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ABSTRACT

We describe a particle filtering approach to inferring finger
movements on capacitive sensing arrays. This technique al-
lows the efficient combination of human movement models
with accurate sensing models, and gives high-fidelity results
with low-resolution sensor grids and tracks finger height.

Our model provides uncertainty estimates, which can be linked

to the interaction to provide appropriately smoothed responses
as sensing perfomance degrades; system autonomy is in-
creased as estimates of user behaviour become less certain.

We demonstrate the particle filter approach with a map browser

running with a very small sensor board, where finger posi-
tion uncertainty is linked to autonomy handover.
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INTRODUCTION

This paper presents a technique for interpretation of an array
of capacitive sensors such that the information can be used
for direct foreground interaction control and background con-
trol or context sensing. These techniques allow us to cope
with dynamic, noisy sensor inputs, and to create systems
whose level of autonomy increases as ambiguity increases
— the system takes over as user input becomes less certain.
This sensing ability allows the creation of interfaces for rich
interaction, open to the inclusion of more sophisticated mod-
els based on context of use, or prior behaviour, to support
direct human motor control.

A human-computer interface interprets user actions and car-
ries out the user’s intention. The computer system estimates
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states of the physical world using its sensors. These esti-
mates are the means by which a human can control the in-
ternal state of the computer and cause it to perform actions.
All systems have some level of ambiguity, due to a mix of
limited sensing of the environment, and poor models of the
complexity of human users. [10] and [9] discuss the im-
portance of maintaining uncertainty in user interfaces. In-
teraction design has, however, typically been challenged by
designing solutions for inputs which are high-dimensional,
dynamic and uncertain. Many rich analogue sensors such
as accelerometers or capacitive inputs have been used in an
essentially discrete fashion with simple thresholds trigger-
ing key-press equivalent events. Even simple tasks such as
using accelerometers to re-orient the screen from portrait to
landscape have undesirable consequences because of the dif-
ficulty of interpreting context appropriately.

Designing for fluid handover of autonomy

In [5], the “H-metaphor” is described, where a rider’s inter-
action with his or her horse is used as an analogy for the
handover of autonomy in computer systems as the certainty
of control varies. If a rider uses certain, frequent and delib-
erate movements, the horse follows movements exactly; as
the control becomes vaguer, the horse resorts to familiar be-
haviour patterns and will take over more of the control. We
believe that this notion of being able to ‘loosen or tighten
the reins’ of interaction with an intelligent device is likely
to be vital in the creation of future human—computer interac-
tion systems. Capacitive sensing systems are ideally suited
for this style of communication and control, as the control
metaphor is literal tightening or loosening of the grasp of
the device itself.

BACKGROUND

To explicitly model uncertainty, we adopt a Bayesian ap-
proach. This involves a shift from considering particular
values of objects of interest (for example, a contact pointon
a sensor array) to distributions over possible values. Un-
certainty is naturally handled by the degree of variance in
the distribution. Unfortunately, for most interesting appli-
cations, such distributions are not analytically tractable and
we must resort to sampling techniques. For distributions that
evolve over time, the most popular family of sampling tech-
niques are Sequential Monte-Carlo techniques (a.k.a. par-
ticle filters, PFs) [3]. Broadly speaking, PFs approximate
the distribution at a particular time-point with a set of sam-
ples (particles). The set of particles at the next time instant
is generated from the current set by re-sampling particles
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Finger position at time A
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(a)
Figure 1. (a) SK7 Sensor pack with optional 24 channel external capacitive sensing board. (b) left Time series, giving sensor intensity across a 4x3
sensor array (3mm? pads) as the finger is brought into contact. The complexity of the trajectory is apparent. (b) right Inferred 3D position as a finger
approaches the sensors. Ellipses show inferred uncertainty in x; and z2.

with probability proportional to how well they match the ob-
served data.

Capacitive Sensing

Capacitive sensing works by measuring the change in capac-
itance of a virtual capacitor between sense pads and ground.
When a grounded object, such as a human body, comes into

proximity with these pads, the apparent capacitance increases.

Figure 1(a) shows the sensing hardware used in this paper.
An SK7 sensor packfrom SAMH Engineering Services was
used for capacitive sensing. Data is sampled from 12 small
square pads in a 4 x 3 configuration, measuring 26 x 20mm
and providing 8-bit resolution at 110Hz. With a 0.012pF
sensitivity, this gives a proximity range from 0-10mm, with
the value decreasing exponentially with the distance. An op-
tional 24 channel board can be used for higher resolution
sensing in a larger form factor. Figure 1(b) (left) shows a
typical time-series from a 12 sensor array with the finger
moving in and contacting the board. The resulting inferred
3D position shown in Figure 1(b) (right).

Whole device interaction

There has been increasing recent interest in sensing contact
with the whole device[2, 11, 1], where current prototypes
have typically used either existing mouse pads, or combined
multiple touch sensitive off-the-shelf devices. The advan-
tages of such systems include interacting without obscuring
the screen [1], dual front-and-back interaction [8, 7, 12] and
sensing hand posture.

