics, isometric joystick dynamics [14], magnification
effects, inertia, fisheye lenses, speed-dependent zooming, all
of which can be readily represented by dynamic models. The
use of state space control methods was explored in document
zooming context in [15], [16], [17], [18] and [19] reviewed
the challenge of optimising scrolling transfer functions and
used a robot arm to identify the dynamics of commercial
products. Examples of the use of dynamic models in interac-
tive systems are now widespread in commercial systems, and
there are also examples in the academic literature, including
[20], [21]. [22] uses control models to understand how
input trajectories associated with words entered into gesture
keyboards are likely to vary. The control perspective can also
lead to unusual approaches to interaction, such as interfaces
which inferred the user’s intent based on detection of control
behaviour, as developed in [23] and built on by [24].

III. CASUAL INTERACTION

As we introduced in [25], interface designers often assume
that users focus on their device when interacting, but this
is often not the case. In fact, there are many scenarios
where users are not able to, or do not want to, fully engage
with their devices. In general, inhibiting factors can be
divided into (1) physical, (2) social, or (3) mental subgroups.
Physical reasons users can not fully engage with a device
are often closely related to questions of accessibility. Social
reasons are mostly concerned with the question of how much
engagement with a device is acceptable in a given setting.
Mental reasons are primarily issues of distraction. Users
might be engaged in a primary task, leaving little attention
for other interactions.

A common feature in these scenarios is that the users
still want to engage with their devices, just sometimes with
lower effort and precision or in a more sporadic fashion.
Casual interaction mechanisms should allow users to control
the level to which they engage—they do not want to give
up control completely. These are also not purely casual
systems: the interaction space is continuous, spanning from
very focused to very casual interactions. When interacting
with devices, the level of engagement with the device will
differ depending on the situation (whether the current con-
straints were physical in nature or related to social or mental
state). The high-engagement extreme describes very focused
interactions, in which a fully committed user is giving her
entire attention to the interaction, and actions and responses
are tightly coupled in time. Playing games or controlling

a vehicle often falls in this category. On the other end of
the scale are interactions that are of secondary or incidental
nature. For example, muting an alarm clock by tapping it
anywhere, or turning over a phone to reject a call can be done
without giving the task too much attention. There can even be
levels of casual interaction within otherwise highly focused
settings – the popularity of kinetic scrolling in touchscreen
devices is partly because after an initial flick, the user can
pull back their finger, reducing their engagement level, and
wait to see where they end before stopping the scrolling, or
giving it a further impetus. In his Ph.D. thesis Pohl highlights
the trade-offs between control and engagement [26].

Focussed–Casual spectrum: Figure 2 arranges common
interaction types on a casual-precise spectrum. A very broad
class of useful interactions fall into the discrete action and
parametric adjustment models. In particular, these are the
interaction types that suit disengaged, casual interaction, as
opposed to attention-focused, detailed interaction.

Entering text
(e.g. URLs)

Precise 2D selections
(e.g. media editing)

List browsing 
(e.g. playlists)

Simple actions
(e.g. accept call)

Parametric adjustment
(e.g. increase volume)

Precise Casual

Fig. 2. User interface actions laid out on a spectrum from precise, engaged
interaction to casual, disengaged interaction.

A. Lifting the Performance–effort curve

A key area is how humans typically make trade-offs
when they are asked to maximise different aspects of a cost
function. Speed, accuracy and effort are typically mutually
conflicting objectives. From an interaction perspective, it
can be argued that the role of AI is to lift the curve,
as show in Figure 3. For a given level of human effort,
the symbiosis of human and intelligent algorithms should
lead to higher performance. This was originally explored in
[27], but can be used to motivate the use of computational
resources. In most cases algorithmic augmentation is used
to raise the performance curve for low human effort – we
want performance for very little effort. It becomes interesting
at the top end of the effort scale. Will the augmented
performance be lower or higher than the unaided human
performance, when the human is putting in maximum effort?

Fig. 3. The role of computational intelligence in interaction loops is to
push the performance curve up – higher performance for the same amount
of effort.



Are there tasks or combinations of human and computational
support which lead to lower performance?

Dangers of filling the performance gap: Whenever com-
putational intelligence is used to raise the performance of
a human–computer combination for a given level of human
effort, or equivalently, achieving more bits per second than
the human was able or willing to generate. Where does this
missing information come from? In some cases we use past
behaviour by the current user, in others information about
‘similar’ users. Sometimes the control might have purely
corporate or business priorities, rather than the end users’.

