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Abstract: This paper presents aneural network based technique for mapping problem situations to problem solu-
tions for Case-Based Reasoning (CBR) applications. Both neural networks and CBR are instance-based learning
techniques, although neural nets work with numerical dataand CBR systemswork with symbolic data. This paper
discusseshow theapplication scopeof both paradigmscould beenhanced by theuseof hybrid concepts. Tomakethe
use of neural networks possible, the problem'’s situation and solution features are transformed into continuous fea-
tures, using techniquessimilar to CBR’sdefinition of similarity metrics. Radial BasisFunction (RBF) neural netsare
used to create amultivariable, continuousinput-output mapping. Asthe mapping iscontinuous, thistechniquealso
provides generalisation between cases, replacing the domain specific solution adaptation techniques required by
conventional CBR. Thiscontinuousrepresentation also allows, asinfuzzy logic, an associated membership measure
to beoutput with each symbolic feature, aiding the prioritisation of variouspossible solutions. A further advantageis
that, asthe RBF neuronsareonly activein alimited areaof theinput space, the sol ution can be accompanied by local
estimates of accuracy, based on the sufficiency of the cases presentinthat areaaswell astheresults measured during
testing. We describe how the application of thistechnique could be of benefit to thereal world problem of salesadvi-

sory systems, among others.
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1. INTRODUCTION

Case-based Reasoning (CBR) isamethod of using previous
episodesto suggest solutionsto new problems[10]. CBRal-
lowsareasoner to solve problemsefficiently when previous
similar experiences are available. Problem solving using
case-based reasoning usually involves retrieving relevant
previous cases, adapting the solution(s) from the previous
case(s), if necessary, to solve the problem and storing the
current episode as a new case to be used in the future [18].

Artificial Neural Networks are al so instance based learning
systems, which use training sets of examplesin the form of
input-output vector pairs. The networksthen optimise their
parametersand possibly structuretolearn the mapping from
input to output. They work with numerical data, as opposed
to symbolic, and expect the data to be pre-processed to a
form where the Euclidean distance between situations has
as much meaning as possible.

A hybrid approach, combining principles from the two ap-
proaches is described with a suitable application domain,
namely that of sales advisory systems.

2. THE PrOBLEM DOMAIN:
SALES ADVISORY SYSTEMS

In the present business environment, especially in the
manufacturing industry, thefunctionsof salesorganisations
have becomeincreasingly complex as products are becom-
ing multivariant and customer demands high and specific.
Duetotheincreased complexity of salessituations, salesad-
visory systemsareof utmostimportance. Inthiscontext, our
work beginswith areal world problem. Let us consider the
following scenario:

Scenario: A potential customer is looking for an automo-
bile and cannot decide alone which particular model of a
specific automobile manufacturer with what different ac-
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cessoriesto buy. A potential dial ogue between the salesper-
son and customer could be of the following nature:

CO00: Hi! I'm looking for a car for myself.

S01: Hi! What kind of car are you looking for?

CO01: | don't know! Can’'t make up my mind...

S02: Well, never mind! What do you want this car for? [business, home]
CO02: Business & Home

S03: What kind of cars do you prefer? [fast,medium,sl ow]

CO03: Fast

S04: What do you look for in your car? [safety,performance,comfort]
CO04: Performance

S05: How much money would you like to spend?

CO05: approx. 70000 DM

S10: What profession are you in?
C10: Engineer

S11: How old are you?

C11: 45

S15: Now, afinal question! What other brand of car would you consider?
C15: Trabant GTE

Once the customer’s wishes have been collected, the sales-
personthentriesto apply followingkindsof rulesto mapthe
customerspreferencesto various product modelsand match
the accessories which best fulfill the customer’s require-
ments. A typical rule based approach could be like this:

IF purpose to buy acar = Business & Home

& customer haskids = yes

& customer prefers = fast
& customer objective = performance

THEN suggest automobile range = medium

another rule which narrows down this suggestion may beas
follows:
IF Age of Kids=0-3
THEN Suggest automobile Type = X00TD (station wagon)
&  Suggest accessories = baby seats

