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CONTROL THEORY, DYNAMICS AND CONTINUOUS
INTERACTION

Roderick Murray-Smith

Abstract

This chapter reviews the role of control theory and dynamic systems the-
ory in understanding common interaction techniques including: target-
ting, trajectory generation, panning, scrolling and zooming. It explains
how control can be seen to be at the foundations of Human–Computer
Interaction and might be essential for making progress in novel forms of
interface. It reinterprets Fitts’ classical work with control theoretic tools.
It also highlights the limitations of control theory for design of human–
computer control loops.

1.1 Introduction

What do we really mean when we talk about Human–Computer Inter-
action? It is a subject with few firm, agreed foundations. Introductory
textbooks tend to use phrases like “designing spaces for human communi-
cation and interaction”, or “designing interactive products to support the
way people communicate and interact in their everyday lives”. (Rogers,
Sharp and Preece, 2011). (Hornbæk and Oulasvirta, 2017) provide a re-
cent review of the way different HCI communities have approached this
question, but only touches briefly on control approaches. Traditionally
HCI research has viewed the challenge as communication of informa-
tion between the user and computer, and has used information theory
to represent the bandwidth of communication channels into and out of
the computer via an interface. “By interaction we mean any communica-
tion between a user and a computer, be it direct or indirect” (Dix, Finlay,
Abowd and Beale, 2004), but this does not provide an obvious way to
measure the communication, or whether the communication makes a dif-
ference.

The reason that information theory is not sufficient to describe HCI,
is that in order to communicate the simplest symbol of intent, we typ-
ically require to move our bodies in some way that can be sensed by
the computer, often based on feedback while we are doing it. Our bodies
move in a continuous fashion through space and time, so any communi-
cation system is going to be based on a foundation of continuous control.
However, inferring the user’s intent is inherently complicated by the prop-
erties of the control loops used to generate the information – intention
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Fig. 1.1. Human–Computer Interaction as a closed-loop system

in the brain becomes intertwined with the physiology of the human body
and the physical dynamics and transducing properties of the computer’s
input device. In a computational interaction context, the software adds
a further complication to the closed-loop behaviour. (Hollnagel, 1999;
Hollnagel and Woods, 2005) make a compelling argument that we need
to focus on how the joint human–computer system performs, not on the
communication between the parts.

Another reason that control theory can be seen as a more general
framework is that often the purpose of communicating information to a
computer is to control some aspect of the world, whether this be the tem-
perature in a room or the volume of a music player,1 the destination of an
autonomous vehicle or some remote computational system. This can be
seen in Fig 1.2, which illustrates the evolution of human–machine sym-
biosis from direct action with our limbs, via tools and powered control.
Over time this has led to an increasing indirectness of the relationship be-
tween the human and the controlled variable, with a decrease in required
muscular strength and an increasing role for sensing and thought (Kelley,
1968). The coming era of Computational Interaction will further augment
or replace elements of the perceptual, cognitive and actuation processes in
the human with artificial computation, so we can now adapt the original
figure from (Kelley, 1968) to include control of computationally enhanced
systems, where significant elements of:

1. the information fed back to the human,

2. the coordination of control actions and

3. the proposals for new sub-goals

are augmented computationally. This computational augmentation is in-
tended to achieve a similar decrease in the complexity of human cognition,
perception and actuation that earlier generations achieved over muscle
strength. In some cases this will decrease the human interaction with
some tasks, in order to be able to apply more attention and cognitive
resources to other, currently more important, aspects of their environ-
ment. For example, computationally enhancing the music player in a car

1One might think the reference here is the loudness of the music, but in many social contexts
it is probably the inferred happiness of the people in the room that is actually being controlled,
and any feedback from volume indicators are just intermediate variables to help the user.
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allows the driver to have an acceptable degree of control over the style
of music played while, more importantly, being able to concentrate on
driving safely. A further step, completely automating driving itself would
allow the human to shift their resources to focus on engaging with family
members or preparing for an upcoming business meeting.

Fig. 1.2. The evolution of human control over the environment from (a) di-
rect muscle power via (b) use of specialised tools for specific tasks and (c)
externally powered devices, potentially regulated by automatic controllers.
Adapted from (Kelley, 1968). Grey lines indicate optional feedback connec-
tions.

1.1.1 Related work

Few modern researchers or practitioners in HCI have received training in
control theory, which has been an interdisciplinary branch of engineering
and mathematics for 70 years. It deals with the behaviour of dynamic
systems with inputs, and how their behaviour is modified by feedback.
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Fig. 1.3. The next step in evolution – control with power- and computation-
ally-enhanced devices. Grey blocks indicate computational intelligence en-
hancement.

The specific area of control systems relating to human users became a
major area of activity from the 1950’s. This chapter aims to introduce
human–computer interaction researchers with a computing science back-
ground to the basics concepts of control theory and describe a control
perspective of some common interaction models.

