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Abstract

We extend the standard covariance function used in the Gaussian Process prior nonparametric modelling approach to include
correlated (ARMA) noise models. The improvement in performance is illustrated on some simulation examples of data generated
by nonlinear static functions corrupted with additive ARMAnoise.

1 Gaussian Process priors
In recent years many flexible parametric and semi-parametric approaches to empirical identification of nonlinear systems have
been used. In this paper we usenonparametricmodels which retain the available data and perform inference conditional on the
current state and local data (called ‘smoothing’ in some frameworks). This direct use of the data has potential advantages in many
control contexts. The uncertainty of model predictions canbe made dependent on local data density, and the model complexity
is automatically related to the amount of available data (more complex models need more evidence to make them likely).

The nonparametric model used in this paper is aGaussian Process prior, as developed by O’Hagan [1] and reviewed in [2, 3].
An application to modelling a system within a control context is described in [4], and further developments relating to their use in
gain scheduling are described in [5]. Most previous published work has focused on regression tasks with independent identically
distributed noise characteristics. Input-dependent noise is described in [6], but we are not aware of previous work with coloured
noise covariance functions in Gaussian Process priors.

This paper shows how knowledge about correlation structureof additive unmeasured noise or disturbances can be incorporated
into the model1. This improves the performance of the model in finding optimal parameters for describing the deterministic
aspects of the system, and can be used to make online prediction more accurately. We expect this will make the use of Gaussian
Process priors more attractive for use in control and signalprocessing contexts.

2 Modelling with GPs
We assume that we are modelling an unknown nonlinear system� �� �, with known inputs�, using observed outputs� . These
have been corrupted by an additive discrete-time process� �� �. Here we assume that� �� 	 � and �	 are independent. Let
 ��� 
 � � � � � � � �� , a set of observed data ortargetsbe such that� 	 � � ��	 � � �	 � � � �� � � � � (1)

2.1 The Gaussian Process prior approach
A prior is placed directly on the space of functions for modelling the above system. We assume that the values of the function � ���
at inputs� 
 � � � � � �� , outputs� 
 � � � � � � � , constitute a set of random variables which we assume will have a joint�-dimensional
multivariate Normal distribution. The Gaussian Process isthen fully specified by its mean2 and covariance function� ��	 � �� �.
We note �� 
 � � � � � � � �� � � �� � � � � (2)

where� is the covariance matrix whose entries�	� are given by� �� 	 � �� �. We now have a prior distribution for the target values
which is a multivariate Normal: � �
 � � � �!" �# $% �� �# &% '() *+ �! 
� �#

, � (3)

1See a standard text such as [7] for a discussion of disturbance models in the linear system identification context.
2In what follows, we assume a zero mean process.
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Useful notations What follows is more staightforward if we partition the fullset of points into a training and a test part.
Let 
- � �� 
 � � � � � � � �� , . 
 � �� 
 � � � � � �� �� and - � �� 
 � � � � � �� �� the sets of training outputs, disturbances and inputs
respectively.
- �  / are the corresponding terms for the test data. In this paper we will consider single point prediction, and use
the notation� � 0 
 � 
/ , to indicate that we are predicting the1 � �th point, given the1 training data, and the new input�� 0 
.
We then have * 
 -
/ , � � �� � � � �with covariance matrix� partitioned into � � * � 
 � 
2�2
 �2 , � (4)

where�2
 � ��
2 , and3 �	�
 � �4 �� 	
 � ��
� � �� ��	
 � ��
� are the covariances between the training data (matrix1 5 1 ),3 ��
2 � ��2
 � �4 ��� 0 
 � ��
� � �� ��� 0 
 � ��
 � is the vector (1 5 �) of covariances between the test and the training targets
and3 �2 � �4 ��� 0 
 � �� 0 
� � �� ��� 0 
 � �� 0 
� is the variance of the test point.

We can view the joint probability as the combination of a marginal multinormal distribution and a conditional multinormal
distribution. The marginal term gives us the likelihood of the training data� �
 - � - � � �!" �# 6% �� �# &% '() *+ �! 
 -� �#

 -, � (5)

while the conditional term gives us the output posterior density conditional on the training data at the test points /� �� � 0 
 ��� 0 
 �  - � 
 - � � �!" �# 6%% �� 2 7
 �# &% '() *+ �! �� � 0 
 + 8 �� �#
2 7
 �� � 0 
 + 8 �, � (6)

where 8 � ��
2� #

 
 - (7)�27
 � �2 + ��
2� #

 �2
 � (8)

We use8 as a mean estimate9� � 0 
 for the test point, with a variance of�27
. Note that the inversion of an1 5 1 matrix is
computationally nontrivial for1 : ����, so the GP approach is currently suited to small and medium-sized data sets.3