IMPLEMENTATION

We have built a robust, high-quality realtime finger tracking
system which uses a particle filter to estimate finger position
using relatively low-resolution sensor arrays. This system
is implemented using custom hardware and is implemented
in Python. This filter can track finger position at 100Hz or
more, with sub-fingertip accuracy. In testing, our particle fil-
ter roughly halves the RMS error in XY position for repeated
trials of touching a sensor pad compared to standard linear
interpolation methods, as well as providing robust height
values. The particle filter is 3D, and can reliably track the
finger during approach to the sensor pad, with realistic esti-
mates of sensor uncertainty. It supports multitouch sensing,
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Finger position at time B

(b)

with up to three points of contact. It also supports spatially-
varying prior distributions over velocity, so that beliefs about
flows can be encoded in the filter and used during estimation.

3-DIMENSIONAL SENSING

We now describe the method that we use to track the 3D lo-
cation of a finger. In particular, we are interested in the pos-
terior distribution p(x|c) which encapsulates the (un)certainty
we have in the finger location (x) conditioned on the values
from the sensors c. We will generate samples from this dis-
tribution using a PF, depicted in Figure 2. The filter consists
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Figure 2. Particle filter to determine contact location on a sensor grid
(third (height) dimension ommitted for clarity).

of a population of S particles that at any moment represent
a sample from p(x|c). At each iteration a new population
is created by re-sampling particles from the population with
probability proportional to how well they agree with the ob-
served data. In our application each particle consists of a lo-
cation in 3D and we denote the sth particle by x,. After ini-
tialisation with random particles (sampled from a prior dis-
tribution), the filter consists of two steps — particle weighting
and particle re-sampling — repeated at each sensor update.

Particle weighting In this stage, the particles are assessed
to determine how well they fit to the observed data. This
stage relies upon a model of sensor response for any partic-
ular contact location. We use a negative exponential func-
tion for the response of the ith sensor defined on the dis-
tance between a particle and the sensor location q;: 7;(s)
exp{—K||xs — qi||2}. The response becomes flatter as the
contact is moved away from the sensor plane, which results
in broadening the posterior distribution (and hence increas-
ing posterior uncertainty). The explicit modelling of the sen-
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sor response makes it easy to support varying sensor pad
shapes. The filter could, for example, be used to track fingers
using hierarchical sensors, where coarse pads provide long-
range depth information and low-resolution XY information,
and smaller pad provide high resolution XY information as
fingers approach the surface. The vector of values obtained
when this is evaluated for all I sensors is then compared
against the current observed values using a Gaussian likeli-
hood. This gives the un-normalised weight for the sth parti-
cle, wy (the higher the weight, the better the particle approxi-

mates the true position): ws o exp {—7 Zle(ri(s) - ci)Q}.

Finally, these weights are normalised to give particle proba-
bilities: W We

Sy wer

Particle re-sampling In this step, we use the current par-
ticle population to generate a new population. Firstly, we
create a proportion (IN,.) of the S particles randomly from
some distribution p(x;) - in our demonstrations we use a
uniform distribution over the 3-dimensional space. This step
ensures that the filter can track rapid changes in the distribu-
tion (for example, the finger being removed and then placed
back again). Secondly, we generate the remaining S — N,
particles by sampling with replacement from the distribution
defined by the normalised weights w5 - i.e., we produce the
tth particle in the new generation from the sth particle in the
previous generation with probability w,. As we are sam-
pling with replacement, it is possible that a single particle
(with high w;) could produce several particles in the next
generation. Finally, we must define a prior distribution on
the evolution of x - p(x¢|xs). This distribution encapsulates
our beliefs regarding how the contact will move through the
3D space. We define p(x:|x;) as a spherical Gaussian -
p(x¢|xs,02) ~ N(xs,0%I). This encodes the prior belief
that the user moves in a smooth manner. Many movement
models beyond the simple smoothness constraint are possi-
ble. As long as we can define the density p(x;|x;) and sam-
ple from it, it can be incorporated into our model. For ex-
ample, a minimum-jerk movement model can implemented
as a simple prior on the third derivative of position. Richer
movement models can be obtained by suppling each parti-
cle with a velocity that is depends on the particle’s location.
We have implemented models where a spatially-varying ve-
locity distribution can be learned from previous movement
patterns. At each time step, particles are moved according to
this velocity field and will only survive if this movement is
consistent with the user’s.

Multi-touch The particle filter approach naturally handles
multi-touch interaction. Particles are generalised to have
multiple locations. Imagine a particle that corresponded to
two locations. As long as we could compute the theoretical
sensor output for contacts at both of these locations (we have
found that an additive model works well), we can compute
the particle weight and proceed as above. Allowing particles
with differing numbers of contacts to coexist in the filter al-
lows us to track the probability distribution over both contact
location and number of contacts. The particle filter is robust
to additional fingers. Tracking of the original finger(s) re-
mains undisturbed by additional contact points.
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Whole device sensing Velocity models are also useful when
sensors are distributed about the body of a device — not just
on flat surfaces, but curved around the entire form of a mo-
bile device or hand controller. Our model allows to encode
priors about movement flows across the surface which result
from the effect of the curvature and textures of the object
surface. A rich variety of forms can become useful interac-
tion surfaces, where the model copes well with the intrinisic
movement distortions caused by the shape of the object. The
particle filter also makes it easy for researchers to rapidly
prototype novel arrangements of sensor arrays with crude
copper tape and glue construction without high accuracy en-
gineering.