Once the basic model of an automobile is picked by the
salesperson then other customer requirements must be ful-
filled by adding certain accessoriesto thebasic model. Typi-
cally, thispart of the counselling isthe most difficult one, as
the sal espeople have not only to satisfy the customer but to
also achieve the maximum for themselves and their
manufacturer. In other words, a classic win-win situation.
To deal with this problem the sal espeople usually have two

methods; either to provide the customer with the complete
list of accessoriesavailablefor the selected basic model and
let the customer decide what he/shewants, which istedious
and time consuming, or they fall back to their past experi-
ence and the knowledge about the trends to suggest acom-
bination of accessorieswhich best suit the customer needs.
In practice, amore experienced sal esperson prefersthe lat-
ter approach. Thisisatypical example of the trade-off be-
tween a priori knowledge and observations needed.

A typical case which is stored in a salesperson’s memory
may look asfollows: A customer whose profession is engi-
neer, aged between 30-45, has 2 kids of age between 0-3,
prefersfast cars with high performance and is prepared to
pay~70000DM ........... bought a car of Model X00-TD with
accessories Xy, ........ Z

If, inthe due course of time, asimilar kind of customer ap-
pears, then the sal esperson uses the past experience and re-
members a similar instance of a previous sale and presents
this retrieved instance either as it is or takes the retrieved
case as areference, adjustsit to the new situation and then
presentsit to the customer.

2.1 The need to develop sales advisory systems

The scenario described above triesto sketch atypical con-
sultation situation as things are today. A close look at this
scenario description showsthe complexity involvedin deli-
cate decision making situationswhere no ‘best’ answer ex-
istswhen devel oping appropriate acquisition plansthat sat-
isfy customers requirements, while meeting applicable
financial and organisational objectives. Here, the question
isnot simply to optimize some specific objective. Any pro-
posed solution will betheresult of balancing many compet-
ing goals. Furthermore, merely suggesting a plan would be
insufficient. Explanationsarerequired to persuade and con-
vincethedecision maker that the proposed solutionsarerea-
sonable.

Thepresent situation inthisfield isthat the sal esperson does
everything from requirements analysis to product configu-
ration; from present organisational and financial situation
analysisto suggesting an appropriate sol ution plan manual -
ly. This task requires an enormous amount of knowledge
and experienceof asalespersoninvarioussubfieldsranging



from product component and configuration knowledge to
financial marketing etc. Today’s ever changing product de-
velopment and financial market situations do not allow all
salespeople to have the same degree of experience and
knowledge about every subfield involved in the decision
making, hence making the consultation task even more dif-
ficult. Computer support in this situation can be of great
help.

The purpose of our current work isnot only to facilitate and
accelerate the sales consultation process but to improve
upon the quality of the consultation as well. The quality of
the salesconsultationisdefined by usintwoways: (1) large
number of alternative solutionsto be consideredinthemini-
mum time and (2) successful outcome of the consultation,
i.e. how well does the sales object offered to the customer
suit the customer’s environment or specific needs.

3. CAsE BASED REASONING

Crucia stepsin a case-based reasoning (CBR) process in-
clude finding a good match to a new problem, adapting a
previoussolutionto successfully solvethe new problemand
deciding how to index and store a new case for later effec-
tiveretrieval [1].

In the course of CBR research, several guidelinesfor index
selection have been proposed: (1) indices should be
predictive, (2) indices should be abstract enough to make a
case useful in a variety of future situations, (3) indices
should beconcreteenough to berecognizableinfuturecases
and (4) predictions that can be made should be useful [11].

Accordingly, in the literature one finds different types of
case indexing/matching approachesto help resolve agiven
case : (1) Template matching, (2) Nearest Neighbour
matching, (3) Inductive indexing and (4) Prototype
Indexing [4].

According to the different needs of the application domain
these techniques can either be used individually or can be
combined to take advantage of the inherent strengths of
each. For example, if dynamic caseretrieval capabilitiesare
required then (1) and (2) alow this, requiring little or no
pre-indexing of cases but at the expense of retrieval
accuracy and speed. (3) and (4) allow the user to build a

moreaccurateand efficient retrieval structureat theexpense
of dynamic adjustment. Dueto the nature of our application
domain (Section 2) none of the above mentioned techniques
seemed to be sufficient, hence we developed a hybrid
technique based upon Radial Basis Function (RBF)
Networks, with pre- and post-processing based on ideas
from the CBR approach.