Manual control theory (McRuer and Jex, 1967; Costello, 1968) seeks
to model the interaction of humans with machines, for example aircraft
pilots, or car drivers. This grew from Craik’s early, war-related work
(Craik, 1947; Craik, 1948), and became more well-known in the broader
framing of Wiener’s Cybernetics (Wiener, 1948). As observed by (Wickens
and Hollands, 1999), the approach to modelling human control behaviour
came from two major schools, the skills researchers and the dynamic sys-
tems researchers. The ‘skills’ group often focused on undisturbed envi-
ronments, while the ‘dynamics’, or ‘manual control theory’ approach (e.g.
(Kelley, 1968; Sheridan and Ferrell, 1974)) tended to seek to model the
interaction of humans with machines, for example aircraft pilots, or car
drivers, usually driven by engineering motivations and the need to elim-
inate error, making it a closed-loop system. The ‘skills’ group tended to
focus on learning and acquisition while the ‘dynamics’ group focused on
the behaviour of a well-trained operator controlling dynamic systems to
make them conform with certain space-time trajectories in the face of en-
vironmental uncertainty. This covers most forms of vehicle control, or the
control of complex industrial processes. (Poulton, 1974) reviews the early
tracking literature, and an accessible textbook review of the basic ap-
proaches to manual control can be found in (Jagacinski and Flach, 2003).
Many of the earlier models described above were based on frequency
domain approaches, where the human and controlled system were rep-
resented by Laplace transforms representing their input/output transfer
function. Optimal control theoretic approaches used in the time domain
are described in (Kleinman, Baron and Levison, 1971; Kleinman, Baron
and Levison, 1970). The well-established field of human motor control
theory, e.g. (Schmidt and Lee, 2005), which seeks to understand how the
human central nervous system controls the body, is an important com-
ponent of using control theory in HCI, but this chapter will focus on the
basic role of control concepts in HCI.
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1.2 The control loop

1.2.1 The classical control loop

Figure 1.4 shows a representation of the classical control loop. It is a
general representation of many possible control or tracking tasks, covering
car driving, mouse movement, or the control of a chemical process. It
represents a dynamic system, so the output of each block is time-varying.

Fig. 1.4. Classical control loop

The Goal is also called the reference. It describes the desired state
of the controlled system. The state is a real vector which describes the
condition of the controlled system, a position in the state space. The con-
cepts of state variable, state and state space are important tools which
can help designers understand the problem. The choice of state variables
for your model is a statement about the important elements of the sys-
tem. The state dimensions combine to form the state space. Behaviour is
visualised as movement through this space, and the values of state reflect
the position compared to important landmarks such as the goal.2 Prob-
lem constraints can be represented as boundaries in the state space and
qualitative properties of the system can be described as regions in the
state space (Bennett and Flach, 2011).

Inputs and Outputs: The controller generates control inputs to the
controlled system. Transformations of the system state are observed, the
outputs. The concepts of controllability and observability are important,
as they describe the degree to which a control system can observe and
control the states of a particular system.

Open/Closed loop: If an input is transformed in various ways but the
control variable does not depend on feedback from the system state, the
system is described as open loop. Closed loop systems have feedback from
the state to the controller which affect the input to the controlled system.

2Note that for dynamic systems position in a state space can describe a rapidly changing
situation.
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Disturbances are external or unpredictable effects which either directly
affect the system state or the input to the controlled system. In an open-
loop system, the controller is unable to compensate for these, while a
closed-loop controller can observe the error and change its control variable
to compensate. In HCI, disturbances or noise on the input channel from
user to computer are a key reason for feedback. These might be due
to unintended motion, sensor noise or incompleteness or discretisation
thresholds in the interface software.

Stability: In technical control systems, stability is a key aspect of de-
sign. This has been less of an issue in modern HCI, but is important in
automotive and aircraft control, where interactions between the human
operator and technical control systems can lead to instability, and ‘pilot-
induced oscillations’. Stability is relevant not only for equilibria, but also
for period motions. For example, a pendulum is typically stable to mi-
nor perturbations around its normal limit cycle. Time delays are a prime
cause of temporary instability in conventional user interfaces.

Feedback: The display is to provide the user with information needed
to exercise control; i.e. predict consequences of control alternatives, eval-
uate status and plan control actions, or better understand consequences
of recent actions. We can augment displays or controls. If we augment
the display, we improve the input to the human to simplify their control
task. If we augment the control, we change the effective dynamics be-
tween control input and system output. E.g. most mouse drivers apply
nonlinear filters to the raw data from the mouse sensors.

‘Dynamics’: how a system responds over time. Investigation of the
behaviour of a controlled system requires us to observe its change of
state, and in physical systems this requires transfers of energy or mass. An
instantaneous change of state in such a system would require an infinitely
large flow of energy or mass, but in real systems we have a transition
which takes place over time, and we call such systems dynamic systems.

In human–computer interaction, because the human effectors (e.g.
an arm in pointing) have mass, and systems with mass cannot instanta-
neously achieve high velocity, the rate at which velocity or position builds
up depends on the force applied to the limb, and its mass, resulting in
an acceleration a = F

m
which then has to integrate up over time to have

an impact on measured velocities or positions.
Information states in a computer can change instantaneously, from a

human perspective. However, it is not only the physical limitations of our
effectors that matter. Powers builds on Gibson’s work in (Powers, 1973;
Powers, 1989; Powers, 1992) to highlight that humans (and other ani-
mals) evolved to control their perceptions, to generate their behaviour.
The human and the computer create a coupled dynamic system. As the
human has perceptual bandwidth limitations, he or she requires time to
process their sensory feedback and to act on it (again subject to band-
width limitations), a well-designed system should not make changes in
state at a rate faster than the human can follow – otherwise they cannot
control the system.

In the case of a human controlled system the control block might
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be split between a ‘human operator’ block and a ‘control’ block where
elements of the technical system which have a control function are con-
ceptually separated from the process being controlled. See Fig. 1.5 In
the case of computer user interfaces this may represent different layers of
software.

Fig. 1.5. Human–Computer control loop where the ‘control’ element is parti-
tioned into human-controlled and system controlled elements. The human
above is providing a reference for the automatic controller on the basis of
broad perceptual information about the context.

