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Abstract: The Local Model Networks (networks composed of locally accurate models, where the

output is interpolated by smooth locally active basis functions) described in this paper provide a

solid basis for practical modelling tasks. The architecture benefits from being able to incorporate

Fuzzy, Neural Network and conventional System Identification methodology and experience. The

advantages of the architecture are described, and the tradeoff between Local and Global Learning is

investigated. The Local Learning method is computationally less expensive and was found to lead

to smoother and more interpretable solutions than global learning. The results are illustrated with a

robot actuator modelling problem.

1. Introduction

Modelling nonlinear dynamic systems from observed data and a priori engineering knowledge is a major

area of science and engineering. In recent years a great deal of work has appeared in new areas like Fuzzy

Modelling and Neural Networks to complement the previous work in statistics and system identification. The

recent work, however, often lacks a solid engineering methodology. Neural networks can learn to reproduce

the behaviour evident in their training set, but they are usually unable to benefit directly from a priori knowl-

edge, or to provide good estimates of their accuracy and robustness. Fuzzy systems have also been heavily

used for modelling non-linear systems with their structure provided by experts for the system, but often

lacked the ability to refine their structure (membership functions, rules) in a data driven manner, meaning

that much of the development time is then spent ‘tweaking’ parameters.

The Local Model Net is proposed as a useful hybrid method incorporating the advantages of the various para-

digms. This paper gives an outline of the architecture, with an overview of the literature and discusses a varia-

tion in the learning algorithm for the networks local model parameters.

2. From Basis Function Nets to Local Model Nets

2.1 Basis Function Nets

The basic BF Net is shown in Figure 1. The output is a linear combination of many locally active non-linear

basis functions. Each unit’s centre is a point in the input space, and the receptive field of the unit (the volume

of the input space to which it reacts) is defined by its distance metric. The basis or activation function (similar

to the membership function of a fuzzy set) of the unit is composed of two elements: The distance metric d(x),

which can scale and shape the spread of the basis function relative to its centre C, and the basis function itself



�( d(x) ), which takes the distance metric as its input. They are usually chosen so that the activation monotoni-

cally decreases towards zero as the input point moves away from the unit’s centre, e.g. B-Splines or Gaussian

bells are common choices. Radial Basis Function (RBF) nets are the most straightforward, and most com-

monly used types of Basis Function networks.
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Figure 1: A Basis Function Network

If the units have localised receptive fields, and a limited degree of overlap with their neighbours, the unit’s

weights can be viewed as locally accurate piecewise constant models whose ‘validity’ for a given input is

indicated by their unit’s own activation functions for a given input. The simple single layered structure of

Basis Function nets leads to a higher level of transparency than with Multi-Layer Perceptrons  (MLP’s).

The sum of the basis functions at any point in the input space should be unity. This is usually impossible to

achieve in practice (given a high degree of flexibility in where the centres can be), but one option is to artifi-

cially normalise the output from the basis functions. This ensures that the basis functions perform a partition

of unity, and ensures that the function is able to represent the mapping without containing oscillations due

to the basis functions not adding to unity.
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Basis Function Networks and their equivalents have been used for function approximation and modelling

in various forms for  many years: Potential Functions [Aizerman 64], Kernels and Spline Models [Wahba

92]  are all similar structures. [Poggio 90][Girosi 93] describe the networks within the mathematical frame-

work of regularisation theory for function approximation. Recently BF neural networks have received a



growing amount of attention from the neural network community [Broomhead 88][Moody 89][Jones

89][Hlavackova 92][Pantaleon 93]. Use of RBF nets for modelling and control purposes is described in

[Chen 91][Sanner 92][Sbarbaro 92][Röscheisen 92]. [Leonard 92] shows how local confidence limits can

be calculated with basis function nets.

Fuzzy Systems can also be viewed as Basis Function networks, as the membership functions for the rules

are active in a  limited area of the input space, and are analogous to the basis functions, while the weights

can be viewed as the consequence part of the fuzzy rules [Jang 93][Hunt 94].