Another issue which we are going to tackle in our paper is
case adaptation: When a new problem is encountered, the
systemfirst retrievesoneor morecasesthat aresimilar tothe
new problem. Typically, no case matches the new problem
exactly, so the system must adapt one of theretrieved solu-
tions to the new problem. Previously, many CBR systems
weredesigned to solve new problems by adapting solutions
tosimilar, previoudly solved problems. For example; GINA
[6], CYRUS[9], PROTOS[3], EACH [19], CHEF[7], CA-
BOT [5] and PERSUADER [22]. In all these systems, their
authors have experimented with different case adaptation
techniquesand al the solutions suggested in thisregard are
domain dependent. In our approach, case adaptationisin-
herent to the neural network approach, and genericin nature
(Section 4).

K ol odner mentionsthetwo styles—problem-solvingandin-
terpretive — of CBR [11]. In the problem solving style of
case-based reasoning, solutions to new problems are
derived using old solutionsasaguide. CBR of thistypesup-
portsavariety of problem solving tasks, including planning,
diagnosisand design. Intheinterpretivestylenew situations
are evaluated in the context of old situations. This styleis
generaly useful for situation classification; the evaluation
of solution; argumentation; the justification of a solution,
interpretation or plan; and the projection of effectsof adeci-
sionor plan. Our present work belongstothelatter category.

All of theCBR systemsdevel oped to date[ 20] havebeenfor
classical domains like medicine, law or cooking, which all
require exact solutions rather than approximations. What
makes our domain different —and somewhat unconvention-
al —from the traditional domains of CBR isthat in our ap-
plication no tightly constrained solutions are required and
the proposed solutions can alwaysbe modified. What isim-
portant hereisthat agood approximation/consensus should



be reached in fewer steps, i.e. the system should produce a
short list of high quality suggested configurations.

4. A HYBRID APPROACH

4.1 Comparing CBR to Numerical methods

The CBR approach to machinelearning comes overwhelm-
ingly from the symbolic processing community. Thefunda-
mental problems being addressed are, however, often com-
mon to other fields such as statistics, modelling and pattern
recognition. The most obvious analogy is between Cased
Based Reasoning with low-level indices and Nearest-
Neighbour classifiers. In Nearest-Neighbour classifiers, the
output classisthat of thetraining exampleclosest tothecur-
rent inputs. The indexing problem is solved by making all
n features of the problem dimensions in hyperspace, then
calculating the Euclidean distancefromthe current inputsto
all other examples in the training set. In the k-Nearest
Neighbours algorithm the nearest k cases are taken into ac-
count for classification.

Thisenablesustofind the nearest rel evant cases, but suffers
from the same problems as case-based reasoning, in that a
large number of cases are needed, and that the processing
cost increases with the number of examples. In many ap-
plicationsit isalso desirableto be ableto form asmooth de-
cision surface over the input space, as opposed to a collec-
tion of piecewiseconstant areas. A smooth decision surface,
interpolating between cases, can then accomplish the same
task as the adaptation of cases in the standard CBR imple-
mentations. The numerical formulationis, however, amuch
more general formulation of adaptation.
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Figure 1: Should we use the individual cases, or fit adecision surface to the

data which tries to minimise a given optimisation criterion?

Thisideaisshownin Figure 1 for asimple system with one
input feature, customer income, mapping onto the cost of
car bought. This can be described by several cases, with
adaptation between them, or by adecision surface. The sur-
face (inthiscasealine) isgiven certaina priori constraints,
so that it should smoothly interpolate between data points,
performing an implicit generalisation between cases, aver-
aging out the effects of noise, and robustly rejecting the out-
liers or inconsistent data in the training set. The surface
shape can be further adapted when new cases arrive.