1.3 Classes of continuous interaction and examples

Modern Graphical User Interfaces on personal computers controlled by
mice are primarily spatial in nature, using targetting of position over
stationary regions for communication of intent. The widespread use of
touchscreen smartphones has increased the use of dynamic gestures where
a variable is measured over time, such as swipes, flicks and taps, but the
methods used have not tended to scale well to more complex cases with
richer sensor systems, where a lot of interaction potential is disregarded.
Being able to use dynamic state changes to control interaction and infer
context could open up new styles of interaction, but our current analytic
tools, such as Fitts’ law, are not sufficient. If we can identify a contin-
uous signal loop between the user and interface, such that the user is,
at times, continuously minimising the error between his or her intention
and the system state, we can say the user is interacting in a continuous
fashion with the system. We say ‘at times’, because there will usually be
a de-clutching mechanism, such as letting go of the mouse, such that the
interaction is intermittently continuous.

The fields of physiology, cognitive science and ergonomics provide us
with models of human aspects of interaction, e.g. low-level perception,
motor control, short-term memory and attention. Computing science is
full of models of aspects of machine behaviour, e.g. inference algorithms,
FSMs, Statecharts etc., but there is less theoretical support in the area



8 Control Theory, Dynamics and Continuous Interaction

of interaction. Manual control theory provided the first steps, with air-
craft and automobile control, and models were often implemented on
analogue computers. At that time digital computers involved essentially
discrete interaction, but now that improvements in sensing, simulation
tools, speed and memory mean that important elements of the computer
side have become essentially continuous again, we need to look at ways
of analysing the joint system.

1.3.1 Hitting a fixed spatial target with a pointer

The graphical user interface involves spatial representations of actions
in graphical user interfaces. In a simple 1-from-N case, the N possible
actions are laid out as N shapes in two dimensions, and the user has
continuous control of a cursor via e.g. a mouse. The control task for
the user is then to recognise the target (often via a visual prompt such
as an icon) and to move the cursor towards it, clicking once within the
boundary of the target shape. If the chosen target has a position (xr, yr),
and the current cursor state is (x, y) then there is an ‘error’

e =

∣∣∣∣[xryr
]
−
[
x
y

]∣∣∣∣ ,
which describes the distance between cursor and target, and the control
task is to minimise this error as fast as the human effector dynamics allow,
bringing the cursor x, y towards (xr, yr). In control theory, we describe
this as a step response because the change of target position looks like a
step in the time-series representation. The process of spatial targetting
was examined in detail from the control perspective, for one-dimensional
pointing in (Müller, Oulasvirta and Murray-Smith, 2017).

One important issue is that for most interaction tasks you are mov-
ing a cursor towards an area, not a point, so the conditions for selection
are met before the error is brought to zero. As the size of the area in-
creases relative to the distance travelled (a decreasing index of difficulty
in Fitts’ terminology), this becomes more significant. (Müller, Oulasvirta
and Murray-Smith, 2017) found that users tended not to minimise the
error in the final endpoint and used different control behaviours when
faced with larger targets. We will discuss this again in Section 1.6.1.

1.3.1.1 Control order The control action u for mouse input typically
measures the velocity of the mouse over a surface, and feeds that through
to the cursor via a nonlinear transfer function.3 (Casiez and Roussel,
2011) develop a framework for comparing pointing transfer functions.
However, the sensed input from the human could also be position (as
in touch screens) or acceleration from accelerometers such as those on
a smart watch or mobile phone. The control order refers to the number
of integrations between control input to a plant and output of a plant.
Higher order systems are harder to control. Zero order control is position

3Note that in control theory the term transfer function tends to refer to a linear time-
invariant (LTI) system in Laplace or Fourier transform representation.
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control, and the gain level will affect accuracy and speed in target space.
First order control, velocity control, has one integration between position
and velocity, and works well for systems with a well-defined null or zero
position (like a spring-loaded joystick). The main advantage is that the
range of motion in the space is not limited to the range of moment in
input space. The limits on input constrain the velocity, not the range of
space. With second order, acceleration control, a return to the null posi-
tion zeros the acceleration but not the velocity – you need to counteract
the velocity by decelerating, so it is more difficult than 1st or 2nd order
control, but reflects real world activity. Higher order control systems are
much more difficult to learn (pilots need to deal with 3rd and 4th order
elements in fixed wing flight). If making comparisons between different
input devices, it is important to compare the same dynamics, e.g. a com-
parison of a position mouse input with a velocity joystick input might
lead to misleading conclusions.

An interesting trend in the evolution of interfaces has been to reduce
the control order, moving from joysticks to mice to direct touch. Direct
interaction can be cognitively simpler, but also has disadvantages asso-
ciated with the size of workspace. 0th order, position input makes the
input space the same size as the display, whereas higher order inputs can
change the gain to trade-off speed of movement with end target precision.
Direct interaction usually means that an extra navigation layer which al-
lows the user to move between smaller canvases needs to be added to
the interaction design. A direct mapping also makes it harder to ‘slide
in intelligence’ to flexibly modulate the user input with computational
models of anticipated behaviour, whereas this is easier when the input
evidence integrates up over time.

1.3.2 Variability

Sources of variability in human action include noise, trajectory planning
and delays in the feedback loop. In some tasks motor planning can be
complex, but with most interfaces being designed to have simple dynam-
ics, and human limbs being typically well controlled over the range of
motions used, most UI interaction is still relatively simple from a motor
control perspective. The variability is therefore dominated by the human’s
predictive control interacting with delayed or incomplete feedback, and
the variability in defining the timing of changes of motion. If the user
moves extremely slowly then the effects of human lags and delays are
negligible.

