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Abstract: TheLocal Model Networks (networkscomposed of locally accurate models, wherethe
output isinterpolated by smooth locally active basis functions) described in this paper provide a
solid basisfor practical modelling tasks. The architecture benefits from being able to incorporate
Fuzzy, Neural Network and conventional System Identification methodol ogy and experience. The
advantagesof thearchitectureare described, and thetradeoff between L ocal and Global Learningis
investigated. The Local Learning method iscomputationally less expensive and wasfound to |ead
to smoother and moreinterpretable solutionsthan global learning. Theresultsareillustrated witha
robot actuator modelling problem.

1. Introduction

Modelling nonlinear dynamic systems from observed data and a priori engineering knowledge is a mgjor
area of science and engineering. In recent years agreat deal of work has appeared in new areas like Fuzzy
Modelling and Neural Networksto complement the previouswork in statisticsand systemidentification. The
recent work, however, often |acks a solid engineering methodology. Neural networks can learn to reproduce
thebehaviour evident intheir training set, but they are usually unableto benefit directly fromapriori knowl-
edge, or to provide good estimates of their accuracy and robustness. Fuzzy systems have a so been heavily
used for modelling non-linear systems with their structure provided by experts for the system, but often
lacked the ability to refine their structure (membership functions, rules) in a data driven manner, meaning
that much of the development time is then spent ‘tweaking’ parameters.

TheL ocal Model Net isproposed asauseful hybrid method incorporating the advantages of thevariouspara-
digms. Thispaper givesan outline of thearchitecture, with an overview of theliteratureand discussesavaria-
tion in the learning algorithm for the networks local model parameters.

2. From Basis Function Netsto L ocal Model Nets

2.1 Basis Function Nets

Thebasic BF Netisshown in Figure 1. The output isalinear combination of many locally active non-linear
basisfunctions. Each unit’'scentreisapoint intheinput space, and the receptivefield of the unit (the volume
of theinput spacetowhichit reacts) isdefined by itsdistance metric. Thebasisor activation function (similar
to the membership function of afuzzy set) of the unit iscomposed of two elements: Thedistance metric d(x),
which can scale and shape the spread of the basisfunction relativetoitscentre C, and thebasisfunctionitself
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¢(d(x)), whichtakesthedistancemetric asitsinput. They are usually chosen so that the activation monotoni-
cally decreasestowardszero astheinput point movesaway fromtheunit’scentre, e.g. B-Splinesor Gaussian
bells are common choices. Radial Basis Function (RBF) nets are the most straightforward, and most com-
monly used types of Basis Function networks.

Basis Function
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Figure 1: A Basis Function Network

If the units have localised receptive fields, and alimited degree of overlap with their neighbours, the unit’s
weights can be viewed as locally accurate piecewise constant models whose ‘validity’ for agiveninput is
indicated by their unit's own activation functions for a given input. The simple single layered structure of
Basis Function nets leads to a higher level of transparency than with Multi-Layer Perceptrons (MLP's).

The sum of the basisfunctions at any point in the input space should be unity. Thisisusually impossibleto
achievein practice (given ahigh degree of flexibility in where the centres can be), but one optionisto artifi-
cialy normalise the output from the basis functions. Thisensuresthat the basi sfunctions perform apartition
of unity, and ensures that the function is able to represent the mapping without containing oscillations due
to the basis functions not adding to unity.
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Basis Function Networks and their equivalents have been used for function approximation and modelling
in various forms for many years: Potential Functions [Aizerman 64], Kernels and Spline Models [Wahba
92] areadl similar structures. [Poggio 90][Giros 93] describe the networks within the mathematical frame-
work of regularisation theory for function approximation. Recently BF neural networks have received a



growing amount of attention from the neural network community [Broomhead 88][Moody 89][Jones
89][Hlavackova 92][Pantaleon 93]. Use of RBF nets for modelling and control purposes is described in
[Chen 91][Sanner 92][Sbarbaro 92][R6scheisen 92]. [Leonard 92] shows how local confidence limits can
be calculated with basis function nets.

Fuzzy Systems can also be viewed as Basis Function networks, as the membership functions for the rules
are active in a limited area of the input space, and are analogous to the basis functions, while the weights
can be viewed as the consequence part of the fuzzy rules [Jang 93][Hunt 94].