Basis Function Networks for Modelling

The modelling problem as seen in this paper is to try to robustly approximate a given non-linear dynamic

system from observation data. The assumption made is that the system can be modelled as y^ � f (x), some

function f(x) of the inputs x, subject to a measurement error �, so that the true outputs y are: y � f (x)� �.

For dynamic systems x will contain the previous inputs and outputs: xk � yk�1, ���, yk�n, uk�1, ���, uk�n

The learning task is therefore to try to adapt the structure and parameters of the Basis Function net to minimise

a cost function related to the deviation of the model from the target system. The optimisation of the weights

(in this paper weights are the parameters weighting the effect of the basis functions on the output and do not

include the basis function parameters, the centres and widths)  is a  linear process and relatively straightfor-

ward, while the optimisation of the basis functions is a difficult nonlinear problem, where ad hoc methods

of reducing the complexity play an important role.

Partitioning the input space – The concept of locality

An intrinsic feature of the Basis Function networks is the concept of locality. In linear systems, the data, opti-

misation and validation are all considered to be globally relevant, i.e. any results obtained are valid over the

entire input space. For non-linear systems, however, (especially when multivariable) it makes a great deal

of sense to partition the input space into multiple subspaces. This can involve a reduction of the problem’s

dimensionality by decomposing the problem, discarding irrelevant interactions, or of simply partitioning the

input spaces into subspaces which are easier to handle – the traditional ‘divide and conquer’ strategy inherent

to local modelling techniques, such as basis function nets. The problem with standard basis function networks

is that the crudeness of the local approximation forces the system to use large numbers of basis function units

to approximate a given system, leading to computational, transparency and robustness problems (the training

data to train all of the units has to be available!). This is especially true for higher dimensional problems. It

is therefore important to be able to profit from the local nature of the basis functions while not requiring too

many units. This implies that the basis functions should be associated with more powerful representations

than piecewise constant models, so that a smaller number of them could cover larger areas of the input space

with sufficient accuracy.



2.2 Local Model Basis Function networks

The standard basis function network can therefore be generalised to allow not just a constant weight

associated with each basis function, but also a function of the inputs, so that the network can be described

in the form: y^ ��
M

i�1

�
i
�d�x; ci, �i

�� � fi�x; wi
�. This can then be viewed as a decomposition of the complex,

nonlinear system into a set of locally accurate submodels which are then smoothly integrated by their

associated basis functions. Creating black-box models from local models provides an interface between the

experimentally biased research world of neural networks with the more rigorous results from statistics and

system identification, creating a powerful structure which can benefit from the years of analysis and experi-

ence with linear systems.
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Figure 2: The Local Model Basis Function network

Literature of local model methods in learning and modelling

The idea of using local models within a basis function network has been suggested in several papers, but has

only recently started to gain momentum. It was suggested in [Jones 89] and followed up by [Stokbro 90] and

[Barnes 91]. The Adaptive Expert networks in [Jacobs 91] are essentially local model systems, where the

local models are called ‘expert networks’ and the partitions are made by ‘gating networks’. Bottou and Vap-

nik discuss the advantages of local representations in [Bottou 92], where they suggest that a proper compro-

mise between local and global methods will usually prove most effective as varying levels of complexity are

required throughout the input space, although they claim that the ‘local capacity’ should match the data den-

sity, which is not necessarily true – the more general goal is that the learning system should match the ‘local

complexity’.

The idea of using locally accurate models is also described in the statistical literature in [Cleveland 88], where

local linear or quadratic models are weighted by smoothing functions. [Atkeson 90] reviews the literature

of local learning, with examples from statistics dating as far back as 1912! Two of the main workers in recent

years applying local model systems for diagnosis, modelling and control have been Johansen and Foss in



Trondheim [Johansen 92A, 92B, 92C, 93A, 93B, 94] & [Foss 93, 94]. [Skeppstedt 92] also describes the use

of local dynamic models for modelling & control purposes, but with step-like transfers from one model re-

gime to the next.  The methods of Takagi and Sugeno [Takagi 85] for Fuzzy Systems are also effectively

piecewise linear models, with the fuzzy interpolation between models provided by the membership func-

tions. Similar applications are reported in [Sugeno 88] and [Foss 93].