4.2 Local Basis Function Networks

Neural networks with local basis functions, such as Radia
Basis Functions (RBF) and others (potentia functions or
multivariate spline bases) have been used for function
approximation and modelling in various forms for many
years [2][15][16][21][13][15] and are receiving a growing
amount of attention from the neural network community.
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Figure 2: () A Radial Basis Function Network.
(b) A one-dimensional mapping represented by basis functions.
(c) The mathematical description of the network.
Thebasic RBF netisshownin Figure 2. Theoutputisalin-
ear combination of many localy active non-linear basis
functions. Each unit’scentreisplacedintheinput space, and
the receptivefield of the unit (the volume of the input space



inwhich its activation is non-zero) is defined by itsradius.
The basisor activation function (similar to the membership
function of afuzzy set) of theunitisusually designed so that
the activation decreases towards zero as the input point
moves away from the unit’s centre, e.g. B-Splines or Gaus-
sian bellsare common choices. The units, with their respec-
tive weights can therefore be viewed as locally accurate
models, whosevalidity for agiveninputisindicated by their
own activation functions for thisinput. In CBR terminolo-
gy, thecentres could bethought of asprototypical situations,
the solution is held in the wei ghts between the unit and out-
put, and the radius and shape of the basis function are used
to perform adaptation together with other units.

Formulated this way, the problem of finding the correct
weights is that of Generalised Linear Least Squares opti-
misation [17]. Asthisisalinear optimisation problem, the
global minimum should always be found. The optimisation
of the units' centres and radii is, however, a more difficult
non-linear optimisation problem. Specht [21] used one unit
for eachtraining example, or case, each centred onan exam-
ple. Thisisasimpletechnique, but onewhich scalesup very
poorly. We would therefore prefer methods which use the
redundancy in any training set to reducethe number of units
needed to learn the desired training data. Recent work has
used variations on clustering algorithms, such as self-orga-
nising maps, or k-means clustering for placing the centres.
Theradii are then set related to the proximity of the unit's
neighboursasin[13]. Another optionisto dynamically add
new units to the network, whenever an input occurs which
is not near the centre of any of the units' receptive fields.
Thisiseasily detected, as the maximum response from any
neuron is then less than the given tolerance level.

Because of the use of clustering and theinterpolative nature
of the network, thisenablesarel atively compact representa-
tion, compared to strai ghtforward nearest-neighbour classi-
fiers, leading to a faster response time. Neural networks
withlocal basisfunctionsare especially suited for combina-
tionwith CBR systems, but itisperfectly feasibleto use oth-
er networks, such asmulit-layer perceptrons, tolearnthein-
put-output relationship.

4.3 The continuity restriction

RBF nets are designed to learn continuous, non-linear mul-
tivariable mappings. It is therefore important that a given
problem can be framed as a continuous i nput-output map-
pingif these netsareto beused. Thiswill mean that symbol-
ic case features and sol ution features must be mapped onto
a continuous space.

Isthe problem we are examining an example of a problem
which can be treated in such away? Examining some fea-
tures obtained from our customer in Section 2, we see that
somevariables, suchascost (DM), could be used directly by
normalising them within agiven range. Others, like perfor-
mance (fast, medium, slow) may be represented in afuzzy
form, which can be directly used by the network as de-
scribed in Section 4.4. Discrete inputs, such as number of
children, can also be easily converted. The difficulties start
when a particular symbolic feature is complicated and
thereforedifficult to map onto acontinuousvariablewithout
apriori knowledge. A simpleexampleinthisapplicationis
the profession of the customer, where classifying the simi-
larity of the various jobs depends on sociological knowl-
edge. To solve this requires a domain specific pre-proces-
sing for particular variables. This process is shown in
Figure 3. For some types of feature, it may be advisable to
break the feature down into sub-featureswhich are easier to
quantify.

Customer Cases & Solutions
Complex, non-continuous features

Useapriori
Continuous Fuzzy  Discrete knowl_edgle t_ot define
features features  features similanty

A VAVIIEY .

Network Training Set: Inputs & Outputs
Numerical Input Vector | Numerical Output Vector

Figure 3: Creating the network’s training set with pre-processing techniques

from Fuzzy Logic and Case Based Reasoning.