Basis Function Networks for Modelling

The modelling problem as seen in this paper is to try to robustly approximate a given non-linear dynamic

system from observation data. The assumption made is that the system can be modelledas y = f (x), some
function f(x) of the inputs X, subject to a measurement error ¢, so that the true outputsyare: y = f (x) + «.

For dynamic systems x will contain the previous inputs and outputs: X, = Y, _1, -, Y Ug_1s -0 Up_py

The learning task is therefore to try to adapt the structure and parameters of the Basis Function net to minimise
a cost function related to the deviation of the model from the target system. The optimisation of the weights
(in this paper weights are the parameters weighting the effect of the basis functions on the output and do not
include the basis function parameters, the centres and widths) isa linear process and relatively straightfor-
ward, while the optimisation of the basis functions is a difficult nonlinear problem, where ad hoc methods
of reducing the complexity play an important role.

Partitioning the input space — The concept of locality

An intrinsic feature of the Basis Function networks is the concept of locality. In linear systems, the data, opti-
misation and validation are all considered to be globally relevant, i.e. any results obtained are valid over the
entire input space. For non-linear systems, however, (especially when multivariable) it makes a great deal
of sense to partition the input space into multiple subspaces. This can involve a reduction of the problem’s
dimensionality by decomposing the problem, discarding irrelevant interactions, or of simply partitioning the
input spaces into subspaces which are easier to handle —the traditional ‘divide and conquer’ strategy inherent
to local modelling techniques, such as basis function nets. The problem with standard basis function networks
is that the crudeness of the local approximation forces the system to use large numbers of basis function units
to approximate a given system, leading to computational, transparency and robustness problems (the training
data to train all of the units has to be available!). This is especially true for higher dimensional problems. It
is therefore important to be able to profit from the local nature of the basis functions while not requiring too
many units. This implies that the basis functions should be associated with more powerful representations
than piecewise constant models, so that a smaller number of them could cover larger areas of the input space
with sufficient accuracy.



2.2 Local Model Basis Function networks

The standard basis function network can therefore be generalised to allow not just a constant weight
associated with each basis function, but also a function of the inputs, so that the network can be described

M
intheform: y = Z ¢i(d(x; c, oi)) - f(x; w;). This can then be viewed as a decomposition of the complex,
i=1
nonlinear system into a set of locally accurate submodels which are then smoothly integrated by their
associated basisfunctions. Creating black-box models from local models provides an interface between the
experimentally biased research world of neural networks with the more rigorous results from statistics and
system identification, creating apowerful structure which can benefit from the years of analysisand experi-

ence with linear systems.

<>

Figure 2: The Local Model Basis Function network

Literature of local model methods in learning and modelling

Theideaof using local modelswithin abasisfunction network has been suggested in several papers, but has
only recently started to gain momentum. It was suggested in [Jones 89] and followed up by [Stokbro 90] and
[Barnes 91]. The Adaptive Expert networks in [Jacobs 91] are essentially local model systems, where the
local modelsare called * expert networks' and the partitions are made by ‘ gating networks'. Bottou and Vap-
nik discussthe advantages of local representationsin [Bottou 92], wherethey suggest that a proper compro-
mise between local and global methodswill usually prove most effective asvarying levelsof complexity are
required throughout theinput space, although they claim that the ‘local capacity’ should match the dataden-
sity, whichisnot necessarily true —the more general goal isthat the learning system should match the ‘local
complexity’.

Theideaof using locally accurate model sisal so described inthe statistical literaturein[Cleveland 88], where
local linear or quadratic models are weighted by smoothing functions. [Atkeson 90] reviews the literature
of local learning, with examplesfrom statistics dating asfar back as1912! Two of themain workersin recent
years applying local model systems for diagnosis, modelling and control have been Johansen and Foss in



Trondheim [Johansen 92A, 92B, 92C, 93A, 93B, 94] & [Foss 93, 94]. [ Skeppstedt 92] also describesthe use
of local dynamic modelsfor modelling & control purposes, but with step-like transfers from one model re-
gime to the next. The methods of Takagi and Sugeno [Takagi 85] for Fuzzy Systems are also effectively
piecewise linear models, with the fuzzy interpolation between models provided by the membership func-
tions. Similar applications are reported in [Sugeno 88] and [Foss 93].

3. Structure Initialisation & Optimisation

Structure optimisation is the most important aspect of the learning process for local model networks, but is
not emphasised in this paper due to lack of space. The most relevant aspects will be briefly described.