IV. EXAMPLES OF COMPUTATIONAL INTERACTION

Three areas illustrate where machine learning can be
applied to human–computer interaction to augment or replace
elements of the perceptual, cognitive and actuation processes
in the human with artificial computation:

1) Inferring human intent via sensed human action
2) Inferring subjective aspects of media content retrieval
3) Augmenting ability to sense the environment state

Each of these has specific challenges, once the human
receives non-trivial computational support.

A. 3D touch interaction

One of the most rapidly expanding approaches to inferring
human intent is to sense changes in the pose and position of
the human hand to control an interface.

Inference of human pose – 3D capacitive touch: The
ability to sense finger position and pose accurately a distance
from the device screen would allow designers to create novel
interaction styles, and researchers to better track, analyse and
understand human touch behaviour. Progress in design of
capacitive screen technology has led to the ability to sense
the user’s fingers up to several centimetres above the screen.
However, the inference of position and pose is inherently
uncertain given only the readings from the two-dimensional
capacitive sensor pads.

To infer finger pose and position away from the touch
surface we need a) a sensing technology which can detect the
human hand at a distance from the screen and b) an inference
mechanism which can estimate the pose and position given
the raw sensor readings. The sensor technologies involved
will rarely provide a simple reading which will return the
position (x, y, z) and pose (pitch, roll and yaw, θ, φ, ψ), so
inference of finger pose in 3D has two general approaches:

1) The creation of a complex nonlinear, multivariable
regression mapping. This is an inverse model from
a possibly high-dimensional sensor-space X to the
original (x, y, z, θ, φ, ψ) vector.2

2) The creation of a causal forward model from
(x, y, z, θ, ψ) to image space X , which can then be
used to find the values of (x, y, z, θ, ψ) which minimise
the difference between the observed sensor readings X
and the inferred readings X̂ .

2In this paper we do not attempt to model the roll angle φ, as that is not
feasible with the capacitive technology used in our system.

To get a sense of the technical challenge, we visualise the
nature of the sensor readings X for several poses in Figure 4.
We use a touch screen with a prototype transparent capacitive
sensor with an extended depth range of between 0 cm to 5 cm
from the screen (although accuracy decreases with height)
and a resolution of 10 × 16 pads and a refresh rate of 120
Hz. We sampled at 60Hz. It was embedded in a functional
mobile phone.

Deep Networks: Our first approach to infer the finger
pose uses Deep Convolutional networks (DCN). DCNs have
a long history [28], but have made significant progress in
recent years [29], [30]. In order to learn the mapping between
sensor inputs and finger poses we need a large, carefully
calibrated training set of fingers in different poses. The
mappings can be extremely complex, so generating data
with human users is unrealistically effort and time intensive.
We initially used robot-generated inputs and then moved
to larger sets generated by an electrostatic simulator. The
network was implemented in Python, using the Keras library
[31]. The architecture used was a standard one used for
image processing, with four 2D 3×3 convolution layers (32
units each), with pooling, fully connected layers, and linear
layers in the final densely connected layer for the regression
element. Rectified linear (ReLU) activation functions were
used. The input layer adds Gaussian noise of std. deviation
0.0079, as the mean observed on our physical sensor at rest.

We tested the trained model on 20% of the data removed
before training (3664 points). The pitch RMSE was 8.6◦

and yaw RMSE was 24.1◦. The x, y RMSE was 0.2cm, the
RMSE on z was 0.1 cm. These errors increase with z.

Accelerating electrostatic simulation: One aspect of com-
putational interaction is that if forward models can operate
fast enough, we can build first-principles generative models
into the sensing process. The challenge is often computa-
tional efficient. Flexible statistical models have been used
to create more efficient representations of computationally
complex simulators [32], [33], [34]. This process requires
initial simulation to generate training data for a machine
learning solution, which can then run more rapidly than the
original data – it can be viewed as a ‘glorified lookup table’
which performs inference between the observations to avoid
exponential explosions of required storage. We can represent
the simulator in the form of a function y = f(x). Each run
of the simulator is defined to be the process of producing one
set of outputs y for one particular input configuration x. We
assume that the simulator is deterministic, that is, running the
simulator for the same x twice will yield the same y. The

Fig. 4. Left. Comparison of simulation outputs (upper row) and the
deep network model of the same pose (lower row). Right: Field plot from
simulation of a finger above the capacitive screen.



DCN can therefore be used to create an accelerated imple-
mentation of the forward, or causal model implemented by
the electrostatic simulation (or from physical experiments).
This can then be used to infer the most likely inputs, by
minimising the distance between the current sensed values
and the sensor predictions from the model output.

Our tests demonstrated that a combination of the neural
net implementations of regression model with the real-time
forward model within a particle filter allowed us to create
robust tracking of the finger pitch and yaw in 3D.