3 The covariance function
The covariance function has a central role in the GP modelling framework, expressing the expected covariance between two
outputs�	 and�� . The covariance function is constrained to lead to a positive definite covariance matrix for any inputs�. We
view the total covariance as being composed of covariance functions�4 �� due to the underlying system model� �� � and�� ��
due to the noise process�. � �� 	 � �� � � �4 ��	 � �� � � �� �� � ; � (9)

3.1 The ‘model’ covariance function <= >?
The covariance function associated with the ’model’ of the system,�4 , is a function of the inputs� only. We choose this
covariance to be such that inputs ‘close’ together will haveoutputs that are highly correlated and thus are likely to be quite
similar. It corresponds to a prior giving higher probability to functions� �� � which are smoothly varying in�.

A commonly-used covariance function which assumes smoothness is

�4 �� 	 � �� � � @A '() B+ �! CDEF 
 GE ��	E + ��E �2H � IA � (10)

in which3 @A controls the vertical scale of variation of a typical function,3 IA allows the function to be offset away from� and3 GE allow different distance measure for each input dimension.

In practice, a small ‘jitter’,J K	� is added to�4 ��, for numerical reasons (this adds a small diagonal term to� improving the
condition of the matrix). The hyperparametersL4 � �G � @A � IA �� can be provided as prior knowledge, or identified from training
data.

3See [8] for discussion of ways to speed up the inversion.
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3.2 The ‘noise’ covariance function <M >?
3.2.1 Uncorrelated white noise

The simplest choice of noise model is to assume a Gaussian white noise:. � � �� � �� �. In that case, the covariance function is
simply �� ��	 � �� � � N 2O K 	� � (11)

so the noise covariance matrix when predicting a single future point, from� training data is�� � N 2O P with P the1 � � 51 � �
identity matrix.

3.2.2 Parametric correlated-noise models

We assume that correlations between the disturbances on individual outputs exist,� ��� is a coloured noise/disturbance process.�	, the disturbance associated with the point� 	 occurs at time
� 	, and depends on previous values of�. We consider two dynamic

linear models: the auto regressive (AR) and moving average (MA) models separately, and their combination into an ARMA
disturbance model. For such models, the partitioned components of the noise covariance matrix�� areQRS �� 
 � �� �� ��� � � �� � T � UVW � � �� � � � 1 XYZ T � � � � � � 1�� 
2 � �� �� ��� 0 
� � � �� � T � UVW � � �� � � � 1 XYZ T � � � � � � 1�� 2 � �� �� ��� 0 
� � � ��� 0 
�� (12)

whereT is the lag. Example plots of such noise covariance matrices are shown in Figure 1.

AR noise model

The auto regressive model of order�[ , AR(�[ ), can be written� �� � � \ ��� + I 
� �� + �� + ] ] ] + I�^ � �� + �[ � � (13)

where\ is a Gaussian white noise with varianceN 2_ . In transfer operator notation, where` #
 is the delay function,� �� � � �a �` � \ ��� � (14)

where
a �` � � � � I 
` #
 � ] ] ] � I�^ ` #�^ . The covariance function is

�� �T � � QRSI 
�� �T + �� � I2�� �T + !� � � � � � Ib �� �T + �[ � UVW T : �I 
�� ��� � I2�� �!� � � � � � I�^ �� ��[ � � N 2_ UVW T � � (15)

The first�[ elements of the covariance function�� �����[ � are estimated by solving the Yule-Walker equations. The rest by
applying the AR process iteratively.

If identifying the parameters of an AR model of order�[ , there are then��[ � �� parameters to estimate. Note that for the
process to be stationary, the roots of

a �` � � � must lie outside the unit circle, so the optimization process must be constrained.

MA noise model

The MA(�c) model � ��� � \ ��� � d 
\ �� + �� � ] ] ] � d�e \ �� + �c � � f �` �\ ��� � (16)

has the following covariance function

�� �T � � N 2_ QRS� � d2
 � d22 � � � � d2� e UVW T � �d gh g � d 
0 gh gd 
 � d20 gh gd 2 � � � � � d�e # gh gd�e UVW � i �T � i � c (17)

In that case, we see the covariance is zero beyond the order ofthe model (this leads to a band-diagonal noise covariance matrix).

ARMA noise model

The ARMA noise model is a combination of the above� �� � � \ ��� � d 
\ �� + �� � ] ] ] � d�e \ �� + �c � + I 
� �� + �� + ] ] ] + I�^ � �� + �[ � � f �` �a �` � \ ��� � (18)
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3.3 Training: learning the hyperparameters
We have a parametric form for the covariance functions, depending on a set of hyperparametersj . If we take a maximum a
posteriori approach, for a new modelling task we will need tolearn these hyperparameters from the training data. This isdone by
maximising the likelihood of the training data (equation (5)). We used a standard conjugate gradient algorithm.4

In this paper we optimise the hyperparameters related to themodel, but assume prior knowledge of the noise covariance
function hyperparameters.