The advantage of Basis Function networks is that the nonlinearity is alocalised one. This provides advan-
tages for learning efficiency, generalisation and transparency. It is, however, very difficult to automatically
find the‘correct’ level of locality for agiven subspace of an arbitrary problem, because he concept of ‘local-
ity’ isobvioudly relative, depending on the complexity of the system, the availability of training data, the
importance of the given area of theinput space, and, importantly for models, a priori knowledge of internal
structures within the given system.

If the user already has a priori knowledge about the system being modelled, this could be used to define or
initialise the basis function partition. (The use of such physically based knowledge makes the model more
easily interpretable and also makes on-line adaptation of the system’s parameters much more feasible). As
mentioned earlier, some classes of fuzzy systems can also be viewed as Basis Function models. Therelation-
ship to fuzzy systemsisinteresting, asaninitial partition of the input space can then be supplied in the form
of linguistic rules and membership functions. Once this initial partition of the input space has been com-
pleted, the consequence of each node can be alocal model network which learns the remaining structural
details by a data-driven structure adaptation algorithm.

4. Weight Optimisation: Local L earning versus Global Learning

4.1 Estimating the pseudoinverse with Singular Value Decomposition

The optimisation of the weights in a Basis Function network is a straightforward application of Linear Re-
gression techniques, and asthe optimisation problem islinear in the parameters, the global minimum should
always be found. The generalised form of linear parameter identification used for systems such as Basis
Function netsisGeneral Linear Least Squaresfitting. Here, alinear combination of M basisfunctions(which
can be asnonlinear asyou like!) of the actual inputsx is optimised with respect to agiven cost function. The
general BF net system is shown below:

M N
y(x) = ZWK @k(d(x; Cp ok)),orinmatrixform,forallinputsinthetrajningset: Y = @W . Thetrain-
k=1

ing problem for a given set of basisfunctions can be viewed as finding the solution of W to the linear equa-
tions, where @ isthe design matrix, and where we haveto find the best set of weightsW. Oneway of finding
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the weights is to cal culate the Moore-Penrose pseudoinverse of &, @ © = [dﬁT@] @T. The weights W

canthenbecaculaedasw = @ * - y . For local modd networkswith linear local models, the basis func-
tions are extended (producing M(n+ 1) basis functions) by multiplying the basis function by the inputs:

n
Pygrn = ¢k(d(X; Cio Gk)) ' [Wo + Z Xlek:|

k=0

Using Sngular Value Decomposition to find the weights

Thetask of matrix inversion isimportant for the optimisation process. The algorithm used in thiswork, Sn-
gular Value Decomposition (SVD) of amatrix of observed input data, isan important step to the robust es-
timation of the parametersfor ageneralised linear |east squares system. It isrobust because it can cope with
singular or poorly conditioned matrices. Thea gorithm also deliversimportant information about the signifi-
cance of the result and the importance of the various basis functions used in the model. The SV D algorithm
decomposes any NxM matrix @ to matrices U (NxM column orthogonal), S (MxM diagonal) and V (MxM
orthogonal), such that @ = U-S-VT. More detailed descriptions of the algorithm are given in [Golub 89] or
[Press 93]. The decomposition has the form:

(D1(X)) Py(Xg) - Ppy(Xy)) - N - w
D,(Xy) DPy(Xy) ... Py(Xy) - |
S1
S
P = - @ - U 2 VT
Sn
D(Xy) Po(Xp) - Py(Xp) L J L J

alowing the pseudoinverse to be easily calculated: @+ =V - [diag(l/si)} - UT, so the weights are;
W=a@Ft-y=V- [diag(l/si)] -UT -y

4.2 Local learning

Theoptimisation processdescribed above assumed that all of theweightswoul d be optimised simultaneously
with a single pseudoinverse calculation. This is not always computationally feasible if a large number of
training patterns or local models are needed for a particular problem. A further problem is that the global
nature of the observation can lead to thetrained network being lesstransparent, asthe parameters of thelocal
models cannot be interpreted without considering the effect of neighbouring nodes. Even with a robust
method such as SVD, the ‘optimal’ network parameters may consist of delicately balancing large positive
and negative weightswhich minimisethe output error on the training set, but which are not robust when con-
fronted with new examples.



The dternative to global learning isto optimise each local model independently. The potential advantages
are:

* thereisless computational effort involved, so learning is faster.