Flow-based interaction: As we described in the previ-
ous section, machine learning can be used to infer pose
and position, but unknown hand sizes and postures mean
that there is a high-dimensional latent vector required to
describe the problem fully, and that even with knowledge
of that, the task of solving the inverse problem to infer, e.g.
(xi, yi, zi, φi, ψi) from the information available in the sen-
sor pad matrix X is an ill-posed problem with many solutions
compatible with the data. This means that methods which
explicitly track finger states must cope with this inherent
variance in estimates, and requires sophisticated filtering and
processing to regularise the problem, and distinguish fingers
from distractors such as the palm or arm. A further challenge
specific to 3D touch interfaces is human motor variability
in mid-air gesturing. People struggle to control unsupported
fingers in mid-air with sufficient accuracy and consistency
for conventional pose-based interaction. This is exacerbated
when devices are used in typical mobile contexts where the
user or the vehicle they are in might be in motion.

An alternative proposal led by Williamson [35] called
flow-based interaction is to sidestep the cursor-based inter-
face, and the concomitant requirement to invert the sensed
electrical field to resolve the 3D structure above, and instead,
implement a mediating layer between sensor and application
state, which creates a relatively simple closed-loop system
which the user can stimulate with around-device motions
in a predictable fashion. The goal is that this dynamic
system should be responsive to the typical range of human
movement in interaction without being overly sensitive to the
variance inherent in low-level inferences about hand state at
each point in time. It should ideally act as a low-dimensional
representation of the recent evolution of the high-dimensional
input which can both be fed back to the user to give them
formative feedback about how their physical actions were
sensed, and used by automated classifiers to generate actions
to be applied to the application interface. A flow-based
interaction eliminates discrete “contact” points, in favour
of estimating the overall motion field above a sensor. This
field is used to drive the interaction directly, which avoids
many of the artifacts common in touch-based interaction; for
example it is much less sensitive to acquiring or dropping
fingers during interaction, and it makes weak assumptions
about the interacting objects, so is equally applicable to
touch interaction with gloves, styli, glasses or other everyday
objects. Because it computes relative changes between sensor
“images”, it also requires less precise calibration than stan-
dard tracking. The motion fields are particularly convenient

Fig. 5. In Flow-based interaction twirling the fingers above the screen
surface induces a characteristic motion field.

to display visually, giving a rich, clean and responsive repre-
sentation of the sensed activity. As a trade-off, it is also less
precise than cursor-based control and requires development
of new interface structures to take advantage of the flow-
based models.

B. Music Information Retrieval

In [36], we built and evaluated a system to interact with
2D music maps, based on dimensionally-reduced inferred
subjective aspects such as mood and genre, using a flexible
pipeline of acoustic feature extraction, nonlinear dimension-
ality reduction and probabilistic feature mapping. interactive
music exploration tool which offers interaction at a range of
levels of engagement, which could foster directed exploration
of music spaces, casual selection and serendipitous playback.

The features are generated by the commercial Mooda-
gent Profiling Service3 for each song, computed automati-
cally from low-level acoustic features, based on a machine-
learning system which learns feature ratings from a small
training set of human subjective classifications. These in-
ferred features are uncertain. Subgenres of e.g. electronic
music are hard for expert humans to distinguish, and even
more so for an algorithm using low-level features. This
motivated representing the uncertainty of features in the
interaction with the user.

When working with Bang & Olufsen on new forms of
music interaction, an approach more appropriate for their
style and market required the development of an even simpler
interaction, which is described in [37] and expanded on in
more detail in Boland’s Ph.D. thesis [38]. The results were
translated to a flagship product for B&O, shown in Figure 7.
This interface is extremely simple – the default face does
not even have a display. The music content is placed on
a 1D-mood and genre manifold, and the user can explore
genres by running their finger around a circular groove on the
wooden surface, or using casual left/right swipes to navigate
a music playlist. If, however, the user wishes to engage more,
they can physically turn the device over, and access a fully
featured touch interface and display on the reverse side.

3http://www.moodagent.com/



Fig. 6. (a) An audio collection, described by a large set of features automatically extracted from the content. (b) visualisation of this high-dimensional
dataset in two dimensions using dimensionality reduction (c) probabilistic models showing the distribution of specific features in the low dimensional space
(d) combining dimensionality reduction with these models to build an interactive exploration interface.

Fig. 7. Bang & Olufsen BeoSound Moment design as an example of
Casual Interaction. The system has two sides – a simple wooden touch
surface and a traditional touch screen.