APPLICATION - A SINGLE FINGER MAP BROWSER

We now demonstrate how explicitly incorporating uncertainty
into the sensing regime can lead to efficient, natural interac-
tion. A common method for navigating around an image
on a mobile device is to combine dragging movements with
a multi-touch pinch-release movement on a touch-sensitive
screen. This has the drawback that the user must use two
fingers and cannot support the device and perform the inter-
action at one time. The same functionality can be accom-
plished using just one finger by incorporating the 3D loca-
tion and explicit uncertainty modeling. Assume we have a
large map of which we can only view a small display area
that has fixed aspect ratio but can increase and decrease in
area (zoom), shown in the first pane of Figure 3. The sensor
array is assumed to be centred on the centre of the viewing
area but exists in the map space so has fixed size (can be
bigger or smaller than the current display). Given a current
input (blue particles in Figure 3(left)), the system moves and
scales the current display window in an attempt to capture as
many input samples as possible. Having updated the display
window, the virtual sensor array position is updated accord-
ingly.

Zoom and display position naturally adapt to the certainty of
the input. A very certain input will result in a small cloud,
a decrease in display area and hence zooming in. An un-
certain input will force the display area to cover more of
the map resulting in zooming out. This is an extension of
speed-dependent zooming [6, 4]. The analogy to the ‘reins’
in the ‘H-metaphor’ is that when the user behaves purpose-
fully, with firm movements, they have tight control, while
when they provide more vague input, the priors on different
cities have more effect, leading to more autonomous control
behaviour from the system. In essence, the problem is a con-
trol task, where the system attempts to maximize the density
of particles in view space, subject to dynamical constraints
which encode human perceptual limits. The particles from
the filter are projected into view space and the viewing vol-
ume is adjusted to maximize the particles in view, i.e. we de-
fine a cost function E(u, 3, b), defined by the set of particle
positions p and the viewport bounding box b and minimize
this by solving a set of differential equations. The controller
is a simple second order system:b, = ki(b, — p),bs =

k3
ko (\/E + b, — u) where p and X are the mean and co-

variance of the particle locations, b, and b, are the current
viewport centre and scale factor, respectively, and k1, ko, k3
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Figure 3. Left pane:Schematic of finger browser operation. Middle panes:browser in use. Final pane: browser incorporating priors over targets.

specify the responsiveness of the system. ki, ko, k3 are ad-
justed to create a smooth and controllable interaction. We
explicitly include constraints to the dynamics because we
can only control what we can perceive, and while in prin-
ciple we can navigate instantly in an arbitrary information
space given a static interaction mechanism (e.g. clicking on
a scroll bar), if we are dependent on feedback to be displayed
while pursuing our goals there are upper limits on the speed
at which the display can change. The middle panes of Fig-
ure 3 show the system in action. The far right pane illus-
trates an extension to the model where priors over targets
are included. This is an example of the ease with which
the sensing model can be combined with domain-specific
knowledge. In this case, as uncertainty increases the priors
dominate and more control is handed over to autonomous
navigation to likely targets (e.g. major cities).

CONCLUSIONS

User interfaces must deal with uncertainty about intention.
We have shown how Monte Carlo inference techniques can
be used to improve interaction with low-resolution sensing.
The negotiation of control between the system and the user
is directed by the estimated uncertainty in the intention of
the user; as the system’s reasoning about a user’s behaviour
degrades, the system takes over more of the task. We have
shown how a simple uncertainty-based linkage between a
finger tracking model and a map browsing application leads
naturally to an intuitive zooming and browsing paradigm
which includes elements of speed-dependent zooming. The
technique is simple to understand and implement and can be
adapted to virtually any sensing hardware. The filter opens
up the possibility of scheduling of different feedback modal-
ities according to the certainty of the inputs. Writing the
interaction as a controller trying to maximize the distribu-
tion of particles in view space results in a simple and el-
egant implementation of techniques which have otherwise
been implemented ad hoc and automatically accounts for
the changes in distribution caused by varying uncertainties.
A key feature of our system is that reliable z-axis tracking
opens up the potential for expressive motion sensing beyond
binary finger up/down detection.

Visualising and linking the full distribution of such estima-
tors to the interaction is an essential tool in building interac-
tive systems that degrade gracefully. Degradation can be de-
liberately be used as in interaction technique; a user can hand
over control by ceasing to provide evidence of intention, ef-
fectively “letting go of the reins”. This leads to an elegant
ebb and flow of interaction between the user and computer:
dancing with the machine rather than traditional ‘command-
and-control’.
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