Will control models do a better job of representing user variability?
Most of the historical applications of manual control models did not focus
on variability, but the intermittent predictive control models have done a
better job of this. (Gawthrop, Lakie and Loram, 2008) demonstrate that
a simple predictive controller can be consistent with Fitts’ law, while
non-predictive controllers cannot. The same paper also presents the link
between intermittent control, predictive control and human motor control,
and further develops this in (Gawthrop, Loram, Lakie and Gollee, 2011;
Gawthrop, Gollee and Loram, 2015).
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We can see the interaction of difficulty of the targeting task with the
speed and variability of human movement, even in simple one-dimensional
spatial targeting tasks (Müller, Oulasvirta and Murray-Smith, 2017).
These experiments make clear the anticipatory, or predictive element in
human action, as the acceleration behaviour for different levels of diffi-
culty changes well before the user reaches the target.

(Quinn and Zhai, 2016) describe the challenges associated with un-
derstanding user behaviour when performing gestural input, focusing on
gesture keyboards. They highlight how users are not tightly constrained,
but are attempting to reproduce a prototype shape as their goal. Ear-
lier models assumed that the motor control process was similar to serial
aiming through a series of landmarks. They used a minimum-jerk model
of motor control to model human behaviour and describe the variability
in user control in gesture keyboards, which includes some general issues,
including: an inclination to biomechanical fluidity, speed–accuracy trade-
offs, and awareness of error tolerances in the algorithms, visual online
feedback from the interface, and the errors due to sensorimotor noise and
mental and cognitive errors.

1.3.3 Tracking a moving target with a pointer

A generalisation of hitting a stationary spatial target is to allow the
target to move, forcing the user to track the target (Crossman, 1960;
Poulton, 1974). The control models which are optimised for this task
will have different parameters, structures and qualitative properties from
those suited to the static case in Section 1.3.1. The quality of the control
will depend on the frequency range of the target movements and the delay
and lag inherent in the user response. The most common application of
this is in gaming. It may have further application in detecting attention
and for selection in virtual or augmented reality situations.

An important element of the research in target pursuit is the amount
of trajectory preview the human user has, as this changes the amount
of information that can be communicated (Crossman, 1960) in part by
making it easier for the user to use prediction to plan the exact timing
of their actions, and avoid the impact of delays.

1.3.4 Driving a pointer through a spatial continuum of constraints

In hitting a spatial target, it did not matter how you got to the target,
the system just has a simple mapping of click location to actions. In
other cases, the selection is dependent on the user generating a trajectory
that fits particular spatial constraints. This is sometimes described as
a ‘tunnel’ task. The Steering law proposed in (Accot and Zhai, 1997;
Accot and Zhai, 2002a) is an example of a generalisation of Fitts’ results
to trajectory tasks. In this case we have a reference trajectory, Cr(s),
which describes a series of (xr, yr) values at arc length s. This can be
accompanied by a varying constraint, or width W (s).4

4The analysis of boundary crossings in (Accot and Zhai, 2002b) is closely related, especially
if there is a sequence of multiple crossings needed to achieve a specific goal. This can be seen
as a discretisation of the steering law task, with intermittent constraints.
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Fig. 1.6. Two-dimensional ‘tunnel’ task (left). A classical automotive steering
task (right)

Most of the existing research has avoided the use of dynamic control
models, preferring to generalise the task as an infinite series of spatial
constraints (although the steering task was a staple of early work, e.g. Car
steering (Rashevsky, 1959; Rashevsky, 1960), or pencil line-drawing tasks
by (Drury, 1971)). In recent years there has been increasing awareness
of the mismatch between human behaviour and the simple early steering
models. (Pastel, 2006) examines performance in steering tasks with sharp
turns, and (Yamanaka and Miyashita, 2016a; Yamanaka and Miyashita,
2016b) examine the impact of narrowing or widening tunnels on user
performance, despite these notionally having the same index of difficulty.

This can be reformulated as a control task, where an agent has to
progress along the tunnel within the constraints of the tunnel ‘walls’. If
we factor in typical human delays and lags in a tracking model such as
the McRuer model (Jagacinski and Flach, 2003), then with standard fre-
quency response analysis we can analytically show that sharp turns in
the tunnel will lead to larger deviations from the central path, and will
require a reduction in speed, compared to a lower curvature trajectory,
if the user is to stay within the tunnel constraints. This also highlights
the important element of user ‘look ahead’ where a predictive or feed-
forward element comes into play. Users can see the trajectory ahead,
with its constraints, and adjust their velocity and plan their directional
control behaviour accordingly. The impact of a given amount of timing
uncertainty is greater for larger curvature in the tunnel, or tighter width
constraints. The initial work (Accot and Zhai, 1997) did not incorporate
curvature into the ID, but did hypothesize a likely relationship of the
tangential velocity v(s) ∝ ρ(s)W (s), where ρ(s) is the local radius of
curvature, in line with the results of (Viviani and Terzuolo, 1982). The
goal here is to create a model of the probability density function from the
current state (x, v) at tn for the user’s future behaviour tn+1, tn+2... etc.
Because of motor variability, this will naturally spread out spatially over
time in areas of high curvature, returning to close to the optimal path
in easier areas. The nature of the trade-off between spread of trajecto-
ries and variation in speed will depend on the implicit cost function the
user is performing to. Are they being cautious and never breaching the
constraints, or more risk-taking and increasing speed?

Appropriately identified models of human tunnel following behaviour
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would allow us to create a more appropriate function for inferring intent
than simply detecting that a user had excited the tunnel. Predicting the
likely dynamic behaviour for a user attempting the tunnel at a given speed
could allow us to infer which of N targets was most likely. An interesting
extension of this is instead of speed-accuracy trade-offs, we could look
at effort-accuracy trade-offs, where users might choose to provide less
precision in the location or timing of their actions. (The techniques can
link closely to methods used for filtering noisy inputs).