4 Experiments
We wish to test experimentally whether the extended model improves performance by testing its behaviour on simulated iden-
tification data. We can measure how well we predict the underlying nonlinear function� �� �, and also how well we are able to
simulate the complete process� ��� � �, and make one-step-ahead predictions based on recent observations of the system output.
We also show how the same model can makek-step-ahead predictions.

We illustrate the use of Gaussian process priors with correlated noise models using the simple one-dimensional non linear
function � � lXYm ���, � n �+o � o�. This is a one-dimensional input space, but the approach is straightforward to use for
multiple inputs. We consider the same x-range for both the training and the test sets. In the training set, thestates� have been
randomly chosen from a uniform distribution over

�+o � o�. We train our model using a small set of� � !� points to highlight
the advantages of improved prior knowledge of noise characteristics. We simulate the trained model on 101 points.

The coloured noise is created by filtering a vector of points sampled from a normal distribution with varianceN 2_ � � ��o.
Figure 1 shows the noise covariance matrices associated with the following noise models:3 AR(2): � ��� � \ ��� + � �p� �� + �� + � ��� �� + !�3 MA(2): � �� � � \ ��� � 
2 \ �� + �� � 
q \ �� + !�.3 ARMA(2): � ��� � \ ��� + � �p� �� + �� + � ��� �� + !� � 
2 \ �� + �� � 
q \ �� + !�.
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(a) MA covariance matrix
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(b) AR covariance matrix
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(c) ARMA covariance matrix

Figure 1: Covariance structures for the noise component. Axes show ordered, evenly sampled time steps.

4.1 Results
Figure 2 shows the experimental results. In terms of fit to ’true’ model� ���, the GP with ARMA noise has a r.m.s.e. of� ��roo,
compared to the r.m.s.e. of� �s��o for the GP with white noise. The comparison is plotted in Figure 2(c). We can see that the
more complete model of the covariance between data due to thenoise process in the GP with ARMA has improved our fit to the
underlying nonlinear system, compared to the white noise version.

The r.m.s.e. in terms of fit to the test data in a one-step-ahead prediction is� ��!rr for the ARMA model and� �!t�t for the
white noise model. This shows that the recent data can help predictions significantly, if the noise model is used.

The k-step-ahead prediction is a prediction of individual outputs at time
�
, where the information about the output of the

system after some time
�_�E is not known. Inputs� are assumed known at all times. Figure 2(d) shows how the predicted �

values gradually return to the mean prediction, as the information about the current state of the system becomes more dated
(recent� ’s are used for prediction until

�_�E � to). Note also the gradual increase in prediction uncertaintyover prediction
horizon, until it reaches the uncertainty of predictions with no knowledge of recent� .

4Ideally, for a full Bayesian treatment we should give prior distributions to the hyperparameters and base predictions on a sample of values from their posterior
distribution, as an approximation to integration. Here, wedo not usehyperpriorsbut initialize these hyperparameters.
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(a) GP with ARMA noise one-step-ahead prediction results. Noise
model allows better prediction of test data.
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(b) GP with white noise prediction results. Here, without being
able to correlate recent errors to predict future ones, the accuracy
of prediction is degraded. Note also the unrealistically tight confi-
dence bands.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5
y        
f(x)     
µ ARMA 
µ white
f(x)     

(c) Comparison between GP with ARMA noise and white noise
for mean prediction of= uv w. Use of noise model improves accu-
racy of mean fit to underlying system= uv w. Note small number of
training points (M x yz).
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(d) GP with ARMA noise{-step-ahead prediction results from| x }~. Note how predictions regress to mean, as information
about� becomes dated. Also note the gradual increase in uncer-
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Figure 2: Results for a training set of 20 points for a tanh() nonlinearity and an additive ARMA process, with covariance shown
in Figure 1

5 Conclusions
We have illustrated the use of ARMA coloured noise models forimproving the accuracy of modelling nonlinear systems of the
form � ��� � � �� ���� � � ��� using Gaussian Process priors. The examples used in this paper assumed full prior knowledge of the
parameters of the noise process for clarity of presentation. Given such prior knowledge, the expected improvements were found
in simulated examples.

It is possible to optimise both model parameters and noise parameters simultaneously, and there is scope for much interesting
future work in this area, and the best combination of prior knowledge of model order, and parameters from physical insight into
the system with parameter optimisation will depend on the particular application.

Further extensions would be to go for a more Bayesian approach, place priors on the hyperparameters, and make use of
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numerical integration techniques such as Markov-Chain Monte Carlo (MCMC) to integrate over the parameters, rather than
maximising the likelihood.
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