3. Structure Initialisation & Optimisation

Structure optimisation is the most important aspect of the learning process for local model networks, but is

not emphasised in this paper due to lack of space. The most relevant aspects will be briefly described.

The advantage of Basis Function networks is that the nonlinearity is a localised one. This provides advan-

tages for learning efficiency, generalisation and transparency. It is, however, very difficult to automatically

find the ‘correct’ level of locality for a given subspace of an arbitrary problem, because he concept of ‘local-

ity’ is obviously relative, depending on the complexity of the system, the availability of training data, the

importance of the given area of the input space, and, importantly for models, a priori knowledge of internal

structures within the given system.

If the user already has a priori knowledge about the system being modelled, this could be used to define or

initialise the basis function partition. (The use of such physically based knowledge makes the model more

easily interpretable and also makes on-line adaptation of the system’s parameters much more feasible). As

mentioned earlier, some classes of fuzzy systems can also be viewed as Basis Function models. The relation-

ship to fuzzy systems is interesting, as an initial partition of the input space can then be supplied in the form

of linguistic rules and membership functions. Once this initial partition of the input space has been com-

pleted, the consequence of each node can be a local model network which learns the remaining structural

details by a data-driven structure adaptation algorithm.

4. Weight Optimisation: Local Learning versus Global Learning

4.1 Estimating the pseudoinverse with Singular Value Decomposition

The optimisation of the weights in a Basis Function network is a straightforward application of Linear Re-

gression techniques, and as the optimisation problem is linear in the parameters, the global minimum should

always be found. The generalised form of linear parameter identification used for systems such as Basis

Function nets is General Linear Least Squares fitting. Here, a linear combination of M basis functions (which

can be as nonlinear as you like!) of the actual inputs x is optimised with respect to a given cost function. The

general BF net system is shown below:
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��, or in matrix form, for all inputs in the training set: Y
^
� �W . The train-

ing problem for a given set of basis functions can be viewed as finding the solution of W to the linear equa-

tions, where � is the design matrix, and where we have to find the best set of weights W. One way of finding



the weights is to calculate the Moore-Penrose pseudoinverse of �, �� � ��T
��

�1
�

T. The weights W

can then be calculated as w^ � �
� � y . For local model networks with linear local models, the basis func-

tions are extended (producing M(n+1) basis functions) by multiplying the basis function by the inputs:
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Using Singular Value Decomposition to find the weights

The task of matrix inversion is important for the optimisation process. The algorithm used in this work, Sin-

gular Value Decomposition (SVD) of a matrix of observed input data, is an important step to the robust es-

timation of the parameters for a generalised linear least squares system. It is robust because it can cope with

singular or poorly conditioned matrices. The algorithm also delivers important information about the signifi-

cance of the result and the importance of the various basis functions used in the model. The SVD algorithm

decomposes any NxM matrix � to matrices U (NxM column orthogonal), S (MxM diagonal) and V (MxM

orthogonal), such that � = U�S�VT. More detailed descriptions of the algorithm are given in [Golub 89] or

[Press 93]. The decomposition has the form:
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allowing the pseudoinverse to be easily calculated: �� � V � �diag	1�si

� � UT, so the weights are:

w^ � �
� � y � V � �diag	1�si


� � UT � y

4.2 Local learning

The optimisation process described above assumed that all of the weights would be optimised simultaneously

with a single pseudoinverse calculation. This is not always computationally feasible if a large number of

training patterns or local models are needed for a particular problem. A further problem is that the global

nature of the observation can lead to the trained network being less transparent, as the parameters of the local

models cannot be interpreted without considering the effect of neighbouring nodes. Even with a robust

method such as SVD, the ‘optimal’ network parameters may consist of delicately balancing large positive

and negative weights which minimise the output error on the training set, but which are not robust when con-

fronted with new examples.



The alternative to global learning is to optimise each local model independently. The potential advantages

are:

� there is less computational effort involved, so learning is faster.

� the final network will perform worse on the training data, but will be a smoother approximation to the

physical system than the globally trained model.

� different local models can use different optimisation algorithms (especially important for varying a priori

algorithms which are not linearly optimisable).