Feedback during the process can change closed-loop performance sig-
nificantly. For example, when examining touch trajectories associated
with the ‘slide to open’ on an iPhone we could view it as a response
to a spatially constrained trajectory following task, but because of the
visual metaphors the user typically perceives it as dragging the slider
(which in itself is a direct position control task), to activate the device.
The physical metaphor might make sense for a new user, but as the user
becomes more skilled and confident, they may be keen to have faster or
more sloppy movements to achieve the same end. For example, the ac-
tual constraints on the touch input need not correspond to the limit of
the drawn object in order to communicate the desired intent, depending
on the context and design trade-offs. For example, if the system sensed
that the user was walking while using the slide–to–open feature, it could
be more forgiving on the constraints than in a stationary context, or a
confident, cleanly contacting, fast swipe might be allowed to unlock the
device even if it were at the wrong angle.

1.3.4.1 Phase space tunnels An interesting generalisation of the spatial
tunnel is to define tunnels in phase space which include spatial coordinates
and their time derivatives (e.g. (z, ż)). This allows us to define not only
a spatial trajectory but also the way that unfolds over time. An example
of data collected from a finger moving above a capacitive touch screen
sensitive to 5cm above the device is shown in Figure 1.7.
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Fig. 1.7. Examples of phase space plots in velocity and acceleration against
position for a finger moving above a touch screen. Note how the particular
style of movement corresponds to a constrained region of the phase space.

1.3.5 Gestures

Gestures can be viewed as generating a spatial trajectory through time,
and can therefore be represented by differential equations, and tolerances
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around a prototypical gesture. For a review of gestures in interaction, see
(Zhai, Kristensson, Appert, Anderson and Cao, 2012). The underlying
control task then, is almost identical to that of Section 1.3.4, although
typically in gestures there is no visual guide for the user to follow – they
are expected to have memorised the gestures, and implicit constraints,
such that they can be generated in an open–loop fashion. In some cases,
a rough reference framework is provided for the gesture. For example, the
Android gesture lock screen provides a grid of points as a framework for
users’ gestures. This reduces the possible gesture prototypes to a discrete
set, as the gesture passes through these subgoals, and helps normalise
the users’ spatial performance and transparently removes the variability
factor of timing.

A differential equation representation of gestures is used in (Visell
and Cooperstock, 2007). A specific example of differential equations for
gesture is that of generating controlled cyclic behaviour as discussed in
(Lantz and Murray-Smith, 2004). The advantage of rhythmic gestures
is that they can be repeated until the system recognises them, whereas
ballistic gestures are more frustrating to repeat from scratch if the system
fails to recognise them.

Handwriting can be viewed as a specific case of gesture system, but
one which leaves a visible trace, and which most humans have spent years
learning. Recent developments in handwriting recognition based on the
use of recurrent neural networks to learn the dynamic systems required
to both generate and classify handwriting (Graves, 2013) could be gen-
eralised to other areas of gestural input. This work made progress by not
requiring the training data for the handwriting task to be broken down
into individual letters, but to work at a word level, letting the machine
learning cope with the variability, and co-articulation effects from neigh-
bouring letters. This might be of interest in analysis of interactions ‘in
the wild’ where it can be difficult for a human to label when exactly a
user changed their goal to a particular target or task.

1.3.6 Panning, Scrolling, Zooming and Fisheye-style distortions

When the information space a user is interacting with is too large to fit
on the display, the user needs to be able to control their (x, y) location
in the space via panning and scrolling, and their zoom level z. These can
be independently controlled, or can be automatically coupled to cursor
movements. In many systems the continuous dynamics of transitions are
not defined as differential equations, but are programmed as a series of
transitory ‘effects’.

In (Eslambolchilar and Murray-Smith, 2008) we created a simple ‘fly-
ing brick’ model which gave the panning and zooming inertia, and used
state-space equations which coupled the zoom level with the velocity,

ẋ1(t) = v(t) = x2(t) (1.1)

ẋ2(t) = a(t) = v̇ = −R
m
x2(t) +

1

m
u(t) (1.2)
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ẋ3(t) = z(t) = − b

m
x2(t)− R′

m
x3(t) +

c

m
u(t), (1.3)

which can then be more conveniently represented in the state space form
ẋ = Ax+Bu, [

ẋ1
ẋ2
ẋ3

]
=

 0 1 0
0 − R

m
0

0 − b
m
−R

′

m

[x1x2
x3

]
+

[
0
1
m
c
m

]
u. (1.4)

This shows how a single-DOF input can control both velocity and zoom-
level. The non-zero off-diagonal elements of the A matrix indicate cou-
pling among states, and the B matrix indicates how the u inputs affect
each state. Note that you can change from velocity to acceleration input
just by changing the values of the B matrix. This example could be repre-
sented as having zoom as an output equation, rather than state, and the
coupling between zoom and speed comes only primarily the B matrix.

We can create a control law such that u = L(xr − x) and write new
state equations, ẋ = Ax+ Bu = Ax− BLx+ BLr = (A− BL)x+ BLr
which shows how the control augmentation has changed the closed loop
dynamics. The user input can then be linked to the xr value so that
this could then be linked to a desired velocity, or a desired position in
the space. It is also possible to have a switched dynamic system which
changes the dynamics depending on the mode the user is in, support-
ing their inferred activity, and (Eslambolchilar and Murray-Smith, 2008)
describes examples with different regimes for exploration, cruising and
diving modes. The stability and control properties of such systems are
examined in (Eslambolchilar and Murray-Smith, 2010).

This approach was further developed in (Kratz, Brodien and Rohs,
2010), where they extended the model to two-dimensions and presented
a novel interface for mobile map navigation based on Semi-Automatic
Zooming (SAZ). SAZ gives the user the ability to manually control the
zoom level of an SDAZ interface, while retaining the automatic zooming
characteristics of that interface at times when the user is not explicitly
controlling the zoom level.