C. Single Pixel Cameras via Deep autoencoders

Computational intelligence can also be used to sense the
environment around the human. Within the QuantIC project,
we have been exploring the use of Single-pixel cameras for
rapid prototyping of novel sensors for imaging beyond the
visible spectrum. In order to achieve real-time performance
in solving the associated inverse problems, we have again
used Deep Convolutional networks as auto-encoders, then
implemented the initial layers in optics as binary weighted
digital mirror arrays, as shown in Figure 8 from [39]. Rather

input image

(128 x 128)

512 binary filters

(128 x 128)

fully connected layer

(512 x 16384)

64 convolutional filters

[9,9,1,64]

64 feature maps

(128 x 128)

32 feature maps

(128 x 128)

output image

(128 x 128)

32 convolutional filters

[1,1,64,32]

1 convolutional filter

[5,5,32,1]

1 feature map

(128 x 128)

Fig. 8. Convolutional autoencoder super-resolution single-pixel camera
architecture. Initial binary weights layers implemented by a digital mirror
array and photodiode. ‘Inverse problem’ is ‘solved’ by the decoding layers.

than performing computationally-intensive matrix inversions,
the use of a neural net allows real-time video rate decoding
for 128 × 128 images, and we can learn optimal mirror
bases for target image collections. However, the image
reconstructed will be very dependent on image collection

used to train the system. A challenge for safe, practical
use is therefore that the user must be aware of the biases
such a sensing system has been optimised on. E.g. in a
conflict context an imaging system which had only been
trained to encode military vehicles might create misleading
images. This opens a requirement for interfaces which allow
users to easily perturb and manipulate prior expectations
which would change the associated network parameters and
act as a form of sensitivity analysis, generating alternative
interpretations of the scene.

V. SHARED CONTROL

The previous section showed how we can use computa-
tional intelligence to augment different aspects of the sens-
ing, inference and feedback blocks in the human–computer
control loop. A key design task is to explore how human or
automatic control loop elements can be dynamically com-
bined to shape the closed-loop behaviour. The contribution
from different controllers can be separated out in time,
via switching processes, or by frequency, via hierarchical
structures, or blending mechanisms. One approach is the H-
metaphor [40] which proposes designing interfaces which
allow users to have flexibility to switch between ‘tight-
reined’ or ‘loose-reined’ control – in other words, increasing
the control order and allowing variable levels of autonomy
in different contexts.

A. Stratification of Interaction Loops

A natural generalisation of the H-metaphor ideas is that
we should design systems which can switch between a
discrete number of different interaction loops by dynamically
interchanging blocks of different complexity for elements
that, e.g. 1. sense the human, 2. infer human goals, 3.
sense the environment. As discussed earlier, these interaction
strata will tend to be arranged from low engagement, casual
interactions to high-engagement, focused interaction.

In traditional hierarchical control, the user’s task was
made easier by augmented control models, such as velocity-
or bearing-hold modes, where inner loops tended to be
faster, outer loops slower. These tended to be used by
expert users (process operators, pilots) and the hierarchy of
automation loops was associated with historically evolutions
in automation. Modern applications will need to work harder
on appropriate design metaphors to support new, diverse
groups of users in such systems.



B. Establishing grasp for people with spinal-cord injuries
The aim of the MoreGrasp project is to develop a non-

invasive, adaptive, multimodal user interface including a
brain-computer interface (BCI) for intuitive control of a
semi-autonomous motor and sensory grasp neuroprosthesis
supporting individuals with high spinal cord injury to re-
establish hand grasp for everyday activities [41]. In this case
the user uses wither a BCI or a shoulder sensor to change
grasp settings and initiate actions. However, we can create
simpler interaction loops by instrumenting objects in their
environment, as shown in Figure 9 such that when they touch
them an appropriate grasp is automatically used. Further-
more, understanding of the accuracy of sensors, dynamics
of physiological systems and likely goals can be used to
support users with limited actuation bandwidth (Figure 10).

Fig. 9. A disabled user being supported by instrumented objects and
external sensors. Sensors on known objects can reduce need for user to
specify details of grasp style.

Fig. 10. A shared control structure, showing the internal processing pipeline
and the user in the loop. A probabilistic intention decoder is connected to
a deterministic action synthesizer.

VI. OUTLOOK

We presented a Computational perspective of Human
Computer Interaction, within a control framework, where we
explicitly design a number of ways to close the loop, with
a trade-off between computational support and individual
freedom of control. We gave examples of computational
interaction systems which benefit from computational in-
telligence to provide more flexibility on sensing human
actions, inferring human queries and sensing environments
for humans. However, we face challenges to create systems
with compelling use metaphors which deliver a clear user
experience. It will require us to bring together new styles of
development teams, including interaction designers, machine
learning experts and sensor specialists.
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