� there is less interference and cooperation between models during the learning process, making locally

trained models more independent, which could possibly be useful for algorithms for on-line learning.

4.2.1 Weighted least squares optimisation for local learning

In many learning situations there are areas of the input space which are less important than others, either be-

cause the system spends most of its time in one particular operating regime, or because a particular aspect

of the system is more interesting than others. It is also common to have varying levels of measurement accu-

racy in different areas of the input space. It is therefore important to be able to weight points in the training

set to have more or less significance, depending on their location. The general term for this type of optimisa-

tion for linear optimisation techniques is weighted least squares. The cost function is scaled by the weighting

function Q(x), with cost J: J � 1
Nl
��Y � Y

^�T

Q�Y � Y
^��, so that the form of the optimisation equation

is: W
^
� ��TQ��

�1
�TQY .

Weighted Least Squares optimisation is useful for local learning as a given local model’s basis function can

be used to define that model’s relevance for any given input. The weighting function is therefore directly

based on the model’s basis function Q(x) = �( d(x) ). The local learning method is therefore to compute M

pseudoinverses, one for each local model, using only the training data within the model’s receptive field. The

analogous method for straightforward RBF networks would be to set the weight of a unit to the average of

the data points in its receptive field, as in [Pantaleon 93]. It should be noted that the local optimisation method

requires the partition of unity property which can be achieved by normalising the basis functions.

Computational effort

The effort needed to find the pseudoinverse using SVD for a (p � q) matrix is roughly O(p2
�q + p�q2 +

min(p,q)3) [Noble 88]. In terms of the information matrix for a basis function network, p relates to the number

of training points and q is the number of basis terms (in a local model structure M, the number of local models,

�n, the number of parameters in the local models). The cubic term shows the importance of the smallest

dimension of the matrix on the complexity of the calculation. As the set of linear equations should be overde-

termined, the smaller number is going to be q, representing the number of basis elements, and this implies

that the number and complexity of local models is the crucial factor with regard to computational effort.



The computational effort required for the two possibilities is shown by Oglobal where p = N and q  = M�n and

Olocal where p=Nlocal, q=n and which is repeated M times. It is difficult to compare the  methods exactly, as

the reduction in the number of training points in a particular area is dependent on the problem in question

and will vary for each local model. Oglobal = O(N2 (M�n)+ N(M�n)2 + min(N,(M�n))3)  and 

Olocal  = O(M�(N2
�n+ N�n2 + min(N,n)3)). Even ignoring the speed-up gained by the reduced number of

points, the local variant will be faster for all M greater than 1.

Modelling Robustness

The most important feature of a learning algorithm is that it robustly delivers a solution which has as high

a level of accuracy as possible, and which is likely to generalise well. The global methods for linear optimisa-

tion will give the optimum fit to the data in the training set, but will not necessarily generalise robustly. Large

changes in one area of the input space will affect the model’s performance in other areas.

The smoothness of the resulting model is also important for many applications. In many cases, a smooth

model which has a poorer least squares cost is better than a ‘more’ exact but ‘wrinkled’ model. For example,

in model based predictive control, the optimal control setting is often found using gradient methods, which

would then be subject to many local minima and would lead to unreliable control.

Transparency

An oft-cited advantage of local model networks is that the trained local models are easier to interpret for the

engineer than other network types because they are already in a form which is more similar to the conven-

tional representations used for dynamic systems. If global training is used, the parameters can often have no

local meaning, as they depend on interaction with their neighbours to produce the correct model behaviour.

Locally trained local models can be interpreted independently of all other models, as they do not depend on

their neighbours. For any point in the input space the system can show the nearest local models with parame-

ters, which should help the designer to better understand the physical system and the model.

5. Experimental results

5.1 Static example

To give an impression of the effect of local learning on the final solution of a learning problem, a simple 1-di-

mensional example is shown below in figure 3. The left hand side shows the target function and the trained

network’s response. The right hand side shows the normalised basis functions and the associated local mod-

els. The global learning solution, part (a), produces the lowest mean squared error, but the effects of the rapid

change in the system output are not contained locally, but affect the model over the whole input space. This

means that more of the globally trained models are less representative of the local behaviour of the model

than the locally trained ones (b), making the network’s parameters less interpretable.