4.4 Using fuzzy features

Thefunctional equivalenceof aclassof fuzzy logic systems
(those using the product operator for inference) and basis
function networks has been recognised [8]. Thisenablesthe
direct integration of fuzzy set descriptions of input features
into basis function nets, thus utilising the a priori knowl-
edgepresent inthechoice of themembership functions. The
set of basis function ‘neurons’ can be extended to include
the fuzzy set’s membership functions for a particular input
dimension, by forming the tensor product (®) of the avail-
able adaptable basis functions, with the fuzzy sets for the
relevant features, as shown below.

act = ®( X1 — ) @ F(x) ®,..., ® Fy(xy)

where F,(.) isthe vector of the f; membership function val-
ues of the relevant feature a, and act is the
f1 x> X ... X f, Xx M matrix of activation values for the neu-
rons (M isthe number of unitsoriginally in ®()). Thisleads

k
toN units, where N = M - nfi' Treating act as avector

i=1
for simplicity, the network’s output can be described:

N
yi(x) = Zac:ti © W
i=0

A further interesting aspect of the similarity between fuzzy
systemsand basisfunction networks, isthat thefinal trained
network can be translated back into a collection of fuzzy
rules. In complex practical cases, however, there may be so
many rules that they provide little help in interpreting the
system.

4.5 The system should know what it doesn’t know

A major shortcoming of learning systemsisthat they cannot
be better than their training set and that the quality of the
training set isvery difficult to judge. (It is often more diffi-
cultto createtherepresentativetraining set thanitistolearn
it!) If the variance of the featuresis known, this measure of
theinput uncertainty can be used during the run-time phase
to calculate the confidence limits on the outputs (also very
relevant for applicationswhere casescan beincomplete, i.e.
some features are not available, and the outputs must be
approximated using the other features).

This is an area where networks with local basis functions
have an advantage over other learning systems, as this al-
lowsthelocal calculation of confidence limitsfor the accu-
racy of the network. Also, asonly alimited number of train-
ing exampl eshavesignificantly influenced the output of the
network at any point intheinput space, theuser canalsobe
warned if the given basis function contained insufficient
training datato beabletolearnto produceameaningful out-
put in the given area[12][14].

This can help the designer when testing the system, asitis
easier to find gaps in the training set or areas of complex
structuresinthedata, which areharder tolearn. Itisal so use-
ful when the system isin use, asit can warn the user about
situations where there were very few, or possibly no pre-
Vious cases.

4.6 A hybrid sales advisory system

Given the training set in numerical form, the network can
then be trained to reproduce the mapping from input to out-
put using the methods described in Section 4.2. Thetrained
network canthen beinsertedintothestructureshowninFig-
ure4.
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Figure 4: The Trained Hybrid System with pre-processing techniques from
CBR and mapping done with RBF network.
This structure uses the same pre-processing as was used to
create thetraining data, thustransforming the situation into
apoint inthe continuoussituation feature space. Thetrained
network then maps this point to a point in the solution fea-
ture space. Thevector of outputs describing thispoint must
be decoded to useable symbols. Thiswill involverescaling




continuous features, assigning membership valuesto vari-
ousfuzzy sets, thresholding for binary or symbolic dataand
dedi cated post-processing to decode the more complex fea
tures; in effect, theinverse of the pre-processing applied to
the target outputs of the training set. The results thus de-
scribe the recommended solution for the given input situa-
tion.

Another opportunity offered by the continuous representa-
tion of the problemisthat solution featureswhich are by na-
ture symbolic can be output as fuzzy sets, instead of just
thresholding them. The tolerance bands aso give a rough
guidetotherange of possiblesolutions, allowing thesystem
to easily suggest a variety of interesting possibilities. This
could provide extrainformation to the sal esperson, predict-
ing the likely importance of individual features to the cur-
rent customer, and can be used automatically by the system
to create an ordered list of possible solutions.

If the system notifies the salesperson that the current situa-
tionisanovel one, it isup to the salesperson to use hisher
own initiative. It is, however, important to observe that
‘gaps’ in thetraining set may not always be a hindrance to
the system, asit may bevital to know where these gaps are.
If, asinthisapplication, thetraining datawasacquired from
thousandsof real salescases, thefact that very few examples
exist for aparticular type of customer could possibly point
to aninteresting areafor amarketing push. Thisisan exam-
ple of using the trained system as a‘ market model’ for the
particular product, enabling marketing people to simulate
what a given type of customer is likely to buy. The advan-
tage of using such a system isthat analysisis based not on
the subjective and possibly outdated opinions of amanager
who may havelittle direct contact with customers, or apar-
ticular local market, but on amodel trained with the actual
up-to-date sales statistics from the areain question.
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Figure 5: Anillustrative example of the system in use.