« the final network will perform worse on the training data, but will be a smoother approximation to the
physical system than the globally trained model.

» different local model s can use different optimisation algorithms (especially important for varyingapriori
algorithms which are not linearly optimisable).

* there is less interference and cooperation between models during the learning process, making locally
trained models more independent, which could possibly be useful for algorithms for on-line learning.

4.2.1 Weighted least squares optimisation for local learning

In many learning situationsthere are areas of theinput space which are lessimportant than others, either be-
cause the system spends most of its time in one particular operating regime, or because a particular aspect
of the system ismore interesting than others. It isalso common to have varying level s of measurement accu-
racy in different areas of the input space. It istherefore important to be able to weight pointsin the training
set to have more or less significance, depending on their location. The general term for thistype of optimisa-
tionfor linear optimisation techniquesiswei ghted |east squares. The cost functionisscaled by theweighting

N T N
function Q(x), withcost J: J = Nl[<Y - Y) Q(Y - Y)] so that the form of the optimisation equation
|

is W = [(PTQ@]_lprQY .

Weighted L east Squares optimisation is useful for local learning asagiven local model’s basisfunction can
be used to define that model’s relevance for any given input. The weighting function is therefore directly
based on the model’s basis function Q(x) = ¢( d(x) ). The local learning method is therefore to compute M
pseudoinverses, onefor eachlocal model, using only thetraining datawithin the model’sreceptivefield. The
analogous method for straightforward RBF networks would be to set the weight of a unit to the average of
thedatapointsinitsreceptivefield, asin[Pantaleon 93]. It should be noted that thelocal optimisation method
requires the partition of unity property which can be achieved by normalising the basis functions.

Computational effort

The effort needed to find the pseudoinverse using SVD for a (p X @) matrix is roughly O(p2eq + peg? +
min(p,q)3) [Noble88]. Intermsof theinformation matrix for abasisfunction network, p relatesto the number
of training pointsand gisthe number of basisterms(inalocal model structure M, the number of local models,
X n, the number of parameters in the local models). The cubic term shows the importance of the smallest
dimension of the matrix on the complexity of the cal culation. Asthe set of linear equations should be overde-
termined, the smaller number is going to be g, representing the number of basis elements, and thisimplies
that the number and complexity of local modelsisthe crucial factor with regard to computational effort.



The computational effort required for the two possibilitiesis shown by Ogjobal Wherep=Nand g = Menand
Oocal Where p=Ngcal, g=n and whichisrepeated M times. It isdifficult to compare the methods exactly, as
the reduction in the number of training pointsin a particular area is dependent on the problem in question
and will vary for each local model. Qggbal = O(N? (Men)+ N(Men)? + min(N,(Men))3) and

Oocal = O(Me(N2en+ Nen? + min(N,n)3)). Even ignoring the speed-up gained by the reduced number of
points, the local variant will be faster for all M greater than 1.

Modelling Robustness

The most important feature of alearning algorithm isthat it robustly delivers a solution which has as high
alevel of accuracy aspossible, and whichislikely to generalisewell. Thegloba methodsfor linear optimisa-
tionwill givethe optimum it to the datain thetraining set, but will not necessarily generaliserobustly. Large
changesin one area of the input space will affect the model’s performance in other areas.

The smoothness of the resulting model is also important for many applications. In many cases, a smooth
model which hasapoorer |east squares cost is better than a‘ more’ exact but ‘wrinkled’ model. For example,
in model based predictive control, the optimal control setting is often found using gradient methods, which
would then be subject to many local minima and would lead to unreliable control.

Transparency

An oft-cited advantage of local model networksisthat thetrained local models are easier to interpret for the
engineer than other network types because they are already in aform which is more similar to the conven-
tional representations used for dynamic systems. If global training is used, the parameters can often have no
local meaning, asthey depend on interaction with their neighboursto produce the correct model behaviour.
Locally trained local models can beinterpreted independently of al other models, asthey do not depend on
their neighbours. For any point in theinput space the system can show the nearest local model swith parame-
ters, which should help the designer to better understand the physical system and the model.