1.3.6.1 Dynamic systems as canonical representations of interface dy-
namics Taking a dynamic systems approach has the potential to give a
cleaner underlying structure, and makes the comparison of performance
between different design decisions easier to document and analyse. Re-
search in HCI can also be slowed by the lack of transparency of many
of the systems we interact with. Commercial software is often only avail-
able as a ‘black box’ where we can interact with it, but cannot see the
underlying code. This is an area where systematic approaches to identify
the dynamics of system transitions can allow us to create a canonical
representation of the dynamics as a differential equation which is in-
dependent of how it was implemented. An example of this is the work
on exposing scrolling transfer functions by (Quinn, Cockburn, Casiez,
Roussel and Gutwin, 2012). (Quinn, Malacria and Cockburn, 2013) used
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robots to manipulate various touch devices to infer the scrolling dynam-
ics. A differential equation approach provides a universal representation
of the different implementations, even if they did not originally use that
representation internally. This could have a role in intellectual property
disputes, where more objective similarity measures could be proposed,
which are independent of trivial implementation details. The differential
equation approach can also be applied to other mechanisms for presenting
large data spaces, e.g. fisheye lenses (Eslambolchilar and Murray-Smith,
2006).

1.3.7 Homeostasis- and tracking-based interaction

Interfaces can infer the user’s intent based on detection of controlling
behaviour, as developed in (Williamson and Murray-Smith, 2004; ?) and
built on by (Fekete, Elmqvist and Guiard, 2009). These models can either
be set up as pursuit/tracking tasks or as homeostatic tasks, where the
goal is to stabilise the system. These can be used in security-sensitive
interactions to make the visibility of a user’s actions irrelevant without
knowing the state of the display. It can also be used with unconven-
tional sensing configurations, and has recently been further developed as
a promising approach for eye tracking and gestural interaction based on
body tracking, e.g. (Clarke, Bellino, Esteves, Velloso and Gellersen, 2016)
and (Velloso, Carter, Newn, Esteves, Clarke and Gellersen, 2017).

1.4 Fitts’ Law results from a control perspective

The speed/accuracy trade-off has been a staple topic for the HCI com-
munity, with much of the attention focussed on Fitts’ law (Fitts, 1954;
Fitts and Peterson, 1964). Chapter 7 of (Schmidt and Lee, 2005) and
(MacKenzie, 1992) provide good reviews. Fitts proposed that the time
(MT ) to move to a target area is a function of the distance to the target
(A) and the size of the target (W ),

MT = a+ bID, (1.5)

where ID is the Index of Difficulty

ID = log2

(
2A

W

)
. (1.6)

Movement times and error rates are important aspects of human interac-
tion, but they do not provide a complete picture.

A feedback control based explanation was provided in 1963 by Cross-
man and Goodeve, reprinted in (Crossman and Goodeve, 1983), where
they suggested that Fitts’ Law could be derived from feedback control,
rather than information theory. They proposed that there would be a bal-
listic, open-loop phase followed by a closed-loop homing-in phase. This is
sometimes called the iterative-correction model. kinematic records of sub-
ject movements, however, tended to only have one or at most two correc-
tions, so an alternative was proposed in Meyer’s optimised-submovment
model(Meyer, Smith, Kornblum, Abrams and Wright, 1990). Meyer et al.



16 Control Theory, Dynamics and Continuous Interaction

proposed that the time (MT ) to move to a target area is a function of the
distance to the target (A) and the size of the target (W ), MT = a+bID,

where the index of difficulty, ID = ( A
W

)
1
n , where n relates to the upper

limit on submovements. n = 2.6 minimised the RMS error. A number of
authors have already related Fitts’ Law to basic control models, including
(Connelly, 1984; Cannon, 1994). Here, we follow the presentation in (Ja-
gacinski and Flach, 2003) to demonstrate that Fitts’ law results can be
derived from first-order control behaviour. They propose that the change
in position from the home position to a target be viewed as a step change
in reference variable r. They use a simple first order controller composed
of a gain k and integrator. ẋ = Bu, where the control signal u = r − x,
and B = k. If we imagine a step change, r from initial state x = 0, then
the response of the first order lag will be an exponential response

x(t) = r(1− e−kt).

For a target sized w centered on r, then the time taken to get within 1
2
w

of r is

x(t) = r − 1

2
w

r(1− e−kt) = r − 1

2
w

e−kt =
w

2r

−kt = ln
w

2r

t = − 1

k
ln
w

2r

which, after converting to a base 2 logarithm, via loga x = ln x
ln a

, is

t =
ln 2

k
log2

2r

w
, (1.7)

which is similar in form to Fitts’ ID, in equation (1.6). The gain k affects
the speed of acquisition – the time constant for such a first order lag is
1
k

, the time it takes to reach 63% of the steady state response.

1.5 Models

Models can be used to create the controllers, or can be directly incorpo-
rated into the controller. In some cases the controller can be seen as an
implicit model of the system and environment (Conant and Ross Ashby,
1970; Eykhoff, 1994). In many areas of HCI research we need to compare
user behaviour to some reference behaviour. How similar are two tra-
jectories? Use of simple Euclidean distance measures between two time
series can lack robustness, especially as the dimension increases, or faced
with timing variability. However, if we can identify model parameters for
a specific user, we can calculate the likelihood of model parameters given
the observed data, which can be more robust in some cases.
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1.5.1 Models of the human – human limitations

Models of the capabilities and limitations of humans in interaction loops
are well established in the research literature. From a control perspective,
key elements relate to the bandwidth a user can control, delays due to
cognitive processing time and neuro-physiological response times. A more
challenging area for HCI researchers is that of prediction or anticipation,
as it can be more difficult to measure and control for in experiments.