5. SUMMARY AND CONCLUSIONS

Two instance-based learning paradigms were combined to
create a powerful new learning system. Although there are
many similarities between thetwo approaches, asdiscussed
in Section 4, each hasitsown strengthsand weaknesses. The
improvements brought by the hybrid scheme are listed be-
low, asarethe advantagesfor the salesadvisory systemsdo-
main.

5.1 Relevance to the Sales Advisory System

The CBR approach iswell suited to the application, due to
theready availability of casestotrain the system, the chang-
ing nature of the system (making rule-based techniques un-
suitable, due to their brittleness), the explanation ability of
such systems and the potential use of the trained system as
amarket model.

As described in Section 2, the sales advisory areais well
suited to the hybrid sol ution suggested in this paper because
of the mixture of datatypes (numerical, fuzzy or symbolic),
large amounts of noisy or inconsistent data and relatively
flexible constraints. The suggested hybrid system makes
severa further contributions to the advisory systems area:
Improved efficiency — faster response, lower memory re-
quirement, better prioritisation of recommendations.

5.2 Extensions to the CBR approach

For the class of problems described above, the CBR prob-
lem can be viewed as that of forming amapping in the fea-
turespace, asisthecasewith classical modelling or numeri-
cal pattern recognition, allowing the introduction of many
of thetechniquesdevel oped over thelast few decades, while
retaining the symbolic processing abilitiesof CBR systems.
The advantages gained can be summed up thus:

A memory efficient, generally applicable method can be
used to form a continuous mapping to perform theindexing
functionrapidly. The casesolutionand adaptationisimplic-
itintheresult of the mapping (generalisation), and does not
have to be specially considered from domain to domain.
(This may lead to less demanding requirements of large
numbers of examplesin some applications.)
Thecontinuousoutputsof thenetwork can beconvertedinto
afuzzy representation of the output features, rather than di-



rectly into symbols, easing the process of prioritisation of
suggestions.

The validity network concept can be used to give alocal
measureof accuracy and reliability of the system’sanswers,
based on the amount of training datain the area of interest
and the success of the network during the test phasein this
area.

A further step could betointroducethe dynamic systemsas-
pectsusedin many neural networksapplicationstothe CBR
world, enabling CBR systems to cope with time-seriesin-
formation.

5.3 Extensions to the RBF approach

The neural network approach can a so be extended by some
of the conceptsin CBR: The important aspect is the use of
symbolic datawith neural networks, especially higher level
features, the CBR community has developed many tech-
niques for dealing with symbolic data, by defining domain
specific similarity metricsfor complex concepts. These can
be used as pre- and post-processing techniquesallowing the
use of neural networks to perform continuous mappings.
This is obviously useful for many applications using such
amixture of feature types.

Theexplanation systems component of many CBR systems
isnot ideal for all applications, but could certainly be useful
in some: One of the major criticisms of neural networksis
that they supply an answer, but are unable to justify there-
sults. If the user asked for ajustification of aresult fromthe
network, the system could choose the most similar cases
from the training set using the standard nearest-neighbour
retrieval procedures, to show what the exact content of the
most relevant casesis. Thisislikely to be especially useful
in mixed symbolic and statistical classification problemsin
which the consequences of afalseclassification arevery se-
rious, and where a human user wants to be able to ask the
system to explain itself using the historical cases nearest to
the current situation e.g. medical diagnosis applications,
where symptom descriptions may be symbolic, but relevant
measured data (e.g. ECGs, blood pressure time series etc.)
is numerical.

Allinall, thetworesearch bodieswould benefit fromahigh-
er degree of interaction, considering the large overlap in
content, and similar fundamental problems. The potential
mutual benefitsoffered by thediffering experience, applica-
tionsand insight should interest both research groups, not to
mention the wide range of applications which can only be
solved by such a combination of symbolic and humerical
processing.
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