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Abstract

We extend the standard covariance function used in the @GauBgsocess prior nonparametric modelling approach tadel
correlated (ARMA) noise models. The improvement in perfance is illustrated on some simulation examples of datargeet
by nonlinear static functions corrupted with additive ARMAise.

1 Gaussian Processpriors

In recent years many flexible parametric and semi-paramafproaches to empirical identification of nonlinear systdave
been used. In this paper we usenparametrianodels which retain the available data and perform infexeranditional on the
current state and local data (called ‘smoothing’ in someéaorks). This direct use of the data has potential advastegmany
control contexts. The uncertainty of model predictions lbammade dependent on local data density, and the model cdtyple
is automatically related to the amount of available dataréhomplex models need more evidence to make them likely).

The nonparametric model used in this paper@aaissian Process pripas developed by O’'Hagan [1] and reviewed in [2, 3].
An application to modelling a system within a control contiexdescribed in [4], and further developments relatindhtrtuse in
gain scheduling are described in [5]. Most previous publisivork has focused on regression tasks with independemtiddéy
distributed noise characteristics. Input-dependentenisislescribed in [6], but we are not aware of previous work wéloured
noise covariance functions in Gaussian Process priors.

This paper shows how knowledge about correlation struciedditive unmeasured noise or disturbances can be inaigzb
into the model. This improves the performance of the model in finding optiperameters for describing the deterministic
aspects of the system, and can be used to make online poedictire accurately. We expect this will make the use of Gaussi
Process priors more attractive for use in control and sigraessing contexts.

2 Modeling with GPs

We assume that we are modelling an unknown nonlinear sygtam with known inputse, using observed outpuis These
have been corrupted by an additive discrete-time proe@$s Here we assume thgt(z*) ande’ are independent. Let =
[v*,...,y"]", asetof observed data targetsbe such that

Y= f@) +€ , i=1,...n 1)

2.1 The Gaussian Process prior approach

A prior is placed directly on the space of functions for mdidglthe above system. We assume that the values of the fumic)
atinputsz?, ..., z™, outputsy®, ..., y™, constitute a set of random variables which we assume wit lagjointn-dimensional
multivariate Normal distribution. The Gaussian Procegbés fully specified by its medrand covariance functio6'(z*, z7).
We note

(yla"'nyn)TNN(O:E)a 2

whereX is the covariance matrix whose entri84 are given byC(z?, 7). We now have a prior distribution for the target values
which is a multivariate Normal:

p(ylx) = (2m) 3 |Z| " Zexp [—%yTZ_ly] , ®)

1See a standard text such as [7] for a discussion of distueb@mociels in the linear system identification context.
2|n what follows, we assume a zero mean process.



Useful notations What follows is more staightforward if we partition the figét of points into a training and a test part.
Letyr = [y, ..., v ]%, &1 = [¢',...,e"]7 andxy = [2},...,2"]" the sets of training outputs, disturbances and inputs
respectivelyy,x2 are the corresponding terms for the test data. In this papewilkconsider single point prediction, and use
the notationy™ ¥ = y2, to indicate that we are predicting the+ 1th point, given theV training data, and the new inpuf'+*.

We then have

vt ] ~ N (0, %), with covariance matri partitioned into © = [ 4)

y2
whereXs; = 7, and

Y1 Yo
o1 X2 |’

o XV = Cy(at,2)) + Cu(€l, €)) are the covariances between the training data (mafrix N),

o X, =21 = CraV, 2)) 4+ Cn (", €l) is the vector IV x 1) of covariances between the test and the training targets
and

o 3o = Cr(x™ T2V + Cu(e¥ T, M) is the variance of the test point.

We can view the joint probability as the combination of a nr@@gmultinormal distribution and a conditional multinoam
distribution. The marginal term gives us the likelihood toé training data

N1 1 _
p(yilx1) = (2m)~ %[5 Zexp [_ileE lyl], (5)

while the conditional term gives us the output posteriorsitgrconditional on the training data at the test pois

_Ny 1 1 -
p(yN+1|xN+1,X1,y1) = (271') 2 |E2.1| 2eXp |:_§(yN+1 - /‘)TEZ.i(yN+1 - M) ) (6)
where
po= SHET'n (7)
Soq = N — X7, (8)

We usep as a mean estimal *1 for the test point, with a variance af,.;. Note that the inversion of alV x N matrix is
computationally nontrivial forV > 1000, so the GP approach is currently suited to small and medinettslata set3.