1.5.1.1 Prediction/anticipation by the human Humans can look ahead
from their current state, and predict how their current state and con-
straints between them and their target will affect their ongoing behaviour.
There will, however, be uncertainty in these predictions. The uncertainty
will depend on user skill, sensing uncertainty, external disturbances and
context. The prediction horizon is typically associated with the time
needed to process the information and act such that problems at the
prediction horizon are avoided, rather than being a fixed distance ahead,
akin to the stopping distance for a car increasing with increasing speed.

Can predictive control models explain, e.g. the change in steering task
performance when the constraints are widening or narrowing? A model-
predictive control with state uncertainty and a prediction uncertainty
increasing with the prediction horizon will typically have a distribution
of future trajectories, and if a certain probability threshold of breaching
the constraints is crossed, then the user needs to change behaviour, by
reducing speed, or changing direction. For example, in Fig. 1.8 you can
see that, in the case of a widening tunnel, the predictions are all within
the tunnel, whereas a narrowing one has some breaching the constraints,
forcing the user to slow down. Similarly, if the curvature of the reference
trajectory increases, for a fixed tunnel width, then we would expect an
impact on performance because of the impact of uncertainty in timing on
control actions being greater in high curvature, narrow regions.

Fig. 1.8. Impact of prediction horizon and narrowing straight tunnel. The same
variability that can be contained in a widening tunnel will breach the con-
straints of a narrowing one.

The ability to adapt can depend on whether the task is one of forced
or unforced reference following. In unpaced tasks, users can increase speed
and accuracy, as their preview increases. In forced pace tasks, their speed
cannot change, but their accuracy improves if their preview increases
(Poulton, 1974).

1.5.1.2 Speed/accuracy/effort trade-offs A further key area is how hu-
mans typically make trade-offs when they are asked to maximise different
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aspects of a cost function. Speed, accuracy and effort are typically mu-
tually conflicting objectives. Azzopardi’s chapter in this volume, on the
use of economics models in information retrieval describes examples of
users making trade-offs between effort and performance. (Guiard and Ri-
oul, 2015) explore the tradeoffs between speed and accuracy in pointing.
(Shadmehr, Huang and Ahmed, 2016; Apps, Grima, Manohar and Hu-
sain, 2015; Rigoux and Guigon, 2012) explore the role of effort in human
performance. (Lank and Saund, 2005) consider sloppiness in interaction.

1.5.2 Models of the computer

The block diagram representation of control loops in engineering is in-
tended to indicate their modularity and independence. It shows how
groups of components in a feedback loop can be exchanged with oth-
ers. An important assumption here is that when we change one block,
other blocks remain the same. Such independence would be very valu-
able for system designers, as if an input device were changed from e.g.
a mouse to a joystick, we could then predict the overall change to the
system behaviour. With human controllers, however, this is often not the
case because of the human ability to predict and adapt.

Part of the rationale for taking a control perspective is that we want
to get away from the notion that behaviour is a simple response to a
stimulus. In reality, the actions shape the environment, and agents of-
ten seek out stimulation. A problem with the reductionist approach is
that it separates perception and action (in experiments and in theories).
This often happens in HCI, where people will treat inputs and outputs
separately.

Treating the system as a ‘Black box’ in a behaviourist manner means
you just look at inputs and outputs, or you can break the process into
stages – the information-processing perspective. If feedback is considered,
it is often treated in a peripheral manner, and does not affect the experi-
ment design. The key issue is that the 3rd and 4th diagrams are essentially
the same – the circular perspective shows how the boundaries between
elements become blurred and the emergent dynamics become the focus
of interest. This becomes even more tricky to disentangle once we bring
human predictive ability into the analysis.

The Joint Cognitive Systems approach examines the behaviour of the
whole closed–loop system, and (Hollnagel and Woods, 2005) criticise the
information theoretic approach. They point out that decomposition of
block-diagrams, as used with engineering systems can be problematic
when humans are involved, because humans are not fixed technical sub-
systems – they will adapt their behaviour to take into account the change
in the computer system around them. This is well documented in McRuer
et al.’s crossover model, described in (Sheridan and Ferrell, 1974; Jagacin-
ski and Flach, 2003; McRuer and Jex, 1967), where pilots would adapt
their behaviour YH so that even with unstable controlled dynamics, the
overall closed-loop behaviour near the ‘crossover frequency’ ωc remained
close to a ‘good’ servo reference behaviour
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Fig. 1.9. Separation of cause and effect in the human–computer interaction loop
is fundamentally problematic. (Adapted from (Jagacinski & Flach 2003)).

YHYC ≈
ωc exp(−jωτε)

jω
,

despite changes in the aircraft dynamics (YC). τε represents the effec-
tive time delay, combining reaction delay and neuromuscular lag. Young
provides a wide-ranging review on how the human can adapt in man-
ual control contexts, highlighting the challenges in understanding human
adaptation in complex failure settings (Young, 1969).

1.5.3 Adapting the interface dynamics

The dynamics of the computer can be adapted to try to make the task
easier for the user. This includes ‘sticky mouse’ dynamics, magnification
effects, inertia, fisheye lenses and speed-dependent zooming.

Attractors, in dynamic systems can be used to describe or implement
sticky mouse dynamics, or bounce-back on images (Cockburn and Firth,
2004). (Cho, Murray-Smith and Kim, 2007) used dynamic attractors to
implement a tilt-based photo browser for mobile phones. Control–display
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ratio adaptation (Blanch, Guiard and Beaudouin-Lafon, 2004; Casiez, Vo-
gel, Balakrishnan and Cockburn, 2008) can be viewed as having spatially
varying dynamics. Resizing the area around the target (Grossman and
Balakrishnan, 2005) provides different feedback to the user and alters
the effective dynamics. Enhancing pointing (Balakrishnan, 2004). Nega-
tive inertia (Barrett, Selker, Rutledge and Olyha, 1995) can be described
as adding a lead term to the the system dynamics. Accelerating touchpad
(Yun and Lee, 2007). (Shadmehr, 2010) looks at the temporal discounting
of rewards in effort trade-offs.