5. Experimental results

5.1 Static example

Togiveanimpression of theeffect of local learning on thefinal solution of alearning problem, asimple 1-di-
mensional exampleisshown below in figure 3. The left hand side showsthe target function and the trained
network’sresponse. The right hand side shows the normalised basis functions and the associated local mod-
€ls. Theglobal learning solution, part (a), producesthe lowest mean squared error, but the effects of therapid
change in the system output are not contained locally, but affect the model over the whole input space. This
means that more of the globally trained models are less representative of the local behaviour of the model
than the locally trained ones (b), making the network’s parameters less interpretable.



mean squared error = 0.01848 local models with global training
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Figure 3: (a) Globally trained network (b) Locally trained network

5.2 Robot actuator modelling

The robot application described is based on data sampled from a physical system, supplied by Tom Kawli,
SINTEF, Oslo. The application and the data sets have been described for modelling work in [Kavli 92] and
in [Johansen 93B]. A brief overview is given here:

Many industrial robot applications how demand high dynamic accuracy. Model based control schemes have
the potential to improve performance, but the use of hydraulic manipulators has suffered due to the lack of
good nonlinear model sfor the hydraulic components. M odel based control schemeshave been more success-
ful on electric direct-drivearmswhich generally havelow friction and linear actuators. Thegoal of thelearn-
ingtask istoformamodel of theservovalve/actuator system of ahydraulicrobot. Therobotisan ABB Trallfa
TR4000 Robot, specially designed for spray painting, where tracking accuracy over adesired tragjectory is
extremely important. The control signal u is described as a function of the joint position g, velocity g and

accelerationd: U = u(q, g, §).

The nonlinearities are due to: (1) the changing moment arm of the cylinder over the operating range, (2) the
nonlinear damping coefficient due to the quadratic flow/pressure relation for turbulent flow and (3) the
changing pressure gain characteristics for the servo valve at different flow rates.

Thedatawas sampled by logging the data at 100Hz, while the manipulator moved along arandomly gener-
ated path. Thevelocity and accel eration signal swere cal cul ated by low passfiltering thedataand differentiat-
ing thejoint positions. Thelinear effectsin the system were subtracted from the datato emphasi sethe nonlin-
earity of the system. The training data consisted of 8000 training points and the test set had 1000 points.



5.2.1 Experimental results

The ASMOD (Adaptive Spline MODe!) results™ are taken from [Kavli 92]. LSA (Loca Search Algorithm)
results * are from [Johansen 93B]. The RBF results were obtained by using a clustering algorithm for the
structure optimisation, and an active learning agorithm to reduce the number of pointsin the training set
[Murray-Smith 94]. The training set was reduced to a maximum of 3000 points. The measure used is the
normalised root-mean-square error, for comparison with the earlier work (RMS error divided by standard
deviation of outputs). Error results for the RBF models are given for the full training set (8000 points) and

the test set (1000 points).

Network Error (NRMS)
ASMOD*(Quadrat.) 15% test
ASMOD(Linear) 17% test

LSA* 17% test

RBF globally trained model 149% train 17% test
RBF locally trained model 16% train 19% test

Misualisation of the system.

The following surfaces are representations of the input space as seen through different slices through the
space. Theareasin the corners of the plots are areas where the system had no training data, and are therefore
unreliable. The local model net surfaces below, show the apparent smoothness of the nonlinearity:

Figure 4: (a) Speed and acceleration (b) Position and acceleration (c) Position and speed

Theresultsobtained by theLocal Model Net are comparablewith theresultsquoted inthe original work [Ka-
vli 92] and also with thosein [Johansen 93B]. Theinteresting point isthat the local learning implementation
hardly seems to suffer from the simpler optimisation, when the test results are examined.



6. Conclusions

The local model network provides a useful framework for integrating various areas of modelling research:

» The network structure is more transparent than other architectures (e.g. Multi-layer Perceptrons).

« It allows easy integration of existing models or model structures.

* |t can be pre-structured using fuzzy rules.

» The weight optimisation stage can use standard linear least squares techniques.

» The local nature of the basis functions allows the estimation of local confidence limits on the output.

This paper investigated two ways of optimising the local model parameters, given a particular basis structure.
Global and Local singular value decomposition algorithms were used. The analysis of the computational
complexity shows that local learning is faster than global learning. The structure also allows more flexibility
in the use of optimisation algorithms, which will be especially useful with hybrid model structures which
require nonlinear local optimisation, or on-line learning. A further point is that the locally trained networks
are more interpretable than the globally trained ones, and although producing worst least squares statistics,
deliver smoother models without having to resort to expensive cost functionals as in [Poggio 90][Girosi 93].
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