3 Thecovariancefunction

The covariance function has a central role in the GP modgfiiamework, expressing the expected covariance between tw
outputsy; andy;. The covariance function is constrained to lead to a peasiefinite covariance matrix for any inputs We
view the total covariance as being composed of covarianuetiinsC/() due to the underlying system modglz) andC»,()
due to the noise process o o

C(a',a”) = Cy(a", 7)) + Cn(i, 5) 9)

3.1 The‘model’ covariance function C()

The covariance function associated with the 'model’ of tigstam, C¢, is a function of the inputz only. We choose this
covariance to be such that inputs ‘close’ together will haugouts that are highly correlated and thus are likely to bigeq
similar. It corresponds to a prior giving higher probagilio functionsf (x) which are smoothly varying im.

A commonly-used covariance function which assumes smesthis

D
. 1 ) .
Cs(z',2’) = voexp -3 de(mé—xé)z + ao, (10)
d=1
in which

e g controls the vertical scale of variation of a typical fuoctj
e a allows the function to be offset away frobrand
o w, allow different distance measure for each input dimension.

In practice, a small Yjitter',J4;; is added taC(), for numerical reasons (this adds a small diagonal terid tmproving the
condition of the matrix). The hyperparamet&sp = (w, vo, ao)T can be provided as prior knowledge, or identified from tragni
data.

3See [8] for discussion of ways to speed up the inversion.



3.2 The'noise’ covariance function C,()
3.2.1 Uncorrelated white noise

The simplest choice of noise model is to assume a Gausside ndise:e ~ N (0, x). In that case, the covariance function is
simply o g

Cun(e,é) = o287, (11
so the noise covariance matrix when predicting a singleéyoint, fromp training data iy = o2IwithIthe N +1x N +1
identity matrix.

3.2.2 Parametric correlated-noise models

We assume that correlations between the disturbances midimal outputs existe(t) is a coloured noise/disturbance process.
€, the disturbance associated with the pgihbccurs at time;, and depends on previous values ofVe consider two dynamic
linear models: the auto regressive (AR) and moving aver®f®) (nodels separately, and their combination into an ARMA
disturbance model. For such models, the partitioned coemtsrof the noise covariance matbdy are

3N Crn(e(t),e(t+7) for t=1,...N and 7=0,...N
Bn1z = Cu(e@™*),et+7) for t=1,...N and 7=0,...N (12)
Sne = On(e@@™),et™™))

wherer is the lag. Example plots of such noise covariance matrieestaown in Figure 1.

AR noise model

The auto regressive model of ordey, AR(n,), can be written
et) =e(t) —are(t —1) — - —an,e(t — na), 13)

wheree is a Gaussian white noise with variangg. In transfer operator notation, whaye! is the delay function,
e(t) = —relt) (14)
Alg) 7

whereA(q) = 14 a1g~" +--- + an, ¢ ™. The covariance function is

Cn(r) = (15)

a1Cr(T— 1)+ a2Cn (1 —2)+... 4 apCr(7 —ng) for 7>0
a1Cn(1) + a2Cn(2) + ... 4+ an,Cr(na) + 02 for 7=10

The firstn, elements of the covariance functié, (1..n,) are estimated by solving the Yule-Walker equations. Thebes
applying the AR process iteratively.

If identifying the parameters of an AR model of ordey, there are theifn, + 1) parameters to estimate. Note that for the
process to be stationary, the roots4ffg) = 0 must lie outside the unit circle, so the optimization precesist be constrained.

M A noise mode

The MA(n) model
e(t) = e(t) +bre(t — 1)+ - + bnye(t —np) = B(q)e(t), (16)
has the following covariance function

Ch(r) = 03

1+ +b5+...05, for 7=0
17

bir| +biyjrbr +bog b2+ ...+ by, —|rbn, for 1< |7 <y

In that case, we see the covariance is zero beyond the ortlee ofodel (this leads to a band-diagonal noise covariantexna

ARMA noise model
The ARMA noise model is a combination of the above

et) = e(t) +bre(t—1)+ -+ bn,e(t —np) —ar1e(t —1) — - —an,e(t —na) = %e(t), (18)



3.3 Training: learning the hyper parameters

We have a parametric form for the covariance functions, diéipg on a set of hyperparametd?s If we take a maximum a
posteriori approach, for a new modelling task we will neekbton these hyperparameters from the training data. Thlisris by
maximising the likelihood of the training data (equatiol) (Ve used a standard conjugate gradient algorfthm.

In this paper we optimise the hyperparameters related taontbdel, but assume prior knowledge of the noise covariance
function hyperparameters.

4 Experiments

We wish to test experimentally whether the extended modptdires performance by testing its behaviour on simulated-id
tification data. We can measure how well we predict the ugitgrinonlinear functionf(z), and also how well we are able to
simulate the complete procegér) + €, and make one-step-ahead predictions based on recenvatises of the system output.
We also show how the same model can midgep-ahead predictions.