1.5.3.1 Shared control The control representation is well suited to mak-
ing clear how different control elements, whether human or automatic, can
be combined to shape the closed-loop behaviour.

The contribution from different controllers can be separated out in
time, via switching processes, or by frequency, via hierarchical structures,
or blending mechanisms. One approach of special relevance to HCI is the
H-metaphor (Flemisch, Adams, Conway, Goodrich, Palmer and Schutte,
2003) which proposes designing interfaces which allow users to have flex-
ibility to switch between ‘tight-reined’ or ‘loose-reined’ control – in other
words, increasing the control order and allowing variable levels of auton-
omy in different contexts.

1.6 Limitations of the control perspective for HCI

However, although almost any HCI task has a control interpretation, the
natural question is whether the gain in using the concepts and tools of
control theory provides a significant advantage? There are key differences
from the traditional control domain, where most of the dynamic complex-
ity was in the controlled system and disturbances applied to it, whereas
with HCI most of the complexity is in the human controller. The human
is a complex hierarchical controller, rapidly changing goals and working
at a range of levels on a range of activities in any given period of time,
subject to a wide range of external disturbances and internally generated
variability.

The focus on feedback control has often overshadowed the strong feed-
forward/predictive effects apparent in human behaviour on typical tasks.
Humans are proactive and in realistic settings they tend to anticipate
issues, rather than being purely response-driven. As (Kelley, 1968) dis-
cusses, mathematical models of human control behaviour often under-
played the richness of human sensing. Will the recent developments in
agents which can learn to link rich visual perception to action via deep
convolutional networks (Mnih, Kavukcuoglu, Silver, Rusu, Veness, Belle-
mare, Graves, Riedmiller, Fidjeland, Ostrovski et al., 2015) change the
nature of these models?

1.6.1 User heterogeneity and task uncertainty.

A lot of the early work in manual control was focussed on well-trained
pilots or drivers of vehicles which were already highly constrained in
terms of viable state spaces. How much of this can we translate to the
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modern world of human-computer interaction, where designers need to
design for a wide range of user skill levels, where the control tasks are
being used primarily to transmit information, and are subject to rapid
changes of reference, as the user changes their goals with exposure to new
information?

A key difference between human and automatic control is that the
human controller is continually going through a process of goal concep-
tion and selection (Kelley, 1968), whereas automatic control systems tend
to have stable goals and cost functions. A further difference is that tra-
ditional control theory tended to have fairly simple cost functions and
simple sensing. Given the complexity of human behaviour we can also
question whether the complexity is in the motor control algorithm, the
body dynamics, sensory perception or the nature of a possible cost func-
tion in the brain.

1.7 Conclusions

We argue that all fundamental building blocks in human–computer inter-
action have a control loop component to them – all information transfer
in HCI is via control loops.

Control theory provides theoretical concepts which can provide HCI
researchers and practitioners with different ways of conceiving and fram-
ing interaction problems, e.g. control elements such as state, input, order,
feedback, prediction and goal, as well as practical tools for analysing, de-
signing, measuring and documenting working interactive systems.

This gives researchers new formal analytic tools for research into the
details of interaction. It also prompts us to contemplate the foundations
of human–computer interaction. A key challenge, however, is the care
that needs to be taken with translation of control concepts from engi-
neering contexts, where the control is predominantly automatic, to the
HCI context where the control is predominantly human. The human abil-
ity to learn, predict and adapt control behaviour means that many of the
modular representations of control blocks from engineering are no longer
valid. For researchers in Computational Interaction, the control loop per-
spective reminds us that the important thing is the closed-loop dynamic
behaviour. Breaking parts of the process down and analysing these in de-
tail in a stimulus–response manner can give a false impression of rigour,
as once the overall context changes, or as the user’s skill level increases,
or the computer interface changes, their behaviour will also change.

1.7.1 Future research challenges

Coping with high-dimensional input: A recent challenge to HCI has
been how to use sensed human motion as the basis for useful interac-
tion. Recent improvements in sensor technology support the availabil-
ity of high-dimensional sensor streams which could enable natural user
interfaces, but designers have struggled to convert this to usable inter-
action. At the core of any successful mapping of rich, high-dimensional
data to user-controllable systems will be the creation of mappings to
low-dimensional spaces that users can control. This process has a lot in
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common with concepts which recur in the chapters of this edited volume:
distance measures, cost functions, inverse problems and optimisation. Us-
ing computationally complex systems such as deep convolutional neural
nets to analyse a series of images and classify these into different perceived
behaviours is an example of dimensionality reduction. To become useful
interaction, however, we need to be able to take these and turn them into
control loops with appropriate feedback and associated decision logic for
state transitions in the system.

Embedding control tools in development environments: An
important practical challenge is to enhance the support for control-theoretic
design tools and visualisations within the typical development environ-
ments used by HCI researchers and developers.

Control models are not just analytic, they are generative models which
can create the behaviour in real-time – we can create control agents that
can be released in the testing phase to predict performance (time and
error rates) on a given interface. This fits well with recent developments
in instrumented interaction and simulation environments for AI systems,
such as OpenAI’s Gym5 or Google Deepmind’s Lab 6. These will poten-
tially allow us to acquire large amounts of natural interaction behaviour,
and use machine learning tools to learn and test dynamic systems which
replicate human control behaviour which includes the impact of visual
perception.

5https://gym.openai.com/
6https://deepmind.com/research/open-source/open-source-environments/
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