(a)

(b)

Figure 3: (a) Globally trained network (b) Locally trained network

5.2 Robot actuator modelling

The robot application described is based on data sampled from a physical system, supplied by Tom Kavli,

SINTEF, Oslo. The application  and the data sets have been described for modelling work in [Kavli 92] and

in [Johansen 93B]. A brief overview is given here:

Many industrial robot applications now demand high dynamic accuracy. Model based control schemes have

the potential to improve performance, but the use of hydraulic manipulators has suffered due to the lack of

good nonlinear models for the hydraulic components. Model based control schemes have been more success-

ful on electric direct-drive arms which generally have low friction and linear actuators. The goal of the learn-

ing task is to form a model of the servo valve/actuator system of a hydraulic robot. The robot is an ABB Trallfa

TR4000 Robot, specially designed for spray painting, where tracking accuracy over a desired trajectory is

extremely important. The control signal u is described as a function of the joint position q, velocity q
.
 and

accelerationq
..
: u^ � u(q, q

.
, q

..
).

The nonlinearities are due to: (1) the changing moment arm of the cylinder over the operating range, (2) the

nonlinear damping coefficient due to the quadratic flow/pressure relation for turbulent flow and (3) the

changing pressure gain characteristics for the servo valve at different flow rates.

The data was sampled  by logging the data at 100Hz, while the manipulator moved along a randomly gener-

ated path. The velocity and acceleration signals were calculated by low pass filtering the data and differentiat-

ing the joint positions. The linear effects in the system were subtracted from the data to emphasise the nonlin-

earity of the system. The training data consisted of 8000 training points and the test set had 1000 points.



5.2.1 Experimental results

The ASMOD (Adaptive Spline MODel) results * are taken from [Kavli 92]. LSA (Local Search Algorithm)

results + are from [Johansen 93B]. The RBF results were obtained by using a clustering algorithm for the

structure optimisation, and an active learning algorithm to reduce the number of points in the training set

[Murray-Smith 94]. The training set was reduced to a maximum of 3000 points. The measure used is the

normalised root-mean-square error, for comparison with the earlier work (RMS error divided by standard

deviation of outputs). Error results for the RBF models are given for the  full training set (8000 points) and

the test set (1000 points).

Network Error (NRMS)

ASMOD*(Quadrat.) 15% test

ASMOD*(Linear) 17% test

LSA+ 17% test

RBF globally trained model 14% train 17% test

RBF locally trained model 16% train  19% test

Visualisation of the system.

The following surfaces are representations of the input space as seen through different slices through the

space. The areas in the corners of the plots are areas where the system had no training data, and are therefore

unreliable. The local model net surfaces below, show the apparent smoothness of the nonlinearity:

(a)

(b)

(c)

Figure 4: (a) Speed and acceleration (b) Position and acceleration (c) Position and speed

The results obtained by the Local Model Net are comparable with the results quoted in the original work [Ka-

vli 92] and also with those in [Johansen 93B]. The interesting point is that the local learning implementation

hardly seems to suffer from the simpler optimisation, when the test results are examined.



6. Conclusions

The local model network provides a useful framework for integrating various areas of modelling research:

� The network structure is more transparent than other architectures (e.g. Multi-layer Perceptrons).

� It allows easy integration of existing models or model structures.

� It can be pre-structured using fuzzy rules.

� The weight optimisation stage can use standard linear least squares techniques.

� The local nature of the basis functions allows the estimation of local confidence limits on the output.

This paper investigated two ways of optimising the local model parameters, given a particular basis structure.

Global and Local singular value decomposition algorithms were used. The analysis of the computational

complexity shows that local learning is faster than global learning. The structure also allows more flexibility

in the use of optimisation algorithms, which will be especially useful with hybrid model structures which

require nonlinear local optimisation, or on-line learning. A further point is that the locally trained networks

are more interpretable than the globally trained ones, and although producing worst least squares statistics,

deliver smoother models without having to resort to expensive cost functionals as in [Poggio 90][Girosi 93].
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