We illustrate the use of Gaussian process priors with catedlnoise models using the simple one-dimensional noarline
functiony = tanh(z), x € [-5,5]. This is a one-dimensional input space, but the approactragktforward to use for
multiple inputs. We consider the same x-range for both thimitig and the test sets. In the training set, st&ese have been
randomly chosen from a uniform distribution o\er5, 5]. We train our model using a small set®f= 20 points to highlight
the advantages of improved prior knowledge of noise charstics. We simulate the trained model on 101 points.

The coloured noise is created by filtering a vector of poiamgled from a normal distribution with varianeé = 0.05.
Figure 1 shows the noise covariance matrices associatadhefollowing noise models:

o AR(2):€(t) = e(t) —0.7¢(t — 1) — 0.1e(t — 2)
o MA(2): €(t) = e(t) + ze(t — 1) + te(t —2).
e ARMA(2): €(t) = e(t) —0.7e(t — 1) — 0.1e(t — 2) + 2e(t — 1) + Le(t — 2).

(a) MA covariance matrix (b) AR covariance matrix (c) ARMA covariance matrix

Figure 1: Covariance structures for the noise componergsAkow ordered, evenly sampled time steps.

4.1 Results

Figure 2 shows the experimental results. In terms of fit ieetmodel f (x), the GP with ARMA noise has ar.m.s.e.@1955,
compared to the r.m.s.e. 6f3005 for the GP with white noise. The comparison is plotted in FégR(c). We can see that the
more complete model of the covariance between data due twtke process in the GP with ARMA has improved our fit to the
underlying nonlinear system, compared to the white noissiae.

The r.m.s.e. in terms of fit to the test data in a one-stepehpeadiction is0.1299 for the ARMA model and).2606 for the
white noise model. This shows that the recent data can helfigtions significantly, if the noise model is used.

The k-step-ahead prediction is a prediction of individual otspat timet, where the information about the output of the
system after some timk,,4 is not known. Inputse are assumed known at all times. Figure 2(d) shows how theqbeeld,
values gradually return to the mean prediction, as the infédion about the current state of the system becomes moed dat
(recenty’s are used for prediction until.,4 = 65). Note also the gradual increase in prediction uncertaingr prediction
horizon, until it reaches the uncertainty of predictionhwio knowledge of recent.

4ldeally, for a full Bayesian treatment we should give primtdbutions to the hyperparameters and base predictinmssample of values from their posterior
distribution, as an approximation to integration. Here deenot usenyperpriorsbut initialize these hyperparameters.
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(a) GP with ARMA noise one-step-ahead prediction resultsisél
model allows better prediction of test data.

15 T

(b) GP with white noise prediction results. Here, withouinige
able to correlate recent errors to predict future ones, ¢toaracy
of prediction is degraded. Note also the unrealisticatipticonfi-
dence bands.

25

y
)
— WARMA oL |
1+ U — — pwhite
fx)
15 B
N
N

~ B

AN 1t |
N

N
| ost ,
ok |
-051 f
I % - |
15 ;5 : 1
oL |

o \ \ \ \ \ \ \ \ \ 25 \ \ \ \ \
%5 -4 -3 -2 -1 0 1 2 3 4 5 0 20 40 60 80 100 120

(c) Comparison between GP with ARMA noise and white noise (d) GP with ARMA noisek-step-ahead prediction results from

for mean prediction off(z). Use of noise model improves accu-

racy of mean fit to underlying systefi{z). Note small number of
training points ©& = 20).

t = 65. Note how predictions regress to mean, as information
abouty becomes dated. Also note the gradual increase in uncer-
tainty to the limit of no recent information.

Figure 2: Results for a training set of 20 points for a tanlof)lmearity and an additive ARMA process, with covarianicevsn

in Figure 1

5 Conclusions

We have illustrated the use of ARMA coloured noise modeldrfgroving the accuracy of modelling nonlinear systems ef th
formy(t) = f(x(t)) + €(t) using Gaussian Process priors. The examples used in trés asgumed full prior knowledge of the
parameters of the noise process for clarity of presenta@ven such prior knowledge, the expected improvemente feemd

in simulated examples.

Itis possible to optimise both model parameters and noissnpeters simultaneously, and there is scope for much sttege
future work in this area, and the best combination of priavidedge of model order, and parameters from physical insigh
the system with parameter optimisation will depend on thréiqdar application.

Further extensions would be to go for a more Bayesian apprgalace priors on the hyperparameters, and make use of



numerical integration techniques such as Markov-Chain tel@arlo (MCMC) to integrate over the parameters, rathen tha
maximising the likelihood.
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